Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.62
      1 /*	$NetBSD: i82557.c,v 1.62 2002/04/04 21:11:16 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice unmodified, this list of conditions, and the following
     50  *    disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
     68  */
     69 
     70 /*
     71  * Device driver for the Intel i82557 fast Ethernet controller,
     72  * and its successors, the i82558 and i82559.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.62 2002/04/04 21:11:16 thorpej Exp $");
     77 
     78 #include "bpfilter.h"
     79 #include "rnd.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/callout.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/malloc.h>
     86 #include <sys/kernel.h>
     87 #include <sys/socket.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/errno.h>
     90 #include <sys/device.h>
     91 
     92 #include <machine/endian.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 
     96 #if NRND > 0
     97 #include <sys/rnd.h>
     98 #endif
     99 
    100 #include <net/if.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 #include <net/if_ether.h>
    104 
    105 #if NBPFILTER > 0
    106 #include <net/bpf.h>
    107 #endif
    108 
    109 #include <machine/bus.h>
    110 #include <machine/intr.h>
    111 
    112 #include <dev/mii/miivar.h>
    113 
    114 #include <dev/ic/i82557reg.h>
    115 #include <dev/ic/i82557var.h>
    116 
    117 /*
    118  * NOTE!  On the Alpha, we have an alignment constraint.  The
    119  * card DMAs the packet immediately following the RFA.  However,
    120  * the first thing in the packet is a 14-byte Ethernet header.
    121  * This means that the packet is misaligned.  To compensate,
    122  * we actually offset the RFA 2 bytes into the cluster.  This
    123  * alignes the packet after the Ethernet header at a 32-bit
    124  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    125  */
    126 #define	RFA_ALIGNMENT_FUDGE	2
    127 
    128 /*
    129  * The configuration byte map has several undefined fields which
    130  * must be one or must be zero.  Set up a template for these bits
    131  * only (assuming an i82557 chip), leaving the actual configuration
    132  * for fxp_init().
    133  *
    134  * See the definition of struct fxp_cb_config for the bit definitions.
    135  */
    136 const u_int8_t fxp_cb_config_template[] = {
    137 	0x0, 0x0,		/* cb_status */
    138 	0x0, 0x0,		/* cb_command */
    139 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
    140 	0x0,	/*  0 */
    141 	0x0,	/*  1 */
    142 	0x0,	/*  2 */
    143 	0x0,	/*  3 */
    144 	0x0,	/*  4 */
    145 	0x0,	/*  5 */
    146 	0x32,	/*  6 */
    147 	0x0,	/*  7 */
    148 	0x0,	/*  8 */
    149 	0x0,	/*  9 */
    150 	0x6,	/* 10 */
    151 	0x0,	/* 11 */
    152 	0x0,	/* 12 */
    153 	0x0,	/* 13 */
    154 	0xf2,	/* 14 */
    155 	0x48,	/* 15 */
    156 	0x0,	/* 16 */
    157 	0x40,	/* 17 */
    158 	0xf0,	/* 18 */
    159 	0x0,	/* 19 */
    160 	0x3f,	/* 20 */
    161 	0x5,	/* 21 */
    162 	0x0,	/* 22 */
    163 	0x0,	/* 23 */
    164 	0x0,	/* 24 */
    165 	0x0,	/* 25 */
    166 	0x0,	/* 26 */
    167 	0x0,	/* 27 */
    168 	0x0,	/* 28 */
    169 	0x0,	/* 29 */
    170 	0x0,	/* 30 */
    171 	0x0,	/* 31 */
    172 };
    173 
    174 void	fxp_mii_initmedia(struct fxp_softc *);
    175 int	fxp_mii_mediachange(struct ifnet *);
    176 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
    177 
    178 void	fxp_80c24_initmedia(struct fxp_softc *);
    179 int	fxp_80c24_mediachange(struct ifnet *);
    180 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
    181 
    182 void	fxp_start(struct ifnet *);
    183 int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
    184 void	fxp_watchdog(struct ifnet *);
    185 int	fxp_init(struct ifnet *);
    186 void	fxp_stop(struct ifnet *, int);
    187 
    188 void	fxp_txintr(struct fxp_softc *);
    189 void	fxp_rxintr(struct fxp_softc *);
    190 
    191 void	fxp_rxdrain(struct fxp_softc *);
    192 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
    193 int	fxp_mdi_read(struct device *, int, int);
    194 void	fxp_statchg(struct device *);
    195 void	fxp_mdi_write(struct device *, int, int, int);
    196 void	fxp_autosize_eeprom(struct fxp_softc*);
    197 void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
    198 void	fxp_get_info(struct fxp_softc *, u_int8_t *);
    199 void	fxp_tick(void *);
    200 void	fxp_mc_setup(struct fxp_softc *);
    201 
    202 void	fxp_shutdown(void *);
    203 void	fxp_power(int, void *);
    204 
    205 int	fxp_copy_small = 0;
    206 
    207 struct fxp_phytype {
    208 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    209 	void	(*fp_init)(struct fxp_softc *);
    210 } fxp_phytype_table[] = {
    211 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    212 	{ -1,				fxp_mii_initmedia },
    213 };
    214 
    215 /*
    216  * Set initial transmit threshold at 64 (512 bytes). This is
    217  * increased by 64 (512 bytes) at a time, to maximum of 192
    218  * (1536 bytes), if an underrun occurs.
    219  */
    220 static int tx_threshold = 64;
    221 
    222 /*
    223  * Wait for the previous command to be accepted (but not necessarily
    224  * completed).
    225  */
    226 static __inline void
    227 fxp_scb_wait(struct fxp_softc *sc)
    228 {
    229 	int i = 10000;
    230 
    231 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    232 		delay(2);
    233 	if (i == 0)
    234 		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    235 }
    236 
    237 /*
    238  * Submit a command to the i82557.
    239  */
    240 static __inline void
    241 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
    242 {
    243 
    244 	if (cmd == FXP_SCB_COMMAND_CU_RESUME &&
    245 	    (sc->sc_flags & FXPF_FIX_RESUME_BUG) != 0) {
    246 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_NOP);
    247 		fxp_scb_wait(sc);
    248 	}
    249 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
    250 }
    251 
    252 /*
    253  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    254  */
    255 void
    256 fxp_attach(struct fxp_softc *sc)
    257 {
    258 	u_int8_t enaddr[ETHER_ADDR_LEN];
    259 	struct ifnet *ifp;
    260 	bus_dma_segment_t seg;
    261 	int rseg, i, error;
    262 	struct fxp_phytype *fp;
    263 
    264 	callout_init(&sc->sc_callout);
    265 
    266 	/* Start out using the standard RFA. */
    267 	sc->sc_rfa_size = RFA_SIZE;
    268 
    269 	/*
    270 	 * Enable some good stuff on i82558 and later.
    271 	 */
    272 	if (sc->sc_rev >= FXP_REV_82558_A4) {
    273 		/* Enable the extended TxCB. */
    274 		sc->sc_flags |= FXPF_EXT_TXCB;
    275 	}
    276 
    277 	/*
    278 	 * Allocate the control data structures, and create and load the
    279 	 * DMA map for it.
    280 	 */
    281 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    282 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    283 	    0)) != 0) {
    284 		printf("%s: unable to allocate control data, error = %d\n",
    285 		    sc->sc_dev.dv_xname, error);
    286 		goto fail_0;
    287 	}
    288 
    289 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    290 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
    291 	    BUS_DMA_COHERENT)) != 0) {
    292 		printf("%s: unable to map control data, error = %d\n",
    293 		    sc->sc_dev.dv_xname, error);
    294 		goto fail_1;
    295 	}
    296 	sc->sc_cdseg = seg;
    297 	sc->sc_cdnseg = rseg;
    298 
    299 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
    300 
    301 	if ((error = bus_dmamap_create(sc->sc_dmat,
    302 	    sizeof(struct fxp_control_data), 1,
    303 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    304 		printf("%s: unable to create control data DMA map, "
    305 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    306 		goto fail_2;
    307 	}
    308 
    309 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    310 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    311 	    0)) != 0) {
    312 		printf("%s: can't load control data DMA map, error = %d\n",
    313 		    sc->sc_dev.dv_xname, error);
    314 		goto fail_3;
    315 	}
    316 
    317 	/*
    318 	 * Create the transmit buffer DMA maps.
