i82557.c revision 1.50 1 /* $NetBSD: i82557.c,v 1.50 2001/05/21 23:58:44 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia(struct fxp_softc *);
169 int fxp_mii_mediachange(struct ifnet *);
170 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
171
172 void fxp_80c24_initmedia(struct fxp_softc *);
173 int fxp_80c24_mediachange(struct ifnet *);
174 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
175
176 void fxp_start(struct ifnet *);
177 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
178 void fxp_watchdog(struct ifnet *);
179 int fxp_init(struct ifnet *);
180 void fxp_stop(struct ifnet *, int);
181
182 void fxp_rxdrain(struct fxp_softc *);
183 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
184 int fxp_mdi_read(struct device *, int, int);
185 void fxp_statchg(struct device *);
186 void fxp_mdi_write(struct device *, int, int, int);
187 void fxp_autosize_eeprom(struct fxp_softc*);
188 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
189 void fxp_get_info(struct fxp_softc *, u_int8_t *);
190 void fxp_tick(void *);
191 void fxp_mc_setup(struct fxp_softc *);
192
193 void fxp_shutdown(void *);
194 void fxp_power(int, void *);
195
196 int fxp_copy_small = 0;
197
198 struct fxp_phytype {
199 int fp_phy; /* type of PHY, -1 for MII at the end. */
200 void (*fp_init)(struct fxp_softc *);
201 } fxp_phytype_table[] = {
202 { FXP_PHY_80C24, fxp_80c24_initmedia },
203 { -1, fxp_mii_initmedia },
204 };
205
206 /*
207 * Set initial transmit threshold at 64 (512 bytes). This is
208 * increased by 64 (512 bytes) at a time, to maximum of 192
209 * (1536 bytes), if an underrun occurs.
210 */
211 static int tx_threshold = 64;
212
213 /*
214 * Wait for the previous command to be accepted (but not necessarily
215 * completed).
216 */
217 static __inline void
218 fxp_scb_wait(struct fxp_softc *sc)
219 {
220 int i = 10000;
221
222 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
223 delay(2);
224 if (i == 0)
225 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
226 }
227
228 /*
229 * Submit a command to the i82557.
230 */
231 static __inline void
232 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
233 {
234
235 if (cmd == FXP_SCB_COMMAND_CU_RESUME &&
236 (sc->sc_flags & FXPF_FIX_RESUME_BUG) != 0) {
237 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_NOP);
238 fxp_scb_wait(sc);
239 }
240 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
241 }
242
243 /*
244 * Finish attaching an i82557 interface. Called by bus-specific front-end.
245 */
246 void
247 fxp_attach(struct fxp_softc *sc)
248 {
249 u_int8_t enaddr[ETHER_ADDR_LEN];
250 struct ifnet *ifp;
251 bus_dma_segment_t seg;
252 int rseg, i, error;
253 struct fxp_phytype *fp;
254
255 callout_init(&sc->sc_callout);
256
257 /*
258 * Allocate the control data structures, and create and load the
259 * DMA map for it.
260 */
261 if ((error = bus_dmamem_alloc(sc->sc_dmat,
262 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
263 0)) != 0) {
264 printf("%s: unable to allocate control data, error = %d\n",
265 sc->sc_dev.dv_xname, error);
266 goto fail_0;
267 }
268
269 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
270 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
271 BUS_DMA_COHERENT)) != 0) {
272 printf("%s: unable to map control data, error = %d\n",
273 sc->sc_dev.dv_xname, error);
274 goto fail_1;
275 }
276 sc->sc_cdseg = seg;
277 sc->sc_cdnseg = rseg;
278
279 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
280
281 if ((error = bus_dmamap_create(sc->sc_dmat,
282 sizeof(struct fxp_control_data), 1,
283 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
284 printf("%s: unable to create control data DMA map, "
285 "error = %d\n", sc->sc_dev.dv_xname, error);
286 goto fail_2;
287 }
288
289 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
290 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
291 0)) != 0) {
292 printf("%s: can't load control data DMA map, error = %d\n",
293 sc->sc_dev.dv_xname, error);
294 goto fail_3;
295 }
296
297 /*
298 * Create the transmit buffer DMA maps.
299 */
300 for (i = 0; i < FXP_NTXCB; i++) {
301 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
302 FXP_NTXSEG, MCLBYTES, 0, 0,
303 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
304 printf("%s: unable to create tx DMA map %d, "
305 "error = %d\n", sc->sc_dev.dv_xname, i, error);
306 goto fail_4;
307 }
308 }
309
310 /*
311 * Create the receive buffer DMA maps.
312 */
313 for (i = 0; i < FXP_NRFABUFS; i++) {
314 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
315 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
316 printf("%s: unable to create rx DMA map %d, "
317 "error = %d\n", sc->sc_dev.dv_xname, i, error);
318 goto fail_5;
319 }
320 }
321
322 /* Initialize MAC address and media structures. */
323 fxp_get_info(sc, enaddr);
324
325 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
326 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
327
328 ifp = &sc->sc_ethercom.ec_if;
329
330 /*
331 * Get info about our media interface, and initialize it. Note
332 * the table terminates itself with a phy of -1, indicating
333 * that we're using MII.
334 */
335 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
336 if (fp->fp_phy == sc->phy_primary_device)
337 break;
338 (*fp->fp_init)(sc);
339
340 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
341 ifp->if_softc = sc;
342 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
343 ifp->if_ioctl = fxp_ioctl;
344 ifp->if_start = fxp_start;
345 ifp->if_watchdog = fxp_watchdog;
346 ifp->if_init = fxp_init;
347 ifp->if_stop = fxp_stop;
348 IFQ_SET_READY(&ifp->if_snd);
349
350 /*
351 * We can support 802.1Q VLAN-sized frames.
352 */
353 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
354
355 /*
356 * Attach the interface.
357 */
358 if_attach(ifp);
359 ether_ifattach(ifp, enaddr);
360 #if NRND > 0
361 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
362 RND_TYPE_NET, 0);
363 #endif
364
365 /*
366 * Add shutdown hook so that DMA is disabled prior to reboot. Not
367 * doing do could allow DMA to corrupt kernel memory during the
368 * reboot before the driver initializes.
