i82557.c revision 1.64 1 /* $NetBSD: i82557.c,v 1.64 2002/04/05 19:51:04 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.64 2002/04/05 19:51:04 thorpej Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91
92 #include <machine/endian.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #if NRND > 0
97 #include <sys/rnd.h>
98 #endif
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111
112 #include <dev/mii/miivar.h>
113
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116
117 #include <dev/microcode/i8255x/rcvbundl.h>
118
119 /*
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
127 */
128 #define RFA_ALIGNMENT_FUDGE 2
129
130 /*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138 const u_int8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
174 };
175
176 void fxp_mii_initmedia(struct fxp_softc *);
177 int fxp_mii_mediachange(struct ifnet *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 void fxp_rxintr(struct fxp_softc *);
192
193 void fxp_rxdrain(struct fxp_softc *);
194 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
195 int fxp_mdi_read(struct device *, int, int);
196 void fxp_statchg(struct device *);
197 void fxp_mdi_write(struct device *, int, int, int);
198 void fxp_autosize_eeprom(struct fxp_softc*);
199 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
200 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
201 void fxp_eeprom_update_cksum(struct fxp_softc *);
202 void fxp_get_info(struct fxp_softc *, u_int8_t *);
203 void fxp_tick(void *);
204 void fxp_mc_setup(struct fxp_softc *);
205 void fxp_load_ucode(struct fxp_softc *);
206
207 void fxp_shutdown(void *);
208 void fxp_power(int, void *);
209
210 int fxp_copy_small = 0;
211
212 /*
213 * Variables for interrupt mitigating microcode.
214 */
215 int fxp_int_delay = 1000; /* usec */
216 int fxp_bundle_max = 6; /* packets */
217
218 struct fxp_phytype {
219 int fp_phy; /* type of PHY, -1 for MII at the end. */
220 void (*fp_init)(struct fxp_softc *);
221 } fxp_phytype_table[] = {
222 { FXP_PHY_80C24, fxp_80c24_initmedia },
223 { -1, fxp_mii_initmedia },
224 };
225
226 /*
227 * Set initial transmit threshold at 64 (512 bytes). This is
228 * increased by 64 (512 bytes) at a time, to maximum of 192
229 * (1536 bytes), if an underrun occurs.
230 */
231 static int tx_threshold = 64;
232
233 /*
234 * Wait for the previous command to be accepted (but not necessarily
235 * completed).
236 */
237 static __inline void
238 fxp_scb_wait(struct fxp_softc *sc)
239 {
240 int i = 10000;
241
242 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
243 delay(2);
244 if (i == 0)
245 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
246 }
247
248 /*
249 * Submit a command to the i82557.
250 */
251 static __inline void
252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253 {
254
255 if (cmd == FXP_SCB_COMMAND_CU_RESUME &&
256 (sc->sc_flags & FXPF_FIX_RESUME_BUG) != 0) {
257 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_NOP);
258 fxp_scb_wait(sc);
259 }
260 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
261 }
262
263 /*
264 * Finish attaching an i82557 interface. Called by bus-specific front-end.
265 */
266 void
267 fxp_attach(struct fxp_softc *sc)
268 {
269 u_int8_t enaddr[ETHER_ADDR_LEN];
270 struct ifnet *ifp;
271 bus_dma_segment_t seg;
272 int rseg, i, error;
273 struct fxp_phytype *fp;
274
275 callout_init(&sc->sc_callout);
276
277 /* Start out using the standard RFA. */
278 sc->sc_rfa_size = RFA_SIZE;
279
280 /*
281 * Enable some good stuff on i82558 and later.
282 */
283 if (sc->sc_rev >= FXP_REV_82558_A4) {
284 /* Enable the extended TxCB. */
285 sc->sc_flags |= FXPF_EXT_TXCB;
286 }
287
288 /*
289 * Allocate the control data structures, and create and load the
290 * DMA map for it.
291 */
292 if ((error = bus_dmamem_alloc(sc->sc_dmat,
293 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
294 0)) != 0) {
295 printf("%s: unable to allocate control data, error = %d\n",
296 sc->sc_dev.dv_xname, error);
297 goto fail_0;
298 }
299
300 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
301 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
302 BUS_DMA_COHERENT)) != 0) {
303 printf("%s: unable to map control data, error = %d\n",
304 sc->sc_dev.dv_xname, error);
305 goto fail_1;
306 }
307 sc->sc_cdseg = seg;
308 sc->sc_cdnseg = rseg;
309
310 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
311
312 if ((error = bus_dmamap_create(sc->sc_dmat,
313 sizeof(struct fxp_control_data), 1,
314 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
315 printf("%s: unable to create control data DMA map, "
316 "error = %d\n", sc->sc_dev.dv_xname, error);
317 goto fail_2;
318 }
319
320 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
321 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
322 0)) != 0) {
323 printf("%s: can't load control data DMA map, error = %d\n",
324 sc->sc_dev.dv_xname, error);
325 goto fail_3;
326 }
327
328 /*
329 * Create the transmit buffer DMA maps.
330 */
331 for (i = 0; i < FXP_NTXCB; i++) {
332 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
333 FXP_NTXSEG, MCLBYTES, 0, 0,
334 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
335 printf("%s: unable to create tx DMA map %d, "
336 "error = %d\n", sc->sc_dev.dv_xname, i, error);
337 goto fail_4;
338 }
339 }
340
341 /*
342 * Create the receive buffer DMA maps.
343 */
344 for (i = 0; i < FXP_NRFABUFS; i++) {
345 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
346 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
347 printf("%s: unable to create rx DMA map %d, "
348 "error = %d\n", sc->sc_dev.dv_xname, i, error);
349 goto fail_5;
350 }
351 }
352
353 /* Initialize MAC address and media structures. */
354 fxp_get_info(sc, enaddr);
355
356 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
357 ether_sprintf(enaddr));
358
359 ifp = &sc->sc_ethercom.ec_if;
360
361 /*
362 * Get info about our media interface, and initialize it. Note
363 * the table terminates itself with a phy of -1, indicating
364 * that we're using MII.
365 */
366 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
367 if (fp->fp_phy == sc->phy_primary_device)
368 break;
369 (*fp->fp_init)(sc);
370
371 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
372 ifp->if_softc = sc;
373 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
374 ifp->if_ioctl = fxp_ioctl;
375 ifp->if_start = fxp_start;
376 ifp->if_watchdog = fxp_watchdog;
377 ifp->if_init = fxp_init;
378 ifp->if_stop = fxp_stop;
379 IFQ_SET_READY(&ifp->if_snd);
380
381 /*
382 * We can support 802.1Q VLAN-sized frames.
383 */
384 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
385
386 /*
387 * Attach the interface.
388 */
389 if_attach(ifp);
390 ether_ifattach(ifp, enaddr);
391 #if NRND > 0
392 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
393 RND_TYPE_NET, 0);
394 #endif
395
396 #ifdef FXP_EVENT_COUNTERS
397 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
398 NULL, sc->sc_dev.dv_xname, "txstall");
399 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
400 NULL, sc->sc_dev.dv_xname, "txintr");
401 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
402 NULL, sc->sc_dev.dv_xname, "rxintr");
403 #endif /* FXP_EVENT_COUNTERS */
404
405 /*
406 * Add shutdown hook so that DMA is disabled prior to reboot. Not
407 * doing do could allow DMA to corrupt kernel memory during the
408 * reboot before the driver initializes.
