i82557.c revision 1.53 1 /* $NetBSD: i82557.c,v 1.53 2001/06/02 01:04:01 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include "opt_inet.h"
76 #include "opt_ns.h"
77 #include "bpfilter.h"
78 #include "rnd.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90
91 #include <machine/endian.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/if_inarp.h>
111 #endif
112
113 #ifdef NS
114 #include <netns/ns.h>
115 #include <netns/ns_if.h>
116 #endif
117
118 #include <machine/bus.h>
119 #include <machine/intr.h>
120
121 #include <dev/mii/miivar.h>
122
123 #include <dev/ic/i82557reg.h>
124 #include <dev/ic/i82557var.h>
125
126 /*
127 * NOTE! On the Alpha, we have an alignment constraint. The
128 * card DMAs the packet immediately following the RFA. However,
129 * the first thing in the packet is a 14-byte Ethernet header.
130 * This means that the packet is misaligned. To compensate,
131 * we actually offset the RFA 2 bytes into the cluster. This
132 * alignes the packet after the Ethernet header at a 32-bit
133 * boundary. HOWEVER! This means that the RFA is misaligned!
134 */
135 #define RFA_ALIGNMENT_FUDGE 2
136
137 /*
138 * The configuration byte map has several undefined fields which
139 * must be one or must be zero. Set up a template for these bits
140 * only (assuming an i82557 chip), leaving the actual configuration
141 * for fxp_init().
142 *
143 * See the definition of struct fxp_cb_config for the bit definitions.
144 */
145 const u_int8_t fxp_cb_config_template[] = {
146 0x0, 0x0, /* cb_status */
147 0x0, 0x0, /* cb_command */
148 0x0, 0x0, 0x0, 0x0, /* link_addr */
149 0x0, /* 0 */
150 0x0, /* 1 */
151 0x0, /* 2 */
152 0x0, /* 3 */
153 0x0, /* 4 */
154 0x0, /* 5 */
155 0x32, /* 6 */
156 0x0, /* 7 */
157 0x0, /* 8 */
158 0x0, /* 9 */
159 0x6, /* 10 */
160 0x0, /* 11 */
161 0x0, /* 12 */
162 0x0, /* 13 */
163 0xf2, /* 14 */
164 0x48, /* 15 */
165 0x0, /* 16 */
166 0x40, /* 17 */
167 0xf0, /* 18 */
168 0x0, /* 19 */
169 0x3f, /* 20 */
170 0x5, /* 21 */
171 0x0, /* 22 */
172 0x0, /* 23 */
173 0x0, /* 24 */
174 0x0, /* 25 */
175 0x0, /* 26 */
176 0x0, /* 27 */
177 0x0, /* 28 */
178 0x0, /* 29 */
179 0x0, /* 30 */
180 0x0, /* 31 */
181 };
182
183 void fxp_mii_initmedia(struct fxp_softc *);
184 int fxp_mii_mediachange(struct ifnet *);
185 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
186
187 void fxp_80c24_initmedia(struct fxp_softc *);
188 int fxp_80c24_mediachange(struct ifnet *);
189 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
190
191 void fxp_start(struct ifnet *);
192 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
193 void fxp_watchdog(struct ifnet *);
194 int fxp_init(struct ifnet *);
195 void fxp_stop(struct ifnet *, int);
196
197 void fxp_rxdrain(struct fxp_softc *);
198 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
199 int fxp_mdi_read(struct device *, int, int);
200 void fxp_statchg(struct device *);
201 void fxp_mdi_write(struct device *, int, int, int);
202 void fxp_autosize_eeprom(struct fxp_softc*);
203 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204 void fxp_get_info(struct fxp_softc *, u_int8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207
208 void fxp_shutdown(void *);
209 void fxp_power(int, void *);
210
211 int fxp_copy_small = 0;
212
213 struct fxp_phytype {
214 int fp_phy; /* type of PHY, -1 for MII at the end. */
215 void (*fp_init)(struct fxp_softc *);
216 } fxp_phytype_table[] = {
217 { FXP_PHY_80C24, fxp_80c24_initmedia },
218 { -1, fxp_mii_initmedia },
219 };
220
221 /*
222 * Set initial transmit threshold at 64 (512 bytes). This is
223 * increased by 64 (512 bytes) at a time, to maximum of 192
224 * (1536 bytes), if an underrun occurs.
225 */
226 static int tx_threshold = 64;
227
228 /*
229 * Wait for the previous command to be accepted (but not necessarily
230 * completed).
231 */
232 static __inline void
233 fxp_scb_wait(struct fxp_softc *sc)
234 {
235 int i = 10000;
236
237 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
238 delay(2);
239 if (i == 0)
240 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
241 }
242
243 /*
244 * Submit a command to the i82557.
245 */
246 static __inline void
247 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
248 {
249
250 if (cmd == FXP_SCB_COMMAND_CU_RESUME &&
251 (sc->sc_flags & FXPF_FIX_RESUME_BUG) != 0) {
252 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_NOP);
253 fxp_scb_wait(sc);
254 }
255 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256 }
257
258 /*
259 * Finish attaching an i82557 interface. Called by bus-specific front-end.
260 */
261 void
262 fxp_attach(struct fxp_softc *sc)
263 {
264 u_int8_t enaddr[ETHER_ADDR_LEN];
265 struct ifnet *ifp;
266 bus_dma_segment_t seg;
267 int rseg, i, error;
268 struct fxp_phytype *fp;
269
270 callout_init(&sc->sc_callout);
271
272 /* Start out using the standard RFA. */
273 sc->sc_rfa_size = RFA_SIZE;
274
275 /*
276 * Enable some good stuff on i82558 and later.
277 */
278 if (sc->sc_rev >= FXP_REV_82558_A4) {
279 /* Enable the extended TxCB. */
280 sc->sc_flags |= FXPF_EXT_TXCB;
281 }
282
283 /*
284 * Allocate the control data structures, and create and load the
285 * DMA map for it.
286 */
287 if ((error = bus_dmamem_alloc(sc->sc_dmat,
288 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
289 0)) != 0) {
290 printf("%s: unable to allocate control data, error = %d\n",
291 sc->sc_dev.dv_xname, error);
292 goto fail_0;
293 }
294
295 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
296 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
297 BUS_DMA_COHERENT)) != 0) {
298 printf("%s: unable to map control data, error = %d\n",
299 sc->sc_dev.dv_xname, error);
300 goto fail_1;
301 }
302 sc->sc_cdseg = seg;
303 sc->sc_cdnseg = rseg;
304
305 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
306
307 if ((error = bus_dmamap_create(sc->sc_dmat,
308 sizeof(struct fxp_control_data), 1,
309 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
310 printf("%s: unable to create control data DMA map, "
311 "error = %d\n", sc->sc_dev.dv_xname, error);
312 goto fail_2;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
316 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
317 0)) != 0) {
318 printf("%s: can't load control data DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail_3;
321 }
322
323 /*
324 * Create the transmit buffer DMA maps.
