i82557.c revision 1.60 1 /* $NetBSD: i82557.c,v 1.60 2001/09/16 16:34:37 wiz Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include "bpfilter.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88
89 #include <machine/endian.h>
90
91 #include <uvm/uvm_extern.h>
92
93 #if NRND > 0
94 #include <sys/rnd.h>
95 #endif
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #if NBPFILTER > 0
103 #include <net/bpf.h>
104 #endif
105
106 #include <machine/bus.h>
107 #include <machine/intr.h>
108
109 #include <dev/mii/miivar.h>
110
111 #include <dev/ic/i82557reg.h>
112 #include <dev/ic/i82557var.h>
113
114 /*
115 * NOTE! On the Alpha, we have an alignment constraint. The
116 * card DMAs the packet immediately following the RFA. However,
117 * the first thing in the packet is a 14-byte Ethernet header.
118 * This means that the packet is misaligned. To compensate,
119 * we actually offset the RFA 2 bytes into the cluster. This
120 * alignes the packet after the Ethernet header at a 32-bit
121 * boundary. HOWEVER! This means that the RFA is misaligned!
122 */
123 #define RFA_ALIGNMENT_FUDGE 2
124
125 /*
126 * The configuration byte map has several undefined fields which
127 * must be one or must be zero. Set up a template for these bits
128 * only (assuming an i82557 chip), leaving the actual configuration
129 * for fxp_init().
130 *
131 * See the definition of struct fxp_cb_config for the bit definitions.
132 */
133 const u_int8_t fxp_cb_config_template[] = {
134 0x0, 0x0, /* cb_status */
135 0x0, 0x0, /* cb_command */
136 0x0, 0x0, 0x0, 0x0, /* link_addr */
137 0x0, /* 0 */
138 0x0, /* 1 */
139 0x0, /* 2 */
140 0x0, /* 3 */
141 0x0, /* 4 */
142 0x0, /* 5 */
143 0x32, /* 6 */
144 0x0, /* 7 */
145 0x0, /* 8 */
146 0x0, /* 9 */
147 0x6, /* 10 */
148 0x0, /* 11 */
149 0x0, /* 12 */
150 0x0, /* 13 */
151 0xf2, /* 14 */
152 0x48, /* 15 */
153 0x0, /* 16 */
154 0x40, /* 17 */
155 0xf0, /* 18 */
156 0x0, /* 19 */
157 0x3f, /* 20 */
158 0x5, /* 21 */
159 0x0, /* 22 */
160 0x0, /* 23 */
161 0x0, /* 24 */
162 0x0, /* 25 */
163 0x0, /* 26 */
164 0x0, /* 27 */
165 0x0, /* 28 */
166 0x0, /* 29 */
167 0x0, /* 30 */
168 0x0, /* 31 */
169 };
170
171 void fxp_mii_initmedia(struct fxp_softc *);
172 int fxp_mii_mediachange(struct ifnet *);
173 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
174
175 void fxp_80c24_initmedia(struct fxp_softc *);
176 int fxp_80c24_mediachange(struct ifnet *);
177 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
178
179 void fxp_start(struct ifnet *);
180 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
181 void fxp_watchdog(struct ifnet *);
182 int fxp_init(struct ifnet *);
183 void fxp_stop(struct ifnet *, int);
184
185 void fxp_txintr(struct fxp_softc *);
186 void fxp_rxintr(struct fxp_softc *);
187
188 void fxp_rxdrain(struct fxp_softc *);
189 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
190 int fxp_mdi_read(struct device *, int, int);
191 void fxp_statchg(struct device *);
192 void fxp_mdi_write(struct device *, int, int, int);
193 void fxp_autosize_eeprom(struct fxp_softc*);
194 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
195 void fxp_get_info(struct fxp_softc *, u_int8_t *);
196 void fxp_tick(void *);
197 void fxp_mc_setup(struct fxp_softc *);
198
199 void fxp_shutdown(void *);
200 void fxp_power(int, void *);
201
202 int fxp_copy_small = 0;
203
204 struct fxp_phytype {
205 int fp_phy; /* type of PHY, -1 for MII at the end. */
206 void (*fp_init)(struct fxp_softc *);
207 } fxp_phytype_table[] = {
208 { FXP_PHY_80C24, fxp_80c24_initmedia },
209 { -1, fxp_mii_initmedia },
210 };
211
212 /*
213 * Set initial transmit threshold at 64 (512 bytes). This is
214 * increased by 64 (512 bytes) at a time, to maximum of 192
215 * (1536 bytes), if an underrun occurs.
216 */
217 static int tx_threshold = 64;
218
219 /*
220 * Wait for the previous command to be accepted (but not necessarily
221 * completed).
222 */
223 static __inline void
224 fxp_scb_wait(struct fxp_softc *sc)
225 {
226 int i = 10000;
227
228 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
229 delay(2);
230 if (i == 0)
231 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
232 }
233
234 /*
235 * Submit a command to the i82557.
236 */
237 static __inline void
238 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
239 {
240
241 if (cmd == FXP_SCB_COMMAND_CU_RESUME &&
242 (sc->sc_flags & FXPF_FIX_RESUME_BUG) != 0) {
243 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_NOP);
244 fxp_scb_wait(sc);
245 }
246 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
247 }
248
249 /*
250 * Finish attaching an i82557 interface. Called by bus-specific front-end.
251 */
252 void
253 fxp_attach(struct fxp_softc *sc)
254 {
255 u_int8_t enaddr[ETHER_ADDR_LEN];
256 struct ifnet *ifp;
257 bus_dma_segment_t seg;
258 int rseg, i, error;
259 struct fxp_phytype *fp;
260
261 callout_init(&sc->sc_callout);
262
263 /* Start out using the standard RFA. */
264 sc->sc_rfa_size = RFA_SIZE;
265
266 /*
267 * Enable some good stuff on i82558 and later.
268 */
269 if (sc->sc_rev >= FXP_REV_82558_A4) {
270 /* Enable the extended TxCB. */
271 sc->sc_flags |= FXPF_EXT_TXCB;
272 }
273
274 /*
275 * Allocate the control data structures, and create and load the
276 * DMA map for it.
277 */
278 if ((error = bus_dmamem_alloc(sc->sc_dmat,
279 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
280 0)) != 0) {
281 printf("%s: unable to allocate control data, error = %d\n",
282 sc->sc_dev.dv_xname, error);
283 goto fail_0;
284 }
285
286 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
287 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
288 BUS_DMA_COHERENT)) != 0) {
289 printf("%s: unable to map control data, error = %d\n",
290 sc->sc_dev.dv_xname, error);
291 goto fail_1;
292 }
293 sc->sc_cdseg = seg;
294 sc->sc_cdnseg = rseg;
295
296 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
297
298 if ((error = bus_dmamap_create(sc->sc_dmat,
299 sizeof(struct fxp_control_data), 1,
300 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
301 printf("%s: unable to create control data DMA map, "
302 "error = %d\n", sc->sc_dev.dv_xname, error);
303 goto fail_2;
304 }
305
306 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
307 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
308 0)) != 0) {
309 printf("%s: can't load control data DMA map, error = %d\n",
310 sc->sc_dev.dv_xname, error);
311 goto fail_3;
312 }
313
314 /*
315 * Create the transmit buffer DMA maps.
