Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.64
      1 /*	$NetBSD: i82557.c,v 1.64 2002/04/05 19:51:04 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice unmodified, this list of conditions, and the following
     50  *    disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
     68  */
     69 
     70 /*
     71  * Device driver for the Intel i82557 fast Ethernet controller,
     72  * and its successors, the i82558 and i82559.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.64 2002/04/05 19:51:04 thorpej Exp $");
     77 
     78 #include "bpfilter.h"
     79 #include "rnd.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/callout.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/malloc.h>
     86 #include <sys/kernel.h>
     87 #include <sys/socket.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/errno.h>
     90 #include <sys/device.h>
     91 
     92 #include <machine/endian.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 
     96 #if NRND > 0
     97 #include <sys/rnd.h>
     98 #endif
     99 
    100 #include <net/if.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 #include <net/if_ether.h>
    104 
    105 #if NBPFILTER > 0
    106 #include <net/bpf.h>
    107 #endif
    108 
    109 #include <machine/bus.h>
    110 #include <machine/intr.h>
    111 
    112 #include <dev/mii/miivar.h>
    113 
    114 #include <dev/ic/i82557reg.h>
    115 #include <dev/ic/i82557var.h>
    116 
    117 #include <dev/microcode/i8255x/rcvbundl.h>
    118 
    119 /*
    120  * NOTE!  On the Alpha, we have an alignment constraint.  The
    121  * card DMAs the packet immediately following the RFA.  However,
    122  * the first thing in the packet is a 14-byte Ethernet header.
    123  * This means that the packet is misaligned.  To compensate,
    124  * we actually offset the RFA 2 bytes into the cluster.  This
    125  * alignes the packet after the Ethernet header at a 32-bit
    126  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    127  */
    128 #define	RFA_ALIGNMENT_FUDGE	2
    129 
    130 /*
    131  * The configuration byte map has several undefined fields which
    132  * must be one or must be zero.  Set up a template for these bits
    133  * only (assuming an i82557 chip), leaving the actual configuration
    134  * for fxp_init().
    135  *
    136  * See the definition of struct fxp_cb_config for the bit definitions.
    137  */
    138 const u_int8_t fxp_cb_config_template[] = {
    139 	0x0, 0x0,		/* cb_status */
    140 	0x0, 0x0,		/* cb_command */
    141 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
    142 	0x0,	/*  0 */
    143 	0x0,	/*  1 */
    144 	0x0,	/*  2 */
    145 	0x0,	/*  3 */
    146 	0x0,	/*  4 */
    147 	0x0,	/*  5 */
    148 	0x32,	/*  6 */
    149 	0x0,	/*  7 */
    150 	0x0,	/*  8 */
    151 	0x0,	/*  9 */
    152 	0x6,	/* 10 */
    153 	0x0,	/* 11 */
    154 	0x0,	/* 12 */
    155 	0x0,	/* 13 */
    156 	0xf2,	/* 14 */
    157 	0x48,	/* 15 */
    158 	0x0,	/* 16 */
    159 	0x40,	/* 17 */
    160 	0xf0,	/* 18 */
    161 	0x0,	/* 19 */
    162 	0x3f,	/* 20 */
    163 	0x5,	/* 21 */
    164 	0x0,	/* 22 */
    165 	0x0,	/* 23 */
    166 	0x0,	/* 24 */
    167 	0x0,	/* 25 */
    168 	0x0,	/* 26 */
    169 	0x0,	/* 27 */
    170 	0x0,	/* 28 */
    171 	0x0,	/* 29 */
    172 	0x0,	/* 30 */
    173 	0x0,	/* 31 */
    174 };
    175 
    176 void	fxp_mii_initmedia(struct fxp_softc *);
    177 int	fxp_mii_mediachange(struct ifnet *);
    178 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
    179 
    180 void	fxp_80c24_initmedia(struct fxp_softc *);
    181 int	fxp_80c24_mediachange(struct ifnet *);
    182 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
    183 
    184 void	fxp_start(struct ifnet *);
    185 int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
    186 void	fxp_watchdog(struct ifnet *);
    187 int	fxp_init(struct ifnet *);
    188 void	fxp_stop(struct ifnet *, int);
    189 
    190 void	fxp_txintr(struct fxp_softc *);
    191 void	fxp_rxintr(struct fxp_softc *);
    192 
    193 void	fxp_rxdrain(struct fxp_softc *);
    194 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
    195 int	fxp_mdi_read(struct device *, int, int);
    196 void	fxp_statchg(struct device *);
    197 void	fxp_mdi_write(struct device *, int, int, int);
    198 void	fxp_autosize_eeprom(struct fxp_softc*);
    199 void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
    200 void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
    201 void	fxp_eeprom_update_cksum(struct fxp_softc *);
    202 void	fxp_get_info(struct fxp_softc *, u_int8_t *);
    203 void	fxp_tick(void *);
    204 void	fxp_mc_setup(struct fxp_softc *);
    205 void	fxp_load_ucode(struct fxp_softc *);
    206 
    207 void	fxp_shutdown(void *);
    208 void	fxp_power(int, void *);
    209 
    210 int	fxp_copy_small = 0;
    211 
    212 /*
    213  * Variables for interrupt mitigating microcode.