325 */
326 for (i = 0; i < FXP_NTXCB; i++) {
327 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
328 FXP_NTXSEG, MCLBYTES, 0, 0,
329 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
330 printf("%s: unable to create tx DMA map %d, "
331 "error = %d\n", sc->sc_dev.dv_xname, i, error);
332 goto fail_4;
333 }
334 }
335
336 /*
337 * Create the receive buffer DMA maps.
338 */
339 for (i = 0; i < FXP_NRFABUFS; i++) {
340 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
341 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
342 printf("%s: unable to create rx DMA map %d, "
343 "error = %d\n", sc->sc_dev.dv_xname, i, error);
344 goto fail_5;
345 }
346 }
347
348 /* Initialize MAC address and media structures. */
349 fxp_get_info(sc, enaddr);
350
351 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
352 ether_sprintf(enaddr));
353
354 ifp = &sc->sc_ethercom.ec_if;
355
356 /*
357 * Get info about our media interface, and initialize it. Note
358 * the table terminates itself with a phy of -1, indicating
359 * that we're using MII.
360 */
361 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362 if (fp->fp_phy == sc->phy_primary_device)
363 break;
364 (*fp->fp_init)(sc);
365
366 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 ifp->if_ioctl = fxp_ioctl;
370 ifp->if_start = fxp_start;
371 ifp->if_watchdog = fxp_watchdog;
372 ifp->if_init = fxp_init;
373 ifp->if_stop = fxp_stop;
374 IFQ_SET_READY(&ifp->if_snd);
375
376 /*
377 * We can support 802.1Q VLAN-sized frames.
378 */
379 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
380
381 /*
382 * Attach the interface.
383 */
384 if_attach(ifp);
385 ether_ifattach(ifp, enaddr);
386 #if NRND > 0
387 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
388 RND_TYPE_NET, 0);
389 #endif
390
391 /*
392 * Add shutdown hook so that DMA is disabled prior to reboot. Not
393 * doing do could allow DMA to corrupt kernel memory during the
394 * reboot before the driver initializes.
395 */
396 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
397 if (sc->sc_sdhook == NULL)
398 printf("%s: WARNING: unable to establish shutdown hook\n",
399 sc->sc_dev.dv_xname);
400 /*
401 * Add suspend hook, for similar reasons..
402 */
403 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
404 if (sc->sc_powerhook == NULL)
405 printf("%s: WARNING: unable to establish power hook\n",
406 sc->sc_dev.dv_xname);
407
408 /* The attach is successful. */
409 sc->sc_flags |= FXPF_ATTACHED;
410
411 return;
412
413 /*
414 * Free any resources we've allocated during the failed attach
415 * attempt. Do this in reverse order and fall though.
416 */
417 fail_5:
418 for (i = 0; i < FXP_NRFABUFS; i++) {
419 if (sc->sc_rxmaps[i] != NULL)
420 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
421 }
422 fail_4:
423 for (i = 0; i < FXP_NTXCB; i++) {
424 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
425 bus_dmamap_destroy(sc->sc_dmat,
426 FXP_DSTX(sc, i)->txs_dmamap);
427 }
428 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
429 fail_3:
430 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
431 fail_2:
432 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
433 sizeof(struct fxp_control_data));
434 fail_1:
435 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
436 fail_0:
437 return;
438 }
439
440 void
441 fxp_mii_initmedia(struct fxp_softc *sc)
442 {
443
444 sc->sc_flags |= FXPF_MII;
445
446 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
447 sc->sc_mii.mii_readreg = fxp_mdi_read;
448 sc->sc_mii.mii_writereg = fxp_mdi_write;
449 sc->sc_mii.mii_statchg = fxp_statchg;
450 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
451 fxp_mii_mediastatus);
452 /*
453 * The i82557 wedges if all of its PHYs are isolated!
454 */
455 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
456 MII_OFFSET_ANY, MIIF_NOISOLATE);
457 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
458 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
459 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
460 } else
461 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
462 }
463
464 void
465 fxp_80c24_initmedia(struct fxp_softc *sc)
466 {
467
468 /*
469 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
470 * doesn't have a programming interface of any sort. The
471 * media is sensed automatically based on how the link partner
472 * is configured. This is, in essence, manual configuration.
473 */
474 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
475 sc->sc_dev.dv_xname);
476 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
477 fxp_80c24_mediastatus);
478 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
479 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
480 }
481
482 /*
483 * Device shutdown routine. Called at system shutdown after sync. The
484 * main purpose of this routine is to shut off receiver DMA so that
485 * kernel memory doesn't get clobbered during warmboot.
486 */
487 void
488 fxp_shutdown(void *arg)
489 {
490 struct fxp_softc *sc = arg;
491
492 /*
493 * Since the system's going to halt shortly, don't bother
494 * freeing mbufs.
495 */
496 fxp_stop(&sc->sc_ethercom.ec_if, 0);
497 }
498 /*
499 * Power handler routine. Called when the system is transitioning
500 * into/out of power save modes. As with fxp_shutdown, the main
501 * purpose of this routine is to shut off receiver DMA so it doesn't
502 * clobber kernel memory at the wrong time.
503 */
504 void
505 fxp_power(int why, void *arg)
506 {
507 struct fxp_softc *sc = arg;
508 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
509 int s;
510
511 s = splnet();
512 switch (why) {
513 case PWR_SUSPEND:
514 case PWR_STANDBY:
515 fxp_stop(ifp, 0);
516 break;
517 case PWR_RESUME:
518 if (ifp->if_flags & IFF_UP)
519 fxp_init(ifp);
520 break;
521 case PWR_SOFTSUSPEND:
522 case PWR_SOFTSTANDBY:
523 case PWR_SOFTRESUME:
524 break;
525 }
526 splx(s);
527 }
528
529 /*
530 * Initialize the interface media.
531 */
532 void
533 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
534 {
535 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
536
537 /*
538 * Reset to a stable state.
539 */
540 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
541 DELAY(10);
542
543 sc->sc_eeprom_size = 0;
544 fxp_autosize_eeprom(sc);
545 if(sc->sc_eeprom_size == 0) {
546 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
547 sc->sc_eeprom_size = 6; /* XXX panic here? */
548 }
549 #ifdef DEBUG
550 printf("%s: detected %d word EEPROM\n",
551 sc->sc_dev.dv_xname,
552 1 << sc->sc_eeprom_size);
553 #endif
554
555 /*
556 * Get info about the primary PHY
557 */
558 fxp_read_eeprom(sc, &data, 6, 1);
559 sc->phy_primary_device =
560 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
561
562 /*
563 * Read MAC address.