316 */
317 for (i = 0; i < FXP_NTXCB; i++) {
318 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
319 FXP_NTXSEG, MCLBYTES, 0, 0,
320 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
321 printf("%s: unable to create tx DMA map %d, "
322 "error = %d\n", sc->sc_dev.dv_xname, i, error);
323 goto fail_4;
324 }
325 }
326
327 /*
328 * Create the receive buffer DMA maps.
329 */
330 for (i = 0; i < FXP_NRFABUFS; i++) {
331 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
332 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
333 printf("%s: unable to create rx DMA map %d, "
334 "error = %d\n", sc->sc_dev.dv_xname, i, error);
335 goto fail_5;
336 }
337 }
338
339 /* Initialize MAC address and media structures. */
340 fxp_get_info(sc, enaddr);
341
342 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
343 ether_sprintf(enaddr));
344
345 ifp = &sc->sc_ethercom.ec_if;
346
347 /*
348 * Get info about our media interface, and initialize it. Note
349 * the table terminates itself with a phy of -1, indicating
350 * that we're using MII.
351 */
352 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
353 if (fp->fp_phy == sc->phy_primary_device)
354 break;
355 (*fp->fp_init)(sc);
356
357 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
358 ifp->if_softc = sc;
359 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
360 ifp->if_ioctl = fxp_ioctl;
361 ifp->if_start = fxp_start;
362 ifp->if_watchdog = fxp_watchdog;
363 ifp->if_init = fxp_init;
364 ifp->if_stop = fxp_stop;
365 IFQ_SET_READY(&ifp->if_snd);
366
367 /*
368 * We can support 802.1Q VLAN-sized frames.
369 */
370 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
371
372 /*
373 * Attach the interface.
374 */
375 if_attach(ifp);
376 ether_ifattach(ifp, enaddr);
377 #if NRND > 0
378 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
379 RND_TYPE_NET, 0);
380 #endif
381
382 #ifdef FXP_EVENT_COUNTERS
383 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
384 NULL, sc->sc_dev.dv_xname, "txstall");
385 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
386 NULL, sc->sc_dev.dv_xname, "txintr");
387 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
388 NULL, sc->sc_dev.dv_xname, "rxintr");
389 #endif /* FXP_EVENT_COUNTERS */
390
391 /*
392 * Add shutdown hook so that DMA is disabled prior to reboot. Not
393 * doing do could allow DMA to corrupt kernel memory during the
394 * reboot before the driver initializes.
395 */
396 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
397 if (sc->sc_sdhook == NULL)
398 printf("%s: WARNING: unable to establish shutdown hook\n",
399 sc->sc_dev.dv_xname);
400 /*
401 * Add suspend hook, for similar reasons..
402 */
403 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
404 if (sc->sc_powerhook == NULL)
405 printf("%s: WARNING: unable to establish power hook\n",
406 sc->sc_dev.dv_xname);
407
408 /* The attach is successful. */
409 sc->sc_flags |= FXPF_ATTACHED;
410
411 return;
412
413 /*
414 * Free any resources we've allocated during the failed attach
415 * attempt. Do this in reverse order and fall though.
416 */
417 fail_5:
418 for (i = 0; i < FXP_NRFABUFS; i++) {
419 if (sc->sc_rxmaps[i] != NULL)
420 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
421 }
422 fail_4:
423 for (i = 0; i < FXP_NTXCB; i++) {
424 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
425 bus_dmamap_destroy(sc->sc_dmat,
426 FXP_DSTX(sc, i)->txs_dmamap);
427 }
428 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
429 fail_3:
430 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
431 fail_2:
432 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
433 sizeof(struct fxp_control_data));
434 fail_1:
435 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
436 fail_0:
437 return;
438 }
439
440 void
441 fxp_mii_initmedia(struct fxp_softc *sc)
442 {
443 int flags;
444
445 sc->sc_flags |= FXPF_MII;
446
447 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
448 sc->sc_mii.mii_readreg = fxp_mdi_read;
449 sc->sc_mii.mii_writereg = fxp_mdi_write;
450 sc->sc_mii.mii_statchg = fxp_statchg;
451 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
452 fxp_mii_mediastatus);
453
454 flags = MIIF_NOISOLATE;
455 if (sc->sc_rev >= FXP_REV_82558_A4)
456 flags |= MIIF_DOPAUSE;
457 /*
458 * The i82557 wedges if all of its PHYs are isolated!
459 */
460 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
461 MII_OFFSET_ANY, flags);
462 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
463 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
464 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
465 } else
466 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
467 }
468
469 void
470 fxp_80c24_initmedia(struct fxp_softc *sc)
471 {
472
473 /*
474 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
475 * doesn't have a programming interface of any sort. The
476 * media is sensed automatically based on how the link partner
477 * is configured. This is, in essence, manual configuration.
478 */
479 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
480 sc->sc_dev.dv_xname);
481 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
482 fxp_80c24_mediastatus);
483 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
484 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
485 }
486
487 /*
488 * Device shutdown routine. Called at system shutdown after sync. The
489 * main purpose of this routine is to shut off receiver DMA so that
490 * kernel memory doesn't get clobbered during warmboot.
491 */
492 void
493 fxp_shutdown(void *arg)
494 {
495 struct fxp_softc *sc = arg;
496
497 /*
498 * Since the system's going to halt shortly, don't bother
499 * freeing mbufs.
500 */
501 fxp_stop(&sc->sc_ethercom.ec_if, 0);
502 }
503 /*
504 * Power handler routine. Called when the system is transitioning
505 * into/out of power save modes. As with fxp_shutdown, the main
506 * purpose of this routine is to shut off receiver DMA so it doesn't
507 * clobber kernel memory at the wrong time.
508 */
509 void
510 fxp_power(int why, void *arg)
511 {
512 struct fxp_softc *sc = arg;
513 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
514 int s;
515
516 s = splnet();
517 switch (why) {
518 case PWR_SUSPEND:
519 case PWR_STANDBY:
520 fxp_stop(ifp, 0);
521 break;
522 case PWR_RESUME:
523 if (ifp->if_flags & IFF_UP)
524 fxp_init(ifp);
525 break;
526 case PWR_SOFTSUSPEND:
527 case PWR_SOFTSTANDBY:
528 case PWR_SOFTRESUME:
529 break;
530 }
531 splx(s);
532 }
533
534 /*
535 * Initialize the interface media.
536 */
537 void
538 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
539 {
540 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
541
542 /*
543 * Reset to a stable state.
544 */
545 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
546 DELAY(10);
547
548 sc->sc_eeprom_size = 0;
549 fxp_autosize_eeprom(sc);
550 if(sc->sc_eeprom_size == 0) {
551 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
552 sc->sc_eeprom_size = 6; /* XXX panic here? */
553 }
554 #ifdef DEBUG
555 printf("%s: detected %d word EEPROM\n",
556 sc->sc_dev.dv_xname,
557 1 << sc->sc_eeprom_size);
558 #endif
559
560 /*
561 * Get info about the primary PHY
562 */
563 fxp_read_eeprom(sc, &data, 6, 1);
564 sc->phy_primary_device =
565 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
566
567 /*
568 * Read MAC address.