409 */
410 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
411 if (sc->sc_sdhook == NULL)
412 printf("%s: WARNING: unable to establish shutdown hook\n",
413 sc->sc_dev.dv_xname);
414 /*
415 * Add suspend hook, for similar reasons..
416 */
417 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
418 if (sc->sc_powerhook == NULL)
419 printf("%s: WARNING: unable to establish power hook\n",
420 sc->sc_dev.dv_xname);
421
422 /* The attach is successful. */
423 sc->sc_flags |= FXPF_ATTACHED;
424
425 return;
426
427 /*
428 * Free any resources we've allocated during the failed attach
429 * attempt. Do this in reverse order and fall though.
430 */
431 fail_5:
432 for (i = 0; i < FXP_NRFABUFS; i++) {
433 if (sc->sc_rxmaps[i] != NULL)
434 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
435 }
436 fail_4:
437 for (i = 0; i < FXP_NTXCB; i++) {
438 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
439 bus_dmamap_destroy(sc->sc_dmat,
440 FXP_DSTX(sc, i)->txs_dmamap);
441 }
442 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
443 fail_3:
444 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
445 fail_2:
446 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
447 sizeof(struct fxp_control_data));
448 fail_1:
449 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
450 fail_0:
451 return;
452 }
453
454 void
455 fxp_mii_initmedia(struct fxp_softc *sc)
456 {
457 int flags;
458
459 sc->sc_flags |= FXPF_MII;
460
461 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
462 sc->sc_mii.mii_readreg = fxp_mdi_read;
463 sc->sc_mii.mii_writereg = fxp_mdi_write;
464 sc->sc_mii.mii_statchg = fxp_statchg;
465 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
466 fxp_mii_mediastatus);
467
468 flags = MIIF_NOISOLATE;
469 if (sc->sc_rev >= FXP_REV_82558_A4)
470 flags |= MIIF_DOPAUSE;
471 /*
472 * The i82557 wedges if all of its PHYs are isolated!
473 */
474 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
475 MII_OFFSET_ANY, flags);
476 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
477 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
478 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
479 } else
480 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
481 }
482
483 void
484 fxp_80c24_initmedia(struct fxp_softc *sc)
485 {
486
487 /*
488 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
489 * doesn't have a programming interface of any sort. The
490 * media is sensed automatically based on how the link partner
491 * is configured. This is, in essence, manual configuration.
492 */
493 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
494 sc->sc_dev.dv_xname);
495 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
496 fxp_80c24_mediastatus);
497 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
498 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
499 }
500
501 /*
502 * Device shutdown routine. Called at system shutdown after sync. The
503 * main purpose of this routine is to shut off receiver DMA so that
504 * kernel memory doesn't get clobbered during warmboot.
505 */
506 void
507 fxp_shutdown(void *arg)
508 {
509 struct fxp_softc *sc = arg;
510
511 /*
512 * Since the system's going to halt shortly, don't bother
513 * freeing mbufs.
514 */
515 fxp_stop(&sc->sc_ethercom.ec_if, 0);
516 }
517 /*
518 * Power handler routine. Called when the system is transitioning
519 * into/out of power save modes. As with fxp_shutdown, the main
520 * purpose of this routine is to shut off receiver DMA so it doesn't
521 * clobber kernel memory at the wrong time.
522 */
523 void
524 fxp_power(int why, void *arg)
525 {
526 struct fxp_softc *sc = arg;
527 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
528 int s;
529
530 s = splnet();
531 switch (why) {
532 case PWR_SUSPEND:
533 case PWR_STANDBY:
534 fxp_stop(ifp, 0);
535 break;
536 case PWR_RESUME:
537 if (ifp->if_flags & IFF_UP)
538 fxp_init(ifp);
539 break;
540 case PWR_SOFTSUSPEND:
541 case PWR_SOFTSTANDBY:
542 case PWR_SOFTRESUME:
543 break;
544 }
545 splx(s);
546 }
547
548 /*
549 * Initialize the interface media.
550 */
551 void
552 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
553 {
554 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
555
556 /*
557 * Reset to a stable state.
558 */
559 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
560 DELAY(10);
561
562 sc->sc_eeprom_size = 0;
563 fxp_autosize_eeprom(sc);
564 if(sc->sc_eeprom_size == 0) {
565 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
566 sc->sc_eeprom_size = 6; /* XXX panic here? */
567 }
568 #ifdef DEBUG
569 printf("%s: detected %d word EEPROM\n",
570 sc->sc_dev.dv_xname,
571 1 << sc->sc_eeprom_size);
572 #endif
573
574 /*
575 * Get info about the primary PHY
576 */
577 fxp_read_eeprom(sc, &data, 6, 1);
578 sc->phy_primary_device =
579 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
580
581 /*
582 * Read MAC address.
583 */
584 fxp_read_eeprom(sc, myea, 0, 3);
585 enaddr[0] = myea[0] & 0xff;
586 enaddr[1] = myea[0] >> 8;
587 enaddr[2] = myea[1] & 0xff;
588 enaddr[3] = myea[1] >> 8;
589 enaddr[4] = myea[2] & 0xff;
590 enaddr[5] = myea[2] >> 8;
591
592 /*
593 * Systems based on the ICH2/ICH2-M chip from Intel, as well
594 * as some i82559 designs, have a defect where the chip can
595 * cause a PCI protocol violation if it receives a CU_RESUME
596 * command when it is entering the IDLE state.
597 *
598 * The work-around is to disable Dynamic Standby Mode, so that
599 * the chip never deasserts #CLKRUN, and always remains in the
600 * active state.
601 *
602 * Unfortunately, the only way to disable Dynamic Standby is
603 * to frob an EEPROM setting and reboot (the EEPROM setting
604 * is only consulted when the PCI bus comes out of reset).
605 *
606 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
607 */
608 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
609 fxp_read_eeprom(sc, &data, 10, 1);
610 if (data & 0x02) { /* STB enable */
611 printf("%s: disabling Dynamic Standby Mode in EEPROM\n",
612 sc->sc_dev.dv_xname);
613 data &= ~0x02;
614 fxp_write_eeprom(sc, &data, 10, 1);
615 printf("%s: new EEPROM ID: 0x%04x\n",
616 sc->sc_dev.dv_xname, data);
617 fxp_eeprom_update_cksum(sc);
618 printf("%s: PLEASE RESET YOUR SYSTEM FOR CHANGE TO "
619 "TAKE EFFECT!\n", sc->sc_dev.dv_xname);
620 } else {
621 #if 1
622 /*
623 * If Dynamic Standby Mode is disabled, we don't
624 * need to work around the Resume bug anymore.
625 */
626 sc->sc_flags &= ~FXPF_HAS_RESUME_BUG;
627 #endif
628 }
629 }
630 }
631
632 static void
633 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
634 {
635 uint16_t reg;
636 int x;
637
638 for (x = 1 << (len - 1); x != 0; x >>= 1) {
639 if (data & x)
640 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
641 else
642 reg = FXP_EEPROM_EECS;
643 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
644 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
645 reg | FXP_EEPROM_EESK);
646 DELAY(4);
647 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
648 DELAY(4);
649 }
650 }
651
652 /*
653 * Figure out EEPROM size.
654 *
655 * 559's can have either 64-word or 256-word EEPROMs, the 558
656 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
657 * talks about the existance of 16 to 256 word EEPROMs.
658 *
659 * The only known sizes are 64 and 256, where the 256 version is used
660 * by CardBus cards to store CIS information.