564 */
565 fxp_read_eeprom(sc, myea, 0, 3);
566 enaddr[0] = myea[0] & 0xff;
567 enaddr[1] = myea[0] >> 8;
568 enaddr[2] = myea[1] & 0xff;
569 enaddr[3] = myea[1] >> 8;
570 enaddr[4] = myea[2] & 0xff;
571 enaddr[5] = myea[2] >> 8;
572 }
573
574 /*
575 * Figure out EEPROM size.
576 *
577 * 559's can have either 64-word or 256-word EEPROMs, the 558
578 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
579 * talks about the existance of 16 to 256 word EEPROMs.
580 *
581 * The only known sizes are 64 and 256, where the 256 version is used
582 * by CardBus cards to store CIS information.
583 *
584 * The address is shifted in msb-to-lsb, and after the last
585 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
586 * after which follows the actual data. We try to detect this zero, by
587 * probing the data-out bit in the EEPROM control register just after
588 * having shifted in a bit. If the bit is zero, we assume we've
589 * shifted enough address bits. The data-out should be tri-state,
590 * before this, which should translate to a logical one.
591 *
592 * Other ways to do this would be to try to read a register with known
593 * contents with a varying number of address bits, but no such
594 * register seem to be available. The high bits of register 10 are 01
595 * on the 558 and 559, but apparently not on the 557.
596 *
597 * The Linux driver computes a checksum on the EEPROM data, but the
598 * value of this checksum is not very well documented.
599 */
600
601 void
602 fxp_autosize_eeprom(struct fxp_softc *sc)
603 {
604 u_int16_t reg;
605 int x;
606
607 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
608 /*
609 * Shift in read opcode.
610 */
611 for (x = 3; x > 0; x--) {
612 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
613 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
614 } else {
615 reg = FXP_EEPROM_EECS;
616 }
617 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
618 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
619 reg | FXP_EEPROM_EESK);
620 DELAY(4);
621 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
622 DELAY(4);
623 }
624 /*
625 * Shift in address, wait for the dummy zero following a correct
626 * address shift.
627 */
628 for (x = 1; x <= 8; x++) {
629 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
630 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
631 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
632 DELAY(4);
633 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
634 FXP_EEPROM_EEDO) == 0)
635 break;
636 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
637 DELAY(4);
638 }
639 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
640 DELAY(4);
641 if(x != 6 && x != 8) {
642 #ifdef DEBUG
643 printf("%s: strange EEPROM size (%d)\n",
644 sc->sc_dev.dv_xname, 1 << x);
645 #endif
646 } else
647 sc->sc_eeprom_size = x;
648 }
649
650 /*
651 * Read from the serial EEPROM. Basically, you manually shift in
652 * the read opcode (one bit at a time) and then shift in the address,
653 * and then you shift out the data (all of this one bit at a time).
654 * The word size is 16 bits, so you have to provide the address for
655 * every 16 bits of data.
656 */
657 void
658 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
659 {
660 u_int16_t reg;
661 int i, x;
662
663 for (i = 0; i < words; i++) {
664 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
665 /*
666 * Shift in read opcode.
667 */
668 for (x = 3; x > 0; x--) {
669 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
670 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
671 } else {
672 reg = FXP_EEPROM_EECS;
673 }
674 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
675 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
676 reg | FXP_EEPROM_EESK);
677 DELAY(4);
678 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
679 DELAY(4);
680 }
681 /*
682 * Shift in address.
683 */
684 for (x = sc->sc_eeprom_size; x > 0; x--) {
685 if ((i + offset) & (1 << (x - 1))) {
686 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
687 } else {
688 reg = FXP_EEPROM_EECS;
689 }
690 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
691 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
692 reg | FXP_EEPROM_EESK);
693 DELAY(4);
694 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
695 DELAY(4);
696 }
697 reg = FXP_EEPROM_EECS;
698 data[i] = 0;
699 /*
700 * Shift out data.
701 */
702 for (x = 16; x > 0; x--) {
703 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
704 reg | FXP_EEPROM_EESK);
705 DELAY(4);
706 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
707 FXP_EEPROM_EEDO)
708 data[i] |= (1 << (x - 1));
709 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
710 DELAY(4);
711 }
712 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
713 DELAY(4);
714 }
715 }
716
717 /*
718 * Start packet transmission on the interface.
719 */
720 void
721 fxp_start(struct ifnet *ifp)
722 {
723 struct fxp_softc *sc = ifp->if_softc;
724 struct mbuf *m0, *m;
725 struct fxp_txdesc *txd;
726 struct fxp_txsoft *txs;
727 bus_dmamap_t dmamap;
728 int error, lasttx, nexttx, opending, seg;
729
730 /*
731 * If we want a re-init, bail out now.
732 */
733 if (sc->sc_flags & FXPF_WANTINIT) {
734 ifp->if_flags |= IFF_OACTIVE;
735 return;
736 }
737
738 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
739 return;
740
741 /*
742 * Remember the previous txpending and the current lasttx.
743 */
744 opending = sc->sc_txpending;
745 lasttx = sc->sc_txlast;
746
747 /*
748 * Loop through the send queue, setting up transmit descriptors
749 * until we drain the queue, or use up all available transmit
750 * descriptors.
751 */
752 while (sc->sc_txpending < FXP_NTXCB) {
753 /*
754 * Grab a packet off the queue.
755 */
756 IFQ_POLL(&ifp->if_snd, m0);
757 if (m0 == NULL)
758 break;
759 m = NULL;
760
761 /*
762 * Get the next available transmit descriptor.
763 */
764 nexttx = FXP_NEXTTX(sc->sc_txlast);
765 txd = FXP_CDTX(sc, nexttx);
766 txs = FXP_DSTX(sc, nexttx);
767 dmamap = txs->txs_dmamap;
768
769 /*
770 * Load the DMA map. If this fails, the packet either
771 * didn't fit in the allotted number of frags, or we were
772 * short on resources. In this case, we'll copy and try
773 * again.
774 */
775 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
776 BUS_DMA_NOWAIT) != 0) {
777 MGETHDR(m, M_DONTWAIT, MT_DATA);
778 if (m == NULL) {
779 printf("%s: unable to allocate Tx mbuf\n",
780 sc->sc_dev.dv_xname);
781 break;
782 }
783 if (m0->m_pkthdr.len > MHLEN) {
784 MCLGET(m, M_DONTWAIT);
785 if ((m->m_flags & M_EXT) == 0) {
786 printf("%s: unable to allocate Tx "
787 "cluster\n", sc->sc_dev.dv_xname);
788 m_freem(m);
789 break;
790 }
791 }
792 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
793 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
794 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
795 m, BUS_DMA_NOWAIT);
796 if (error) {
797 printf("%s: unable to load Tx buffer, "
798 "error = %d\n", sc->sc_dev.dv_xname, error);
799 break;
800 }
801 }
802
803 IFQ_DEQUEUE(&ifp->if_snd, m0);
804 if (m != NULL) {
805 m_freem(m0);
806 m0 = m;
807 }
808
809 /* Initialize the fraglist. */
810 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
811 txd->txd_tbd[seg].tb_addr =
812 htole32(dmamap->dm_segs[seg].ds_addr);
813 txd->txd_tbd[seg].tb_size =
814 htole32(dmamap->dm_segs[seg].ds_len);
815 }
816
817 /* Sync the DMA map. */
818 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
819 BUS_DMASYNC_PREWRITE);
820
821 /*
822 * Store a pointer to the packet so we can free it later.