569 */
570 fxp_read_eeprom(sc, myea, 0, 3);
571 enaddr[0] = myea[0] & 0xff;
572 enaddr[1] = myea[0] >> 8;
573 enaddr[2] = myea[1] & 0xff;
574 enaddr[3] = myea[1] >> 8;
575 enaddr[4] = myea[2] & 0xff;
576 enaddr[5] = myea[2] >> 8;
577 }
578
579 /*
580 * Figure out EEPROM size.
581 *
582 * 559's can have either 64-word or 256-word EEPROMs, the 558
583 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
584 * talks about the existance of 16 to 256 word EEPROMs.
585 *
586 * The only known sizes are 64 and 256, where the 256 version is used
587 * by CardBus cards to store CIS information.
588 *
589 * The address is shifted in msb-to-lsb, and after the last
590 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
591 * after which follows the actual data. We try to detect this zero, by
592 * probing the data-out bit in the EEPROM control register just after
593 * having shifted in a bit. If the bit is zero, we assume we've
594 * shifted enough address bits. The data-out should be tri-state,
595 * before this, which should translate to a logical one.
596 *
597 * Other ways to do this would be to try to read a register with known
598 * contents with a varying number of address bits, but no such
599 * register seem to be available. The high bits of register 10 are 01
600 * on the 558 and 559, but apparently not on the 557.
601 *
602 * The Linux driver computes a checksum on the EEPROM data, but the
603 * value of this checksum is not very well documented.
604 */
605
606 void
607 fxp_autosize_eeprom(struct fxp_softc *sc)
608 {
609 u_int16_t reg;
610 int x;
611
612 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
613 /*
614 * Shift in read opcode.
615 */
616 for (x = 3; x > 0; x--) {
617 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
618 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
619 } else {
620 reg = FXP_EEPROM_EECS;
621 }
622 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
623 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
624 reg | FXP_EEPROM_EESK);
625 DELAY(4);
626 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
627 DELAY(4);
628 }
629 /*
630 * Shift in address, wait for the dummy zero following a correct
631 * address shift.
632 */
633 for (x = 1; x <= 8; x++) {
634 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
635 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
636 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
637 DELAY(4);
638 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
639 FXP_EEPROM_EEDO) == 0)
640 break;
641 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
642 DELAY(4);
643 }
644 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
645 DELAY(4);
646 if(x != 6 && x != 8) {
647 #ifdef DEBUG
648 printf("%s: strange EEPROM size (%d)\n",
649 sc->sc_dev.dv_xname, 1 << x);
650 #endif
651 } else
652 sc->sc_eeprom_size = x;
653 }
654
655 /*
656 * Read from the serial EEPROM. Basically, you manually shift in
657 * the read opcode (one bit at a time) and then shift in the address,
658 * and then you shift out the data (all of this one bit at a time).
659 * The word size is 16 bits, so you have to provide the address for
660 * every 16 bits of data.
661 */
662 void
663 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
664 {
665 u_int16_t reg;
666 int i, x;
667
668 for (i = 0; i < words; i++) {
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
670 /*
671 * Shift in read opcode.
672 */
673 for (x = 3; x > 0; x--) {
674 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
675 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
676 } else {
677 reg = FXP_EEPROM_EECS;
678 }
679 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
680 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
681 reg | FXP_EEPROM_EESK);
682 DELAY(4);
683 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
684 DELAY(4);
685 }
686 /*
687 * Shift in address.
688 */
689 for (x = sc->sc_eeprom_size; x > 0; x--) {
690 if ((i + offset) & (1 << (x - 1))) {
691 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
692 } else {
693 reg = FXP_EEPROM_EECS;
694 }
695 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
696 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
697 reg | FXP_EEPROM_EESK);
698 DELAY(4);
699 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
700 DELAY(4);
701 }
702 reg = FXP_EEPROM_EECS;
703 data[i] = 0;
704 /*
705 * Shift out data.
706 */
707 for (x = 16; x > 0; x--) {
708 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
709 reg | FXP_EEPROM_EESK);
710 DELAY(4);
711 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
712 FXP_EEPROM_EEDO)
713 data[i] |= (1 << (x - 1));
714 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
715 DELAY(4);
716 }
717 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
718 DELAY(4);
719 }
720 }
721
722 /*
723 * Start packet transmission on the interface.
724 */
725 void
726 fxp_start(struct ifnet *ifp)
727 {
728 struct fxp_softc *sc = ifp->if_softc;
729 struct mbuf *m0, *m;
730 struct fxp_txdesc *txd;
731 struct fxp_txsoft *txs;
732 bus_dmamap_t dmamap;
733 int error, lasttx, nexttx, opending, seg;
734
735 /*
736 * If we want a re-init, bail out now.
737 */
738 if (sc->sc_flags & FXPF_WANTINIT) {
739 ifp->if_flags |= IFF_OACTIVE;
740 return;
741 }
742
743 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
744 return;
745
746 /*
747 * Remember the previous txpending and the current lasttx.
748 */
749 opending = sc->sc_txpending;
750 lasttx = sc->sc_txlast;
751
752 /*
753 * Loop through the send queue, setting up transmit descriptors
754 * until we drain the queue, or use up all available transmit
755 * descriptors.
756 */
757 for (;;) {
758 /*
759 * Grab a packet off the queue.
760 */
761 IFQ_POLL(&ifp->if_snd, m0);
762 if (m0 == NULL)
763 break;
764 m = NULL;
765
766 if (sc->sc_txpending == FXP_NTXCB) {
767 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
768 break;
769 }
770
771 /*
772 * Get the next available transmit descriptor.
773 */
774 nexttx = FXP_NEXTTX(sc->sc_txlast);
775 txd = FXP_CDTX(sc, nexttx);
776 txs = FXP_DSTX(sc, nexttx);
777 dmamap = txs->txs_dmamap;
778
779 /*
780 * Load the DMA map. If this fails, the packet either
781 * didn't fit in the allotted number of frags, or we were
782 * short on resources. In this case, we'll copy and try
783 * again.
784 */
785 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
786 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
787 MGETHDR(m, M_DONTWAIT, MT_DATA);
788 if (m == NULL) {
789 printf("%s: unable to allocate Tx mbuf\n",
790 sc->sc_dev.dv_xname);
791 break;
792 }
793 if (m0->m_pkthdr.len > MHLEN) {
794 MCLGET(m, M_DONTWAIT);
795 if ((m->m_flags & M_EXT) == 0) {
796 printf("%s: unable to allocate Tx "
797 "cluster\n", sc->sc_dev.dv_xname);
798 m_freem(m);
799 break;
800 }
801 }
802 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
803 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
804 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
805 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
806 if (error) {
807 printf("%s: unable to load Tx buffer, "
808 "error = %d\n", sc->sc_dev.dv_xname, error);
809 break;
810 }
811 }
812
813 IFQ_DEQUEUE(&ifp->if_snd, m0);
814 if (m != NULL) {
815 m_freem(m0);
816 m0 = m;
817 }
818
819 /* Initialize the fraglist. */
820 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
821 txd->txd_tbd[seg].tb_addr =
822 htole32(dmamap->dm_segs[seg].ds_addr);
823 txd->txd_tbd[seg].tb_size =
824 htole32(dmamap->dm_segs[seg].ds_len);
825 }
826
827 /* Sync the DMA map. */
828 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
829 BUS_DMASYNC_PREWRITE);
830
831 /*
832 * Store a pointer to the packet so we can free it later.