661 *
662 * The address is shifted in msb-to-lsb, and after the last
663 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
664 * after which follows the actual data. We try to detect this zero, by
665 * probing the data-out bit in the EEPROM control register just after
666 * having shifted in a bit. If the bit is zero, we assume we've
667 * shifted enough address bits. The data-out should be tri-state,
668 * before this, which should translate to a logical one.
669 *
670 * Other ways to do this would be to try to read a register with known
671 * contents with a varying number of address bits, but no such
672 * register seem to be available. The high bits of register 10 are 01
673 * on the 558 and 559, but apparently not on the 557.
674 *
675 * The Linux driver computes a checksum on the EEPROM data, but the
676 * value of this checksum is not very well documented.
677 */
678
679 void
680 fxp_autosize_eeprom(struct fxp_softc *sc)
681 {
682 int x;
683
684 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
685
686 /* Shift in read opcode. */
687 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
688
689 /*
690 * Shift in address, wait for the dummy zero following a correct
691 * address shift.
692 */
693 for (x = 1; x <= 8; x++) {
694 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
695 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
696 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
697 DELAY(4);
698 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
699 FXP_EEPROM_EEDO) == 0)
700 break;
701 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
702 DELAY(4);
703 }
704 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
705 DELAY(4);
706 if(x != 6 && x != 8) {
707 #ifdef DEBUG
708 printf("%s: strange EEPROM size (%d)\n",
709 sc->sc_dev.dv_xname, 1 << x);
710 #endif
711 } else
712 sc->sc_eeprom_size = x;
713 }
714
715 /*
716 * Read from the serial EEPROM. Basically, you manually shift in
717 * the read opcode (one bit at a time) and then shift in the address,
718 * and then you shift out the data (all of this one bit at a time).
719 * The word size is 16 bits, so you have to provide the address for
720 * every 16 bits of data.
721 */
722 void
723 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
724 {
725 u_int16_t reg;
726 int i, x;
727
728 for (i = 0; i < words; i++) {
729 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
730
731 /* Shift in read opcode. */
732 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
733
734 /* Shift in address. */
735 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
736
737 reg = FXP_EEPROM_EECS;
738 data[i] = 0;
739
740 /* Shift out data. */
741 for (x = 16; x > 0; x--) {
742 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
743 reg | FXP_EEPROM_EESK);
744 DELAY(4);
745 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
746 FXP_EEPROM_EEDO)
747 data[i] |= (1 << (x - 1));
748 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
749 DELAY(4);
750 }
751 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
752 DELAY(4);
753 }
754 }
755
756 /*
757 * Write data to the serial EEPROM.
758 */
759 void
760 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
761 {
762 int i, j;
763
764 for (i = 0; i < words; i++) {
765 /* Erase/write enable. */
766 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
767 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
768 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
769 sc->sc_eeprom_size);
770 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
771 DELAY(4);
772
773 /* Shift in write opcode, address, data. */
774 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
775 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
776 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
777 fxp_eeprom_shiftin(sc, data[i], 16);
778 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
779 DELAY(4);
780
781 /* Wait for the EEPROM to finish up. */
782 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
783 DELAY(4);
784 for (j = 0; j < 1000; j++) {
785 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
786 FXP_EEPROM_EEDO)
787 break;
788 DELAY(50);
789 }
790 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
791 DELAY(4);
792
793 /* Erase/write disable. */
794 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
795 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
796 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
797 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
798 DELAY(4);
799 }
800 }
801
802 /*
803 * Update the checksum of the EEPROM.
804 */
805 void
806 fxp_eeprom_update_cksum(struct fxp_softc *sc)
807 {
808 int i;
809 uint16_t data, cksum;
810
811 cksum = 0;
812 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
813 fxp_read_eeprom(sc, &data, i, 1);
814 cksum += data;
815 }
816 i = (1 << sc->sc_eeprom_size) - 1;
817 cksum = 0xbaba - cksum;
818 fxp_read_eeprom(sc, &data, i, 1);
819 fxp_write_eeprom(sc, &cksum, i, 1);
820 printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
821 sc->sc_dev.dv_xname, i, data, cksum);
822 }
823
824 /*
825 * Start packet transmission on the interface.
826 */
827 void
828 fxp_start(struct ifnet *ifp)
829 {
830 struct fxp_softc *sc = ifp->if_softc;
831 struct mbuf *m0, *m;
832 struct fxp_txdesc *txd;
833 struct fxp_txsoft *txs;
834 bus_dmamap_t dmamap;
835 int error, lasttx, nexttx, opending, seg;
836
837 /*
838 * If we want a re-init, bail out now.
839 */
840 if (sc->sc_flags & FXPF_WANTINIT) {
841 ifp->if_flags |= IFF_OACTIVE;
842 return;
843 }
844
845 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
846 return;
847
848 /*
849 * Remember the previous txpending and the current lasttx.
850 */
851 opending = sc->sc_txpending;
852 lasttx = sc->sc_txlast;
853
854 /*
855 * Loop through the send queue, setting up transmit descriptors
856 * until we drain the queue, or use up all available transmit
857 * descriptors.
858 */
859 for (;;) {
860 /*
861 * Grab a packet off the queue.
862 */
863 IFQ_POLL(&ifp->if_snd, m0);
864 if (m0 == NULL)
865 break;
866 m = NULL;
867
868 if (sc->sc_txpending == FXP_NTXCB) {
869 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
870 break;
871 }
872
873 /*
874 * Get the next available transmit descriptor.
875 */
876 nexttx = FXP_NEXTTX(sc->sc_txlast);
877 txd = FXP_CDTX(sc, nexttx);
878 txs = FXP_DSTX(sc, nexttx);
879 dmamap = txs->txs_dmamap;
880
881 /*
882 * Load the DMA map. If this fails, the packet either
883 * didn't fit in the allotted number of frags, or we were
884 * short on resources. In this case, we'll copy and try
885 * again.
886 */
887 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
888 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
889 MGETHDR(m, M_DONTWAIT, MT_DATA);
890 if (m == NULL) {
891 printf("%s: unable to allocate Tx mbuf\n",
892 sc->sc_dev.dv_xname);
893 break;
894 }
895 if (m0->m_pkthdr.len > MHLEN) {
896 MCLGET(m, M_DONTWAIT);
897 if ((m->m_flags & M_EXT) == 0) {
898 printf("%s: unable to allocate Tx "
899 "cluster\n", sc->sc_dev.dv_xname);
900 m_freem(m);
901 break;
902 }
903 }
904 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
905 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
906 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
907 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
908 if (error) {
909 printf("%s: unable to load Tx buffer, "
910 "error = %d\n", sc->sc_dev.dv_xname, error);
911 break;
912 }
913 }
914
915 IFQ_DEQUEUE(&ifp->if_snd, m0);
916 if (m != NULL) {
917 m_freem(m0);
918 m0 = m;
919 }
920
921 /* Initialize the fraglist. */
922 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
923 txd->txd_tbd[seg].tb_addr =
924 htole32(dmamap->dm_segs[seg].ds_addr);
925 txd->txd_tbd[seg].tb_size =
926 htole32(dmamap->dm_segs[seg].ds_len);
927 }
928
929 /* Sync the DMA map. */
930 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
931 BUS_DMASYNC_PREWRITE);
932
933 /*
934 * Store a pointer to the packet so we can free it later.
935 */
936 txs->txs_mbuf = m0;
937
938 /*
939 * Initialize the transmit descriptor.