823 */
824 txs->txs_mbuf = m0;
825
826 /*
827 * Initialize the transmit descriptor.
828 */
829 /* BIG_ENDIAN: no need to swap to store 0 */
830 txd->txd_txcb.cb_status = 0;
831 txd->txd_txcb.cb_command =
832 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
833 txd->txd_txcb.tx_threshold = tx_threshold;
834 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
835
836 FXP_CDTXSYNC(sc, nexttx,
837 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
838
839 /* Advance the tx pointer. */
840 sc->sc_txpending++;
841 sc->sc_txlast = nexttx;
842
843 #if NBPFILTER > 0
844 /*
845 * Pass packet to bpf if there is a listener.
846 */
847 if (ifp->if_bpf)
848 bpf_mtap(ifp->if_bpf, m0);
849 #endif
850 }
851
852 if (sc->sc_txpending == FXP_NTXCB) {
853 /* No more slots; notify upper layer. */
854 ifp->if_flags |= IFF_OACTIVE;
855 }
856
857 if (sc->sc_txpending != opending) {
858 /*
859 * We enqueued packets. If the transmitter was idle,
860 * reset the txdirty pointer.
861 */
862 if (opending == 0)
863 sc->sc_txdirty = FXP_NEXTTX(lasttx);
864
865 /*
866 * Cause the chip to interrupt and suspend command
867 * processing once the last packet we've enqueued
868 * has been transmitted.
869 */
870 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
871 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
872 FXP_CDTXSYNC(sc, sc->sc_txlast,
873 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
874
875 /*
876 * The entire packet chain is set up. Clear the suspend bit
877 * on the command prior to the first packet we set up.
878 */
879 FXP_CDTXSYNC(sc, lasttx,
880 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
881 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
882 htole16(~FXP_CB_COMMAND_S);
883 FXP_CDTXSYNC(sc, lasttx,
884 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
885
886 /*
887 * Issue a Resume command in case the chip was suspended.
888 */
889 fxp_scb_wait(sc);
890 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
891
892 /* Set a watchdog timer in case the chip flakes out. */
893 ifp->if_timer = 5;
894 }
895 }
896
897 /*
898 * Process interface interrupts.
899 */
900 int
901 fxp_intr(void *arg)
902 {
903 struct fxp_softc *sc = arg;
904 struct ethercom *ec = &sc->sc_ethercom;
905 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
906 struct fxp_txdesc *txd;
907 struct fxp_txsoft *txs;
908 struct mbuf *m, *m0;
909 bus_dmamap_t rxmap;
910 struct fxp_rfa *rfa;
911 int i, claimed = 0;
912 u_int16_t len, rxstat, txstat;
913 u_int8_t statack;
914
915 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
916 return (0);
917 /*
918 * If the interface isn't running, don't try to
919 * service the interrupt.. just ack it and bail.
920 */
921 if ((ifp->if_flags & IFF_RUNNING) == 0) {
922 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
923 if (statack) {
924 claimed = 1;
925 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
926 }
927 return (claimed);
928 }
929
930 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
931 claimed = 1;
932
933 /*
934 * First ACK all the interrupts in this pass.
935 */
936 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
937
938 /*
939 * Process receiver interrupts. If a no-resource (RNR)
940 * condition exists, get whatever packets we can and
941 * re-start the receiver.
942 */
943 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
944 rcvloop:
945 m = sc->sc_rxq.ifq_head;
946 rfa = FXP_MTORFA(m);
947 rxmap = M_GETCTX(m, bus_dmamap_t);
948
949 FXP_RFASYNC(sc, m,
950 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
951
952 rxstat = le16toh(rfa->rfa_status);
953
954 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
955 /*
956 * We have processed all of the
957 * receive buffers.
958 */
959 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
960 goto do_transmit;
961 }
962
963 IF_DEQUEUE(&sc->sc_rxq, m);
964
965 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
966
967 len = le16toh(rfa->actual_size) &
968 (m->m_ext.ext_size - 1);
969
970 if (len < sizeof(struct ether_header)) {
971 /*
972 * Runt packet; drop it now.
973 */
974 FXP_INIT_RFABUF(sc, m);
975 goto rcvloop;
976 }
977
978 /*
979 * If support for 802.1Q VLAN sized frames is
980 * enabled, we need to do some additional error
981 * checking (as we are saving bad frames, in
982 * order to receive the larger ones).
983 */
984 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
985 (rxstat & (FXP_RFA_STATUS_OVERRUN|
986 FXP_RFA_STATUS_RNR|
987 FXP_RFA_STATUS_ALIGN|
988 FXP_RFA_STATUS_CRC)) != 0) {
989 FXP_INIT_RFABUF(sc, m);
990 goto rcvloop;
991 }
992
993 /*
994 * If the packet is small enough to fit in a
995 * single header mbuf, allocate one and copy
996 * the data into it. This greatly reduces
997 * memory consumption when we receive lots
998 * of small packets.
999 *
1000 * Otherwise, we add a new buffer to the receive
1001 * chain. If this fails, we drop the packet and
1002 * recycle the old buffer.
1003 */
1004 if (fxp_copy_small != 0 && len <= MHLEN) {
1005 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1006 if (m == NULL)
1007 goto dropit;
1008 memcpy(mtod(m0, caddr_t),
1009 mtod(m, caddr_t), len);
1010 FXP_INIT_RFABUF(sc, m);
1011 m = m0;
1012 } else {
1013 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1014 dropit:
1015 ifp->if_ierrors++;
1016 FXP_INIT_RFABUF(sc, m);
1017 goto rcvloop;
1018 }
1019 }
1020
1021 m->m_pkthdr.rcvif = ifp;
1022 m->m_pkthdr.len = m->m_len = len;
1023
1024 #if NBPFILTER > 0
1025 /*
1026 * Pass this up to any BPF listeners, but only
1027 * pass it up the stack it its for us.
1028 */
1029 if (ifp->if_bpf)
1030 bpf_mtap(ifp->if_bpf, m);
1031 #endif
1032
1033 /* Pass it on. */
1034 (*ifp->if_input)(ifp, m);
1035 goto rcvloop;
1036 }
1037
1038 do_transmit:
1039 if (statack & FXP_SCB_STATACK_RNR) {
1040 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1041 fxp_scb_wait(sc);
1042 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1043 rxmap->dm_segs[0].ds_addr +
1044 RFA_ALIGNMENT_FUDGE);
1045 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1046 }
1047
1048 /*
1049 * Free any finished transmit mbuf chains.