    319 	 */
    320 	for (i = 0; i < FXP_NTXCB; i++) {
    321 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    322 		    FXP_NTXSEG, MCLBYTES, 0, 0,
    323 		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    324 			printf("%s: unable to create tx DMA map %d, "
    325 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    326 			goto fail_4;
    327 		}
    328 	}
    329 
    330 	/*
    331 	 * Create the receive buffer DMA maps.
    332 	 */
    333 	for (i = 0; i < FXP_NRFABUFS; i++) {
    334 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    335 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    336 			printf("%s: unable to create rx DMA map %d, "
    337 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    338 			goto fail_5;
    339 		}
    340 	}
    341 
    342 	/* Initialize MAC address and media structures. */
    343 	fxp_get_info(sc, enaddr);
    344 
    345 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    346 	    ether_sprintf(enaddr));
    347 
    348 	ifp = &sc->sc_ethercom.ec_if;
    349 
    350 	/*
    351 	 * Get info about our media interface, and initialize it.  Note
    352 	 * the table terminates itself with a phy of -1, indicating
    353 	 * that we're using MII.
    354 	 */
    355 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    356 		if (fp->fp_phy == sc->phy_primary_device)
    357 			break;
    358 	(*fp->fp_init)(sc);
    359 
    360 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    361 	ifp->if_softc = sc;
    362 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    363 	ifp->if_ioctl = fxp_ioctl;
    364 	ifp->if_start = fxp_start;
    365 	ifp->if_watchdog = fxp_watchdog;
    366 	ifp->if_init = fxp_init;
    367 	ifp->if_stop = fxp_stop;
    368 	IFQ_SET_READY(&ifp->if_snd);
    369 
    370 	/*
    371 	 * We can support 802.1Q VLAN-sized frames.
    372 	 */
    373 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    374 
    375 	/*
    376 	 * Attach the interface.
    377 	 */
    378 	if_attach(ifp);
    379 	ether_ifattach(ifp, enaddr);
    380 #if NRND > 0
    381 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    382 	    RND_TYPE_NET, 0);
    383 #endif
    384 
    385 #ifdef FXP_EVENT_COUNTERS
    386 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    387 	    NULL, sc->sc_dev.dv_xname, "txstall");
    388 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    389 	    NULL, sc->sc_dev.dv_xname, "txintr");
    390 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    391 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    392 #endif /* FXP_EVENT_COUNTERS */
    393 
    394 	/*
    395 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    396 	 * doing do could allow DMA to corrupt kernel memory during the
    397 	 * reboot before the driver initializes.
    398 	 */
    399 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    400 	if (sc->sc_sdhook == NULL)
    401 		printf("%s: WARNING: unable to establish shutdown hook\n",
    402 		    sc->sc_dev.dv_xname);
    403 	/*
    404   	 * Add suspend hook, for similar reasons..
    405 	 */
    406 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
    407 	if (sc->sc_powerhook == NULL)
    408 		printf("%s: WARNING: unable to establish power hook\n",
    409 		    sc->sc_dev.dv_xname);
    410 
    411 	/* The attach is successful. */
    412 	sc->sc_flags |= FXPF_ATTACHED;
    413 
    414 	return;
    415 
    416 	/*
    417 	 * Free any resources we've allocated during the failed attach
    418 	 * attempt.  Do this in reverse order and fall though.
    419 	 */
    420  fail_5:
    421 	for (i = 0; i < FXP_NRFABUFS; i++) {
    422 		if (sc->sc_rxmaps[i] != NULL)
    423 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    424 	}
    425  fail_4:
    426 	for (i = 0; i < FXP_NTXCB; i++) {
    427 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    428 			bus_dmamap_destroy(sc->sc_dmat,
    429 			    FXP_DSTX(sc, i)->txs_dmamap);
    430 	}
    431 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    432  fail_3:
    433 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    434  fail_2:
    435 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    436 	    sizeof(struct fxp_control_data));
    437  fail_1:
    438 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    439  fail_0:
    440 	return;
    441 }
    442 
    443 void
    444 fxp_mii_initmedia(struct fxp_softc *sc)
    445 {
    446 	int flags;
    447 
    448 	sc->sc_flags |= FXPF_MII;
    449 
    450 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    451 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    452 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    453 	sc->sc_mii.mii_statchg = fxp_statchg;
    454 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
    455 	    fxp_mii_mediastatus);
    456 
    457 	flags = MIIF_NOISOLATE;
    458 	if (sc->sc_rev >= FXP_REV_82558_A4)
    459 		flags |= MIIF_DOPAUSE;
    460 	/*
    461 	 * The i82557 wedges if all of its PHYs are isolated!
    462 	 */
    463 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    464 	    MII_OFFSET_ANY, flags);
    465 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    466 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    467 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    468 	} else
    469 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    470 }
    471 
    472 void
    473 fxp_80c24_initmedia(struct fxp_softc *sc)
    474 {
    475 
    476 	/*
    477 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    478 	 * doesn't have a programming interface of any sort.  The
    479 	 * media is sensed automatically based on how the link partner
    480 	 * is configured.  This is, in essence, manual configuration.
    481 	 */
    482 	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    483 	    sc->sc_dev.dv_xname);
    484 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    485 	    fxp_80c24_mediastatus);
    486 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    487 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    488 }
    489 
    490 /*
    491  * Device shutdown routine. Called at system shutdown after sync. The
    492  * main purpose of this routine is to shut off receiver DMA so that
    493  * kernel memory doesn't get clobbered during warmboot.
    494  */
    495 void
    496 fxp_shutdown(void *arg)
    497 {
    498 	struct fxp_softc *sc = arg;
    499 
    500 	/*
    501 	 * Since the system's going to halt shortly, don't bother
    502 	 * freeing mbufs.
    503 	 */
    504 	fxp_stop(&sc->sc_ethercom.ec_if, 0);
    505 }
    506 /*
    507  * Power handler routine. Called when the system is transitioning
    508  * into/out of power save modes.  As with fxp_shutdown, the main
    509  * purpose of this routine is to shut off receiver DMA so it doesn't
    510  * clobber kernel memory at the wrong time.
    511  */
    512 void
    513 fxp_power(int why, void *arg)
    514 {
    515 	struct fxp_softc *sc = arg;
    516 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    517 	int s;
    518 
    519 	s = splnet();
    520 	switch (why) {
    521 	case PWR_SUSPEND:
    522 	case PWR_STANDBY:
    523 		fxp_stop(ifp, 0);
    524 		break;
    525 	case PWR_RESUME:
    526 		if (ifp->if_flags & IFF_UP)
    527 			fxp_init(ifp);
    528 		break;
    529 	case PWR_SOFTSUSPEND:
    530 	case PWR_SOFTSTANDBY:
    531 	case PWR_SOFTRESUME:
    532 		break;
    533 	}
    534 	splx(s);
    535 }
    536 
    537 /*
    538  * Initialize the interface media.
    539  */
    540 void
    541 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
    542 {
    543 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
    544 
    545 	/*
    546 	 * Reset to a stable state.