833 */
834 txs->txs_mbuf = m0;
835
836 /*
837 * Initialize the transmit descriptor.
838 */
839 /* BIG_ENDIAN: no need to swap to store 0 */
840 txd->txd_txcb.cb_status = 0;
841 txd->txd_txcb.cb_command =
842 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
843 txd->txd_txcb.tx_threshold = tx_threshold;
844 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
845
846 FXP_CDTXSYNC(sc, nexttx,
847 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
848
849 /* Advance the tx pointer. */
850 sc->sc_txpending++;
851 sc->sc_txlast = nexttx;
852
853 #if NBPFILTER > 0
854 /*
855 * Pass packet to bpf if there is a listener.
856 */
857 if (ifp->if_bpf)
858 bpf_mtap(ifp->if_bpf, m0);
859 #endif
860 }
861
862 if (sc->sc_txpending == FXP_NTXCB) {
863 /* No more slots; notify upper layer. */
864 ifp->if_flags |= IFF_OACTIVE;
865 }
866
867 if (sc->sc_txpending != opending) {
868 /*
869 * We enqueued packets. If the transmitter was idle,
870 * reset the txdirty pointer.
871 */
872 if (opending == 0)
873 sc->sc_txdirty = FXP_NEXTTX(lasttx);
874
875 /*
876 * Cause the chip to interrupt and suspend command
877 * processing once the last packet we've enqueued
878 * has been transmitted.
879 */
880 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
881 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
882 FXP_CDTXSYNC(sc, sc->sc_txlast,
883 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
884
885 /*
886 * The entire packet chain is set up. Clear the suspend bit
887 * on the command prior to the first packet we set up.
888 */
889 FXP_CDTXSYNC(sc, lasttx,
890 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
891 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
892 htole16(~FXP_CB_COMMAND_S);
893 FXP_CDTXSYNC(sc, lasttx,
894 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
895
896 /*
897 * Issue a Resume command in case the chip was suspended.
898 */
899 fxp_scb_wait(sc);
900 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
901
902 /* Set a watchdog timer in case the chip flakes out. */
903 ifp->if_timer = 5;
904 }
905 }
906
907 /*
908 * Process interface interrupts.
909 */
910 int
911 fxp_intr(void *arg)
912 {
913 struct fxp_softc *sc = arg;
914 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
915 bus_dmamap_t rxmap;
916 int claimed = 0;
917 u_int8_t statack;
918
919 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
920 return (0);
921 /*
922 * If the interface isn't running, don't try to
923 * service the interrupt.. just ack it and bail.
924 */
925 if ((ifp->if_flags & IFF_RUNNING) == 0) {
926 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
927 if (statack) {
928 claimed = 1;
929 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
930 }
931 return (claimed);
932 }
933
934 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
935 claimed = 1;
936
937 /*
938 * First ACK all the interrupts in this pass.
939 */
940 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
941
942 /*
943 * Process receiver interrupts. If a no-resource (RNR)
944 * condition exists, get whatever packets we can and
945 * re-start the receiver.
946 */
947 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
948 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
949 fxp_rxintr(sc);
950 }
951
952 if (statack & FXP_SCB_STATACK_RNR) {
953 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
954 fxp_scb_wait(sc);
955 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
956 rxmap->dm_segs[0].ds_addr +
957 RFA_ALIGNMENT_FUDGE);
958 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
959 }
960
961 /*
962 * Free any finished transmit mbuf chains.
963 */
964 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
965 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
966 fxp_txintr(sc);
967
968 /*
969 * Try to get more packets going.
970 */
971 fxp_start(ifp);
972
973 if (sc->sc_txpending == 0) {
974 /*
975 * If we want a re-init, do that now.
976 */
977 if (sc->sc_flags & FXPF_WANTINIT)
978 (void) fxp_init(ifp);
979 }
980 }
981 }
982
983 #if NRND > 0
984 if (claimed)
985 rnd_add_uint32(&sc->rnd_source, statack);
986 #endif
987 return (claimed);
988 }
989
990 /*
991 * Handle transmit completion interrupts.
992 */
993 void
994 fxp_txintr(struct fxp_softc *sc)
995 {
996 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
997 struct fxp_txdesc *txd;
998 struct fxp_txsoft *txs;
999 int i;
1000 u_int16_t txstat;
1001
1002 ifp->if_flags &= ~IFF_OACTIVE;
1003 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1004 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1005 txd = FXP_CDTX(sc, i);
1006 txs = FXP_DSTX(sc, i);
1007
1008 FXP_CDTXSYNC(sc, i,
1009 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1010
1011 txstat = le16toh(txd->txd_txcb.cb_status);
1012
1013 if ((txstat & FXP_CB_STATUS_C) == 0)
1014 break;
1015
1016 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1017 0, txs->txs_dmamap->dm_mapsize,
1018 BUS_DMASYNC_POSTWRITE);
1019 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1020 m_freem(txs->txs_mbuf);
1021 txs->txs_mbuf = NULL;
1022 }
1023
1024 /* Update the dirty transmit buffer pointer. */
1025 sc->sc_txdirty = i;
1026
1027 /*
1028 * Cancel the watchdog timer if there are no pending
1029 * transmissions.
1030 */
1031 if (sc->sc_txpending == 0)
1032 ifp->if_timer = 0;
1033 }
1034
1035 /*
1036 * Handle receive interrupts.
1037 */
1038 void
1039 fxp_rxintr(struct fxp_softc *sc)
1040 {
1041 struct ethercom *ec = &sc->sc_ethercom;
1042 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1043 struct mbuf *m, *m0;
1044 bus_dmamap_t rxmap;
1045 struct fxp_rfa *rfa;
1046 u_int16_t len, rxstat;
1047
1048 for (;;) {
1049 m = sc->sc_rxq.ifq_head;
1050 rfa = FXP_MTORFA(m);
1051 rxmap = M_GETCTX(m, bus_dmamap_t);
1052
1053 FXP_RFASYNC(sc, m,
1054 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1055
1056 rxstat = le16toh(rfa->rfa_status);
1057
1058 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1059 /*
1060 * We have processed all of the
1061 * receive buffers.
1062 */
1063 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1064 return;
1065 }
1066
1067 IF_DEQUEUE(&sc->sc_rxq, m);
1068
1069 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1070
1071 len = le16toh(rfa->actual_size) &
1072 (m->m_ext.ext_size - 1);
1073
1074 if (len < sizeof(struct ether_header)) {
1075 /*
1076 * Runt packet; drop it now.