    214  */
    215 int	fxp_int_delay = 1000;		/* usec */
    216 int	fxp_bundle_max = 6;		/* packets */
    217 
    218 struct fxp_phytype {
    219 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    220 	void	(*fp_init)(struct fxp_softc *);
    221 } fxp_phytype_table[] = {
    222 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    223 	{ -1,				fxp_mii_initmedia },
    224 };
    225 
    226 /*
    227  * Set initial transmit threshold at 64 (512 bytes). This is
    228  * increased by 64 (512 bytes) at a time, to maximum of 192
    229  * (1536 bytes), if an underrun occurs.
    230  */
    231 static int tx_threshold = 64;
    232 
    233 /*
    234  * Wait for the previous command to be accepted (but not necessarily
    235  * completed).
    236  */
    237 static __inline void
    238 fxp_scb_wait(struct fxp_softc *sc)
    239 {
    240 	int i = 10000;
    241 
    242 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    243 		delay(2);
    244 	if (i == 0)
    245 		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    246 }
    247 
    248 /*
    249  * Submit a command to the i82557.
    250  */
    251 static __inline void
    252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
    253 {
    254 
    255 	if (cmd == FXP_SCB_COMMAND_CU_RESUME &&
    256 	    (sc->sc_flags & FXPF_FIX_RESUME_BUG) != 0) {
    257 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_NOP);
    258 		fxp_scb_wait(sc);
    259 	}
    260 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
    261 }
    262 
    263 /*
    264  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    265  */
    266 void
    267 fxp_attach(struct fxp_softc *sc)
    268 {
    269 	u_int8_t enaddr[ETHER_ADDR_LEN];
    270 	struct ifnet *ifp;
    271 	bus_dma_segment_t seg;
    272 	int rseg, i, error;
    273 	struct fxp_phytype *fp;
    274 
    275 	callout_init(&sc->sc_callout);
    276 
    277 	/* Start out using the standard RFA. */
    278 	sc->sc_rfa_size = RFA_SIZE;
    279 
    280 	/*
    281 	 * Enable some good stuff on i82558 and later.
    282 	 */
    283 	if (sc->sc_rev >= FXP_REV_82558_A4) {
    284 		/* Enable the extended TxCB. */
    285 		sc->sc_flags |= FXPF_EXT_TXCB;
    286 	}
    287 
    288 	/*
    289 	 * Allocate the control data structures, and create and load the
    290 	 * DMA map for it.
    291 	 */
    292 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    293 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    294 	    0)) != 0) {
    295 		printf("%s: unable to allocate control data, error = %d\n",
    296 		    sc->sc_dev.dv_xname, error);
    297 		goto fail_0;
    298 	}
    299 
    300 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    301 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
    302 	    BUS_DMA_COHERENT)) != 0) {
    303 		printf("%s: unable to map control data, error = %d\n",
    304 		    sc->sc_dev.dv_xname, error);
    305 		goto fail_1;
    306 	}
    307 	sc->sc_cdseg = seg;
    308 	sc->sc_cdnseg = rseg;
    309 
    310 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
    311 
    312 	if ((error = bus_dmamap_create(sc->sc_dmat,
    313 	    sizeof(struct fxp_control_data), 1,
    314 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    315 		printf("%s: unable to create control data DMA map, "
    316 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    317 		goto fail_2;
    318 	}
    319 
    320 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    321 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    322 	    0)) != 0) {
    323 		printf("%s: can't load control data DMA map, error = %d\n",
    324 		    sc->sc_dev.dv_xname, error);
    325 		goto fail_3;
    326 	}
    327 
    328 	/*
    329 	 * Create the transmit buffer DMA maps.