940 */
941 /* BIG_ENDIAN: no need to swap to store 0 */
942 txd->txd_txcb.cb_status = 0;
943 txd->txd_txcb.cb_command =
944 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
945 txd->txd_txcb.tx_threshold = tx_threshold;
946 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
947
948 FXP_CDTXSYNC(sc, nexttx,
949 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
950
951 /* Advance the tx pointer. */
952 sc->sc_txpending++;
953 sc->sc_txlast = nexttx;
954
955 #if NBPFILTER > 0
956 /*
957 * Pass packet to bpf if there is a listener.
958 */
959 if (ifp->if_bpf)
960 bpf_mtap(ifp->if_bpf, m0);
961 #endif
962 }
963
964 if (sc->sc_txpending == FXP_NTXCB) {
965 /* No more slots; notify upper layer. */
966 ifp->if_flags |= IFF_OACTIVE;
967 }
968
969 if (sc->sc_txpending != opending) {
970 /*
971 * We enqueued packets. If the transmitter was idle,
972 * reset the txdirty pointer.
973 */
974 if (opending == 0)
975 sc->sc_txdirty = FXP_NEXTTX(lasttx);
976
977 /*
978 * Cause the chip to interrupt and suspend command
979 * processing once the last packet we've enqueued
980 * has been transmitted.
981 */
982 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
983 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
984 FXP_CDTXSYNC(sc, sc->sc_txlast,
985 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
986
987 /*
988 * The entire packet chain is set up. Clear the suspend bit
989 * on the command prior to the first packet we set up.
990 */
991 FXP_CDTXSYNC(sc, lasttx,
992 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
993 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
994 htole16(~FXP_CB_COMMAND_S);
995 FXP_CDTXSYNC(sc, lasttx,
996 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
997
998 /*
999 * Issue a Resume command in case the chip was suspended.
1000 */
1001 fxp_scb_wait(sc);
1002 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1003
1004 /* Set a watchdog timer in case the chip flakes out. */
1005 ifp->if_timer = 5;
1006 }
1007 }
1008
1009 /*
1010 * Process interface interrupts.
1011 */
1012 int
1013 fxp_intr(void *arg)
1014 {
1015 struct fxp_softc *sc = arg;
1016 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1017 bus_dmamap_t rxmap;
1018 int claimed = 0;
1019 u_int8_t statack;
1020
1021 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1022 return (0);
1023 /*
1024 * If the interface isn't running, don't try to
1025 * service the interrupt.. just ack it and bail.
1026 */
1027 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1028 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1029 if (statack) {
1030 claimed = 1;
1031 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1032 }
1033 return (claimed);
1034 }
1035
1036 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1037 claimed = 1;
1038
1039 /*
1040 * First ACK all the interrupts in this pass.
1041 */
1042 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1043
1044 /*
1045 * Process receiver interrupts. If a no-resource (RNR)
1046 * condition exists, get whatever packets we can and
1047 * re-start the receiver.
1048 */
1049 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1050 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1051 fxp_rxintr(sc);
1052 }
1053
1054 if (statack & FXP_SCB_STATACK_RNR) {
1055 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1056 fxp_scb_wait(sc);
1057 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1058 rxmap->dm_segs[0].ds_addr +
1059 RFA_ALIGNMENT_FUDGE);
1060 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1061 }
1062
1063 /*
1064 * Free any finished transmit mbuf chains.
1065 */
1066 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1067 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1068 fxp_txintr(sc);
1069
1070 /*
1071 * Try to get more packets going.
1072 */
1073 fxp_start(ifp);
1074
1075 if (sc->sc_txpending == 0) {
1076 /*
1077 * If we want a re-init, do that now.
1078 */
1079 if (sc->sc_flags & FXPF_WANTINIT)
1080 (void) fxp_init(ifp);
1081 }
1082 }
1083 }
1084
1085 #if NRND > 0
1086 if (claimed)
1087 rnd_add_uint32(&sc->rnd_source, statack);
1088 #endif
1089 return (claimed);
1090 }
1091
1092 /*
1093 * Handle transmit completion interrupts.
1094 */
1095 void
1096 fxp_txintr(struct fxp_softc *sc)
1097 {
1098 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1099 struct fxp_txdesc *txd;
1100 struct fxp_txsoft *txs;
1101 int i;
1102 u_int16_t txstat;
1103
1104 ifp->if_flags &= ~IFF_OACTIVE;
1105 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1106 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1107 txd = FXP_CDTX(sc, i);
1108 txs = FXP_DSTX(sc, i);
1109
1110 FXP_CDTXSYNC(sc, i,
1111 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1112
1113 txstat = le16toh(txd->txd_txcb.cb_status);
1114
1115 if ((txstat & FXP_CB_STATUS_C) == 0)
1116 break;
1117
1118 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1119 0, txs->txs_dmamap->dm_mapsize,
1120 BUS_DMASYNC_POSTWRITE);
1121 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1122 m_freem(txs->txs_mbuf);
1123 txs->txs_mbuf = NULL;
1124 }
1125
1126 /* Update the dirty transmit buffer pointer. */
1127 sc->sc_txdirty = i;
1128
1129 /*
1130 * Cancel the watchdog timer if there are no pending
1131 * transmissions.
1132 */
1133 if (sc->sc_txpending == 0)
1134 ifp->if_timer = 0;
1135 }
1136
1137 /*
1138 * Handle receive interrupts.
1139 */
1140 void
1141 fxp_rxintr(struct fxp_softc *sc)
1142 {
1143 struct ethercom *ec = &sc->sc_ethercom;
1144 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1145 struct mbuf *m, *m0;
1146 bus_dmamap_t rxmap;
1147 struct fxp_rfa *rfa;
1148 u_int16_t len, rxstat;
1149
1150 for (;;) {
1151 m = sc->sc_rxq.ifq_head;
1152 rfa = FXP_MTORFA(m);
1153 rxmap = M_GETCTX(m, bus_dmamap_t);
1154
1155 FXP_RFASYNC(sc, m,
1156 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1157
1158 rxstat = le16toh(rfa->rfa_status);
1159
1160 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1161 /*
1162 * We have processed all of the
1163 * receive buffers.
1164 */
1165 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1166 return;
1167 }
1168
1169 IF_DEQUEUE(&sc->sc_rxq, m);
1170
1171 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1172
1173 len = le16toh(rfa->actual_size) &
1174 (m->m_ext.ext_size - 1);
1175
1176 if (len < sizeof(struct ether_header)) {
1177 /*
1178 * Runt packet; drop it now.
1179 */
1180 FXP_INIT_RFABUF(sc, m);
1181 continue;
1182 }
1183
1184 /*
1185 * If support for 802.1Q VLAN sized frames is
1186 * enabled, we need to do some additional error
1187 * checking (as we are saving bad frames, in
1188 * order to receive the larger ones).
1189 */
1190 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1191 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1192 FXP_RFA_STATUS_RNR|
1193 FXP_RFA_STATUS_ALIGN|
1194 FXP_RFA_STATUS_CRC)) != 0) {
1195 FXP_INIT_RFABUF(sc, m);
1196 continue;
1197 }
1198
1199 /*
1200 * If the packet is small enough to fit in a
1201 * single header mbuf, allocate one and copy
1202 * the data into it. This greatly reduces
1203 * memory consumption when we receive lots
1204 * of small packets.
1205 *
1206 * Otherwise, we add a new buffer to the receive
1207 * chain. If this fails, we drop the packet and
1208 * recycle the old buffer.