369 */
370 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
371 if (sc->sc_sdhook == NULL)
372 printf("%s: WARNING: unable to establish shutdown hook\n",
373 sc->sc_dev.dv_xname);
374 /*
375 * Add suspend hook, for similar reasons..
376 */
377 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
378 if (sc->sc_powerhook == NULL)
379 printf("%s: WARNING: unable to establish power hook\n",
380 sc->sc_dev.dv_xname);
381
382 /* The attach is successful. */
383 sc->sc_flags |= FXPF_ATTACHED;
384
385 return;
386
387 /*
388 * Free any resources we've allocated during the failed attach
389 * attempt. Do this in reverse order and fall though.
390 */
391 fail_5:
392 for (i = 0; i < FXP_NRFABUFS; i++) {
393 if (sc->sc_rxmaps[i] != NULL)
394 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
395 }
396 fail_4:
397 for (i = 0; i < FXP_NTXCB; i++) {
398 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
399 bus_dmamap_destroy(sc->sc_dmat,
400 FXP_DSTX(sc, i)->txs_dmamap);
401 }
402 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
403 fail_3:
404 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
405 fail_2:
406 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
407 sizeof(struct fxp_control_data));
408 fail_1:
409 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
410 fail_0:
411 return;
412 }
413
414 void
415 fxp_mii_initmedia(struct fxp_softc *sc)
416 {
417
418 sc->sc_flags |= FXPF_MII;
419
420 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
421 sc->sc_mii.mii_readreg = fxp_mdi_read;
422 sc->sc_mii.mii_writereg = fxp_mdi_write;
423 sc->sc_mii.mii_statchg = fxp_statchg;
424 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
425 fxp_mii_mediastatus);
426 /*
427 * The i82557 wedges if all of its PHYs are isolated!
428 */
429 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
430 MII_OFFSET_ANY, MIIF_NOISOLATE);
431 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
432 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
433 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
434 } else
435 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
436 }
437
438 void
439 fxp_80c24_initmedia(struct fxp_softc *sc)
440 {
441
442 /*
443 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
444 * doesn't have a programming interface of any sort. The
445 * media is sensed automatically based on how the link partner
446 * is configured. This is, in essence, manual configuration.
447 */
448 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
449 sc->sc_dev.dv_xname);
450 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
451 fxp_80c24_mediastatus);
452 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
453 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
454 }
455
456 /*
457 * Device shutdown routine. Called at system shutdown after sync. The
458 * main purpose of this routine is to shut off receiver DMA so that
459 * kernel memory doesn't get clobbered during warmboot.
460 */
461 void
462 fxp_shutdown(void *arg)
463 {
464 struct fxp_softc *sc = arg;
465
466 /*
467 * Since the system's going to halt shortly, don't bother
468 * freeing mbufs.
469 */
470 fxp_stop(&sc->sc_ethercom.ec_if, 0);
471 }
472 /*
473 * Power handler routine. Called when the system is transitioning
474 * into/out of power save modes. As with fxp_shutdown, the main
475 * purpose of this routine is to shut off receiver DMA so it doesn't
476 * clobber kernel memory at the wrong time.
477 */
478 void
479 fxp_power(int why, void *arg)
480 {
481 struct fxp_softc *sc = arg;
482 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
483 int s;
484
485 s = splnet();
486 switch (why) {
487 case PWR_SUSPEND:
488 case PWR_STANDBY:
489 fxp_stop(ifp, 0);
490 break;
491 case PWR_RESUME:
492 if (ifp->if_flags & IFF_UP)
493 fxp_init(ifp);
494 break;
495 case PWR_SOFTSUSPEND:
496 case PWR_SOFTSTANDBY:
497 case PWR_SOFTRESUME:
498 break;
499 }
500 splx(s);
501 }
502
503 /*
504 * Initialize the interface media.
505 */
506 void
507 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
508 {
509 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
510
511 /*
512 * Reset to a stable state.
513 */
514 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
515 DELAY(10);
516
517 sc->sc_eeprom_size = 0;
518 fxp_autosize_eeprom(sc);
519 if(sc->sc_eeprom_size == 0) {
520 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
521 sc->sc_eeprom_size = 6; /* XXX panic here? */
522 }
523 #ifdef DEBUG
524 printf("%s: detected %d word EEPROM\n",
525 sc->sc_dev.dv_xname,
526 1 << sc->sc_eeprom_size);
527 #endif
528
529 /*
530 * Get info about the primary PHY
531 */
532 fxp_read_eeprom(sc, &data, 6, 1);
533 sc->phy_primary_addr = data & 0xff;
534 sc->phy_primary_device = (data >> 8) & 0x3f;
535 sc->phy_10Mbps_only = data >> 15;
536
537 /*
538 * Read MAC address.
539 */
540 fxp_read_eeprom(sc, myea, 0, 3);
541 enaddr[0] = myea[0] & 0xff;
542 enaddr[1] = myea[0] >> 8;
543 enaddr[2] = myea[1] & 0xff;
544 enaddr[3] = myea[1] >> 8;
545 enaddr[4] = myea[2] & 0xff;
546 enaddr[5] = myea[2] >> 8;
547 }
548
549 /*
550 * Figure out EEPROM size.
551 *
552 * 559's can have either 64-word or 256-word EEPROMs, the 558
553 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
554 * talks about the existance of 16 to 256 word EEPROMs.
555 *
556 * The only known sizes are 64 and 256, where the 256 version is used
557 * by CardBus cards to store CIS information.
558 *
559 * The address is shifted in msb-to-lsb, and after the last
560 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
561 * after which follows the actual data. We try to detect this zero, by
562 * probing the data-out bit in the EEPROM control register just after
563 * having shifted in a bit. If the bit is zero, we assume we've
564 * shifted enough address bits. The data-out should be tri-state,
565 * before this, which should translate to a logical one.
566 *
567 * Other ways to do this would be to try to read a register with known
568 * contents with a varying number of address bits, but no such
569 * register seem to be available. The high bits of register 10 are 01
570 * on the 558 and 559, but apparently not on the 557.
571 *
572 * The Linux driver computes a checksum on the EEPROM data, but the
573 * value of this checksum is not very well documented.
574 */
575
576 void
577 fxp_autosize_eeprom(struct fxp_softc *sc)
578 {
579 u_int16_t reg;
580 int x;
581
582 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
583 /*
584 * Shift in read opcode.