1050 */
1051 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1052 ifp->if_flags &= ~IFF_OACTIVE;
1053 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1054 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1055 txd = FXP_CDTX(sc, i);
1056 txs = FXP_DSTX(sc, i);
1057
1058 FXP_CDTXSYNC(sc, i,
1059 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1060
1061 txstat = le16toh(txd->txd_txcb.cb_status);
1062
1063 if ((txstat & FXP_CB_STATUS_C) == 0)
1064 break;
1065
1066 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1067 0, txs->txs_dmamap->dm_mapsize,
1068 BUS_DMASYNC_POSTWRITE);
1069 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1070 m_freem(txs->txs_mbuf);
1071 txs->txs_mbuf = NULL;
1072 }
1073
1074 /* Update the dirty transmit buffer pointer. */
1075 sc->sc_txdirty = i;
1076
1077 /*
1078 * Cancel the watchdog timer if there are no pending
1079 * transmissions.
1080 */
1081 if (sc->sc_txpending == 0) {
1082 ifp->if_timer = 0;
1083
1084 /*
1085 * If we want a re-init, do that now.
1086 */
1087 if (sc->sc_flags & FXPF_WANTINIT)
1088 (void) fxp_init(ifp);
1089 }
1090
1091 /*
1092 * Try to get more packets going.
1093 */
1094 fxp_start(ifp);
1095 }
1096 }
1097
1098 #if NRND > 0
1099 if (claimed)
1100 rnd_add_uint32(&sc->rnd_source, statack);
1101 #endif
1102 return (claimed);
1103 }
1104
1105 /*
1106 * Update packet in/out/collision statistics. The i82557 doesn't
1107 * allow you to access these counters without doing a fairly
1108 * expensive DMA to get _all_ of the statistics it maintains, so
1109 * we do this operation here only once per second. The statistics
1110 * counters in the kernel are updated from the previous dump-stats
1111 * DMA and then a new dump-stats DMA is started. The on-chip
1112 * counters are zeroed when the DMA completes. If we can't start
1113 * the DMA immediately, we don't wait - we just prepare to read
1114 * them again next time.
1115 */
1116 void
1117 fxp_tick(void *arg)
1118 {
1119 struct fxp_softc *sc = arg;
1120 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1121 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1122 int s;
1123
1124 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1125 return;
1126
1127 s = splnet();
1128
1129 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1130
1131 ifp->if_opackets += le32toh(sp->tx_good);
1132 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1133 if (sp->rx_good) {
1134 ifp->if_ipackets += le32toh(sp->rx_good);
1135 sc->sc_rxidle = 0;
1136 } else {
1137 sc->sc_rxidle++;
1138 }
1139 ifp->if_ierrors +=
1140 le32toh(sp->rx_crc_errors) +
1141 le32toh(sp->rx_alignment_errors) +
1142 le32toh(sp->rx_rnr_errors) +
1143 le32toh(sp->rx_overrun_errors);
1144 /*
1145 * If any transmit underruns occured, bump up the transmit
1146 * threshold by another 512 bytes (64 * 8).
1147 */
1148 if (sp->tx_underruns) {
1149 ifp->if_oerrors += le32toh(sp->tx_underruns);
1150 if (tx_threshold < 192)
1151 tx_threshold += 64;
1152 }
1153
1154 /*
1155 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1156 * then assume the receiver has locked up and attempt to clear
1157 * the condition by reprogramming the multicast filter (actually,
1158 * resetting the interface). This is a work-around for a bug in
1159 * the 82557 where the receiver locks up if it gets certain types
1160 * of garbage in the syncronization bits prior to the packet header.
1161 * This bug is supposed to only occur in 10Mbps mode, but has been
1162 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1163 * speed transition).
1164 */
1165 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1166 (void) fxp_init(ifp);
1167 splx(s);
1168 return;
1169 }
1170 /*
1171 * If there is no pending command, start another stats
1172 * dump. Otherwise punt for now.
1173 */
1174 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1175 /*
1176 * Start another stats dump.
1177 */
1178 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1179 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1180 } else {
1181 /*
1182 * A previous command is still waiting to be accepted.
1183 * Just zero our copy of the stats and wait for the
1184 * next timer event to update them.
1185 */
1186 /* BIG_ENDIAN: no swap required to store 0 */
1187 sp->tx_good = 0;
1188 sp->tx_underruns = 0;
1189 sp->tx_total_collisions = 0;
1190
1191 sp->rx_good = 0;
1192 sp->rx_crc_errors = 0;
1193 sp->rx_alignment_errors = 0;
1194 sp->rx_rnr_errors = 0;
1195 sp->rx_overrun_errors = 0;
1196 }
1197
1198 if (sc->sc_flags & FXPF_MII) {
1199 /* Tick the MII clock. */
1200 mii_tick(&sc->sc_mii);
1201 }
1202
1203 splx(s);
1204
1205 /*
1206 * Schedule another timeout one second from now.
1207 */
1208 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1209 }
1210
1211 /*
1212 * Drain the receive queue.
1213 */
1214 void
1215 fxp_rxdrain(struct fxp_softc *sc)
1216 {
1217 bus_dmamap_t rxmap;
1218 struct mbuf *m;
1219
1220 for (;;) {
1221 IF_DEQUEUE(&sc->sc_rxq, m);
1222 if (m == NULL)
1223 break;
1224 rxmap = M_GETCTX(m, bus_dmamap_t);
1225 bus_dmamap_unload(sc->sc_dmat, rxmap);
1226 FXP_RXMAP_PUT(sc, rxmap);
1227 m_freem(m);
1228 }
1229 }
1230
1231 /*
1232 * Stop the interface. Cancels the statistics updater and resets
1233 * the interface.
1234 */
1235 void
1236 fxp_stop(struct ifnet *ifp, int disable)
1237 {
1238 struct fxp_softc *sc = ifp->if_softc;
1239 struct fxp_txsoft *txs;
1240 int i;
1241
1242 /*
1243 * Turn down interface (done early to avoid bad interactions
1244 * between panics, shutdown hooks, and the watchdog timer)
1245 */
1246 ifp->if_timer = 0;
1247 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1248
1249 /*
1250 * Cancel stats updater.
1251 */
1252 callout_stop(&sc->sc_callout);
1253 if (sc->sc_flags & FXPF_MII) {
1254 /* Down the MII. */
1255 mii_down(&sc->sc_mii);
1256 }
1257
1258 /*
1259 * Issue software reset
1260 */
1261 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1262 DELAY(10);
1263
1264 /*
1265 * Release any xmit buffers.
1266 */
1267 for (i = 0; i < FXP_NTXCB; i++) {
1268 txs = FXP_DSTX(sc, i);
1269 if (txs->txs_mbuf != NULL) {
1270 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1271 m_freem(txs->txs_mbuf);
1272 txs->txs_mbuf = NULL;
1273 }
1274 }
1275 sc->sc_txpending = 0;
1276
1277 if (disable) {
1278 fxp_rxdrain(sc);
1279 fxp_disable(sc);
1280 }
1281
1282 }
1283
1284 /*
1285 * Watchdog/transmission transmit timeout handler. Called when a
1286 * transmission is started on the interface, but no interrupt is
1287 * received before the timeout. This usually indicates that the
1288 * card has wedged for some reason.