1209 */
1210 if (fxp_copy_small != 0 && len <= MHLEN) {
1211 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1212 if (m == NULL)
1213 goto dropit;
1214 memcpy(mtod(m0, caddr_t),
1215 mtod(m, caddr_t), len);
1216 FXP_INIT_RFABUF(sc, m);
1217 m = m0;
1218 } else {
1219 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1220 dropit:
1221 ifp->if_ierrors++;
1222 FXP_INIT_RFABUF(sc, m);
1223 continue;
1224 }
1225 }
1226
1227 m->m_pkthdr.rcvif = ifp;
1228 m->m_pkthdr.len = m->m_len = len;
1229
1230 #if NBPFILTER > 0
1231 /*
1232 * Pass this up to any BPF listeners, but only
1233 * pass it up the stack it its for us.
1234 */
1235 if (ifp->if_bpf)
1236 bpf_mtap(ifp->if_bpf, m);
1237 #endif
1238
1239 /* Pass it on. */
1240 (*ifp->if_input)(ifp, m);
1241 }
1242 }
1243
1244 /*
1245 * Update packet in/out/collision statistics. The i82557 doesn't
1246 * allow you to access these counters without doing a fairly
1247 * expensive DMA to get _all_ of the statistics it maintains, so
1248 * we do this operation here only once per second. The statistics
1249 * counters in the kernel are updated from the previous dump-stats
1250 * DMA and then a new dump-stats DMA is started. The on-chip
1251 * counters are zeroed when the DMA completes. If we can't start
1252 * the DMA immediately, we don't wait - we just prepare to read
1253 * them again next time.
1254 */
1255 void
1256 fxp_tick(void *arg)
1257 {
1258 struct fxp_softc *sc = arg;
1259 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1260 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1261 int s;
1262
1263 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1264 return;
1265
1266 s = splnet();
1267
1268 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1269
1270 ifp->if_opackets += le32toh(sp->tx_good);
1271 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1272 if (sp->rx_good) {
1273 ifp->if_ipackets += le32toh(sp->rx_good);
1274 sc->sc_rxidle = 0;
1275 } else {
1276 sc->sc_rxidle++;
1277 }
1278 ifp->if_ierrors +=
1279 le32toh(sp->rx_crc_errors) +
1280 le32toh(sp->rx_alignment_errors) +
1281 le32toh(sp->rx_rnr_errors) +
1282 le32toh(sp->rx_overrun_errors);
1283 /*
1284 * If any transmit underruns occurred, bump up the transmit
1285 * threshold by another 512 bytes (64 * 8).
1286 */
1287 if (sp->tx_underruns) {
1288 ifp->if_oerrors += le32toh(sp->tx_underruns);
1289 if (tx_threshold < 192)
1290 tx_threshold += 64;
1291 }
1292
1293 /*
1294 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1295 * then assume the receiver has locked up and attempt to clear
1296 * the condition by reprogramming the multicast filter (actually,
1297 * resetting the interface). This is a work-around for a bug in
1298 * the 82557 where the receiver locks up if it gets certain types
1299 * of garbage in the syncronization bits prior to the packet header.
1300 * This bug is supposed to only occur in 10Mbps mode, but has been
1301 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1302 * speed transition).
1303 */
1304 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1305 (void) fxp_init(ifp);
1306 splx(s);
1307 return;
1308 }
1309 /*
1310 * If there is no pending command, start another stats
1311 * dump. Otherwise punt for now.
1312 */
1313 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1314 /*
1315 * Start another stats dump.
1316 */
1317 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1318 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1319 } else {
1320 /*
1321 * A previous command is still waiting to be accepted.
1322 * Just zero our copy of the stats and wait for the
1323 * next timer event to update them.
1324 */
1325 /* BIG_ENDIAN: no swap required to store 0 */
1326 sp->tx_good = 0;
1327 sp->tx_underruns = 0;
1328 sp->tx_total_collisions = 0;
1329
1330 sp->rx_good = 0;
1331 sp->rx_crc_errors = 0;
1332 sp->rx_alignment_errors = 0;
1333 sp->rx_rnr_errors = 0;
1334 sp->rx_overrun_errors = 0;
1335 }
1336
1337 if (sc->sc_flags & FXPF_MII) {
1338 /* Tick the MII clock. */
1339 mii_tick(&sc->sc_mii);
1340 }
1341
1342 splx(s);
1343
1344 /*
1345 * Schedule another timeout one second from now.
1346 */
1347 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1348 }
1349
1350 /*
1351 * Drain the receive queue.
1352 */
1353 void
1354 fxp_rxdrain(struct fxp_softc *sc)
1355 {
1356 bus_dmamap_t rxmap;
1357 struct mbuf *m;
1358
1359 for (;;) {
1360 IF_DEQUEUE(&sc->sc_rxq, m);
1361 if (m == NULL)
1362 break;
1363 rxmap = M_GETCTX(m, bus_dmamap_t);
1364 bus_dmamap_unload(sc->sc_dmat, rxmap);
1365 FXP_RXMAP_PUT(sc, rxmap);
1366 m_freem(m);
1367 }
1368 }
1369
1370 /*
1371 * Stop the interface. Cancels the statistics updater and resets
1372 * the interface.
1373 */
1374 void
1375 fxp_stop(struct ifnet *ifp, int disable)
1376 {
1377 struct fxp_softc *sc = ifp->if_softc;
1378 struct fxp_txsoft *txs;
1379 int i;
1380
1381 /*
1382 * Turn down interface (done early to avoid bad interactions
1383 * between panics, shutdown hooks, and the watchdog timer)
1384 */
1385 ifp->if_timer = 0;
1386 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1387
1388 /*
1389 * Cancel stats updater.
1390 */
1391 callout_stop(&sc->sc_callout);
1392 if (sc->sc_flags & FXPF_MII) {
1393 /* Down the MII. */
1394 mii_down(&sc->sc_mii);
1395 }
1396
1397 /*
1398 * Issue software reset. This unloads any microcode that
1399 * might already be loaded.
1400 */
1401 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1402 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1403 DELAY(50);
1404
1405 /*
1406 * Release any xmit buffers.
1407 */
1408 for (i = 0; i < FXP_NTXCB; i++) {
1409 txs = FXP_DSTX(sc, i);
1410 if (txs->txs_mbuf != NULL) {
1411 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1412 m_freem(txs->txs_mbuf);
1413 txs->txs_mbuf = NULL;
1414 }
1415 }
1416 sc->sc_txpending = 0;
1417
1418 if (disable) {
1419 fxp_rxdrain(sc);
1420 fxp_disable(sc);
1421 }
1422
1423 }
1424
1425 /*
1426 * Watchdog/transmission transmit timeout handler. Called when a
1427 * transmission is started on the interface, but no interrupt is
1428 * received before the timeout. This usually indicates that the
1429 * card has wedged for some reason.
1430 */
1431 void
1432 fxp_watchdog(struct ifnet *ifp)
1433 {
1434 struct fxp_softc *sc = ifp->if_softc;
1435
1436 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1437 ifp->if_oerrors++;
1438
1439 (void) fxp_init(ifp);
1440 }
1441
1442 /*
1443 * Initialize the interface. Must be called at splnet().
1444 */
1445 int
1446 fxp_init(struct ifnet *ifp)
1447 {
1448 struct fxp_softc *sc = ifp->if_softc;
1449 struct fxp_cb_config *cbp;
1450 struct fxp_cb_ias *cb_ias;
1451 struct fxp_txdesc *txd;
1452 bus_dmamap_t rxmap;
1453 int i, prm, save_bf, lrxen, allm, error = 0;
1454
1455 if ((error = fxp_enable(sc)) != 0)
1456 goto out;
1457
1458 /*
1459 * Cancel any pending I/O
1460 */
1461 fxp_stop(ifp, 0);
1462
1463 /*
1464 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1465 * flag, and this prevents the MII from detaching resulting in
1466 * a panic. The flags field should perhaps be split in runtime
1467 * flags and more static information. For now, just clear the
1468 * only other flag set.