585 */
586 for (x = 3; x > 0; x--) {
587 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
588 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
589 } else {
590 reg = FXP_EEPROM_EECS;
591 }
592 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
593 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
594 reg | FXP_EEPROM_EESK);
595 DELAY(4);
596 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
597 DELAY(4);
598 }
599 /*
600 * Shift in address, wait for the dummy zero following a correct
601 * address shift.
602 */
603 for (x = 1; x <= 8; x++) {
604 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
605 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
606 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
607 DELAY(4);
608 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
609 FXP_EEPROM_EEDO) == 0)
610 break;
611 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
612 DELAY(4);
613 }
614 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
615 DELAY(4);
616 if(x != 6 && x != 8) {
617 #ifdef DEBUG
618 printf("%s: strange EEPROM size (%d)\n",
619 sc->sc_dev.dv_xname, 1 << x);
620 #endif
621 } else
622 sc->sc_eeprom_size = x;
623 }
624
625 /*
626 * Read from the serial EEPROM. Basically, you manually shift in
627 * the read opcode (one bit at a time) and then shift in the address,
628 * and then you shift out the data (all of this one bit at a time).
629 * The word size is 16 bits, so you have to provide the address for
630 * every 16 bits of data.
631 */
632 void
633 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
634 {
635 u_int16_t reg;
636 int i, x;
637
638 for (i = 0; i < words; i++) {
639 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
640 /*
641 * Shift in read opcode.
642 */
643 for (x = 3; x > 0; x--) {
644 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
645 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
646 } else {
647 reg = FXP_EEPROM_EECS;
648 }
649 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
650 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
651 reg | FXP_EEPROM_EESK);
652 DELAY(4);
653 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
654 DELAY(4);
655 }
656 /*
657 * Shift in address.
658 */
659 for (x = sc->sc_eeprom_size; x > 0; x--) {
660 if ((i + offset) & (1 << (x - 1))) {
661 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
662 } else {
663 reg = FXP_EEPROM_EECS;
664 }
665 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
666 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
667 reg | FXP_EEPROM_EESK);
668 DELAY(4);
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
670 DELAY(4);
671 }
672 reg = FXP_EEPROM_EECS;
673 data[i] = 0;
674 /*
675 * Shift out data.
676 */
677 for (x = 16; x > 0; x--) {
678 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
679 reg | FXP_EEPROM_EESK);
680 DELAY(4);
681 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
682 FXP_EEPROM_EEDO)
683 data[i] |= (1 << (x - 1));
684 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
685 DELAY(4);
686 }
687 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
688 DELAY(4);
689 }
690 }
691
692 /*
693 * Start packet transmission on the interface.
694 */
695 void
696 fxp_start(struct ifnet *ifp)
697 {
698 struct fxp_softc *sc = ifp->if_softc;
699 struct mbuf *m0, *m;
700 struct fxp_txdesc *txd;
701 struct fxp_txsoft *txs;
702 bus_dmamap_t dmamap;
703 int error, lasttx, nexttx, opending, seg;
704
705 /*
706 * If we want a re-init, bail out now.
707 */
708 if (sc->sc_flags & FXPF_WANTINIT) {
709 ifp->if_flags |= IFF_OACTIVE;
710 return;
711 }
712
713 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
714 return;
715
716 /*
717 * Remember the previous txpending and the current lasttx.
718 */
719 opending = sc->sc_txpending;
720 lasttx = sc->sc_txlast;
721
722 /*
723 * Loop through the send queue, setting up transmit descriptors
724 * until we drain the queue, or use up all available transmit
725 * descriptors.
726 */
727 while (sc->sc_txpending < FXP_NTXCB) {
728 /*
729 * Grab a packet off the queue.
730 */
731 IFQ_POLL(&ifp->if_snd, m0);
732 if (m0 == NULL)
733 break;
734 m = NULL;
735
736 /*
737 * Get the next available transmit descriptor.
738 */
739 nexttx = FXP_NEXTTX(sc->sc_txlast);
740 txd = FXP_CDTX(sc, nexttx);
741 txs = FXP_DSTX(sc, nexttx);
742 dmamap = txs->txs_dmamap;
743
744 /*
745 * Load the DMA map. If this fails, the packet either
746 * didn't fit in the allotted number of frags, or we were
747 * short on resources. In this case, we'll copy and try
748 * again.
749 */
750 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
751 BUS_DMA_NOWAIT) != 0) {
752 MGETHDR(m, M_DONTWAIT, MT_DATA);
753 if (m == NULL) {
754 printf("%s: unable to allocate Tx mbuf\n",
755 sc->sc_dev.dv_xname);
756 break;
757 }
758 if (m0->m_pkthdr.len > MHLEN) {
759 MCLGET(m, M_DONTWAIT);
760 if ((m->m_flags & M_EXT) == 0) {
761 printf("%s: unable to allocate Tx "
762 "cluster\n", sc->sc_dev.dv_xname);
763 m_freem(m);
764 break;
765 }
766 }
767 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
768 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
769 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
770 m, BUS_DMA_NOWAIT);
771 if (error) {
772 printf("%s: unable to load Tx buffer, "
773 "error = %d\n", sc->sc_dev.dv_xname, error);
774 break;
775 }
776 }
777
778 IFQ_DEQUEUE(&ifp->if_snd, m0);
779 if (m != NULL) {
780 m_freem(m0);
781 m0 = m;
782 }
783
784 /* Initialize the fraglist. */
785 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
786 txd->txd_tbd[seg].tb_addr =
787 htole32(dmamap->dm_segs[seg].ds_addr);
788 txd->txd_tbd[seg].tb_size =
789 htole32(dmamap->dm_segs[seg].ds_len);
790 }
791
792 /* Sync the DMA map. */
793 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
794 BUS_DMASYNC_PREWRITE);
795
796 /*
797 * Store a pointer to the packet so we can free it later.
798 */
799 txs->txs_mbuf = m0;
800
801 /*
802 * Initialize the transmit descriptor.
803 */
804 /* BIG_ENDIAN: no need to swap to store 0 */
805 txd->txd_txcb.cb_status = 0;
806 txd->txd_txcb.cb_command =
807 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
808 txd->txd_txcb.tx_threshold = tx_threshold;
809 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
810
811 FXP_CDTXSYNC(sc, nexttx,
812 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
813
814 /* Advance the tx pointer. */
815 sc->sc_txpending++;
816 sc->sc_txlast = nexttx;
817
818 #if NBPFILTER > 0
819 /*
820 * Pass packet to bpf if there is a listener.