    330 	 */
    331 	for (i = 0; i < FXP_NTXCB; i++) {
    332 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    333 		    FXP_NTXSEG, MCLBYTES, 0, 0,
    334 		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    335 			printf("%s: unable to create tx DMA map %d, "
    336 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    337 			goto fail_4;
    338 		}
    339 	}
    340 
    341 	/*
    342 	 * Create the receive buffer DMA maps.
    343 	 */
    344 	for (i = 0; i < FXP_NRFABUFS; i++) {
    345 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    346 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    347 			printf("%s: unable to create rx DMA map %d, "
    348 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    349 			goto fail_5;
    350 		}
    351 	}
    352 
    353 	/* Initialize MAC address and media structures. */
    354 	fxp_get_info(sc, enaddr);
    355 
    356 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    357 	    ether_sprintf(enaddr));
    358 
    359 	ifp = &sc->sc_ethercom.ec_if;
    360 
    361 	/*
    362 	 * Get info about our media interface, and initialize it.  Note
    363 	 * the table terminates itself with a phy of -1, indicating
    364 	 * that we're using MII.
    365 	 */
    366 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    367 		if (fp->fp_phy == sc->phy_primary_device)
    368 			break;
    369 	(*fp->fp_init)(sc);
    370 
    371 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    372 	ifp->if_softc = sc;
    373 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    374 	ifp->if_ioctl = fxp_ioctl;
    375 	ifp->if_start = fxp_start;
    376 	ifp->if_watchdog = fxp_watchdog;
    377 	ifp->if_init = fxp_init;
    378 	ifp->if_stop = fxp_stop;
    379 	IFQ_SET_READY(&ifp->if_snd);
    380 
    381 	/*
    382 	 * We can support 802.1Q VLAN-sized frames.
    383 	 */
    384 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    385 
    386 	/*
    387 	 * Attach the interface.
    388 	 */
    389 	if_attach(ifp);
    390 	ether_ifattach(ifp, enaddr);
    391 #if NRND > 0
    392 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    393 	    RND_TYPE_NET, 0);
    394 #endif
    395 
    396 #ifdef FXP_EVENT_COUNTERS
    397 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    398 	    NULL, sc->sc_dev.dv_xname, "txstall");
    399 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    400 	    NULL, sc->sc_dev.dv_xname, "txintr");
    401 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    402 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    403 #endif /* FXP_EVENT_COUNTERS */
    404 
    405 	/*
    406 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    407 	 * doing do could allow DMA to corrupt kernel memory during the
    408 	 * reboot before the driver initializes.
    409 	 */
    410 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    411 	if (sc->sc_sdhook == NULL)
    412 		printf("%s: WARNING: unable to establish shutdown hook\n",
    413 		    sc->sc_dev.dv_xname);
    414 	/*
    415   	 * Add suspend hook, for similar reasons..
    416 	 */
    417 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
    418 	if (sc->sc_powerhook == NULL)
    419 		printf("%s: WARNING: unable to establish power hook\n",
    420 		    sc->sc_dev.dv_xname);
    421 
    422 	/* The attach is successful. */
    423 	sc->sc_flags |= FXPF_ATTACHED;
    424 
    425 	return;
    426 
    427 	/*
    428 	 * Free any resources we've allocated during the failed attach
    429 	 * attempt.  Do this in reverse order and fall though.
    430 	 */
    431  fail_5:
    432 	for (i = 0; i < FXP_NRFABUFS; i++) {
    433 		if (sc->sc_rxmaps[i] != NULL)
    434 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    435 	}
    436  fail_4:
    437 	for (i = 0; i < FXP_NTXCB; i++) {
    438 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    439 			bus_dmamap_destroy(sc->sc_dmat,
    440 			    FXP_DSTX(sc, i)->txs_dmamap);
    441 	}
    442 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    443  fail_3:
    444 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    445  fail_2:
    446 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    447 	    sizeof(struct fxp_control_data));
    448  fail_1:
    449 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    450  fail_0:
    451 	return;
    452 }
    453 
    454 void
    455 fxp_mii_initmedia(struct fxp_softc *sc)
    456 {
    457 	int flags;
    458 
    459 	sc->sc_flags |= FXPF_MII;
    460 
    461 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    462 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    463 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    464 	sc->sc_mii.mii_statchg = fxp_statchg;
    465 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
    466 	    fxp_mii_mediastatus);
    467 
    468 	flags = MIIF_NOISOLATE;
    469 	if (sc->sc_rev >= FXP_REV_82558_A4)
    470 		flags |= MIIF_DOPAUSE;
    471 	/*
    472 	 * The i82557 wedges if all of its PHYs are isolated!