    547 	 */
    548 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    549 	DELAY(10);
    550 
    551 	sc->sc_eeprom_size = 0;
    552 	fxp_autosize_eeprom(sc);
    553 	if(sc->sc_eeprom_size == 0) {
    554 	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
    555 	    sc->sc_eeprom_size = 6; /* XXX panic here? */
    556 	}
    557 #ifdef DEBUG
    558 	printf("%s: detected %d word EEPROM\n",
    559 	       sc->sc_dev.dv_xname,
    560 	       1 << sc->sc_eeprom_size);
    561 #endif
    562 
    563 	/*
    564 	 * Get info about the primary PHY
    565 	 */
    566 	fxp_read_eeprom(sc, &data, 6, 1);
    567 	sc->phy_primary_device =
    568 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
    569 
    570 	/*
    571 	 * Read MAC address.
    572 	 */
    573 	fxp_read_eeprom(sc, myea, 0, 3);
    574 	enaddr[0] = myea[0] & 0xff;
    575 	enaddr[1] = myea[0] >> 8;
    576 	enaddr[2] = myea[1] & 0xff;
    577 	enaddr[3] = myea[1] >> 8;
    578 	enaddr[4] = myea[2] & 0xff;
    579 	enaddr[5] = myea[2] >> 8;
    580 }
    581 
    582 static void
    583 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
    584 {
    585 	uint16_t reg;
    586 	int x;
    587 
    588 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
    589 		if (data & x)
    590 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    591 		else
    592 			reg = FXP_EEPROM_EECS;
    593 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    594 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    595 		    reg | FXP_EEPROM_EESK);
    596 		DELAY(4);
    597 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    598 		DELAY(4);
    599 	}
    600 }
    601 
    602 /*
    603  * Figure out EEPROM size.
    604  *
    605  * 559's can have either 64-word or 256-word EEPROMs, the 558
    606  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    607  * talks about the existance of 16 to 256 word EEPROMs.
    608  *
    609  * The only known sizes are 64 and 256, where the 256 version is used
    610  * by CardBus cards to store CIS information.
    611  *
    612  * The address is shifted in msb-to-lsb, and after the last
    613  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    614  * after which follows the actual data. We try to detect this zero, by
    615  * probing the data-out bit in the EEPROM control register just after
    616  * having shifted in a bit. If the bit is zero, we assume we've
    617  * shifted enough address bits. The data-out should be tri-state,
    618  * before this, which should translate to a logical one.
    619  *
    620  * Other ways to do this would be to try to read a register with known
    621  * contents with a varying number of address bits, but no such
    622  * register seem to be available. The high bits of register 10 are 01
    623  * on the 558 and 559, but apparently not on the 557.
    624  *
    625  * The Linux driver computes a checksum on the EEPROM data, but the
    626  * value of this checksum is not very well documented.
    627  */
    628 
    629 void
    630 fxp_autosize_eeprom(struct fxp_softc *sc)
    631 {
    632 	int x;
    633 
    634 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    635 
    636 	/* Shift in read opcode. */
    637 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    638 
    639 	/*
    640 	 * Shift in address, wait for the dummy zero following a correct
    641 	 * address shift.
    642 	 */
    643 	for (x = 1; x <= 8; x++) {
    644 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    645 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    646 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    647 		DELAY(4);
    648 		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    649 		    FXP_EEPROM_EEDO) == 0)
    650 			break;
    651 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    652 		DELAY(4);
    653 	}
    654 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    655 	DELAY(4);
    656 	if(x != 6 && x != 8) {
    657 #ifdef DEBUG
    658 		printf("%s: strange EEPROM size (%d)\n",
    659 		       sc->sc_dev.dv_xname, 1 << x);
    660 #endif
    661 	} else
    662 		sc->sc_eeprom_size = x;
    663 }
    664 
    665 /*
    666  * Read from the serial EEPROM. Basically, you manually shift in
    667  * the read opcode (one bit at a time) and then shift in the address,
    668  * and then you shift out the data (all of this one bit at a time).
    669  * The word size is 16 bits, so you have to provide the address for
    670  * every 16 bits of data.
    671  */
    672 void
    673 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
    674 {
    675 	u_int16_t reg;
    676 	int i, x;
    677 
    678 	for (i = 0; i < words; i++) {
    679 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    680 
    681 		/* Shift in read opcode. */
    682 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    683 
    684 		/* Shift in address. */
    685 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    686 
    687 		reg = FXP_EEPROM_EECS;
    688 		data[i] = 0;
    689 
    690 		/* Shift out data. */
    691 		for (x = 16; x > 0; x--) {
    692 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    693 			    reg | FXP_EEPROM_EESK);
    694 			DELAY(4);
    695 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    696 			    FXP_EEPROM_EEDO)
    697 				data[i] |= (1 << (x - 1));
    698 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    699 			DELAY(4);
    700 		}
    701 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    702 		DELAY(4);
    703 	}
    704 }
    705 
    706 /*
    707  * Start packet transmission on the interface.
    708  */
    709 void
    710 fxp_start(struct ifnet *ifp)
    711 {
    712 	struct fxp_softc *sc = ifp->if_softc;
    713 	struct mbuf *m0, *m;
    714 	struct fxp_txdesc *txd;
    715 	struct fxp_txsoft *txs;
    716 	bus_dmamap_t dmamap;
    717 	int error, lasttx, nexttx, opending, seg;
    718 
    719 	/*
    720 	 * If we want a re-init, bail out now.
    721 	 */
    722 	if (sc->sc_flags & FXPF_WANTINIT) {
    723 		ifp->if_flags |= IFF_OACTIVE;
    724 		return;
    725 	}
    726 
    727 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    728 		return;
    729 
    730 	/*
    731 	 * Remember the previous txpending and the current lasttx.
    732 	 */
    733 	opending = sc->sc_txpending;
    734 	lasttx = sc->sc_txlast;
    735 
    736 	/*
    737 	 * Loop through the send queue, setting up transmit descriptors
    738 	 * until we drain the queue, or use up all available transmit
    739 	 * descriptors.
    740 	 */
    741 	for (;;) {
    742 		/*
    743 		 * Grab a packet off the queue.
    744 		 */
    745 		IFQ_POLL(&ifp->if_snd, m0);
    746 		if (m0 == NULL)
    747 			break;
    748 		m = NULL;
    749 
    750 		if (sc->sc_txpending == FXP_NTXCB) {
    751 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
    752 			break;
    753 		}
    754 
    755 		/*
    756 		 * Get the next available transmit descriptor.
    757 		 */
    758 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    759 		txd = FXP_CDTX(sc, nexttx);
    760 		txs = FXP_DSTX(sc, nexttx);
    761 		dmamap = txs->txs_dmamap;
    762 
    763 		/*
    764 		 * Load the DMA map.  If this fails, the packet either
    765 		 * didn't fit in the allotted number of frags, or we were
    766 		 * short on resources.  In this case, we'll copy and try
    767 		 * again.
    768 		 */
    769 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    770 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    771 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    772 			if (m == NULL) {
    773 				printf("%s: unable to allocate Tx mbuf\n",
    774 				    sc->sc_dev.dv_xname);
    775 				break;
    776 			}
    777 			if (m0->m_pkthdr.len > MHLEN) {
    778 				MCLGET(m, M_DONTWAIT);
    779 				if ((m->m_flags & M_EXT) == 0) {
    780 					printf("%s: unable to allocate Tx "
    781 					    "cluster\n", sc->sc_dev.dv_xname);
    782 					m_freem(m);
    783 					break;
    784 				}
    785 			}
    786 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    787 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    788 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    789 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    790 			if (error) {
    791 				printf("%s: unable to load Tx buffer, "
    792 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    793 				break;
    794 			}
    795 		}
    796 
    797 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    798 		if (m != NULL) {
    799 			m_freem(m0);
    800 			m0 = m;
    801 		}
    802 
    803 		/* Initialize the fraglist. */
    804 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    805 			txd->txd_tbd[seg].tb_addr =
    806 			    htole32(dmamap->dm_segs[seg].ds_addr);
    807 			txd->txd_tbd[seg].tb_size =
    808 			    htole32(dmamap->dm_segs[seg].ds_len);
    809 		}
    810 
    811 		/* Sync the DMA map. */
    812 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    813 		    BUS_DMASYNC_PREWRITE);
    814 
    815 		/*
    816 		 * Store a pointer to the packet so we can free it later.