1077 */
1078 FXP_INIT_RFABUF(sc, m);
1079 continue;
1080 }
1081
1082 /*
1083 * If support for 802.1Q VLAN sized frames is
1084 * enabled, we need to do some additional error
1085 * checking (as we are saving bad frames, in
1086 * order to receive the larger ones).
1087 */
1088 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1089 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1090 FXP_RFA_STATUS_RNR|
1091 FXP_RFA_STATUS_ALIGN|
1092 FXP_RFA_STATUS_CRC)) != 0) {
1093 FXP_INIT_RFABUF(sc, m);
1094 continue;
1095 }
1096
1097 /*
1098 * If the packet is small enough to fit in a
1099 * single header mbuf, allocate one and copy
1100 * the data into it. This greatly reduces
1101 * memory consumption when we receive lots
1102 * of small packets.
1103 *
1104 * Otherwise, we add a new buffer to the receive
1105 * chain. If this fails, we drop the packet and
1106 * recycle the old buffer.
1107 */
1108 if (fxp_copy_small != 0 && len <= MHLEN) {
1109 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1110 if (m == NULL)
1111 goto dropit;
1112 memcpy(mtod(m0, caddr_t),
1113 mtod(m, caddr_t), len);
1114 FXP_INIT_RFABUF(sc, m);
1115 m = m0;
1116 } else {
1117 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1118 dropit:
1119 ifp->if_ierrors++;
1120 FXP_INIT_RFABUF(sc, m);
1121 continue;
1122 }
1123 }
1124
1125 m->m_pkthdr.rcvif = ifp;
1126 m->m_pkthdr.len = m->m_len = len;
1127
1128 #if NBPFILTER > 0
1129 /*
1130 * Pass this up to any BPF listeners, but only
1131 * pass it up the stack it its for us.
1132 */
1133 if (ifp->if_bpf)
1134 bpf_mtap(ifp->if_bpf, m);
1135 #endif
1136
1137 /* Pass it on. */
1138 (*ifp->if_input)(ifp, m);
1139 }
1140 }
1141
1142 /*
1143 * Update packet in/out/collision statistics. The i82557 doesn't
1144 * allow you to access these counters without doing a fairly
1145 * expensive DMA to get _all_ of the statistics it maintains, so
1146 * we do this operation here only once per second. The statistics
1147 * counters in the kernel are updated from the previous dump-stats
1148 * DMA and then a new dump-stats DMA is started. The on-chip
1149 * counters are zeroed when the DMA completes. If we can't start
1150 * the DMA immediately, we don't wait - we just prepare to read
1151 * them again next time.
1152 */
1153 void
1154 fxp_tick(void *arg)
1155 {
1156 struct fxp_softc *sc = arg;
1157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1158 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1159 int s;
1160
1161 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1162 return;
1163
1164 s = splnet();
1165
1166 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1167
1168 ifp->if_opackets += le32toh(sp->tx_good);
1169 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1170 if (sp->rx_good) {
1171 ifp->if_ipackets += le32toh(sp->rx_good);
1172 sc->sc_rxidle = 0;
1173 } else {
1174 sc->sc_rxidle++;
1175 }
1176 ifp->if_ierrors +=
1177 le32toh(sp->rx_crc_errors) +
1178 le32toh(sp->rx_alignment_errors) +
1179 le32toh(sp->rx_rnr_errors) +
1180 le32toh(sp->rx_overrun_errors);
1181 /*
1182 * If any transmit underruns occurred, bump up the transmit
1183 * threshold by another 512 bytes (64 * 8).
1184 */
1185 if (sp->tx_underruns) {
1186 ifp->if_oerrors += le32toh(sp->tx_underruns);
1187 if (tx_threshold < 192)
1188 tx_threshold += 64;
1189 }
1190
1191 /*
1192 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1193 * then assume the receiver has locked up and attempt to clear
1194 * the condition by reprogramming the multicast filter (actually,
1195 * resetting the interface). This is a work-around for a bug in
1196 * the 82557 where the receiver locks up if it gets certain types
1197 * of garbage in the syncronization bits prior to the packet header.
1198 * This bug is supposed to only occur in 10Mbps mode, but has been
1199 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1200 * speed transition).
1201 */
1202 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1203 (void) fxp_init(ifp);
1204 splx(s);
1205 return;
1206 }
1207 /*
1208 * If there is no pending command, start another stats
1209 * dump. Otherwise punt for now.
1210 */
1211 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1212 /*
1213 * Start another stats dump.
1214 */
1215 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1216 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1217 } else {
1218 /*
1219 * A previous command is still waiting to be accepted.
1220 * Just zero our copy of the stats and wait for the
1221 * next timer event to update them.
1222 */
1223 /* BIG_ENDIAN: no swap required to store 0 */
1224 sp->tx_good = 0;
1225 sp->tx_underruns = 0;
1226 sp->tx_total_collisions = 0;
1227
1228 sp->rx_good = 0;
1229 sp->rx_crc_errors = 0;
1230 sp->rx_alignment_errors = 0;
1231 sp->rx_rnr_errors = 0;
1232 sp->rx_overrun_errors = 0;
1233 }
1234
1235 if (sc->sc_flags & FXPF_MII) {
1236 /* Tick the MII clock. */
1237 mii_tick(&sc->sc_mii);
1238 }
1239
1240 splx(s);
1241
1242 /*
1243 * Schedule another timeout one second from now.
1244 */
1245 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1246 }
1247
1248 /*
1249 * Drain the receive queue.
1250 */
1251 void
1252 fxp_rxdrain(struct fxp_softc *sc)
1253 {
1254 bus_dmamap_t rxmap;
1255 struct mbuf *m;
1256
1257 for (;;) {
1258 IF_DEQUEUE(&sc->sc_rxq, m);
1259 if (m == NULL)
1260 break;
1261 rxmap = M_GETCTX(m, bus_dmamap_t);
1262 bus_dmamap_unload(sc->sc_dmat, rxmap);
1263 FXP_RXMAP_PUT(sc, rxmap);
1264 m_freem(m);
1265 }
1266 }
1267
1268 /*
1269 * Stop the interface. Cancels the statistics updater and resets
1270 * the interface.
1271 */
1272 void
1273 fxp_stop(struct ifnet *ifp, int disable)
1274 {
1275 struct fxp_softc *sc = ifp->if_softc;
1276 struct fxp_txsoft *txs;
1277 int i;
1278
1279 /*
1280 * Turn down interface (done early to avoid bad interactions
1281 * between panics, shutdown hooks, and the watchdog timer)
1282 */
1283 ifp->if_timer = 0;
1284 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1285
1286 /*
1287 * Cancel stats updater.
1288 */
1289 callout_stop(&sc->sc_callout);
1290 if (sc->sc_flags & FXPF_MII) {
1291 /* Down the MII. */
1292 mii_down(&sc->sc_mii);
1293 }
1294
1295 /*
1296 * Issue software reset
1297 */
1298 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1299 DELAY(10);
1300
1301 /*
1302 * Release any xmit buffers.