821 */
822 if (ifp->if_bpf)
823 bpf_mtap(ifp->if_bpf, m0);
824 #endif
825 }
826
827 if (sc->sc_txpending == FXP_NTXCB) {
828 /* No more slots; notify upper layer. */
829 ifp->if_flags |= IFF_OACTIVE;
830 }
831
832 if (sc->sc_txpending != opending) {
833 /*
834 * We enqueued packets. If the transmitter was idle,
835 * reset the txdirty pointer.
836 */
837 if (opending == 0)
838 sc->sc_txdirty = FXP_NEXTTX(lasttx);
839
840 /*
841 * Cause the chip to interrupt and suspend command
842 * processing once the last packet we've enqueued
843 * has been transmitted.
844 */
845 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
846 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
847 FXP_CDTXSYNC(sc, sc->sc_txlast,
848 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
849
850 /*
851 * The entire packet chain is set up. Clear the suspend bit
852 * on the command prior to the first packet we set up.
853 */
854 FXP_CDTXSYNC(sc, lasttx,
855 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
856 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
857 htole16(~FXP_CB_COMMAND_S);
858 FXP_CDTXSYNC(sc, lasttx,
859 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
860
861 /*
862 * Issue a Resume command in case the chip was suspended.
863 */
864 fxp_scb_wait(sc);
865 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
866
867 /* Set a watchdog timer in case the chip flakes out. */
868 ifp->if_timer = 5;
869 }
870 }
871
872 /*
873 * Process interface interrupts.
874 */
875 int
876 fxp_intr(void *arg)
877 {
878 struct fxp_softc *sc = arg;
879 struct ethercom *ec = &sc->sc_ethercom;
880 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
881 struct fxp_txdesc *txd;
882 struct fxp_txsoft *txs;
883 struct mbuf *m, *m0;
884 bus_dmamap_t rxmap;
885 struct fxp_rfa *rfa;
886 int i, claimed = 0;
887 u_int16_t len, rxstat, txstat;
888 u_int8_t statack;
889
890 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
891 return (0);
892 /*
893 * If the interface isn't running, don't try to
894 * service the interrupt.. just ack it and bail.
895 */
896 if ((ifp->if_flags & IFF_RUNNING) == 0) {
897 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
898 if (statack) {
899 claimed = 1;
900 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
901 }
902 return (claimed);
903 }
904
905 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
906 claimed = 1;
907
908 /*
909 * First ACK all the interrupts in this pass.
910 */
911 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
912
913 /*
914 * Process receiver interrupts. If a no-resource (RNR)
915 * condition exists, get whatever packets we can and
916 * re-start the receiver.
917 */
918 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
919 rcvloop:
920 m = sc->sc_rxq.ifq_head;
921 rfa = FXP_MTORFA(m);
922 rxmap = M_GETCTX(m, bus_dmamap_t);
923
924 FXP_RFASYNC(sc, m,
925 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
926
927 rxstat = le16toh(rfa->rfa_status);
928
929 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
930 /*
931 * We have processed all of the
932 * receive buffers.
933 */
934 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
935 goto do_transmit;
936 }
937
938 IF_DEQUEUE(&sc->sc_rxq, m);
939
940 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
941
942 len = le16toh(rfa->actual_size) &
943 (m->m_ext.ext_size - 1);
944
945 if (len < sizeof(struct ether_header)) {
946 /*
947 * Runt packet; drop it now.
948 */
949 FXP_INIT_RFABUF(sc, m);
950 goto rcvloop;
951 }
952
953 /*
954 * If support for 802.1Q VLAN sized frames is
955 * enabled, we need to do some additional error
956 * checking (as we are saving bad frames, in
957 * order to receive the larger ones).
958 */
959 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
960 (rxstat & (FXP_RFA_STATUS_OVERRUN|
961 FXP_RFA_STATUS_RNR|
962 FXP_RFA_STATUS_ALIGN|
963 FXP_RFA_STATUS_CRC)) != 0) {
964 FXP_INIT_RFABUF(sc, m);
965 goto rcvloop;
966 }
967
968 /*
969 * If the packet is small enough to fit in a
970 * single header mbuf, allocate one and copy
971 * the data into it. This greatly reduces
972 * memory consumption when we receive lots
973 * of small packets.
974 *
975 * Otherwise, we add a new buffer to the receive
976 * chain. If this fails, we drop the packet and
977 * recycle the old buffer.
978 */
979 if (fxp_copy_small != 0 && len <= MHLEN) {
980 MGETHDR(m0, M_DONTWAIT, MT_DATA);
981 if (m == NULL)
982 goto dropit;
983 memcpy(mtod(m0, caddr_t),
984 mtod(m, caddr_t), len);
985 FXP_INIT_RFABUF(sc, m);
986 m = m0;
987 } else {
988 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
989 dropit:
990 ifp->if_ierrors++;
991 FXP_INIT_RFABUF(sc, m);
992 goto rcvloop;
993 }
994 }
995
996 m->m_pkthdr.rcvif = ifp;
997 m->m_pkthdr.len = m->m_len = len;
998
999 #if NBPFILTER > 0
1000 /*
1001 * Pass this up to any BPF listeners, but only
1002 * pass it up the stack it its for us.
1003 */
1004 if (ifp->if_bpf)
1005 bpf_mtap(ifp->if_bpf, m);
1006 #endif
1007
1008 /* Pass it on. */
1009 (*ifp->if_input)(ifp, m);
1010 goto rcvloop;
1011 }
1012
1013 do_transmit:
1014 if (statack & FXP_SCB_STATACK_RNR) {
1015 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1016 fxp_scb_wait(sc);
1017 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1018 rxmap->dm_segs[0].ds_addr +
1019 RFA_ALIGNMENT_FUDGE);
1020 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1021 }
1022
1023 /*
1024 * Free any finished transmit mbuf chains.