    473 	 */
    474 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    475 	    MII_OFFSET_ANY, flags);
    476 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    477 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    478 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    479 	} else
    480 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    481 }
    482 
    483 void
    484 fxp_80c24_initmedia(struct fxp_softc *sc)
    485 {
    486 
    487 	/*
    488 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    489 	 * doesn't have a programming interface of any sort.  The
    490 	 * media is sensed automatically based on how the link partner
    491 	 * is configured.  This is, in essence, manual configuration.
    492 	 */
    493 	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    494 	    sc->sc_dev.dv_xname);
    495 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    496 	    fxp_80c24_mediastatus);
    497 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    498 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    499 }
    500 
    501 /*
    502  * Device shutdown routine. Called at system shutdown after sync. The
    503  * main purpose of this routine is to shut off receiver DMA so that
    504  * kernel memory doesn't get clobbered during warmboot.
    505  */
    506 void
    507 fxp_shutdown(void *arg)
    508 {
    509 	struct fxp_softc *sc = arg;
    510 
    511 	/*
    512 	 * Since the system's going to halt shortly, don't bother
    513 	 * freeing mbufs.
    514 	 */
    515 	fxp_stop(&sc->sc_ethercom.ec_if, 0);
    516 }
    517 /*
    518  * Power handler routine. Called when the system is transitioning
    519  * into/out of power save modes.  As with fxp_shutdown, the main
    520  * purpose of this routine is to shut off receiver DMA so it doesn't
    521  * clobber kernel memory at the wrong time.
    522  */
    523 void
    524 fxp_power(int why, void *arg)
    525 {
    526 	struct fxp_softc *sc = arg;
    527 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    528 	int s;
    529 
    530 	s = splnet();
    531 	switch (why) {
    532 	case PWR_SUSPEND:
    533 	case PWR_STANDBY:
    534 		fxp_stop(ifp, 0);
    535 		break;
    536 	case PWR_RESUME:
    537 		if (ifp->if_flags & IFF_UP)
    538 			fxp_init(ifp);
    539 		break;
    540 	case PWR_SOFTSUSPEND:
    541 	case PWR_SOFTSTANDBY:
    542 	case PWR_SOFTRESUME:
    543 		break;
    544 	}
    545 	splx(s);
    546 }
    547 
    548 /*
    549  * Initialize the interface media.
    550  */
    551 void
    552 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
    553 {
    554 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
    555 
    556 	/*
    557 	 * Reset to a stable state.
    558 	 */
    559 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    560 	DELAY(10);
    561 
    562 	sc->sc_eeprom_size = 0;
    563 	fxp_autosize_eeprom(sc);
    564 	if(sc->sc_eeprom_size == 0) {
    565 	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
    566 	    sc->sc_eeprom_size = 6; /* XXX panic here? */
    567 	}
    568 #ifdef DEBUG
    569 	printf("%s: detected %d word EEPROM\n",
    570 	       sc->sc_dev.dv_xname,
    571 	       1 << sc->sc_eeprom_size);
    572 #endif
    573 
    574 	/*
    575 	 * Get info about the primary PHY
    576 	 */
    577 	fxp_read_eeprom(sc, &data, 6, 1);
    578 	sc->phy_primary_device =
    579 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
    580 
    581 	/*
    582 	 * Read MAC address.
    583 	 */
    584 	fxp_read_eeprom(sc, myea, 0, 3);
    585 	enaddr[0] = myea[0] & 0xff;
    586 	enaddr[1] = myea[0] >> 8;
    587 	enaddr[2] = myea[1] & 0xff;
    588 	enaddr[3] = myea[1] >> 8;
    589 	enaddr[4] = myea[2] & 0xff;
    590 	enaddr[5] = myea[2] >> 8;
    591 
    592 	/*
    593 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
    594 	 * as some i82559 designs, have a defect where the chip can
    595 	 * cause a PCI protocol violation if it receives a CU_RESUME
    596 	 * command when it is entering the IDLE state.