1303 */
1304 for (i = 0; i < FXP_NTXCB; i++) {
1305 txs = FXP_DSTX(sc, i);
1306 if (txs->txs_mbuf != NULL) {
1307 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1308 m_freem(txs->txs_mbuf);
1309 txs->txs_mbuf = NULL;
1310 }
1311 }
1312 sc->sc_txpending = 0;
1313
1314 if (disable) {
1315 fxp_rxdrain(sc);
1316 fxp_disable(sc);
1317 }
1318
1319 }
1320
1321 /*
1322 * Watchdog/transmission transmit timeout handler. Called when a
1323 * transmission is started on the interface, but no interrupt is
1324 * received before the timeout. This usually indicates that the
1325 * card has wedged for some reason.
1326 */
1327 void
1328 fxp_watchdog(struct ifnet *ifp)
1329 {
1330 struct fxp_softc *sc = ifp->if_softc;
1331
1332 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1333 ifp->if_oerrors++;
1334
1335 (void) fxp_init(ifp);
1336 }
1337
1338 /*
1339 * Initialize the interface. Must be called at splnet().
1340 */
1341 int
1342 fxp_init(struct ifnet *ifp)
1343 {
1344 struct fxp_softc *sc = ifp->if_softc;
1345 struct fxp_cb_config *cbp;
1346 struct fxp_cb_ias *cb_ias;
1347 struct fxp_txdesc *txd;
1348 bus_dmamap_t rxmap;
1349 int i, prm, save_bf, lrxen, allm, error = 0;
1350
1351 if ((error = fxp_enable(sc)) != 0)
1352 goto out;
1353
1354 /*
1355 * Cancel any pending I/O
1356 */
1357 fxp_stop(ifp, 0);
1358
1359 /*
1360 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1361 * flag, and this prevents the MII from detaching resulting in
1362 * a panic. The flags field should perhaps be split in runtime
1363 * flags and more static information. For now, just clear the
1364 * only other flag set.
1365 */
1366
1367 sc->sc_flags &= ~FXPF_WANTINIT;
1368
1369 /*
1370 * Initialize base of CBL and RFA memory. Loading with zero
1371 * sets it up for regular linear addressing.
1372 */
1373 fxp_scb_wait(sc);
1374 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1375 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1376
1377 fxp_scb_wait(sc);
1378 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1379
1380 /*
1381 * Initialize the multicast filter. Do this now, since we might
1382 * have to setup the config block differently.
1383 */
1384 fxp_mc_setup(sc);
1385
1386 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1387 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1388
1389 /*
1390 * In order to support receiving 802.1Q VLAN frames, we have to
1391 * enable "save bad frames", since they are 4 bytes larger than
1392 * the normal Ethernet maximum frame length. On i82558 and later,
1393 * we have a better mechanism for this.
1394 */
1395 save_bf = 0;
1396 lrxen = 0;
1397 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1398 if (sc->sc_rev < FXP_REV_82558_A4)
1399 save_bf = 1;
1400 else
1401 lrxen = 1;
1402 }
1403
1404 /*
1405 * Initialize base of dump-stats buffer.
1406 */
1407 fxp_scb_wait(sc);
1408 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1409 sc->sc_cddma + FXP_CDSTATSOFF);
1410 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1411 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1412
1413 cbp = &sc->sc_control_data->fcd_configcb;
1414 memset(cbp, 0, sizeof(struct fxp_cb_config));
1415
1416 /*
1417 * This copy is kind of disgusting, but there are a bunch of must be
1418 * zero and must be one bits in this structure and this is the easiest
1419 * way to initialize them all to proper values.
1420 */
1421 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1422
1423 /* BIG_ENDIAN: no need to swap to store 0 */
1424 cbp->cb_status = 0;
1425 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1426 FXP_CB_COMMAND_EL);
1427 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1428 cbp->link_addr = 0xffffffff; /* (no) next command */
1429 /* bytes in config block */
1430 cbp->byte_count = FXP_CONFIG_LEN;
1431 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1432 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1433 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1434 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1435 cbp->type_enable = 0; /* actually reserved */
1436 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1437 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1438 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1439 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1440 cbp->dma_mbce = 0; /* (disable) dma max counters */
1441 cbp->late_scb = 0; /* (don't) defer SCB update */
1442 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1443 cbp->ci_int = 1; /* interrupt on CU idle */
1444 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1445 cbp->ext_stats_dis = 1; /* disable extended counters */
1446 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1447 cbp->save_bf = save_bf;/* save bad frames */
1448 cbp->disc_short_rx = !prm; /* discard short packets */
1449 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1450 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1451 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1452 /* interface mode */
1453 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1454 cbp->csma_dis = 0; /* (don't) disable link */
1455 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1456 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1457 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1458 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1459 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1460 cbp->nsai = 1; /* (don't) disable source addr insert */
1461 cbp->preamble_length = 2; /* (7 byte) preamble */
1462 cbp->loopback = 0; /* (don't) loopback */
1463 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1464 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1465 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1466 cbp->promiscuous = prm; /* promiscuous mode */
1467 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1468 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1469 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1470 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1471 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1472 cbp->stripping = !prm; /* truncate rx packet to byte count */
1473 cbp->padding = 1; /* (do) pad short tx packets */
1474 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1475 cbp->long_rx_en = lrxen; /* long packet receive enable */
1476 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1477 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1478 /* must set wake_en in PMCSR also */
1479 cbp->force_fdx = 0; /* (don't) force full duplex */
1480 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1481 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1482 cbp->mc_all = allm; /* accept all multicasts */
1483
1484 if (sc->sc_rev < FXP_REV_82558_A4) {
1485 /*
1486 * The i82557 has no hardware flow control, the values
1487 * here are the defaults for the chip.
1488 */
1489 cbp->fc_delay_lsb = 0;
1490 cbp->fc_delay_msb = 0x40;
1491 cbp->pri_fc_thresh = 3;
1492 cbp->tx_fc_dis = 0;
1493 cbp->rx_fc_restop = 0;
1494 cbp->rx_fc_restart = 0;
1495 cbp->fc_filter = 0;
1496 cbp->pri_fc_loc = 1;
1497 } else {
1498 cbp->fc_delay_lsb = 0x1f;
1499 cbp->fc_delay_msb = 0x01;
1500 cbp->pri_fc_thresh = 3;
1501 cbp->tx_fc_dis = 0; /* enable transmit FC */
1502 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1503 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1504 cbp->fc_filter = !prm; /* drop FC frames to host */
1505 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1506 }
1507
1508 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1509
1510 /*
1511 * Start the config command/DMA.
1512 */
1513 fxp_scb_wait(sc);
1514 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1515 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1516 /* ...and wait for it to complete. */
1517 i = 1000;
1518 do {
1519 FXP_CDCONFIGSYNC(sc,
1520 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1521 DELAY(1);
1522 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1523 if (i == 0) {
1524 printf("%s at line %d: dmasync timeout\n",
1525 sc->sc_dev.dv_xname, __LINE__);
1526 return ETIMEDOUT;
1527 }
1528
1529 /*
1530 * Initialize the station address.