1025 */
1026 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1027 ifp->if_flags &= ~IFF_OACTIVE;
1028 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1029 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1030 txd = FXP_CDTX(sc, i);
1031 txs = FXP_DSTX(sc, i);
1032
1033 FXP_CDTXSYNC(sc, i,
1034 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1035
1036 txstat = le16toh(txd->txd_txcb.cb_status);
1037
1038 if ((txstat & FXP_CB_STATUS_C) == 0)
1039 break;
1040
1041 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1042 0, txs->txs_dmamap->dm_mapsize,
1043 BUS_DMASYNC_POSTWRITE);
1044 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1045 m_freem(txs->txs_mbuf);
1046 txs->txs_mbuf = NULL;
1047 }
1048
1049 /* Update the dirty transmit buffer pointer. */
1050 sc->sc_txdirty = i;
1051
1052 /*
1053 * Cancel the watchdog timer if there are no pending
1054 * transmissions.
1055 */
1056 if (sc->sc_txpending == 0) {
1057 ifp->if_timer = 0;
1058
1059 /*
1060 * If we want a re-init, do that now.
1061 */
1062 if (sc->sc_flags & FXPF_WANTINIT)
1063 (void) fxp_init(ifp);
1064 }
1065
1066 /*
1067 * Try to get more packets going.
1068 */
1069 fxp_start(ifp);
1070 }
1071 }
1072
1073 #if NRND > 0
1074 if (claimed)
1075 rnd_add_uint32(&sc->rnd_source, statack);
1076 #endif
1077 return (claimed);
1078 }
1079
1080 /*
1081 * Update packet in/out/collision statistics. The i82557 doesn't
1082 * allow you to access these counters without doing a fairly
1083 * expensive DMA to get _all_ of the statistics it maintains, so
1084 * we do this operation here only once per second. The statistics
1085 * counters in the kernel are updated from the previous dump-stats
1086 * DMA and then a new dump-stats DMA is started. The on-chip
1087 * counters are zeroed when the DMA completes. If we can't start
1088 * the DMA immediately, we don't wait - we just prepare to read
1089 * them again next time.
1090 */
1091 void
1092 fxp_tick(void *arg)
1093 {
1094 struct fxp_softc *sc = arg;
1095 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1096 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1097 int s;
1098
1099 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1100 return;
1101
1102 s = splnet();
1103
1104 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1105
1106 ifp->if_opackets += le32toh(sp->tx_good);
1107 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1108 if (sp->rx_good) {
1109 ifp->if_ipackets += le32toh(sp->rx_good);
1110 sc->sc_rxidle = 0;
1111 } else {
1112 sc->sc_rxidle++;
1113 }
1114 ifp->if_ierrors +=
1115 le32toh(sp->rx_crc_errors) +
1116 le32toh(sp->rx_alignment_errors) +
1117 le32toh(sp->rx_rnr_errors) +
1118 le32toh(sp->rx_overrun_errors);
1119 /*
1120 * If any transmit underruns occured, bump up the transmit
1121 * threshold by another 512 bytes (64 * 8).
1122 */
1123 if (sp->tx_underruns) {
1124 ifp->if_oerrors += le32toh(sp->tx_underruns);
1125 if (tx_threshold < 192)
1126 tx_threshold += 64;
1127 }
1128
1129 /*
1130 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1131 * then assume the receiver has locked up and attempt to clear
1132 * the condition by reprogramming the multicast filter (actually,
1133 * resetting the interface). This is a work-around for a bug in
1134 * the 82557 where the receiver locks up if it gets certain types
1135 * of garbage in the syncronization bits prior to the packet header.
1136 * This bug is supposed to only occur in 10Mbps mode, but has been
1137 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1138 * speed transition).
1139 */
1140 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1141 (void) fxp_init(ifp);
1142 splx(s);
1143 return;
1144 }
1145 /*
1146 * If there is no pending command, start another stats
1147 * dump. Otherwise punt for now.
1148 */
1149 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1150 /*
1151 * Start another stats dump.
1152 */
1153 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1154 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1155 } else {
1156 /*
1157 * A previous command is still waiting to be accepted.
1158 * Just zero our copy of the stats and wait for the
1159 * next timer event to update them.
1160 */
1161 /* BIG_ENDIAN: no swap required to store 0 */
1162 sp->tx_good = 0;
1163 sp->tx_underruns = 0;
1164 sp->tx_total_collisions = 0;
1165
1166 sp->rx_good = 0;
1167 sp->rx_crc_errors = 0;
1168 sp->rx_alignment_errors = 0;
1169 sp->rx_rnr_errors = 0;
1170 sp->rx_overrun_errors = 0;
1171 }
1172
1173 if (sc->sc_flags & FXPF_MII) {
1174 /* Tick the MII clock. */
1175 mii_tick(&sc->sc_mii);
1176 }
1177
1178 splx(s);
1179
1180 /*
1181 * Schedule another timeout one second from now.
1182 */
1183 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1184 }
1185
1186 /*
1187 * Drain the receive queue.
1188 */
1189 void
1190 fxp_rxdrain(struct fxp_softc *sc)
1191 {
1192 bus_dmamap_t rxmap;
1193 struct mbuf *m;
1194
1195 for (;;) {
1196 IF_DEQUEUE(&sc->sc_rxq, m);
1197 if (m == NULL)
1198 break;
1199 rxmap = M_GETCTX(m, bus_dmamap_t);
1200 bus_dmamap_unload(sc->sc_dmat, rxmap);
1201 FXP_RXMAP_PUT(sc, rxmap);
1202 m_freem(m);
1203 }
1204 }
1205
1206 /*
1207 * Stop the interface. Cancels the statistics updater and resets
1208 * the interface.
1209 */
1210 void
1211 fxp_stop(struct ifnet *ifp, int disable)
1212 {
1213 struct fxp_softc *sc = ifp->if_softc;
1214 struct fxp_txsoft *txs;
1215 int i;
1216
1217 /*
1218 * Turn down interface (done early to avoid bad interactions
1219 * between panics, shutdown hooks, and the watchdog timer)
1220 */
1221 ifp->if_timer = 0;
1222 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1223
1224 /*
1225 * Cancel stats updater.
1226 */
1227 callout_stop(&sc->sc_callout);
1228 if (sc->sc_flags & FXPF_MII) {
1229 /* Down the MII. */
1230 mii_down(&sc->sc_mii);
1231 }
1232
1233 /*
1234 * Issue software reset
1235 */
1236 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1237 DELAY(10);
1238
1239 /*
1240 * Release any xmit buffers.