    817 		 */
    818 		txs->txs_mbuf = m0;
    819 
    820 		/*
    821 		 * Initialize the transmit descriptor.
    822 		 */
    823 		/* BIG_ENDIAN: no need to swap to store 0 */
    824 		txd->txd_txcb.cb_status = 0;
    825 		txd->txd_txcb.cb_command =
    826 		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
    827 		txd->txd_txcb.tx_threshold = tx_threshold;
    828 		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
    829 
    830 		FXP_CDTXSYNC(sc, nexttx,
    831 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    832 
    833 		/* Advance the tx pointer. */
    834 		sc->sc_txpending++;
    835 		sc->sc_txlast = nexttx;
    836 
    837 #if NBPFILTER > 0
    838 		/*
    839 		 * Pass packet to bpf if there is a listener.
    840 		 */
    841 		if (ifp->if_bpf)
    842 			bpf_mtap(ifp->if_bpf, m0);
    843 #endif
    844 	}
    845 
    846 	if (sc->sc_txpending == FXP_NTXCB) {
    847 		/* No more slots; notify upper layer. */
    848 		ifp->if_flags |= IFF_OACTIVE;
    849 	}
    850 
    851 	if (sc->sc_txpending != opending) {
    852 		/*
    853 		 * We enqueued packets.  If the transmitter was idle,
    854 		 * reset the txdirty pointer.
    855 		 */
    856 		if (opending == 0)
    857 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
    858 
    859 		/*
    860 		 * Cause the chip to interrupt and suspend command
    861 		 * processing once the last packet we've enqueued
    862 		 * has been transmitted.
    863 		 */
    864 		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
    865 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
    866 		FXP_CDTXSYNC(sc, sc->sc_txlast,
    867 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    868 
    869 		/*
    870 		 * The entire packet chain is set up.  Clear the suspend bit
    871 		 * on the command prior to the first packet we set up.
    872 		 */
    873 		FXP_CDTXSYNC(sc, lasttx,
    874 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    875 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
    876 		    htole16(~FXP_CB_COMMAND_S);
    877 		FXP_CDTXSYNC(sc, lasttx,
    878 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    879 
    880 		/*
    881 		 * Issue a Resume command in case the chip was suspended.
    882 		 */
    883 		fxp_scb_wait(sc);
    884 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
    885 
    886 		/* Set a watchdog timer in case the chip flakes out. */
    887 		ifp->if_timer = 5;
    888 	}
    889 }
    890 
    891 /*
    892  * Process interface interrupts.
    893  */
    894 int
    895 fxp_intr(void *arg)
    896 {
    897 	struct fxp_softc *sc = arg;
    898 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    899 	bus_dmamap_t rxmap;
    900 	int claimed = 0;
    901 	u_int8_t statack;
    902 
    903 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
    904 		return (0);
    905 	/*
    906 	 * If the interface isn't running, don't try to
    907 	 * service the interrupt.. just ack it and bail.
    908 	 */
    909 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
    910 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
    911 		if (statack) {
    912 			claimed = 1;
    913 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    914 		}
    915 		return (claimed);
    916 	}
    917 
    918 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
    919 		claimed = 1;
    920 
    921 		/*
    922 		 * First ACK all the interrupts in this pass.
    923 		 */
    924 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    925 
    926 		/*
    927 		 * Process receiver interrupts. If a no-resource (RNR)
    928 		 * condition exists, get whatever packets we can and
    929 		 * re-start the receiver.
    930 		 */
    931 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
    932 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
    933 			fxp_rxintr(sc);
    934 		}
    935 
    936 		if (statack & FXP_SCB_STATACK_RNR) {
    937 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
    938 			fxp_scb_wait(sc);
    939 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
    940 			    rxmap->dm_segs[0].ds_addr +
    941 			    RFA_ALIGNMENT_FUDGE);
    942 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
    943 		}
    944 
    945 		/*
    946 		 * Free any finished transmit mbuf chains.
    947 		 */
    948 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
    949 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
    950 			fxp_txintr(sc);
    951 
    952 			/*
    953 			 * Try to get more packets going.
    954 			 */
    955 			fxp_start(ifp);
    956 
    957 			if (sc->sc_txpending == 0) {
    958 				/*
    959 				 * If we want a re-init, do that now.
    960 				 */
    961 				if (sc->sc_flags & FXPF_WANTINIT)
    962 					(void) fxp_init(ifp);
    963 			}
    964 		}
    965 	}
    966 
    967 #if NRND > 0
    968 	if (claimed)
    969 		rnd_add_uint32(&sc->rnd_source, statack);
    970 #endif
    971 	return (claimed);
    972 }
    973 
    974 /*
    975  * Handle transmit completion interrupts.
    976  */
    977 void
    978 fxp_txintr(struct fxp_softc *sc)
    979 {
    980 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    981 	struct fxp_txdesc *txd;
    982 	struct fxp_txsoft *txs;
    983 	int i;
    984 	u_int16_t txstat;
    985 
    986 	ifp->if_flags &= ~IFF_OACTIVE;
    987 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    988 	     i = FXP_NEXTTX(i), sc->sc_txpending--) {
    989 		txd = FXP_CDTX(sc, i);
    990 		txs = FXP_DSTX(sc, i);
    991 
    992 		FXP_CDTXSYNC(sc, i,
    993 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    994 
    995 		txstat = le16toh(txd->txd_txcb.cb_status);
    996 
    997 		if ((txstat & FXP_CB_STATUS_C) == 0)
    998 			break;
    999 
   1000 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1001 		    0, txs->txs_dmamap->dm_mapsize,
   1002 		    BUS_DMASYNC_POSTWRITE);
   1003 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1004 		m_freem(txs->txs_mbuf);
   1005 		txs->txs_mbuf = NULL;
   1006 	}
   1007 
   1008 	/* Update the dirty transmit buffer pointer. */
   1009 	sc->sc_txdirty = i;
   1010 
   1011 	/*
   1012 	 * Cancel the watchdog timer if there are no pending
   1013 	 * transmissions.
   1014 	 */
   1015 	if (sc->sc_txpending == 0)
   1016 		ifp->if_timer = 0;
   1017 }
   1018 
   1019 /*
   1020  * Handle receive interrupts.
   1021  */
   1022 void
   1023 fxp_rxintr(struct fxp_softc *sc)
   1024 {
   1025 	struct ethercom *ec = &sc->sc_ethercom;
   1026 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1027 	struct mbuf *m, *m0;
   1028 	bus_dmamap_t rxmap;
   1029 	struct fxp_rfa *rfa;
   1030 	u_int16_t len, rxstat;
   1031 
   1032 	for (;;) {
   1033 		m = sc->sc_rxq.ifq_head;
   1034 		rfa = FXP_MTORFA(m);
   1035 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1036 
   1037 		FXP_RFASYNC(sc, m,
   1038 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1039 
   1040 		rxstat = le16toh(rfa->rfa_status);
   1041 
   1042 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
   1043 			/*
   1044 			 * We have processed all of the
   1045 			 * receive buffers.
   1046 			 */
   1047 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
   1048 			return;
   1049 		}
   1050 
   1051 		IF_DEQUEUE(&sc->sc_rxq, m);
   1052 
   1053 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
   1054 
   1055 		len = le16toh(rfa->actual_size) &
   1056 		    (m->m_ext.ext_size - 1);
   1057 
   1058 		if (len < sizeof(struct ether_header)) {
   1059 			/*
   1060 			 * Runt packet; drop it now.