    597 	 *
    598 	 * The work-around is to disable Dynamic Standby Mode, so that
    599 	 * the chip never deasserts #CLKRUN, and always remains in the
    600 	 * active state.
    601 	 *
    602 	 * Unfortunately, the only way to disable Dynamic Standby is
    603 	 * to frob an EEPROM setting and reboot (the EEPROM setting
    604 	 * is only consulted when the PCI bus comes out of reset).
    605 	 *
    606 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
    607 	 */
    608 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
    609 		fxp_read_eeprom(sc, &data, 10, 1);
    610 		if (data & 0x02) {		/* STB enable */
    611 			printf("%s: disabling Dynamic Standby Mode in EEPROM\n",
    612 			    sc->sc_dev.dv_xname);
    613 			data &= ~0x02;
    614 			fxp_write_eeprom(sc, &data, 10, 1);
    615 			printf("%s: new EEPROM ID: 0x%04x\n",
    616 			    sc->sc_dev.dv_xname, data);
    617 			fxp_eeprom_update_cksum(sc);
    618 			printf("%s: PLEASE RESET YOUR SYSTEM FOR CHANGE TO "
    619 			    "TAKE EFFECT!\n", sc->sc_dev.dv_xname);
    620 		} else {
    621 #if 1
    622 			/*
    623 			 * If Dynamic Standby Mode is disabled, we don't
    624 			 * need to work around the Resume bug anymore.
    625 			 */
    626 			sc->sc_flags &= ~FXPF_HAS_RESUME_BUG;
    627 #endif
    628 		}
    629 	}
    630 }
    631 
    632 static void
    633 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
    634 {
    635 	uint16_t reg;
    636 	int x;
    637 
    638 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
    639 		if (data & x)
    640 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    641 		else
    642 			reg = FXP_EEPROM_EECS;
    643 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    644 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    645 		    reg | FXP_EEPROM_EESK);
    646 		DELAY(4);
    647 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    648 		DELAY(4);
    649 	}
    650 }
    651 
    652 /*
    653  * Figure out EEPROM size.
    654  *
    655  * 559's can have either 64-word or 256-word EEPROMs, the 558
    656  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    657  * talks about the existance of 16 to 256 word EEPROMs.
    658  *
    659  * The only known sizes are 64 and 256, where the 256 version is used
    660  * by CardBus cards to store CIS information.
    661  *
    662  * The address is shifted in msb-to-lsb, and after the last
    663  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    664  * after which follows the actual data. We try to detect this zero, by
    665  * probing the data-out bit in the EEPROM control register just after
    666  * having shifted in a bit. If the bit is zero, we assume we've
    667  * shifted enough address bits. The data-out should be tri-state,
    668  * before this, which should translate to a logical one.
    669  *
    670  * Other ways to do this would be to try to read a register with known
    671  * contents with a varying number of address bits, but no such
    672  * register seem to be available. The high bits of register 10 are 01
    673  * on the 558 and 559, but apparently not on the 557.
    674  *
    675  * The Linux driver computes a checksum on the EEPROM data, but the
    676  * value of this checksum is not very well documented.
    677  */
    678 
    679 void
    680 fxp_autosize_eeprom(struct fxp_softc *sc)
    681 {
    682 	int x;
    683 
    684 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    685 
    686 	/* Shift in read opcode. */
    687 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    688 
    689 	/*
    690 	 * Shift in address, wait for the dummy zero following a correct
    691 	 * address shift.
    692 	 */
    693 	for (x = 1; x <= 8; x++) {
    694 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    695 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    696 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    697 		DELAY(4);
    698 		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    699 		    FXP_EEPROM_EEDO) == 0)
    700 			break;
    701 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    702 		DELAY(4);
    703 	}
    704 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    705 	DELAY(4);
    706 	if(x != 6 && x != 8) {
    707 #ifdef DEBUG
    708 		printf("%s: strange EEPROM size (%d)\n",
    709 		       sc->sc_dev.dv_xname, 1 << x);
    710 #endif
    711 	} else
    712 		sc->sc_eeprom_size = x;
    713 }
    714 
    715 /*
    716  * Read from the serial EEPROM. Basically, you manually shift in
    717  * the read opcode (one bit at a time) and then shift in the address,
    718  * and then you shift out the data (all of this one bit at a time).