1469 */
1470
1471 sc->sc_flags &= ~FXPF_WANTINIT;
1472
1473 /*
1474 * Initialize base of CBL and RFA memory. Loading with zero
1475 * sets it up for regular linear addressing.
1476 */
1477 fxp_scb_wait(sc);
1478 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1479 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1480
1481 fxp_scb_wait(sc);
1482 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1483
1484 /*
1485 * Initialize the multicast filter. Do this now, since we might
1486 * have to setup the config block differently.
1487 */
1488 fxp_mc_setup(sc);
1489
1490 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1491 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1492
1493 /*
1494 * In order to support receiving 802.1Q VLAN frames, we have to
1495 * enable "save bad frames", since they are 4 bytes larger than
1496 * the normal Ethernet maximum frame length. On i82558 and later,
1497 * we have a better mechanism for this.
1498 */
1499 save_bf = 0;
1500 lrxen = 0;
1501 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1502 if (sc->sc_rev < FXP_REV_82558_A4)
1503 save_bf = 1;
1504 else
1505 lrxen = 1;
1506 }
1507
1508 /*
1509 * Initialize base of dump-stats buffer.
1510 */
1511 fxp_scb_wait(sc);
1512 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1513 sc->sc_cddma + FXP_CDSTATSOFF);
1514 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1515 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1516
1517 cbp = &sc->sc_control_data->fcd_configcb;
1518 memset(cbp, 0, sizeof(struct fxp_cb_config));
1519
1520 /*
1521 * Load microcode for this controller.
1522 */
1523 fxp_load_ucode(sc);
1524
1525 /*
1526 * This copy is kind of disgusting, but there are a bunch of must be
1527 * zero and must be one bits in this structure and this is the easiest
1528 * way to initialize them all to proper values.
1529 */
1530 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1531
1532 /* BIG_ENDIAN: no need to swap to store 0 */
1533 cbp->cb_status = 0;
1534 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1535 FXP_CB_COMMAND_EL);
1536 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1537 cbp->link_addr = 0xffffffff; /* (no) next command */
1538 /* bytes in config block */
1539 cbp->byte_count = FXP_CONFIG_LEN;
1540 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1541 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1542 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1543 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1544 cbp->type_enable = 0; /* actually reserved */
1545 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1546 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1547 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1548 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1549 cbp->dma_mbce = 0; /* (disable) dma max counters */
1550 cbp->late_scb = 0; /* (don't) defer SCB update */
1551 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1552 cbp->ci_int = 1; /* interrupt on CU idle */
1553 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1554 cbp->ext_stats_dis = 1; /* disable extended counters */
1555 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1556 cbp->save_bf = save_bf;/* save bad frames */
1557 cbp->disc_short_rx = !prm; /* discard short packets */
1558 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1559 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1560 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1561 /* interface mode */
1562 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1563 cbp->csma_dis = 0; /* (don't) disable link */
1564 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1565 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1566 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1567 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1568 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1569 cbp->nsai = 1; /* (don't) disable source addr insert */
1570 cbp->preamble_length = 2; /* (7 byte) preamble */
1571 cbp->loopback = 0; /* (don't) loopback */
1572 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1573 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1574 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1575 cbp->promiscuous = prm; /* promiscuous mode */
1576 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1577 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1578 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1579 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1580 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1581 cbp->stripping = !prm; /* truncate rx packet to byte count */
1582 cbp->padding = 1; /* (do) pad short tx packets */
1583 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1584 cbp->long_rx_en = lrxen; /* long packet receive enable */
1585 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1586 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1587 /* must set wake_en in PMCSR also */
1588 cbp->force_fdx = 0; /* (don't) force full duplex */
1589 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1590 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1591 cbp->mc_all = allm; /* accept all multicasts */
1592
1593 if (sc->sc_rev < FXP_REV_82558_A4) {
1594 /*
1595 * The i82557 has no hardware flow control, the values
1596 * here are the defaults for the chip.
1597 */
1598 cbp->fc_delay_lsb = 0;
1599 cbp->fc_delay_msb = 0x40;
1600 cbp->pri_fc_thresh = 3;
1601 cbp->tx_fc_dis = 0;
1602 cbp->rx_fc_restop = 0;
1603 cbp->rx_fc_restart = 0;
1604 cbp->fc_filter = 0;
1605 cbp->pri_fc_loc = 1;
1606 } else {
1607 cbp->fc_delay_lsb = 0x1f;
1608 cbp->fc_delay_msb = 0x01;
1609 cbp->pri_fc_thresh = 3;
1610 cbp->tx_fc_dis = 0; /* enable transmit FC */
1611 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1612 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1613 cbp->fc_filter = !prm; /* drop FC frames to host */
1614 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1615 }
1616
1617 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1618
1619 /*
1620 * Start the config command/DMA.
1621 */
1622 fxp_scb_wait(sc);
1623 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1624 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1625 /* ...and wait for it to complete. */
1626 i = 1000;
1627 do {
1628 FXP_CDCONFIGSYNC(sc,
1629 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1630 DELAY(1);
1631 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1632 if (i == 0) {
1633 printf("%s at line %d: dmasync timeout\n",
1634 sc->sc_dev.dv_xname, __LINE__);
1635 return ETIMEDOUT;
1636 }
1637
1638 /*
1639 * Initialize the station address.
1640 */
1641 cb_ias = &sc->sc_control_data->fcd_iascb;
1642 /* BIG_ENDIAN: no need to swap to store 0 */
1643 cb_ias->cb_status = 0;
1644 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1645 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1646 cb_ias->link_addr = 0xffffffff;
1647 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1648
1649 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1650
1651 /*
1652 * Start the IAS (Individual Address Setup) command/DMA.
1653 */
1654 fxp_scb_wait(sc);
1655 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1656 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1657 /* ...and wait for it to complete. */
1658 i = 1000;
1659 do {
1660 FXP_CDIASSYNC(sc,
1661 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1662 DELAY(1);
1663 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1664 if (i == 0) {
1665 printf("%s at line %d: dmasync timeout\n",
1666 sc->sc_dev.dv_xname, __LINE__);
1667 return ETIMEDOUT;
1668 }
1669
1670 /*
1671 * Initialize the transmit descriptor ring. txlast is initialized
1672 * to the end of the list so that it will wrap around to the first
1673 * descriptor when the first packet is transmitted.
1674 */
1675 for (i = 0; i < FXP_NTXCB; i++) {
1676 txd = FXP_CDTX(sc, i);
1677 memset(txd, 0, sizeof(*txd));
1678 txd->txd_txcb.cb_command =
1679 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1680 txd->txd_txcb.link_addr =
1681 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1682 if (sc->sc_flags & FXPF_EXT_TXCB)
1683 txd->txd_txcb.tbd_array_addr =
1684 htole32(FXP_CDTBDADDR(sc, i) +
1685 (2 * sizeof(struct fxp_tbd)));
1686 else
1687 txd->txd_txcb.tbd_array_addr =
1688 htole32(FXP_CDTBDADDR(sc, i));
1689 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1690 }
1691 sc->sc_txpending = 0;
1692 sc->sc_txdirty = 0;
1693 sc->sc_txlast = FXP_NTXCB - 1;
1694
1695 /*
1696 * Initialize the receive buffer list.