   1061 			 */
   1062 			FXP_INIT_RFABUF(sc, m);
   1063 			continue;
   1064 		}
   1065 
   1066 		/*
   1067 		 * If support for 802.1Q VLAN sized frames is
   1068 		 * enabled, we need to do some additional error
   1069 		 * checking (as we are saving bad frames, in
   1070 		 * order to receive the larger ones).
   1071 		 */
   1072 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
   1073 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
   1074 			       FXP_RFA_STATUS_RNR|
   1075 			       FXP_RFA_STATUS_ALIGN|
   1076 			       FXP_RFA_STATUS_CRC)) != 0) {
   1077 			FXP_INIT_RFABUF(sc, m);
   1078 			continue;
   1079 		}
   1080 
   1081 		/*
   1082 		 * If the packet is small enough to fit in a
   1083 		 * single header mbuf, allocate one and copy
   1084 		 * the data into it.  This greatly reduces
   1085 		 * memory consumption when we receive lots
   1086 		 * of small packets.
   1087 		 *
   1088 		 * Otherwise, we add a new buffer to the receive
   1089 		 * chain.  If this fails, we drop the packet and
   1090 		 * recycle the old buffer.
   1091 		 */
   1092 		if (fxp_copy_small != 0 && len <= MHLEN) {
   1093 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
   1094 			if (m == NULL)
   1095 				goto dropit;
   1096 			memcpy(mtod(m0, caddr_t),
   1097 			    mtod(m, caddr_t), len);
   1098 			FXP_INIT_RFABUF(sc, m);
   1099 			m = m0;
   1100 		} else {
   1101 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
   1102  dropit:
   1103 				ifp->if_ierrors++;
   1104 				FXP_INIT_RFABUF(sc, m);
   1105 				continue;
   1106 			}
   1107 		}
   1108 
   1109 		m->m_pkthdr.rcvif = ifp;
   1110 		m->m_pkthdr.len = m->m_len = len;
   1111 
   1112 #if NBPFILTER > 0
   1113 		/*
   1114 		 * Pass this up to any BPF listeners, but only
   1115 		 * pass it up the stack it its for us.
   1116 		 */
   1117 		if (ifp->if_bpf)
   1118 			bpf_mtap(ifp->if_bpf, m);
   1119 #endif
   1120 
   1121 		/* Pass it on. */
   1122 		(*ifp->if_input)(ifp, m);
   1123 	}
   1124 }
   1125 
   1126 /*
   1127  * Update packet in/out/collision statistics. The i82557 doesn't
   1128  * allow you to access these counters without doing a fairly
   1129  * expensive DMA to get _all_ of the statistics it maintains, so
   1130  * we do this operation here only once per second. The statistics
   1131  * counters in the kernel are updated from the previous dump-stats
   1132  * DMA and then a new dump-stats DMA is started. The on-chip
   1133  * counters are zeroed when the DMA completes. If we can't start
   1134  * the DMA immediately, we don't wait - we just prepare to read
   1135  * them again next time.
   1136  */
   1137 void
   1138 fxp_tick(void *arg)
   1139 {
   1140 	struct fxp_softc *sc = arg;
   1141 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1142 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1143 	int s;
   1144 
   1145 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1146 		return;
   1147 
   1148 	s = splnet();
   1149 
   1150 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1151 
   1152 	ifp->if_opackets += le32toh(sp->tx_good);
   1153 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1154 	if (sp->rx_good) {
   1155 		ifp->if_ipackets += le32toh(sp->rx_good);
   1156 		sc->sc_rxidle = 0;
   1157 	} else {
   1158 		sc->sc_rxidle++;
   1159 	}
   1160 	ifp->if_ierrors +=
   1161 	    le32toh(sp->rx_crc_errors) +
   1162 	    le32toh(sp->rx_alignment_errors) +
   1163 	    le32toh(sp->rx_rnr_errors) +
   1164 	    le32toh(sp->rx_overrun_errors);
   1165 	/*
   1166 	 * If any transmit underruns occurred, bump up the transmit
   1167 	 * threshold by another 512 bytes (64 * 8).
   1168 	 */
   1169 	if (sp->tx_underruns) {
   1170 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1171 		if (tx_threshold < 192)
   1172 			tx_threshold += 64;
   1173 	}
   1174 
   1175 	/*
   1176 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
   1177 	 * then assume the receiver has locked up and attempt to clear
   1178 	 * the condition by reprogramming the multicast filter (actually,
   1179 	 * resetting the interface). This is a work-around for a bug in
   1180 	 * the 82557 where the receiver locks up if it gets certain types
   1181 	 * of garbage in the syncronization bits prior to the packet header.
   1182 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1183 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1184 	 * speed transition).
   1185 	 */
   1186 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1187 		(void) fxp_init(ifp);
   1188 		splx(s);
   1189 		return;
   1190 	}
   1191 	/*
   1192 	 * If there is no pending command, start another stats
   1193 	 * dump. Otherwise punt for now.
   1194 	 */
   1195 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1196 		/*
   1197 		 * Start another stats dump.
   1198 		 */
   1199 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1200 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
   1201 	} else {
   1202 		/*
   1203 		 * A previous command is still waiting to be accepted.
   1204 		 * Just zero our copy of the stats and wait for the
   1205 		 * next timer event to update them.
   1206 		 */
   1207 		/* BIG_ENDIAN: no swap required to store 0 */
   1208 		sp->tx_good = 0;
   1209 		sp->tx_underruns = 0;
   1210 		sp->tx_total_collisions = 0;
   1211 
   1212 		sp->rx_good = 0;
   1213 		sp->rx_crc_errors = 0;
   1214 		sp->rx_alignment_errors = 0;
   1215 		sp->rx_rnr_errors = 0;
   1216 		sp->rx_overrun_errors = 0;
   1217 	}
   1218 
   1219 	if (sc->sc_flags & FXPF_MII) {
   1220 		/* Tick the MII clock. */
   1221 		mii_tick(&sc->sc_mii);
   1222 	}
   1223 
   1224 	splx(s);
   1225 
   1226 	/*
   1227 	 * Schedule another timeout one second from now.
   1228 	 */
   1229 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1230 }
   1231 
   1232 /*
   1233  * Drain the receive queue.
   1234  */
   1235 void
   1236 fxp_rxdrain(struct fxp_softc *sc)
   1237 {
   1238 	bus_dmamap_t rxmap;
   1239 	struct mbuf *m;
   1240 
   1241 	for (;;) {
   1242 		IF_DEQUEUE(&sc->sc_rxq, m);
   1243 		if (m == NULL)
   1244 			break;
   1245 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1246 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1247 		FXP_RXMAP_PUT(sc, rxmap);
   1248 		m_freem(m);
   1249 	}
   1250 }
   1251 
   1252 /*
   1253  * Stop the interface. Cancels the statistics updater and resets
   1254  * the interface.
   1255  */
   1256 void
   1257 fxp_stop(struct ifnet *ifp, int disable)
   1258 {
   1259 	struct fxp_softc *sc = ifp->if_softc;
   1260 	struct fxp_txsoft *txs;
   1261 	int i;
   1262 
   1263 	/*
   1264 	 * Turn down interface (done early to avoid bad interactions
   1265 	 * between panics, shutdown hooks, and the watchdog timer)
   1266 	 */
   1267 	ifp->if_timer = 0;
   1268 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1269 
   1270 	/*
   1271 	 * Cancel stats updater.