1289 */
1290 void
1291 fxp_watchdog(struct ifnet *ifp)
1292 {
1293 struct fxp_softc *sc = ifp->if_softc;
1294
1295 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1296 ifp->if_oerrors++;
1297
1298 (void) fxp_init(ifp);
1299 }
1300
1301 /*
1302 * Initialize the interface. Must be called at splnet().
1303 */
1304 int
1305 fxp_init(struct ifnet *ifp)
1306 {
1307 struct fxp_softc *sc = ifp->if_softc;
1308 struct fxp_cb_config *cbp;
1309 struct fxp_cb_ias *cb_ias;
1310 struct fxp_txdesc *txd;
1311 bus_dmamap_t rxmap;
1312 int i, prm, save_bf, lrxen, allm, error = 0;
1313
1314 if ((error = fxp_enable(sc)) != 0)
1315 goto out;
1316
1317 /*
1318 * Cancel any pending I/O
1319 */
1320 fxp_stop(ifp, 0);
1321
1322 /*
1323 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1324 * flag, and this prevents the MII from detaching resulting in
1325 * a panic. The flags field should perhaps be split in runtime
1326 * flags and more static information. For now, just clear the
1327 * only other flag set.
1328 */
1329
1330 sc->sc_flags &= ~FXPF_WANTINIT;
1331
1332 /*
1333 * Initialize base of CBL and RFA memory. Loading with zero
1334 * sets it up for regular linear addressing.
1335 */
1336 fxp_scb_wait(sc);
1337 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1338 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1339
1340 fxp_scb_wait(sc);
1341 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1342
1343 /*
1344 * Initialize the multicast filter. Do this now, since we might
1345 * have to setup the config block differently.
1346 */
1347 fxp_mc_setup(sc);
1348
1349 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1350 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1351
1352 /*
1353 * In order to support receiving 802.1Q VLAN frames, we have to
1354 * enable "save bad frames", since they are 4 bytes larger than
1355 * the normal Ethernet maximum frame length. On i82558 and later,
1356 * we have a better mechanism for this.
1357 */
1358 save_bf = 0;
1359 lrxen = 0;
1360 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1361 if (sc->sc_rev < FXP_REV_82558_A4)
1362 save_bf = 1;
1363 else
1364 lrxen = 1;
1365 }
1366
1367 /*
1368 * Initialize base of dump-stats buffer.
1369 */
1370 fxp_scb_wait(sc);
1371 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1372 sc->sc_cddma + FXP_CDSTATSOFF);
1373 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1374 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1375
1376 cbp = &sc->sc_control_data->fcd_configcb;
1377 memset(cbp, 0, sizeof(struct fxp_cb_config));
1378
1379 /*
1380 * This copy is kind of disgusting, but there are a bunch of must be
1381 * zero and must be one bits in this structure and this is the easiest
1382 * way to initialize them all to proper values.
1383 */
1384 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1385
1386 /* BIG_ENDIAN: no need to swap to store 0 */
1387 cbp->cb_status = 0;
1388 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1389 FXP_CB_COMMAND_EL);
1390 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1391 cbp->link_addr = 0xffffffff; /* (no) next command */
1392 /* bytes in config block */
1393 cbp->byte_count = FXP_CONFIG_LEN;
1394 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1395 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1396 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1397 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1398 cbp->type_enable = 0; /* actually reserved */
1399 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1400 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1401 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1402 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1403 cbp->dma_mbce = 0; /* (disable) dma max counters */
1404 cbp->late_scb = 0; /* (don't) defer SCB update */
1405 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1406 cbp->ci_int = 1; /* interrupt on CU idle */
1407 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1408 cbp->ext_stats_dis = 1; /* disable extended counters */
1409 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1410 cbp->save_bf = save_bf;/* save bad frames */
1411 cbp->disc_short_rx = !prm; /* discard short packets */
1412 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1413 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1414 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1415 /* interface mode */
1416 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1417 cbp->csma_dis = 0; /* (don't) disable link */
1418 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1419 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1420 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1421 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1422 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1423 cbp->nsai = 1; /* (don't) disable source addr insert */
1424 cbp->preamble_length = 2; /* (7 byte) preamble */
1425 cbp->loopback = 0; /* (don't) loopback */
1426 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1427 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1428 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1429 cbp->promiscuous = prm; /* promiscuous mode */
1430 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1431 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1432 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1433 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1434 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1435 cbp->stripping = !prm; /* truncate rx packet to byte count */
1436 cbp->padding = 1; /* (do) pad short tx packets */
1437 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1438 cbp->long_rx_en = lrxen; /* long packet receive enable */
1439 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1440 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1441 /* must set wake_en in PMCSR also */
1442 cbp->force_fdx = 0; /* (don't) force full duplex */
1443 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1444 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1445 cbp->mc_all = allm; /* accept all multicasts */
1446
1447 if (sc->sc_rev < FXP_REV_82558_A4) {
1448 /*
1449 * The i82557 has no hardware flow control, the values
1450 * here are the defaults for the chip.
1451 */
1452 cbp->fc_delay_lsb = 0;
1453 cbp->fc_delay_msb = 0x40;
1454 cbp->pri_fc_thresh = 3;
1455 cbp->tx_fc_dis = 0;
1456 cbp->rx_fc_restop = 0;
1457 cbp->rx_fc_restart = 0;
1458 cbp->fc_filter = 0;
1459 cbp->pri_fc_loc = 1;
1460 } else {
1461 cbp->fc_delay_lsb = 0x1f;
1462 cbp->fc_delay_msb = 0x01;
1463 cbp->pri_fc_thresh = 3;
1464 cbp->tx_fc_dis = 0; /* enable transmit FC */
1465 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1466 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1467 cbp->fc_filter = !prm; /* drop FC frames to host */
1468 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1469 }
1470
1471 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1472
1473 /*
1474 * Start the config command/DMA.
1475 */
1476 fxp_scb_wait(sc);
1477 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1478 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1479 /* ...and wait for it to complete. */
1480 i = 1000;
1481 do {
1482 FXP_CDCONFIGSYNC(sc,
1483 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1484 DELAY(1);
1485 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1486 if (i == 0) {
1487 printf("%s at line %d: dmasync timeout\n",
1488 sc->sc_dev.dv_xname, __LINE__);
1489 return ETIMEDOUT;
1490 }
1491
1492 /*
1493 * Initialize the station address.
1494 */
1495 cb_ias = &sc->sc_control_data->fcd_iascb;
1496 /* BIG_ENDIAN: no need to swap to store 0 */
1497 cb_ias->cb_status = 0;
1498 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1499 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1500 cb_ias->link_addr = 0xffffffff;
1501 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1502
1503 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1504
1505 /*
1506 * Start the IAS (Individual Address Setup) command/DMA.