1241 */
1242 for (i = 0; i < FXP_NTXCB; i++) {
1243 txs = FXP_DSTX(sc, i);
1244 if (txs->txs_mbuf != NULL) {
1245 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1246 m_freem(txs->txs_mbuf);
1247 txs->txs_mbuf = NULL;
1248 }
1249 }
1250 sc->sc_txpending = 0;
1251
1252 if (disable) {
1253 fxp_rxdrain(sc);
1254 fxp_disable(sc);
1255 }
1256
1257 }
1258
1259 /*
1260 * Watchdog/transmission transmit timeout handler. Called when a
1261 * transmission is started on the interface, but no interrupt is
1262 * received before the timeout. This usually indicates that the
1263 * card has wedged for some reason.
1264 */
1265 void
1266 fxp_watchdog(struct ifnet *ifp)
1267 {
1268 struct fxp_softc *sc = ifp->if_softc;
1269
1270 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1271 ifp->if_oerrors++;
1272
1273 (void) fxp_init(ifp);
1274 }
1275
1276 /*
1277 * Initialize the interface. Must be called at splnet().
1278 */
1279 int
1280 fxp_init(struct ifnet *ifp)
1281 {
1282 struct fxp_softc *sc = ifp->if_softc;
1283 struct fxp_cb_config *cbp;
1284 struct fxp_cb_ias *cb_ias;
1285 struct fxp_txdesc *txd;
1286 bus_dmamap_t rxmap;
1287 int i, prm, save_bf, allm, error = 0;
1288
1289 if ((error = fxp_enable(sc)) != 0)
1290 goto out;
1291
1292 /*
1293 * Cancel any pending I/O
1294 */
1295 fxp_stop(ifp, 0);
1296
1297 /*
1298 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1299 * flag, and this prevents the MII from detaching resulting in
1300 * a panic. The flags field should perhaps be split in runtime
1301 * flags and more static information. For now, just clear the
1302 * only other flag set.
1303 */
1304
1305 sc->sc_flags &= ~FXPF_WANTINIT;
1306
1307 /*
1308 * Initialize base of CBL and RFA memory. Loading with zero
1309 * sets it up for regular linear addressing.
1310 */
1311 fxp_scb_wait(sc);
1312 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1313 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1314
1315 fxp_scb_wait(sc);
1316 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1317
1318 /*
1319 * Initialize the multicast filter. Do this now, since we might
1320 * have to setup the config block differently.
1321 */
1322 fxp_mc_setup(sc);
1323
1324 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1325 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1326
1327 /*
1328 * In order to support receiving 802.1Q VLAN frames, we have to
1329 * enable "save bad frames", since they are 4 bytes larger than
1330 * the normal Ethernet maximum frame length.
1331 */
1332 save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
1333
1334 /*
1335 * Initialize base of dump-stats buffer.
1336 */
1337 fxp_scb_wait(sc);
1338 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1339 sc->sc_cddma + FXP_CDSTATSOFF);
1340 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1341 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1342
1343 cbp = &sc->sc_control_data->fcd_configcb;
1344 memset(cbp, 0, sizeof(struct fxp_cb_config));
1345
1346 /*
1347 * This copy is kind of disgusting, but there are a bunch of must be
1348 * zero and must be one bits in this structure and this is the easiest
1349 * way to initialize them all to proper values.
1350 */
1351 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1352
1353 /* BIG_ENDIAN: no need to swap to store 0 */
1354 cbp->cb_status = 0;
1355 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1356 FXP_CB_COMMAND_EL);
1357 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1358 cbp->link_addr = 0xffffffff; /* (no) next command */
1359 cbp->byte_count = 22; /* (22) bytes to config */
1360 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1361 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1362 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1363 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1364 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1365 cbp->dma_bce = 0; /* (disable) dma max counters */
1366 cbp->late_scb = 0; /* (don't) defer SCB update */
1367 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1368 cbp->ci_int = 1; /* interrupt on CU idle */
1369 cbp->save_bf = save_bf;/* save bad frames */
1370 cbp->disc_short_rx = !prm; /* discard short packets */
1371 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1372 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1373 cbp->nsai = 1; /* (don't) disable source addr insert */
1374 cbp->preamble_length = 2; /* (7 byte) preamble */
1375 cbp->loopback = 0; /* (don't) loopback */
1376 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1377 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1378 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1379 cbp->promiscuous = prm; /* promiscuous mode */
1380 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1381 cbp->crscdt = 0; /* (CRS only) */
1382 cbp->stripping = !prm; /* truncate rx packet to byte count */
1383 cbp->padding = 1; /* (do) pad short tx packets */
1384 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1385 cbp->force_fdx = 0; /* (don't) force full duplex */
1386 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1387 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1388 cbp->mc_all = allm; /* accept all multicasts */
1389
1390 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1391
1392 /*
1393 * Start the config command/DMA.
1394 */
1395 fxp_scb_wait(sc);
1396 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1397 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1398 /* ...and wait for it to complete. */
1399 i = 1000;
1400 do {
1401 FXP_CDCONFIGSYNC(sc,
1402 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1403 DELAY(1);
1404 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1405 if (i == 0) {
1406 printf("%s at line %d: dmasync timeout\n",
1407 sc->sc_dev.dv_xname, __LINE__);
1408 return ETIMEDOUT;
1409 }
1410
1411 /*
1412 * Initialize the station address.
1413 */
1414 cb_ias = &sc->sc_control_data->fcd_iascb;
1415 /* BIG_ENDIAN: no need to swap to store 0 */
1416 cb_ias->cb_status = 0;
1417 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1418 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1419 cb_ias->link_addr = 0xffffffff;
1420 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1421
1422 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1423
1424 /*
1425 * Start the IAS (Individual Address Setup) command/DMA.
1426 */
1427 fxp_scb_wait(sc);
1428 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1429 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1430 /* ...and wait for it to complete. */
1431 i = 1000;
1432 do {
1433 FXP_CDIASSYNC(sc,
1434 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1435 DELAY(1);
1436 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1437 if (i == 0) {
1438 printf("%s at line %d: dmasync timeout\n",
1439 sc->sc_dev.dv_xname, __LINE__);
1440 return ETIMEDOUT;
1441 }
1442
1443 /*
1444 * Initialize the transmit descriptor ring. txlast is initialized
1445 * to the end of the list so that it will wrap around to the first
1446 * descriptor when the first packet is transmitted.