    719  * The word size is 16 bits, so you have to provide the address for
    720  * every 16 bits of data.
    721  */
    722 void
    723 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
    724 {
    725 	u_int16_t reg;
    726 	int i, x;
    727 
    728 	for (i = 0; i < words; i++) {
    729 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    730 
    731 		/* Shift in read opcode. */
    732 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    733 
    734 		/* Shift in address. */
    735 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    736 
    737 		reg = FXP_EEPROM_EECS;
    738 		data[i] = 0;
    739 
    740 		/* Shift out data. */
    741 		for (x = 16; x > 0; x--) {
    742 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    743 			    reg | FXP_EEPROM_EESK);
    744 			DELAY(4);
    745 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    746 			    FXP_EEPROM_EEDO)
    747 				data[i] |= (1 << (x - 1));
    748 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    749 			DELAY(4);
    750 		}
    751 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    752 		DELAY(4);
    753 	}
    754 }
    755 
    756 /*
    757  * Write data to the serial EEPROM.
    758  */
    759 void
    760 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
    761 {
    762 	int i, j;
    763 
    764 	for (i = 0; i < words; i++) {
    765 		/* Erase/write enable. */
    766 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    767 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    768 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
    769 		    sc->sc_eeprom_size);
    770 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    771 		DELAY(4);
    772 
    773 		/* Shift in write opcode, address, data. */
    774 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    775 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
    776 		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
    777 		fxp_eeprom_shiftin(sc, data[i], 16);
    778 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    779 		DELAY(4);
    780 
    781 		/* Wait for the EEPROM to finish up. */
    782 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    783 		DELAY(4);
    784 		for (j = 0; j < 1000; j++) {
    785 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    786 			    FXP_EEPROM_EEDO)
    787 				break;
    788 			DELAY(50);
    789 		}
    790 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    791 		DELAY(4);
    792 
    793 		/* Erase/write disable. */
    794 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    795 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    796 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
    797 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    798 		DELAY(4);
    799 	}
    800 }
    801 
    802 /*
    803  * Update the checksum of the EEPROM.
    804  */
    805 void
    806 fxp_eeprom_update_cksum(struct fxp_softc *sc)
    807 {
    808 	int i;
    809 	uint16_t data, cksum;
    810 
    811 	cksum = 0;
    812 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
    813 		fxp_read_eeprom(sc, &data, i, 1);
    814 		cksum += data;
    815 	}
    816 	i = (1 << sc->sc_eeprom_size) - 1;
    817 	cksum = 0xbaba - cksum;
    818 	fxp_read_eeprom(sc, &data, i, 1);
    819 	fxp_write_eeprom(sc, &cksum, i, 1);
    820 	printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
    821 	    sc->sc_dev.dv_xname, i, data, cksum);
    822 }
    823 
    824 /*
    825  * Start packet transmission on the interface.
    826  */
    827 void
    828 fxp_start(struct ifnet *ifp)
    829 {
    830 	struct fxp_softc *sc = ifp->if_softc;
    831 	struct mbuf *m0, *m;
    832 	struct fxp_txdesc *txd;
    833 	struct fxp_txsoft *txs;
    834 	bus_dmamap_t dmamap;
    835 	int error, lasttx, nexttx, opending, seg;
    836 
    837 	/*
    838 	 * If we want a re-init, bail out now.
    839 	 */
    840 	if (sc->sc_flags & FXPF_WANTINIT) {
    841 		ifp->if_flags |= IFF_OACTIVE;
    842 		return;
    843 	}
    844 
    845 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    846 		return;
    847 
    848 	/*
    849 	 * Remember the previous txpending and the current lasttx.
    850 	 */
    851 	opending = sc->sc_txpending;
    852 	lasttx = sc->sc_txlast;
    853 
    854 	/*
    855 	 * Loop through the send queue, setting up transmit descriptors
    856 	 * until we drain the queue, or use up all available transmit
    857 	 * descriptors.
    858 	 */
    859 	for (;;) {
    860 		/*
    861 		 * Grab a packet off the queue.