1507 */
1508 fxp_scb_wait(sc);
1509 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1510 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1511 /* ...and wait for it to complete. */
1512 i = 1000;
1513 do {
1514 FXP_CDIASSYNC(sc,
1515 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1516 DELAY(1);
1517 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1518 if (i == 0) {
1519 printf("%s at line %d: dmasync timeout\n",
1520 sc->sc_dev.dv_xname, __LINE__);
1521 return ETIMEDOUT;
1522 }
1523
1524 /*
1525 * Initialize the transmit descriptor ring. txlast is initialized
1526 * to the end of the list so that it will wrap around to the first
1527 * descriptor when the first packet is transmitted.
1528 */
1529 for (i = 0; i < FXP_NTXCB; i++) {
1530 txd = FXP_CDTX(sc, i);
1531 memset(txd, 0, sizeof(*txd));
1532 txd->txd_txcb.cb_command =
1533 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1534 txd->txd_txcb.link_addr =
1535 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1536 if (sc->sc_flags & FXPF_EXT_TXCB)
1537 txd->txd_txcb.tbd_array_addr =
1538 htole32(FXP_CDTBDADDR(sc, i) +
1539 (2 * sizeof(struct fxp_tbd)));
1540 else
1541 txd->txd_txcb.tbd_array_addr =
1542 htole32(FXP_CDTBDADDR(sc, i));
1543 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1544 }
1545 sc->sc_txpending = 0;
1546 sc->sc_txdirty = 0;
1547 sc->sc_txlast = FXP_NTXCB - 1;
1548
1549 /*
1550 * Initialize the receive buffer list.
1551 */
1552 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1553 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1554 rxmap = FXP_RXMAP_GET(sc);
1555 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1556 printf("%s: unable to allocate or map rx "
1557 "buffer %d, error = %d\n",
1558 sc->sc_dev.dv_xname,
1559 sc->sc_rxq.ifq_len, error);
1560 /*
1561 * XXX Should attempt to run with fewer receive
1562 * XXX buffers instead of just failing.
1563 */
1564 FXP_RXMAP_PUT(sc, rxmap);
1565 fxp_rxdrain(sc);
1566 goto out;
1567 }
1568 }
1569 sc->sc_rxidle = 0;
1570
1571 /*
1572 * Give the transmit ring to the chip. We do this by pointing
1573 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1574 * issuing a start command. It will execute the NOP and then
1575 * suspend, pointing at the first descriptor.
1576 */
1577 fxp_scb_wait(sc);
1578 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1579 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1580
1581 /*
1582 * Initialize receiver buffer area - RFA.
1583 */
1584 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1585 fxp_scb_wait(sc);
1586 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1587 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1588 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1589
1590 if (sc->sc_flags & FXPF_MII) {
1591 /*
1592 * Set current media.
1593 */
1594 mii_mediachg(&sc->sc_mii);
1595 }
1596
1597 /*
1598 * ...all done!
1599 */
1600 ifp->if_flags |= IFF_RUNNING;
1601 ifp->if_flags &= ~IFF_OACTIVE;
1602
1603 /*
1604 * Start the one second timer.
1605 */
1606 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1607
1608 /*
1609 * Attempt to start output on the interface.
1610 */
1611 fxp_start(ifp);
1612
1613 out:
1614 if (error) {
1615 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1616 ifp->if_timer = 0;
1617 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1618 }
1619 return (error);
1620 }
1621
1622 /*
1623 * Change media according to request.
1624 */
1625 int
1626 fxp_mii_mediachange(struct ifnet *ifp)
1627 {
1628 struct fxp_softc *sc = ifp->if_softc;
1629
1630 if (ifp->if_flags & IFF_UP)
1631 mii_mediachg(&sc->sc_mii);
1632 return (0);
1633 }
1634
1635 /*
1636 * Notify the world which media we're using.
1637 */
1638 void
1639 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1640 {
1641 struct fxp_softc *sc = ifp->if_softc;
1642
1643 if(sc->sc_enabled == 0) {
1644 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1645 ifmr->ifm_status = 0;
1646 return;
1647 }
1648
1649 mii_pollstat(&sc->sc_mii);
1650 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1651 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1652 }
1653
1654 int
1655 fxp_80c24_mediachange(struct ifnet *ifp)
1656 {
1657
1658 /* Nothing to do here. */
1659 return (0);
1660 }
1661
1662 void
1663 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1664 {
1665 struct fxp_softc *sc = ifp->if_softc;
1666
1667 /*
1668 * Media is currently-selected media. We cannot determine
1669 * the link status.
1670 */
1671 ifmr->ifm_status = 0;
1672 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1673 }
1674
1675 /*
1676 * Add a buffer to the end of the RFA buffer list.
1677 * Return 0 if successful, error code on failure.
1678 *
1679 * The RFA struct is stuck at the beginning of mbuf cluster and the
1680 * data pointer is fixed up to point just past it.
1681 */
1682 int
1683 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1684 {
1685 struct mbuf *m;
1686 int error;
1687
1688 MGETHDR(m, M_DONTWAIT, MT_DATA);
1689 if (m == NULL)
1690 return (ENOBUFS);
1691
1692 MCLGET(m, M_DONTWAIT);
1693 if ((m->m_flags & M_EXT) == 0) {
1694 m_freem(m);
1695 return (ENOBUFS);
1696 }
1697
1698 if (unload)
1699 bus_dmamap_unload(sc->sc_dmat, rxmap);
1700
1701 M_SETCTX(m, rxmap);
1702
1703 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1704 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1705 if (error) {
1706 printf("%s: can't load rx DMA map %d, error = %d\n",
1707 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1708 panic("fxp_add_rfabuf"); /* XXX */
1709 }
1710
1711 FXP_INIT_RFABUF(sc, m);
1712
1713 return (0);
1714 }
1715
1716 int
1717 fxp_mdi_read(struct device *self, int phy, int reg)
1718 {
1719 struct fxp_softc *sc = (struct fxp_softc *)self;
1720 int count = 10000;
1721 int value;
1722
1723 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1724 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1725
1726 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1727 && count--)
1728 DELAY(10);
1729
1730 if (count <= 0)
1731 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1732
1733 return (value & 0xffff);
1734 }
1735
1736 void
1737 fxp_statchg(struct device *self)
1738 {
1739 struct fxp_softc *sc = (void *) self;
1740
1741 /*
1742 * Determine whether or not we have to work-around the
1743 * Resume Bug.