1447 */
1448 for (i = 0; i < FXP_NTXCB; i++) {
1449 txd = FXP_CDTX(sc, i);
1450 memset(txd, 0, sizeof(*txd));
1451 txd->txd_txcb.cb_command =
1452 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1453 txd->txd_txcb.tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1454 txd->txd_txcb.link_addr =
1455 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1456 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1457 }
1458 sc->sc_txpending = 0;
1459 sc->sc_txdirty = 0;
1460 sc->sc_txlast = FXP_NTXCB - 1;
1461
1462 /*
1463 * Initialize the receive buffer list.
1464 */
1465 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1466 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1467 rxmap = FXP_RXMAP_GET(sc);
1468 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1469 printf("%s: unable to allocate or map rx "
1470 "buffer %d, error = %d\n",
1471 sc->sc_dev.dv_xname,
1472 sc->sc_rxq.ifq_len, error);
1473 /*
1474 * XXX Should attempt to run with fewer receive
1475 * XXX buffers instead of just failing.
1476 */
1477 FXP_RXMAP_PUT(sc, rxmap);
1478 fxp_rxdrain(sc);
1479 goto out;
1480 }
1481 }
1482 sc->sc_rxidle = 0;
1483
1484 /*
1485 * Give the transmit ring to the chip. We do this by pointing
1486 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1487 * issuing a start command. It will execute the NOP and then
1488 * suspend, pointing at the first descriptor.
1489 */
1490 fxp_scb_wait(sc);
1491 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1492 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1493
1494 /*
1495 * Initialize receiver buffer area - RFA.
1496 */
1497 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1498 fxp_scb_wait(sc);
1499 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1500 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1501 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1502
1503 if (sc->sc_flags & FXPF_MII) {
1504 /*
1505 * Set current media.
1506 */
1507 mii_mediachg(&sc->sc_mii);
1508 }
1509
1510 /*
1511 * ...all done!
1512 */
1513 ifp->if_flags |= IFF_RUNNING;
1514 ifp->if_flags &= ~IFF_OACTIVE;
1515
1516 /*
1517 * Start the one second timer.
1518 */
1519 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1520
1521 /*
1522 * Attempt to start output on the interface.
1523 */
1524 fxp_start(ifp);
1525
1526 out:
1527 if (error) {
1528 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1529 ifp->if_timer = 0;
1530 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1531 }
1532 return (error);
1533 }
1534
1535 /*
1536 * Change media according to request.
1537 */
1538 int
1539 fxp_mii_mediachange(struct ifnet *ifp)
1540 {
1541 struct fxp_softc *sc = ifp->if_softc;
1542
1543 if (ifp->if_flags & IFF_UP)
1544 mii_mediachg(&sc->sc_mii);
1545 return (0);
1546 }
1547
1548 /*
1549 * Notify the world which media we're using.
1550 */
1551 void
1552 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1553 {
1554 struct fxp_softc *sc = ifp->if_softc;
1555
1556 if(sc->sc_enabled == 0) {
1557 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1558 ifmr->ifm_status = 0;
1559 return;
1560 }
1561
1562 mii_pollstat(&sc->sc_mii);
1563 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1564 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1565 }
1566
1567 int
1568 fxp_80c24_mediachange(struct ifnet *ifp)
1569 {
1570
1571 /* Nothing to do here. */
1572 return (0);
1573 }
1574
1575 void
1576 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1577 {
1578 struct fxp_softc *sc = ifp->if_softc;
1579
1580 /*
1581 * Media is currently-selected media. We cannot determine
1582 * the link status.
1583 */
1584 ifmr->ifm_status = 0;
1585 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1586 }
1587
1588 /*
1589 * Add a buffer to the end of the RFA buffer list.
1590 * Return 0 if successful, error code on failure.
1591 *
1592 * The RFA struct is stuck at the beginning of mbuf cluster and the
1593 * data pointer is fixed up to point just past it.
1594 */
1595 int
1596 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1597 {
1598 struct mbuf *m;
1599 int error;
1600
1601 MGETHDR(m, M_DONTWAIT, MT_DATA);
1602 if (m == NULL)
1603 return (ENOBUFS);
1604
1605 MCLGET(m, M_DONTWAIT);
1606 if ((m->m_flags & M_EXT) == 0) {
1607 m_freem(m);
1608 return (ENOBUFS);
1609 }
1610
1611 if (unload)
1612 bus_dmamap_unload(sc->sc_dmat, rxmap);
1613
1614 M_SETCTX(m, rxmap);
1615
1616 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1617 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1618 if (error) {
1619 printf("%s: can't load rx DMA map %d, error = %d\n",
1620 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1621 panic("fxp_add_rfabuf"); /* XXX */
1622 }
1623
1624 FXP_INIT_RFABUF(sc, m);
1625
1626 return (0);
1627 }
1628
1629 int
1630 fxp_mdi_read(struct device *self, int phy, int reg)
1631 {
1632 struct fxp_softc *sc = (struct fxp_softc *)self;
1633 int count = 10000;
1634 int value;
1635
1636 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1637 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1638
1639 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1640 && count--)
1641 DELAY(10);
1642
1643 if (count <= 0)
1644 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1645
1646 return (value & 0xffff);
1647 }
1648
1649 void
1650 fxp_statchg(struct device *self)
1651 {
1652 struct fxp_softc *sc = (void *) self;
1653
1654 /*
1655 * Determine whether or not we have to work-around the
1656 * Resume Bug.
1657 */
1658 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
1659 if (IFM_TYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
1660 sc->sc_flags |= FXPF_FIX_RESUME_BUG;
1661 else
1662 sc->sc_flags &= ~FXPF_FIX_RESUME_BUG;
1663 }
1664 }
1665
1666 void
1667 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1668 {
1669 struct fxp_softc *sc = (struct fxp_softc *)self;
1670 int count = 10000;
1671
1672 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1673 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1674 (value & 0xffff));
1675
1676 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1677 count--)
1678 DELAY(10);
1679
1680 if (count <= 0)
1681 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1682 }
1683
1684 int
1685 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1686 {
1687 struct fxp_softc *sc = ifp->if_softc;
1688 struct ifreq *ifr = (struct ifreq *)data;
1689 int s, error;
1690
1691 s = splnet();
1692
1693 switch (cmd) {
1694 case SIOCSIFMEDIA:
1695 case SIOCGIFMEDIA:
1696 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1697 break;
1698
1699 default:
1700 error = ether_ioctl(ifp, cmd, data);
1701 if (error == ENETRESET) {
1702 if (sc->sc_enabled) {
1703 /*
1704 * Multicast list has changed; set the
1705 * hardware filter accordingly.