1531 */
1532 cb_ias = &sc->sc_control_data->fcd_iascb;
1533 /* BIG_ENDIAN: no need to swap to store 0 */
1534 cb_ias->cb_status = 0;
1535 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1536 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1537 cb_ias->link_addr = 0xffffffff;
1538 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1539
1540 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1541
1542 /*
1543 * Start the IAS (Individual Address Setup) command/DMA.
1544 */
1545 fxp_scb_wait(sc);
1546 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1547 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1548 /* ...and wait for it to complete. */
1549 i = 1000;
1550 do {
1551 FXP_CDIASSYNC(sc,
1552 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1553 DELAY(1);
1554 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1555 if (i == 0) {
1556 printf("%s at line %d: dmasync timeout\n",
1557 sc->sc_dev.dv_xname, __LINE__);
1558 return ETIMEDOUT;
1559 }
1560
1561 /*
1562 * Initialize the transmit descriptor ring. txlast is initialized
1563 * to the end of the list so that it will wrap around to the first
1564 * descriptor when the first packet is transmitted.
1565 */
1566 for (i = 0; i < FXP_NTXCB; i++) {
1567 txd = FXP_CDTX(sc, i);
1568 memset(txd, 0, sizeof(*txd));
1569 txd->txd_txcb.cb_command =
1570 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1571 txd->txd_txcb.link_addr =
1572 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1573 if (sc->sc_flags & FXPF_EXT_TXCB)
1574 txd->txd_txcb.tbd_array_addr =
1575 htole32(FXP_CDTBDADDR(sc, i) +
1576 (2 * sizeof(struct fxp_tbd)));
1577 else
1578 txd->txd_txcb.tbd_array_addr =
1579 htole32(FXP_CDTBDADDR(sc, i));
1580 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1581 }
1582 sc->sc_txpending = 0;
1583 sc->sc_txdirty = 0;
1584 sc->sc_txlast = FXP_NTXCB - 1;
1585
1586 /*
1587 * Initialize the receive buffer list.
1588 */
1589 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1590 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1591 rxmap = FXP_RXMAP_GET(sc);
1592 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1593 printf("%s: unable to allocate or map rx "
1594 "buffer %d, error = %d\n",
1595 sc->sc_dev.dv_xname,
1596 sc->sc_rxq.ifq_len, error);
1597 /*
1598 * XXX Should attempt to run with fewer receive
1599 * XXX buffers instead of just failing.
1600 */
1601 FXP_RXMAP_PUT(sc, rxmap);
1602 fxp_rxdrain(sc);
1603 goto out;
1604 }
1605 }
1606 sc->sc_rxidle = 0;
1607
1608 /*
1609 * Give the transmit ring to the chip. We do this by pointing
1610 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1611 * issuing a start command. It will execute the NOP and then
1612 * suspend, pointing at the first descriptor.
1613 */
1614 fxp_scb_wait(sc);
1615 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1616 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1617
1618 /*
1619 * Initialize receiver buffer area - RFA.
1620 */
1621 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1622 fxp_scb_wait(sc);
1623 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1624 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1625 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1626
1627 if (sc->sc_flags & FXPF_MII) {
1628 /*
1629 * Set current media.
1630 */
1631 mii_mediachg(&sc->sc_mii);
1632 }
1633
1634 /*
1635 * ...all done!
1636 */
1637 ifp->if_flags |= IFF_RUNNING;
1638 ifp->if_flags &= ~IFF_OACTIVE;
1639
1640 /*
1641 * Start the one second timer.
1642 */
1643 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1644
1645 /*
1646 * Attempt to start output on the interface.
1647 */
1648 fxp_start(ifp);
1649
1650 out:
1651 if (error) {
1652 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1653 ifp->if_timer = 0;
1654 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1655 }
1656 return (error);
1657 }
1658
1659 /*
1660 * Change media according to request.
1661 */
1662 int
1663 fxp_mii_mediachange(struct ifnet *ifp)
1664 {
1665 struct fxp_softc *sc = ifp->if_softc;
1666
1667 if (ifp->if_flags & IFF_UP)
1668 mii_mediachg(&sc->sc_mii);
1669 return (0);
1670 }
1671
1672 /*
1673 * Notify the world which media we're using.
1674 */
1675 void
1676 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1677 {
1678 struct fxp_softc *sc = ifp->if_softc;
1679
1680 if(sc->sc_enabled == 0) {
1681 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1682 ifmr->ifm_status = 0;
1683 return;
1684 }
1685
1686 mii_pollstat(&sc->sc_mii);
1687 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1688 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1689 }
1690
1691 int
1692 fxp_80c24_mediachange(struct ifnet *ifp)
1693 {
1694
1695 /* Nothing to do here. */
1696 return (0);
1697 }
1698
1699 void
1700 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1701 {
1702 struct fxp_softc *sc = ifp->if_softc;
1703
1704 /*
1705 * Media is currently-selected media. We cannot determine
1706 * the link status.
1707 */
1708 ifmr->ifm_status = 0;
1709 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1710 }
1711
1712 /*
1713 * Add a buffer to the end of the RFA buffer list.
1714 * Return 0 if successful, error code on failure.
1715 *
1716 * The RFA struct is stuck at the beginning of mbuf cluster and the
1717 * data pointer is fixed up to point just past it.
1718 */
1719 int
1720 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1721 {
1722 struct mbuf *m;
1723 int error;
1724
1725 MGETHDR(m, M_DONTWAIT, MT_DATA);
1726 if (m == NULL)
1727 return (ENOBUFS);
1728
1729 MCLGET(m, M_DONTWAIT);
1730 if ((m->m_flags & M_EXT) == 0) {
1731 m_freem(m);
1732 return (ENOBUFS);
1733 }
1734
1735 if (unload)
1736 bus_dmamap_unload(sc->sc_dmat, rxmap);
1737
1738 M_SETCTX(m, rxmap);
1739
1740 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1741 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1742 BUS_DMA_READ|BUS_DMA_NOWAIT);
1743 if (error) {
1744 printf("%s: can't load rx DMA map %d, error = %d\n",
1745 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1746 panic("fxp_add_rfabuf"); /* XXX */
1747 }
1748
1749 FXP_INIT_RFABUF(sc, m);
1750
1751 return (0);
1752 }
1753
1754 int
1755 fxp_mdi_read(struct device *self, int phy, int reg)
1756 {
1757 struct fxp_softc *sc = (struct fxp_softc *)self;
1758 int count = 10000;
1759 int value;
1760
1761 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1762 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1763
1764 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1765 && count--)
1766 DELAY(10);
1767
1768 if (count <= 0)
1769 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1770
1771 return (value & 0xffff);
1772 }
1773
1774 void
1775 fxp_statchg(struct device *self)
1776 {
1777 struct fxp_softc *sc = (void *) self;
1778
1779 /*
1780 * Determine whether or not we have to work-around the
1781 * Resume Bug.