   1272 	 */
   1273 	callout_stop(&sc->sc_callout);
   1274 	if (sc->sc_flags & FXPF_MII) {
   1275 		/* Down the MII. */
   1276 		mii_down(&sc->sc_mii);
   1277 	}
   1278 
   1279 	/*
   1280 	 * Issue software reset
   1281 	 */
   1282 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
   1283 	DELAY(10);
   1284 
   1285 	/*
   1286 	 * Release any xmit buffers.
   1287 	 */
   1288 	for (i = 0; i < FXP_NTXCB; i++) {
   1289 		txs = FXP_DSTX(sc, i);
   1290 		if (txs->txs_mbuf != NULL) {
   1291 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1292 			m_freem(txs->txs_mbuf);
   1293 			txs->txs_mbuf = NULL;
   1294 		}
   1295 	}
   1296 	sc->sc_txpending = 0;
   1297 
   1298 	if (disable) {
   1299 		fxp_rxdrain(sc);
   1300 		fxp_disable(sc);
   1301 	}
   1302 
   1303 }
   1304 
   1305 /*
   1306  * Watchdog/transmission transmit timeout handler. Called when a
   1307  * transmission is started on the interface, but no interrupt is
   1308  * received before the timeout. This usually indicates that the
   1309  * card has wedged for some reason.
   1310  */
   1311 void
   1312 fxp_watchdog(struct ifnet *ifp)
   1313 {
   1314 	struct fxp_softc *sc = ifp->if_softc;
   1315 
   1316 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1317 	ifp->if_oerrors++;
   1318 
   1319 	(void) fxp_init(ifp);
   1320 }
   1321 
   1322 /*
   1323  * Initialize the interface.  Must be called at splnet().
   1324  */
   1325 int
   1326 fxp_init(struct ifnet *ifp)
   1327 {
   1328 	struct fxp_softc *sc = ifp->if_softc;
   1329 	struct fxp_cb_config *cbp;
   1330 	struct fxp_cb_ias *cb_ias;
   1331 	struct fxp_txdesc *txd;
   1332 	bus_dmamap_t rxmap;
   1333 	int i, prm, save_bf, lrxen, allm, error = 0;
   1334 
   1335 	if ((error = fxp_enable(sc)) != 0)
   1336 		goto out;
   1337 
   1338 	/*
   1339 	 * Cancel any pending I/O
   1340 	 */
   1341 	fxp_stop(ifp, 0);
   1342 
   1343 	/*
   1344 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1345 	 * flag, and this prevents the MII from detaching resulting in
   1346 	 * a panic. The flags field should perhaps be split in runtime
   1347 	 * flags and more static information. For now, just clear the
   1348 	 * only other flag set.
   1349 	 */
   1350 
   1351 	sc->sc_flags &= ~FXPF_WANTINIT;
   1352 
   1353 	/*
   1354 	 * Initialize base of CBL and RFA memory. Loading with zero
   1355 	 * sets it up for regular linear addressing.
   1356 	 */
   1357 	fxp_scb_wait(sc);
   1358 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1359 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
   1360 
   1361 	fxp_scb_wait(sc);
   1362 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
   1363 
   1364 	/*
   1365 	 * Initialize the multicast filter.  Do this now, since we might
   1366 	 * have to setup the config block differently.
   1367 	 */
   1368 	fxp_mc_setup(sc);
   1369 
   1370 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1371 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1372 
   1373 	/*
   1374 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1375 	 * enable "save bad frames", since they are 4 bytes larger than
   1376 	 * the normal Ethernet maximum frame length.  On i82558 and later,
   1377 	 * we have a better mechanism for this.
   1378 	 */
   1379 	save_bf = 0;
   1380 	lrxen = 0;
   1381 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1382 		if (sc->sc_rev < FXP_REV_82558_A4)
   1383 			save_bf = 1;
   1384 		else
   1385 			lrxen = 1;
   1386 	}
   1387 
   1388 	/*
   1389 	 * Initialize base of dump-stats buffer.
   1390 	 */
   1391 	fxp_scb_wait(sc);
   1392 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1393 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1394 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1395 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1396 
   1397 	cbp = &sc->sc_control_data->fcd_configcb;
   1398 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1399 
   1400 	/*
   1401 	 * This copy is kind of disgusting, but there are a bunch of must be
   1402 	 * zero and must be one bits in this structure and this is the easiest
   1403 	 * way to initialize them all to proper values.
   1404 	 */
   1405 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1406 
   1407 	/* BIG_ENDIAN: no need to swap to store 0 */
   1408 	cbp->cb_status =	0;
   1409 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1410 				    FXP_CB_COMMAND_EL);
   1411 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1412 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1413 					/* bytes in config block */
   1414 	cbp->byte_count =	FXP_CONFIG_LEN;
   1415 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1416 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1417 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1418 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
   1419 	cbp->type_enable =	0;	/* actually reserved */
   1420 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
   1421 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
   1422 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1423 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1424 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
   1425 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1426 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
   1427 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1428 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
   1429 	cbp->ext_stats_dis =	1;	/* disable extended counters */
   1430 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
   1431 	cbp->save_bf =		save_bf;/* save bad frames */
   1432 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1433 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1434 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
   1435 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
   1436 					/* interface mode */
   1437 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
   1438 	cbp->csma_dis =		0;	/* (don't) disable link */
   1439 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
   1440 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
   1441 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
   1442 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
   1443 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
   1444 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1445 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1446 	cbp->loopback =		0;	/* (don't) loopback */
   1447 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1448 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1449 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1450 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1451 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1452 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
   1453 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
   1454 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
   1455 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
   1456 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1457 	cbp->padding =		1;	/* (do) pad short tx packets */
   1458 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1459 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
   1460 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
   1461 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
   1462 					/* must set wake_en in PMCSR also */
   1463 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1464 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1465 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1466 	cbp->mc_all =		allm;	/* accept all multicasts */
   1467 
   1468 	if (sc->sc_rev < FXP_REV_82558_A4) {
   1469 		/*
   1470 		 * The i82557 has no hardware flow control, the values
   1471 		 * here are the defaults for the chip.
   1472 		 */
   1473 		cbp->fc_delay_lsb =	0;
   1474 		cbp->fc_delay_msb =	0x40;
   1475 		cbp->pri_fc_thresh =	3;
   1476 		cbp->tx_fc_dis =	0;
   1477 		cbp->rx_fc_restop =	0;
   1478 		cbp->rx_fc_restart =	0;
   1479 		cbp->fc_filter =	0;
   1480 		cbp->pri_fc_loc =	1;
   1481 	} else {
   1482 		cbp->fc_delay_lsb =	0x1f;
   1483 		cbp->fc_delay_msb =	0x01;
   1484 		cbp->pri_fc_thresh =	3;
   1485 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
   1486 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
   1487 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
   1488 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
   1489 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
   1490 	}
   1491 
   1492 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1493 
   1494 	/*
   1495 	 * Start the config command/DMA.
   1496 	 */
   1497 	fxp_scb_wait(sc);
   1498 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1499 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1500 	/* ...and wait for it to complete. */
   1501 	i = 1000;
   1502 	do {
   1503 		FXP_CDCONFIGSYNC(sc,
   1504 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1505 		DELAY(1);
   1506 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1507 	if (i == 0) {
   1508 		printf("%s at line %d: dmasync timeout\n",
   1509 		    sc->sc_dev.dv_xname, __LINE__);
   1510 		return ETIMEDOUT;
   1511 	}
   1512 
   1513 	/*
   1514 	 * Initialize the station address.
   1515 	 */
   1516 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1517 	/* BIG_ENDIAN: no need to swap to store 0 */
   1518 	cb_ias->cb_status = 0;
   1519 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1520 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1521 	cb_ias->link_addr = 0xffffffff;
   1522 	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1523 
   1524 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1525 
   1526 	/*
   1527 	 * Start the IAS (Individual Address Setup) command/DMA.