1744 */
1745 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
1746 if (IFM_TYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
1747 sc->sc_flags |= FXPF_FIX_RESUME_BUG;
1748 else
1749 sc->sc_flags &= ~FXPF_FIX_RESUME_BUG;
1750 }
1751 }
1752
1753 void
1754 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1755 {
1756 struct fxp_softc *sc = (struct fxp_softc *)self;
1757 int count = 10000;
1758
1759 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1760 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1761 (value & 0xffff));
1762
1763 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1764 count--)
1765 DELAY(10);
1766
1767 if (count <= 0)
1768 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1769 }
1770
1771 int
1772 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1773 {
1774 struct fxp_softc *sc = ifp->if_softc;
1775 struct ifreq *ifr = (struct ifreq *)data;
1776 int s, error;
1777
1778 s = splnet();
1779
1780 switch (cmd) {
1781 case SIOCSIFMEDIA:
1782 case SIOCGIFMEDIA:
1783 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1784 break;
1785
1786 default:
1787 error = ether_ioctl(ifp, cmd, data);
1788 if (error == ENETRESET) {
1789 if (sc->sc_enabled) {
1790 /*
1791 * Multicast list has changed; set the
1792 * hardware filter accordingly.
1793 */
1794 if (sc->sc_txpending) {
1795 sc->sc_flags |= FXPF_WANTINIT;
1796 error = 0;
1797 } else
1798 error = fxp_init(ifp);
1799 } else
1800 error = 0;
1801 }
1802 break;
1803 }
1804
1805 /* Try to get more packets going. */
1806 if (sc->sc_enabled)
1807 fxp_start(ifp);
1808
1809 splx(s);
1810 return (error);
1811 }
1812
1813 /*
1814 * Program the multicast filter.
1815 *
1816 * This function must be called at splnet().
1817 */
1818 void
1819 fxp_mc_setup(struct fxp_softc *sc)
1820 {
1821 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1822 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1823 struct ethercom *ec = &sc->sc_ethercom;
1824 struct ether_multi *enm;
1825 struct ether_multistep step;
1826 int count, nmcasts;
1827
1828 #ifdef DIAGNOSTIC
1829 if (sc->sc_txpending)
1830 panic("fxp_mc_setup: pending transmissions");
1831 #endif
1832
1833 ifp->if_flags &= ~IFF_ALLMULTI;
1834
1835 /*
1836 * Initialize multicast setup descriptor.
1837 */
1838 nmcasts = 0;
1839 ETHER_FIRST_MULTI(step, ec, enm);
1840 while (enm != NULL) {
1841 /*
1842 * Check for too many multicast addresses or if we're
1843 * listening to a range. Either way, we simply have
1844 * to accept all multicasts.
1845 */
1846 if (nmcasts >= MAXMCADDR ||
1847 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1848 ETHER_ADDR_LEN) != 0) {
1849 /*
1850 * Callers of this function must do the
1851 * right thing with this. If we're called
1852 * from outside fxp_init(), the caller must
1853 * detect if the state if IFF_ALLMULTI changes.
1854 * If it does, the caller must then call
1855 * fxp_init(), since allmulti is handled by
1856 * the config block.
1857 */
1858 ifp->if_flags |= IFF_ALLMULTI;
1859 return;
1860 }
1861 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1862 ETHER_ADDR_LEN);
1863 nmcasts++;
1864 ETHER_NEXT_MULTI(step, enm);
1865 }
1866
1867 /* BIG_ENDIAN: no need to swap to store 0 */
1868 mcsp->cb_status = 0;
1869 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1870 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1871 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1872
1873 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1874
1875 /*
1876 * Wait until the command unit is not active. This should never
1877 * happen since nothing is queued, but make sure anyway.
1878 */
1879 count = 100;
1880 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1881 FXP_SCB_CUS_ACTIVE && --count)
1882 DELAY(1);
1883 if (count == 0) {
1884 printf("%s at line %d: command queue timeout\n",
1885 sc->sc_dev.dv_xname, __LINE__);
1886 return;
1887 }
1888
1889 /*
1890 * Start the multicast setup command/DMA.
1891 */
1892 fxp_scb_wait(sc);
1893 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1894 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1895
1896 /* ...and wait for it to complete. */
1897 count = 1000;
1898 do {
1899 FXP_CDMCSSYNC(sc,
1900 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1901 DELAY(1);
1902 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1903 if (count == 0) {
1904 printf("%s at line %d: dmasync timeout\n",
1905 sc->sc_dev.dv_xname, __LINE__);
1906 return;
1907 }
1908 }
1909
1910 int
1911 fxp_enable(struct fxp_softc *sc)
1912 {
1913
1914 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1915 if ((*sc->sc_enable)(sc) != 0) {
1916 printf("%s: device enable failed\n",
1917 sc->sc_dev.dv_xname);
1918 return (EIO);
1919 }
1920 }
1921
1922 sc->sc_enabled = 1;
1923 return (0);
1924 }
1925
1926 void
1927 fxp_disable(struct fxp_softc *sc)
1928 {
1929
1930 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1931 (*sc->sc_disable)(sc);
1932 sc->sc_enabled = 0;
1933 }
1934 }
1935
1936 /*
1937 * fxp_activate:
1938 *
1939 * Handle device activation/deactivation requests.
1940 */
1941 int
1942 fxp_activate(struct device *self, enum devact act)
1943 {
1944 struct fxp_softc *sc = (void *) self;
1945 int s, error = 0;
1946
1947 s = splnet();
1948 switch (act) {
1949 case DVACT_ACTIVATE:
1950 error = EOPNOTSUPP;
1951 break;
1952
1953 case DVACT_DEACTIVATE:
1954 if (sc->sc_flags & FXPF_MII)
1955 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1956 MII_OFFSET_ANY);
1957 if_deactivate(&sc->sc_ethercom.ec_if);
1958 break;
1959 }
1960 splx(s);
1961
1962 return (error);
1963 }
1964
1965 /*
1966 * fxp_detach:
1967 *
1968 * Detach an i82557 interface.
1969 */
1970 int
1971 fxp_detach(struct fxp_softc *sc)
1972 {
1973 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1974 int i;
1975
1976 /* Succeed now if there's no work to do. */
1977 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1978 return (0);
1979
1980 /* Unhook our tick handler. */
1981 callout_stop(&sc->sc_callout);
1982
1983 if (sc->sc_flags & FXPF_MII) {
1984 /* Detach all PHYs */
1985 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1986 }
1987
1988 /* Delete all remaining media. */
1989 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1990
1991 #if NRND > 0
1992 rnd_detach_source(&sc->rnd_source);
1993 #endif
1994 ether_ifdetach(ifp);
1995 if_detach(ifp);
1996
1997 for (i = 0; i < FXP_NRFABUFS; i++) {
1998 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1999 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2000 }
2001
2002 for (i = 0; i < FXP_NTXCB; i++) {
2003 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2004 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2005 }
2006
2007 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2008 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2009 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2010 sizeof(struct fxp_control_data));
2011 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2012
2013 shutdownhook_disestablish(sc->sc_sdhook);
2014 powerhook_disestablish(sc->sc_powerhook);
2015
2016 return (0);
2017 }
2018