1782 */
1783 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
1784 if (IFM_TYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
1785 sc->sc_flags |= FXPF_FIX_RESUME_BUG;
1786 else
1787 sc->sc_flags &= ~FXPF_FIX_RESUME_BUG;
1788 }
1789 }
1790
1791 void
1792 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1793 {
1794 struct fxp_softc *sc = (struct fxp_softc *)self;
1795 int count = 10000;
1796
1797 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1798 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1799 (value & 0xffff));
1800
1801 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1802 count--)
1803 DELAY(10);
1804
1805 if (count <= 0)
1806 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1807 }
1808
1809 int
1810 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1811 {
1812 struct fxp_softc *sc = ifp->if_softc;
1813 struct ifreq *ifr = (struct ifreq *)data;
1814 int s, error;
1815
1816 s = splnet();
1817
1818 switch (cmd) {
1819 case SIOCSIFMEDIA:
1820 case SIOCGIFMEDIA:
1821 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1822 break;
1823
1824 default:
1825 error = ether_ioctl(ifp, cmd, data);
1826 if (error == ENETRESET) {
1827 if (sc->sc_enabled) {
1828 /*
1829 * Multicast list has changed; set the
1830 * hardware filter accordingly.
1831 */
1832 if (sc->sc_txpending) {
1833 sc->sc_flags |= FXPF_WANTINIT;
1834 error = 0;
1835 } else
1836 error = fxp_init(ifp);
1837 } else
1838 error = 0;
1839 }
1840 break;
1841 }
1842
1843 /* Try to get more packets going. */
1844 if (sc->sc_enabled)
1845 fxp_start(ifp);
1846
1847 splx(s);
1848 return (error);
1849 }
1850
1851 /*
1852 * Program the multicast filter.
1853 *
1854 * This function must be called at splnet().
1855 */
1856 void
1857 fxp_mc_setup(struct fxp_softc *sc)
1858 {
1859 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1860 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1861 struct ethercom *ec = &sc->sc_ethercom;
1862 struct ether_multi *enm;
1863 struct ether_multistep step;
1864 int count, nmcasts;
1865
1866 #ifdef DIAGNOSTIC
1867 if (sc->sc_txpending)
1868 panic("fxp_mc_setup: pending transmissions");
1869 #endif
1870
1871 ifp->if_flags &= ~IFF_ALLMULTI;
1872
1873 /*
1874 * Initialize multicast setup descriptor.
1875 */
1876 nmcasts = 0;
1877 ETHER_FIRST_MULTI(step, ec, enm);
1878 while (enm != NULL) {
1879 /*
1880 * Check for too many multicast addresses or if we're
1881 * listening to a range. Either way, we simply have
1882 * to accept all multicasts.
1883 */
1884 if (nmcasts >= MAXMCADDR ||
1885 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1886 ETHER_ADDR_LEN) != 0) {
1887 /*
1888 * Callers of this function must do the
1889 * right thing with this. If we're called
1890 * from outside fxp_init(), the caller must
1891 * detect if the state if IFF_ALLMULTI changes.
1892 * If it does, the caller must then call
1893 * fxp_init(), since allmulti is handled by
1894 * the config block.
1895 */
1896 ifp->if_flags |= IFF_ALLMULTI;
1897 return;
1898 }
1899 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1900 ETHER_ADDR_LEN);
1901 nmcasts++;
1902 ETHER_NEXT_MULTI(step, enm);
1903 }
1904
1905 /* BIG_ENDIAN: no need to swap to store 0 */
1906 mcsp->cb_status = 0;
1907 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1908 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1909 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1910
1911 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1912
1913 /*
1914 * Wait until the command unit is not active. This should never
1915 * happen since nothing is queued, but make sure anyway.
1916 */
1917 count = 100;
1918 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1919 FXP_SCB_CUS_ACTIVE && --count)
1920 DELAY(1);
1921 if (count == 0) {
1922 printf("%s at line %d: command queue timeout\n",
1923 sc->sc_dev.dv_xname, __LINE__);
1924 return;
1925 }
1926
1927 /*
1928 * Start the multicast setup command/DMA.
1929 */
1930 fxp_scb_wait(sc);
1931 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1932 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1933
1934 /* ...and wait for it to complete. */
1935 count = 1000;
1936 do {
1937 FXP_CDMCSSYNC(sc,
1938 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1939 DELAY(1);
1940 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1941 if (count == 0) {
1942 printf("%s at line %d: dmasync timeout\n",
1943 sc->sc_dev.dv_xname, __LINE__);
1944 return;
1945 }
1946 }
1947
1948 int
1949 fxp_enable(struct fxp_softc *sc)
1950 {
1951
1952 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1953 if ((*sc->sc_enable)(sc) != 0) {
1954 printf("%s: device enable failed\n",
1955 sc->sc_dev.dv_xname);
1956 return (EIO);
1957 }
1958 }
1959
1960 sc->sc_enabled = 1;
1961 return (0);
1962 }
1963
1964 void
1965 fxp_disable(struct fxp_softc *sc)
1966 {
1967
1968 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1969 (*sc->sc_disable)(sc);
1970 sc->sc_enabled = 0;
1971 }
1972 }
1973
1974 /*
1975 * fxp_activate:
1976 *
1977 * Handle device activation/deactivation requests.
1978 */
1979 int
1980 fxp_activate(struct device *self, enum devact act)
1981 {
1982 struct fxp_softc *sc = (void *) self;
1983 int s, error = 0;
1984
1985 s = splnet();
1986 switch (act) {
1987 case DVACT_ACTIVATE:
1988 error = EOPNOTSUPP;
1989 break;
1990
1991 case DVACT_DEACTIVATE:
1992 if (sc->sc_flags & FXPF_MII)
1993 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1994 MII_OFFSET_ANY);
1995 if_deactivate(&sc->sc_ethercom.ec_if);
1996 break;
1997 }
1998 splx(s);
1999
2000 return (error);
2001 }
2002
2003 /*
2004 * fxp_detach:
2005 *
2006 * Detach an i82557 interface.
2007 */
2008 int
2009 fxp_detach(struct fxp_softc *sc)
2010 {
2011 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2012 int i;
2013
2014 /* Succeed now if there's no work to do. */
2015 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2016 return (0);
2017
2018 /* Unhook our tick handler. */
2019 callout_stop(&sc->sc_callout);
2020
2021 if (sc->sc_flags & FXPF_MII) {
2022 /* Detach all PHYs */
2023 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2024 }
2025
2026 /* Delete all remaining media. */
2027 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2028
2029 #if NRND > 0
2030 rnd_detach_source(&sc->rnd_source);
2031 #endif
2032 ether_ifdetach(ifp);
2033 if_detach(ifp);
2034
2035 for (i = 0; i < FXP_NRFABUFS; i++) {
2036 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2037 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2038 }
2039
2040 for (i = 0; i < FXP_NTXCB; i++) {
2041 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2042 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2043 }
2044
2045 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2046 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2047 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2048 sizeof(struct fxp_control_data));
2049 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2050
2051 shutdownhook_disestablish(sc->sc_sdhook);
2052 powerhook_disestablish(sc->sc_powerhook);
2053
2054 return (0);
2055 }
2056