   1528 	 */
   1529 	fxp_scb_wait(sc);
   1530 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1531 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1532 	/* ...and wait for it to complete. */
   1533 	i = 1000;
   1534 	do {
   1535 		FXP_CDIASSYNC(sc,
   1536 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1537 		DELAY(1);
   1538 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1539 	if (i == 0) {
   1540 		printf("%s at line %d: dmasync timeout\n",
   1541 		    sc->sc_dev.dv_xname, __LINE__);
   1542 		return ETIMEDOUT;
   1543 	}
   1544 
   1545 	/*
   1546 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1547 	 * to the end of the list so that it will wrap around to the first
   1548 	 * descriptor when the first packet is transmitted.
   1549 	 */
   1550 	for (i = 0; i < FXP_NTXCB; i++) {
   1551 		txd = FXP_CDTX(sc, i);
   1552 		memset(txd, 0, sizeof(*txd));
   1553 		txd->txd_txcb.cb_command =
   1554 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1555 		txd->txd_txcb.link_addr =
   1556 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1557 		if (sc->sc_flags & FXPF_EXT_TXCB)
   1558 			txd->txd_txcb.tbd_array_addr =
   1559 			    htole32(FXP_CDTBDADDR(sc, i) +
   1560 				    (2 * sizeof(struct fxp_tbd)));
   1561 		else
   1562 			txd->txd_txcb.tbd_array_addr =
   1563 			    htole32(FXP_CDTBDADDR(sc, i));
   1564 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1565 	}
   1566 	sc->sc_txpending = 0;
   1567 	sc->sc_txdirty = 0;
   1568 	sc->sc_txlast = FXP_NTXCB - 1;
   1569 
   1570 	/*
   1571 	 * Initialize the receive buffer list.
   1572 	 */
   1573 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1574 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1575 		rxmap = FXP_RXMAP_GET(sc);
   1576 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1577 			printf("%s: unable to allocate or map rx "
   1578 			    "buffer %d, error = %d\n",
   1579 			    sc->sc_dev.dv_xname,
   1580 			    sc->sc_rxq.ifq_len, error);
   1581 			/*
   1582 			 * XXX Should attempt to run with fewer receive
   1583 			 * XXX buffers instead of just failing.
   1584 			 */
   1585 			FXP_RXMAP_PUT(sc, rxmap);
   1586 			fxp_rxdrain(sc);
   1587 			goto out;
   1588 		}
   1589 	}
   1590 	sc->sc_rxidle = 0;
   1591 
   1592 	/*
   1593 	 * Give the transmit ring to the chip.  We do this by pointing
   1594 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1595 	 * issuing a start command.  It will execute the NOP and then
   1596 	 * suspend, pointing at the first descriptor.
   1597 	 */
   1598 	fxp_scb_wait(sc);
   1599 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1600 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1601 
   1602 	/*
   1603 	 * Initialize receiver buffer area - RFA.
   1604 	 */
   1605 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1606 	fxp_scb_wait(sc);
   1607 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1608 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1609 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1610 
   1611 	if (sc->sc_flags & FXPF_MII) {
   1612 		/*
   1613 		 * Set current media.
   1614 		 */
   1615 		mii_mediachg(&sc->sc_mii);
   1616 	}
   1617 
   1618 	/*
   1619 	 * ...all done!
   1620 	 */
   1621 	ifp->if_flags |= IFF_RUNNING;
   1622 	ifp->if_flags &= ~IFF_OACTIVE;
   1623 
   1624 	/*
   1625 	 * Start the one second timer.
   1626 	 */
   1627 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1628 
   1629 	/*
   1630 	 * Attempt to start output on the interface.
   1631 	 */
   1632 	fxp_start(ifp);
   1633 
   1634  out:
   1635 	if (error) {
   1636 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1637 		ifp->if_timer = 0;
   1638 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1639 	}
   1640 	return (error);
   1641 }
   1642 
   1643 /*
   1644  * Change media according to request.
   1645  */
   1646 int
   1647 fxp_mii_mediachange(struct ifnet *ifp)
   1648 {
   1649 	struct fxp_softc *sc = ifp->if_softc;
   1650 
   1651 	if (ifp->if_flags & IFF_UP)
   1652 		mii_mediachg(&sc->sc_mii);
   1653 	return (0);
   1654 }
   1655 
   1656 /*
   1657  * Notify the world which media we're using.
   1658  */
   1659 void
   1660 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1661 {
   1662 	struct fxp_softc *sc = ifp->if_softc;
   1663 
   1664 	if(sc->sc_enabled == 0) {
   1665 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1666 		ifmr->ifm_status = 0;
   1667 		return;
   1668 	}
   1669 
   1670 	mii_pollstat(&sc->sc_mii);
   1671 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1672 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1673 }
   1674 
   1675 int
   1676 fxp_80c24_mediachange(struct ifnet *ifp)
   1677 {
   1678 
   1679 	/* Nothing to do here. */
   1680 	return (0);
   1681 }
   1682 
   1683 void
   1684 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1685 {
   1686 	struct fxp_softc *sc = ifp->if_softc;
   1687 
   1688 	/*
   1689 	 * Media is currently-selected media.  We cannot determine
   1690 	 * the link status.
   1691 	 */
   1692 	ifmr->ifm_status = 0;
   1693 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1694 }
   1695 
   1696 /*
   1697  * Add a buffer to the end of the RFA buffer list.
   1698  * Return 0 if successful, error code on failure.
   1699  *
   1700  * The RFA struct is stuck at the beginning of mbuf cluster and the
   1701  * data pointer is fixed up to point just past it.
   1702  */
   1703 int
   1704 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
   1705 {
   1706 	struct mbuf *m;
   1707 	int error;
   1708 
   1709 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1710 	if (m == NULL)
   1711 		return (ENOBUFS);
   1712 
   1713 	MCLGET(m, M_DONTWAIT);
   1714 	if ((m->m_flags & M_EXT) == 0) {
   1715 		m_freem(m);
   1716 		return (ENOBUFS);
   1717 	}
   1718 
   1719 	if (unload)
   1720 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1721 
   1722 	M_SETCTX(m, rxmap);
   1723 
   1724 	error = bus_dmamap_load(sc->sc_dmat, rxmap,
   1725 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1726 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1727 	if (error) {
   1728 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1729 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   1730 		panic("fxp_add_rfabuf");		/* XXX */
   1731 	}
   1732 
   1733 	FXP_INIT_RFABUF(sc, m);
   1734 
   1735 	return (0);
   1736 }
   1737 
   1738 int
   1739 fxp_mdi_read(struct device *self, int phy, int reg)
   1740 {
   1741 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1742 	int count = 10000;
   1743 	int value;
   1744 
   1745 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1746 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   1747 
   1748 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
   1749 	    && count--)
   1750 		DELAY(10);
   1751 
   1752 	if (count <= 0)
   1753 		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   1754 
   1755 	return (value & 0xffff);
   1756 }
   1757 
   1758 void
   1759 fxp_statchg(struct device *self)
   1760 {
   1761 	struct fxp_softc *sc = (void *) self;
   1762 
   1763 	/*
   1764 	 * Determine whether or not we have to work-around the
   1765 	 * Resume Bug.