1697 */
1698 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1699 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1700 rxmap = FXP_RXMAP_GET(sc);
1701 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1702 printf("%s: unable to allocate or map rx "
1703 "buffer %d, error = %d\n",
1704 sc->sc_dev.dv_xname,
1705 sc->sc_rxq.ifq_len, error);
1706 /*
1707 * XXX Should attempt to run with fewer receive
1708 * XXX buffers instead of just failing.
1709 */
1710 FXP_RXMAP_PUT(sc, rxmap);
1711 fxp_rxdrain(sc);
1712 goto out;
1713 }
1714 }
1715 sc->sc_rxidle = 0;
1716
1717 /*
1718 * Give the transmit ring to the chip. We do this by pointing
1719 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1720 * issuing a start command. It will execute the NOP and then
1721 * suspend, pointing at the first descriptor.
1722 */
1723 fxp_scb_wait(sc);
1724 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1725 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1726
1727 /*
1728 * Initialize receiver buffer area - RFA.
1729 */
1730 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1731 fxp_scb_wait(sc);
1732 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1733 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1734 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1735
1736 if (sc->sc_flags & FXPF_MII) {
1737 /*
1738 * Set current media.
1739 */
1740 mii_mediachg(&sc->sc_mii);
1741 }
1742
1743 /*
1744 * ...all done!
1745 */
1746 ifp->if_flags |= IFF_RUNNING;
1747 ifp->if_flags &= ~IFF_OACTIVE;
1748
1749 /*
1750 * Start the one second timer.
1751 */
1752 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1753
1754 /*
1755 * Attempt to start output on the interface.
1756 */
1757 fxp_start(ifp);
1758
1759 out:
1760 if (error) {
1761 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1762 ifp->if_timer = 0;
1763 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1764 }
1765 return (error);
1766 }
1767
1768 /*
1769 * Change media according to request.
1770 */
1771 int
1772 fxp_mii_mediachange(struct ifnet *ifp)
1773 {
1774 struct fxp_softc *sc = ifp->if_softc;
1775
1776 if (ifp->if_flags & IFF_UP)
1777 mii_mediachg(&sc->sc_mii);
1778 return (0);
1779 }
1780
1781 /*
1782 * Notify the world which media we're using.
1783 */
1784 void
1785 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1786 {
1787 struct fxp_softc *sc = ifp->if_softc;
1788
1789 if(sc->sc_enabled == 0) {
1790 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1791 ifmr->ifm_status = 0;
1792 return;
1793 }
1794
1795 mii_pollstat(&sc->sc_mii);
1796 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1797 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1798 }
1799
1800 int
1801 fxp_80c24_mediachange(struct ifnet *ifp)
1802 {
1803
1804 /* Nothing to do here. */
1805 return (0);
1806 }
1807
1808 void
1809 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1810 {
1811 struct fxp_softc *sc = ifp->if_softc;
1812
1813 /*
1814 * Media is currently-selected media. We cannot determine
1815 * the link status.
1816 */
1817 ifmr->ifm_status = 0;
1818 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1819 }
1820
1821 /*
1822 * Add a buffer to the end of the RFA buffer list.
1823 * Return 0 if successful, error code on failure.
1824 *
1825 * The RFA struct is stuck at the beginning of mbuf cluster and the
1826 * data pointer is fixed up to point just past it.
1827 */
1828 int
1829 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1830 {
1831 struct mbuf *m;
1832 int error;
1833
1834 MGETHDR(m, M_DONTWAIT, MT_DATA);
1835 if (m == NULL)
1836 return (ENOBUFS);
1837
1838 MCLGET(m, M_DONTWAIT);
1839 if ((m->m_flags & M_EXT) == 0) {
1840 m_freem(m);
1841 return (ENOBUFS);
1842 }
1843
1844 if (unload)
1845 bus_dmamap_unload(sc->sc_dmat, rxmap);
1846
1847 M_SETCTX(m, rxmap);
1848
1849 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1850 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1851 BUS_DMA_READ|BUS_DMA_NOWAIT);
1852 if (error) {
1853 printf("%s: can't load rx DMA map %d, error = %d\n",
1854 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1855 panic("fxp_add_rfabuf"); /* XXX */
1856 }
1857
1858 FXP_INIT_RFABUF(sc, m);
1859
1860 return (0);
1861 }
1862
1863 int
1864 fxp_mdi_read(struct device *self, int phy, int reg)
1865 {
1866 struct fxp_softc *sc = (struct fxp_softc *)self;
1867 int count = 10000;
1868 int value;
1869
1870 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1871 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1872
1873 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1874 && count--)
1875 DELAY(10);
1876
1877 if (count <= 0)
1878 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1879
1880 return (value & 0xffff);
1881 }
1882
1883 void
1884 fxp_statchg(struct device *self)
1885 {
1886 struct fxp_softc *sc = (void *) self;
1887
1888 /*
1889 * Determine whether or not we have to work-around the
1890 * Resume Bug.
1891 */
1892 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
1893 if (IFM_TYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
1894 sc->sc_flags |= FXPF_FIX_RESUME_BUG;
1895 else
1896 sc->sc_flags &= ~FXPF_FIX_RESUME_BUG;
1897 }
1898 }
1899
1900 void
1901 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1902 {
1903 struct fxp_softc *sc = (struct fxp_softc *)self;
1904 int count = 10000;
1905
1906 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1907 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1908 (value & 0xffff));
1909
1910 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1911 count--)
1912 DELAY(10);
1913
1914 if (count <= 0)
1915 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1916 }
1917
1918 int
1919 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1920 {
1921 struct fxp_softc *sc = ifp->if_softc;
1922 struct ifreq *ifr = (struct ifreq *)data;
1923 int s, error;
1924
1925 s = splnet();
1926
1927 switch (cmd) {
1928 case SIOCSIFMEDIA:
1929 case SIOCGIFMEDIA:
1930 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1931 break;
1932
1933 default:
1934 error = ether_ioctl(ifp, cmd, data);
1935 if (error == ENETRESET) {
1936 if (sc->sc_enabled) {
1937 /*
1938 * Multicast list has changed; set the
1939 * hardware filter accordingly.
1940 */
1941 if (sc->sc_txpending) {
1942 sc->sc_flags |= FXPF_WANTINIT;
1943 error = 0;
1944 } else
1945 error = fxp_init(ifp);
1946 } else
1947 error = 0;
1948 }
1949 break;
1950 }
1951
1952 /* Try to get more packets going. */
1953 if (sc->sc_enabled)
1954 fxp_start(ifp);
1955
1956 splx(s);
1957 return (error);
1958 }
1959
1960 /*
1961 * Program the multicast filter.
1962 *
1963 * This function must be called at splnet().
1964 */
1965 void
1966 fxp_mc_setup(struct fxp_softc *sc)
1967 {
1968 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1969 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1970 struct ethercom *ec = &sc->sc_ethercom;
1971 struct ether_multi *enm;
1972 struct ether_multistep step;
1973 int count, nmcasts;
1974
1975 #ifdef DIAGNOSTIC
1976 if (sc->sc_txpending)
1977 panic("fxp_mc_setup: pending transmissions");
1978 #endif
1979
1980 ifp->if_flags &= ~IFF_ALLMULTI;
1981
1982 /*
1983 * Initialize multicast setup descriptor.
1984 */
1985 nmcasts = 0;
1986 ETHER_FIRST_MULTI(step, ec, enm);
1987 while (enm != NULL) {
1988 /*
1989 * Check for too many multicast addresses or if we're
1990 * listening to a range. Either way, we simply have
1991 * to accept all multicasts.