1706 */
1707 if (sc->sc_txpending) {
1708 sc->sc_flags |= FXPF_WANTINIT;
1709 error = 0;
1710 } else
1711 error = fxp_init(ifp);
1712 } else
1713 error = 0;
1714 }
1715 break;
1716 }
1717
1718 /* Try to get more packets going. */
1719 if (sc->sc_enabled)
1720 fxp_start(ifp);
1721
1722 splx(s);
1723 return (error);
1724 }
1725
1726 /*
1727 * Program the multicast filter.
1728 *
1729 * This function must be called at splnet().
1730 */
1731 void
1732 fxp_mc_setup(struct fxp_softc *sc)
1733 {
1734 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1735 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1736 struct ethercom *ec = &sc->sc_ethercom;
1737 struct ether_multi *enm;
1738 struct ether_multistep step;
1739 int count, nmcasts;
1740
1741 #ifdef DIAGNOSTIC
1742 if (sc->sc_txpending)
1743 panic("fxp_mc_setup: pending transmissions");
1744 #endif
1745
1746 ifp->if_flags &= ~IFF_ALLMULTI;
1747
1748 /*
1749 * Initialize multicast setup descriptor.
1750 */
1751 nmcasts = 0;
1752 ETHER_FIRST_MULTI(step, ec, enm);
1753 while (enm != NULL) {
1754 /*
1755 * Check for too many multicast addresses or if we're
1756 * listening to a range. Either way, we simply have
1757 * to accept all multicasts.
1758 */
1759 if (nmcasts >= MAXMCADDR ||
1760 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1761 ETHER_ADDR_LEN) != 0) {
1762 /*
1763 * Callers of this function must do the
1764 * right thing with this. If we're called
1765 * from outside fxp_init(), the caller must
1766 * detect if the state if IFF_ALLMULTI changes.
1767 * If it does, the caller must then call
1768 * fxp_init(), since allmulti is handled by
1769 * the config block.
1770 */
1771 ifp->if_flags |= IFF_ALLMULTI;
1772 return;
1773 }
1774 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1775 ETHER_ADDR_LEN);
1776 nmcasts++;
1777 ETHER_NEXT_MULTI(step, enm);
1778 }
1779
1780 /* BIG_ENDIAN: no need to swap to store 0 */
1781 mcsp->cb_status = 0;
1782 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1783 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1784 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1785
1786 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1787
1788 /*
1789 * Wait until the command unit is not active. This should never
1790 * happen since nothing is queued, but make sure anyway.
1791 */
1792 count = 100;
1793 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1794 FXP_SCB_CUS_ACTIVE && --count)
1795 DELAY(1);
1796 if (count == 0) {
1797 printf("%s at line %d: command queue timeout\n",
1798 sc->sc_dev.dv_xname, __LINE__);
1799 return;
1800 }
1801
1802 /*
1803 * Start the multicast setup command/DMA.
1804 */
1805 fxp_scb_wait(sc);
1806 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1807 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1808
1809 /* ...and wait for it to complete. */
1810 count = 1000;
1811 do {
1812 FXP_CDMCSSYNC(sc,
1813 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1814 DELAY(1);
1815 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1816 if (count == 0) {
1817 printf("%s at line %d: dmasync timeout\n",
1818 sc->sc_dev.dv_xname, __LINE__);
1819 return;
1820 }
1821 }
1822
1823 int
1824 fxp_enable(struct fxp_softc *sc)
1825 {
1826
1827 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1828 if ((*sc->sc_enable)(sc) != 0) {
1829 printf("%s: device enable failed\n",
1830 sc->sc_dev.dv_xname);
1831 return (EIO);
1832 }
1833 }
1834
1835 sc->sc_enabled = 1;
1836 return (0);
1837 }
1838
1839 void
1840 fxp_disable(struct fxp_softc *sc)
1841 {
1842
1843 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1844 (*sc->sc_disable)(sc);
1845 sc->sc_enabled = 0;
1846 }
1847 }
1848
1849 /*
1850 * fxp_activate:
1851 *
1852 * Handle device activation/deactivation requests.
1853 */
1854 int
1855 fxp_activate(struct device *self, enum devact act)
1856 {
1857 struct fxp_softc *sc = (void *) self;
1858 int s, error = 0;
1859
1860 s = splnet();
1861 switch (act) {
1862 case DVACT_ACTIVATE:
1863 error = EOPNOTSUPP;
1864 break;
1865
1866 case DVACT_DEACTIVATE:
1867 if (sc->sc_flags & FXPF_MII)
1868 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1869 MII_OFFSET_ANY);
1870 if_deactivate(&sc->sc_ethercom.ec_if);
1871 break;
1872 }
1873 splx(s);
1874
1875 return (error);
1876 }
1877
1878 /*
1879 * fxp_detach:
1880 *
1881 * Detach an i82557 interface.
1882 */
1883 int
1884 fxp_detach(struct fxp_softc *sc)
1885 {
1886 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1887 int i;
1888
1889 /* Succeed now if there's no work to do. */
1890 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1891 return (0);
1892
1893 /* Unhook our tick handler. */
1894 callout_stop(&sc->sc_callout);
1895
1896 if (sc->sc_flags & FXPF_MII) {
1897 /* Detach all PHYs */
1898 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1899 }
1900
1901 /* Delete all remaining media. */
1902 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1903
1904 #if NRND > 0
1905 rnd_detach_source(&sc->rnd_source);
1906 #endif
1907 ether_ifdetach(ifp);
1908 if_detach(ifp);
1909
1910 for (i = 0; i < FXP_NRFABUFS; i++) {
1911 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1912 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1913 }
1914
1915 for (i = 0; i < FXP_NTXCB; i++) {
1916 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1917 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1918 }
1919
1920 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1921 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1922 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1923 sizeof(struct fxp_control_data));
1924 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1925
1926 shutdownhook_disestablish(sc->sc_sdhook);
1927 powerhook_disestablish(sc->sc_powerhook);
1928
1929 return (0);
1930 }
1931