   1766 	 */
   1767 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
   1768 		if (IFM_TYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
   1769 			sc->sc_flags |= FXPF_FIX_RESUME_BUG;
   1770 		else
   1771 			sc->sc_flags &= ~FXPF_FIX_RESUME_BUG;
   1772 	}
   1773 }
   1774 
   1775 void
   1776 fxp_mdi_write(struct device *self, int phy, int reg, int value)
   1777 {
   1778 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1779 	int count = 10000;
   1780 
   1781 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1782 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   1783 	    (value & 0xffff));
   1784 
   1785 	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   1786 	    count--)
   1787 		DELAY(10);
   1788 
   1789 	if (count <= 0)
   1790 		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   1791 }
   1792 
   1793 int
   1794 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1795 {
   1796 	struct fxp_softc *sc = ifp->if_softc;
   1797 	struct ifreq *ifr = (struct ifreq *)data;
   1798 	int s, error;
   1799 
   1800 	s = splnet();
   1801 
   1802 	switch (cmd) {
   1803 	case SIOCSIFMEDIA:
   1804 	case SIOCGIFMEDIA:
   1805 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1806 		break;
   1807 
   1808 	default:
   1809 		error = ether_ioctl(ifp, cmd, data);
   1810 		if (error == ENETRESET) {
   1811 			if (sc->sc_enabled) {
   1812 				/*
   1813 				 * Multicast list has changed; set the
   1814 				 * hardware filter accordingly.
   1815 				 */
   1816 				if (sc->sc_txpending) {
   1817 					sc->sc_flags |= FXPF_WANTINIT;
   1818 					error = 0;
   1819 				} else
   1820 					error = fxp_init(ifp);
   1821 			} else
   1822 				error = 0;
   1823 		}
   1824 		break;
   1825 	}
   1826 
   1827 	/* Try to get more packets going. */
   1828 	if (sc->sc_enabled)
   1829 		fxp_start(ifp);
   1830 
   1831 	splx(s);
   1832 	return (error);
   1833 }
   1834 
   1835 /*
   1836  * Program the multicast filter.
   1837  *
   1838  * This function must be called at splnet().
   1839  */
   1840 void
   1841 fxp_mc_setup(struct fxp_softc *sc)
   1842 {
   1843 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   1844 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1845 	struct ethercom *ec = &sc->sc_ethercom;
   1846 	struct ether_multi *enm;
   1847 	struct ether_multistep step;
   1848 	int count, nmcasts;
   1849 
   1850 #ifdef DIAGNOSTIC
   1851 	if (sc->sc_txpending)
   1852 		panic("fxp_mc_setup: pending transmissions");
   1853 #endif
   1854 
   1855 	ifp->if_flags &= ~IFF_ALLMULTI;
   1856 
   1857 	/*
   1858 	 * Initialize multicast setup descriptor.
   1859 	 */
   1860 	nmcasts = 0;
   1861 	ETHER_FIRST_MULTI(step, ec, enm);
   1862 	while (enm != NULL) {
   1863 		/*
   1864 		 * Check for too many multicast addresses or if we're
   1865 		 * listening to a range.  Either way, we simply have
   1866 		 * to accept all multicasts.
   1867 		 */
   1868 		if (nmcasts >= MAXMCADDR ||
   1869 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1870 		    ETHER_ADDR_LEN) != 0) {
   1871 			/*
   1872 			 * Callers of this function must do the
   1873 			 * right thing with this.  If we're called
   1874 			 * from outside fxp_init(), the caller must
   1875 			 * detect if the state if IFF_ALLMULTI changes.
   1876 			 * If it does, the caller must then call
   1877 			 * fxp_init(), since allmulti is handled by
   1878 			 * the config block.
   1879 			 */
   1880 			ifp->if_flags |= IFF_ALLMULTI;
   1881 			return;
   1882 		}
   1883 		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   1884 		    ETHER_ADDR_LEN);
   1885 		nmcasts++;
   1886 		ETHER_NEXT_MULTI(step, enm);
   1887 	}
   1888 
   1889 	/* BIG_ENDIAN: no need to swap to store 0 */
   1890 	mcsp->cb_status = 0;
   1891 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   1892 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   1893 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   1894 
   1895 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1896 
   1897 	/*
   1898 	 * Wait until the command unit is not active.  This should never
   1899 	 * happen since nothing is queued, but make sure anyway.
   1900 	 */
   1901 	count = 100;
   1902 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   1903 	    FXP_SCB_CUS_ACTIVE && --count)
   1904 		DELAY(1);
   1905 	if (count == 0) {
   1906 		printf("%s at line %d: command queue timeout\n",
   1907 		    sc->sc_dev.dv_xname, __LINE__);
   1908 		return;
   1909 	}
   1910 
   1911 	/*
   1912 	 * Start the multicast setup command/DMA.
   1913 	 */
   1914 	fxp_scb_wait(sc);
   1915 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   1916 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1917 
   1918 	/* ...and wait for it to complete. */
   1919 	count = 1000;
   1920 	do {
   1921 		FXP_CDMCSSYNC(sc,
   1922 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1923 		DELAY(1);
   1924 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   1925 	if (count == 0) {
   1926 		printf("%s at line %d: dmasync timeout\n",
   1927 		    sc->sc_dev.dv_xname, __LINE__);
   1928 		return;
   1929 	}
   1930 }
   1931 
   1932 int
   1933 fxp_enable(struct fxp_softc *sc)
   1934 {
   1935 
   1936 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   1937 		if ((*sc->sc_enable)(sc) != 0) {
   1938 			printf("%s: device enable failed\n",
   1939 			    sc->sc_dev.dv_xname);
   1940 			return (EIO);
   1941 		}
   1942 	}
   1943 
   1944 	sc->sc_enabled = 1;
   1945 	return (0);
   1946 }
   1947 
   1948 void
   1949 fxp_disable(struct fxp_softc *sc)
   1950 {
   1951 
   1952 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   1953 		(*sc->sc_disable)(sc);
   1954 		sc->sc_enabled = 0;
   1955 	}
   1956 }
   1957 
   1958 /*
   1959  * fxp_activate:
   1960  *
   1961  *	Handle device activation/deactivation requests.
   1962  */
   1963 int
   1964 fxp_activate(struct device *self, enum devact act)
   1965 {
   1966 	struct fxp_softc *sc = (void *) self;
   1967 	int s, error = 0;
   1968 
   1969 	s = splnet();
   1970 	switch (act) {
   1971 	case DVACT_ACTIVATE:
   1972 		error = EOPNOTSUPP;
   1973 		break;
   1974 
   1975 	case DVACT_DEACTIVATE:
   1976 		if (sc->sc_flags & FXPF_MII)
   1977 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   1978 			    MII_OFFSET_ANY);
   1979 		if_deactivate(&sc->sc_ethercom.ec_if);
   1980 		break;
   1981 	}
   1982 	splx(s);
   1983 
   1984 	return (error);
   1985 }
   1986 
   1987 /*
   1988  * fxp_detach:
   1989  *
   1990  *	Detach an i82557 interface.
   1991  */
   1992 int
   1993 fxp_detach(struct fxp_softc *sc)
   1994 {
   1995 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1996 	int i;
   1997 
   1998 	/* Succeed now if there's no work to do. */
   1999 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2000 		return (0);
   2001 
   2002 	/* Unhook our tick handler. */
   2003 	callout_stop(&sc->sc_callout);
   2004 
   2005 	if (sc->sc_flags & FXPF_MII) {
   2006 		/* Detach all PHYs */
   2007 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2008 	}
   2009 
   2010 	/* Delete all remaining media. */
   2011 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2012 
   2013 #if NRND > 0
   2014 	rnd_detach_source(&sc->rnd_source);
   2015 #endif
   2016 	ether_ifdetach(ifp);
   2017 	if_detach(ifp);
   2018 
   2019 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2020 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2021 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2022 	}
   2023 
   2024 	for (i = 0; i < FXP_NTXCB; i++) {
   2025 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2026 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2027 	}
   2028 
   2029 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2030 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2031 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2032 	    sizeof(struct fxp_control_data));
   2033 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2034 
   2035 	shutdownhook_disestablish(sc->sc_sdhook);
   2036 	powerhook_disestablish(sc->sc_powerhook);
   2037 
   2038 	return (0);
   2039 }
   2040