1992 */
1993 if (nmcasts >= MAXMCADDR ||
1994 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1995 ETHER_ADDR_LEN) != 0) {
1996 /*
1997 * Callers of this function must do the
1998 * right thing with this. If we're called
1999 * from outside fxp_init(), the caller must
2000 * detect if the state if IFF_ALLMULTI changes.
2001 * If it does, the caller must then call
2002 * fxp_init(), since allmulti is handled by
2003 * the config block.
2004 */
2005 ifp->if_flags |= IFF_ALLMULTI;
2006 return;
2007 }
2008 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2009 ETHER_ADDR_LEN);
2010 nmcasts++;
2011 ETHER_NEXT_MULTI(step, enm);
2012 }
2013
2014 /* BIG_ENDIAN: no need to swap to store 0 */
2015 mcsp->cb_status = 0;
2016 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2017 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2018 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2019
2020 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2021
2022 /*
2023 * Wait until the command unit is not active. This should never
2024 * happen since nothing is queued, but make sure anyway.
2025 */
2026 count = 100;
2027 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2028 FXP_SCB_CUS_ACTIVE && --count)
2029 DELAY(1);
2030 if (count == 0) {
2031 printf("%s at line %d: command queue timeout\n",
2032 sc->sc_dev.dv_xname, __LINE__);
2033 return;
2034 }
2035
2036 /*
2037 * Start the multicast setup command/DMA.
2038 */
2039 fxp_scb_wait(sc);
2040 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2041 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2042
2043 /* ...and wait for it to complete. */
2044 count = 1000;
2045 do {
2046 FXP_CDMCSSYNC(sc,
2047 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2048 DELAY(1);
2049 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2050 if (count == 0) {
2051 printf("%s at line %d: dmasync timeout\n",
2052 sc->sc_dev.dv_xname, __LINE__);
2053 return;
2054 }
2055 }
2056
2057 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2058 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2059 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2060 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2061 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2062 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2063
2064 #define UCODE(x) x, sizeof(x)
2065
2066 static const struct ucode {
2067 uint32_t revision;
2068 const uint32_t *ucode;
2069 size_t length;
2070 uint16_t int_delay_offset;
2071 uint16_t bundle_max_offset;
2072 } ucode_table[] = {
2073 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2074 D101_CPUSAVER_DWORD, 0 },
2075
2076 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2077 D101_CPUSAVER_DWORD, 0 },
2078
2079 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2080 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2081
2082 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2083 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2084
2085 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2086 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2087
2088 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2089 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2090
2091 { 0, NULL, 0, 0, 0 }
2092 };
2093
2094 void
2095 fxp_load_ucode(struct fxp_softc *sc)
2096 {
2097 const struct ucode *uc;
2098 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2099 int count;
2100
2101 if (sc->sc_flags & FXPF_UCODE_LOADED)
2102 return;
2103
2104 /*
2105 * Only load the uCode if the user has requested that
2106 * we do so.
2107 */
2108 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2109 sc->sc_int_delay = 0;
2110 sc->sc_bundle_max = 0;
2111 return;
2112 }
2113
2114 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2115 if (sc->sc_rev == uc->revision)
2116 break;
2117 }
2118 if (uc->ucode == NULL)
2119 return;
2120
2121 /* BIG ENDIAN: no need to swap to store 0 */
2122 cbp->cb_status = 0;
2123 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2124 cbp->link_addr = 0xffffffff; /* (no) next command */
2125 memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2126
2127 if (uc->int_delay_offset)
2128 *(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2129 htole16(fxp_int_delay + (fxp_int_delay / 2));
2130
2131 if (uc->bundle_max_offset)
2132 *(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2133 htole16(fxp_bundle_max);
2134
2135 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2136
2137 /*
2138 * Download the uCode to the chip.
2139 */
2140 fxp_scb_wait(sc);
2141 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2142 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2143
2144 /* ...and wait for it to complete. */
2145 count = 10000;
2146 do {
2147 FXP_CDUCODESYNC(sc,
2148 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2149 DELAY(2);
2150 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2151 if (count == 0) {
2152 sc->sc_int_delay = 0;
2153 sc->sc_bundle_max = 0;
2154 printf("%s: timeout loading microcode\n",
2155 sc->sc_dev.dv_xname);
2156 return;
2157 }
2158
2159 if (sc->sc_int_delay != fxp_int_delay ||
2160 sc->sc_bundle_max != fxp_bundle_max) {
2161 sc->sc_int_delay = fxp_int_delay;
2162 sc->sc_bundle_max = fxp_bundle_max;
2163 printf("%s: Microcode loaded: int delay: %d usec, "
2164 "max bundle: %d\n", sc->sc_dev.dv_xname,
2165 sc->sc_int_delay,
2166 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2167 }
2168
2169 sc->sc_flags |= FXPF_UCODE_LOADED;
2170 }
2171
2172 int
2173 fxp_enable(struct fxp_softc *sc)
2174 {
2175
2176 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2177 if ((*sc->sc_enable)(sc) != 0) {
2178 printf("%s: device enable failed\n",
2179 sc->sc_dev.dv_xname);
2180 return (EIO);
2181 }
2182 }
2183
2184 sc->sc_enabled = 1;
2185 return (0);
2186 }
2187
2188 void
2189 fxp_disable(struct fxp_softc *sc)
2190 {
2191
2192 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2193 (*sc->sc_disable)(sc);
2194 sc->sc_enabled = 0;
2195 }
2196 }
2197
2198 /*
2199 * fxp_activate:
2200 *
2201 * Handle device activation/deactivation requests.
2202 */
2203 int
2204 fxp_activate(struct device *self, enum devact act)
2205 {
2206 struct fxp_softc *sc = (void *) self;
2207 int s, error = 0;
2208
2209 s = splnet();
2210 switch (act) {
2211 case DVACT_ACTIVATE:
2212 error = EOPNOTSUPP;
2213 break;
2214
2215 case DVACT_DEACTIVATE:
2216 if (sc->sc_flags & FXPF_MII)
2217 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2218 MII_OFFSET_ANY);
2219 if_deactivate(&sc->sc_ethercom.ec_if);
2220 break;
2221 }
2222 splx(s);
2223
2224 return (error);
2225 }
2226
2227 /*
2228 * fxp_detach:
2229 *
2230 * Detach an i82557 interface.
2231 */
2232 int
2233 fxp_detach(struct fxp_softc *sc)
2234 {
2235 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2236 int i;
2237
2238 /* Succeed now if there's no work to do. */
2239 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2240 return (0);
2241
2242 /* Unhook our tick handler. */
2243 callout_stop(&sc->sc_callout);
2244
2245 if (sc->sc_flags & FXPF_MII) {
2246 /* Detach all PHYs */
2247 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2248 }
2249
2250 /* Delete all remaining media. */
2251 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2252
2253 #if NRND > 0
2254 rnd_detach_source(&sc->rnd_source);
2255 #endif
2256 ether_ifdetach(ifp);
2257 if_detach(ifp);
2258
2259 for (i = 0; i < FXP_NRFABUFS; i++) {
2260 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2261 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2262 }
2263
2264 for (i = 0; i < FXP_NTXCB; i++) {
2265 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2266 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2267 }
2268
2269 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2270 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2271 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2272 sizeof(struct fxp_control_data));
2273 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2274
2275 shutdownhook_disestablish(sc->sc_sdhook);
2276 powerhook_disestablish(sc->sc_powerhook);
2277
2278 return (0);
2279 }
2280