    862 		 */
    863 		IFQ_POLL(&ifp->if_snd, m0);
    864 		if (m0 == NULL)
    865 			break;
    866 		m = NULL;
    867 
    868 		if (sc->sc_txpending == FXP_NTXCB) {
    869 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
    870 			break;
    871 		}
    872 
    873 		/*
    874 		 * Get the next available transmit descriptor.
    875 		 */
    876 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    877 		txd = FXP_CDTX(sc, nexttx);
    878 		txs = FXP_DSTX(sc, nexttx);
    879 		dmamap = txs->txs_dmamap;
    880 
    881 		/*
    882 		 * Load the DMA map.  If this fails, the packet either
    883 		 * didn't fit in the allotted number of frags, or we were
    884 		 * short on resources.  In this case, we'll copy and try
    885 		 * again.
    886 		 */
    887 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    888 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    889 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    890 			if (m == NULL) {
    891 				printf("%s: unable to allocate Tx mbuf\n",
    892 				    sc->sc_dev.dv_xname);
    893 				break;
    894 			}
    895 			if (m0->m_pkthdr.len > MHLEN) {
    896 				MCLGET(m, M_DONTWAIT);
    897 				if ((m->m_flags & M_EXT) == 0) {
    898 					printf("%s: unable to allocate Tx "
    899 					    "cluster\n", sc->sc_dev.dv_xname);
    900 					m_freem(m);
    901 					break;
    902 				}
    903 			}
    904 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    905 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    906 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    907 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    908 			if (error) {
    909 				printf("%s: unable to load Tx buffer, "
    910 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    911 				break;
    912 			}
    913 		}
    914 
    915 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    916 		if (m != NULL) {
    917 			m_freem(m0);
    918 			m0 = m;
    919 		}
    920 
    921 		/* Initialize the fraglist. */
    922 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    923 			txd->txd_tbd[seg].tb_addr =
    924 			    htole32(dmamap->dm_segs[seg].ds_addr);
    925 			txd->txd_tbd[seg].tb_size =
    926 			    htole32(dmamap->dm_segs[seg].ds_len);
    927 		}
    928 
    929 		/* Sync the DMA map. */
    930 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    931 		    BUS_DMASYNC_PREWRITE);
    932 
    933 		/*
    934 		 * Store a pointer to the packet so we can free it later.
    935 		 */
    936 		txs->txs_mbuf = m0;
    937 
    938 		/*
    939 		 * Initialize the transmit descriptor.
    940 		 */
    941 		/* BIG_ENDIAN: no need to swap to store 0 */
    942 		txd->txd_txcb.cb_status = 0;
    943 		txd->txd_txcb.cb_command =
    944 		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
    945 		txd->txd_txcb.tx_threshold = tx_threshold;
    946 		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
    947 
    948 		FXP_CDTXSYNC(sc, nexttx,
    949 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    950 
    951 		/* Advance the tx pointer. */
    952 		sc->sc_txpending++;
    953 		sc->sc_txlast = nexttx;
    954 
    955 #if NBPFILTER > 0
    956 		/*
    957 		 * Pass packet to bpf if there is a listener.
    958 		 */
    959 		if (ifp->if_bpf)
    960 			bpf_mtap(ifp->if_bpf, m0);
    961 #endif
    962 	}
    963 
    964 	if (sc->sc_txpending == FXP_NTXCB) {
    965 		/* No more slots; notify upper layer. */
    966 		ifp->if_flags |= IFF_OACTIVE;
    967 	}
    968 
    969 	if (sc->sc_txpending != opending) {
    970 		/*
    971 		 * We enqueued packets.  If the transmitter was idle,
    972 		 * reset the txdirty pointer.
    973 		 */
    974 		if (opending == 0)
    975 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
    976 
    977 		/*
    978 		 * Cause the chip to interrupt and suspend command
    979 		 * processing once the last packet we've enqueued
    980 		 * has been transmitted.
    981 		 */
    982 		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
    983 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
    984 		FXP_CDTXSYNC(sc, sc->sc_txlast,
    985 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    986 
    987 		/*
    988 		 * The entire packet chain is set up.  Clear the suspend bit
    989 		 * on the command prior to the first packet we set up.
    990 		 */
    991 		FXP_CDTXSYNC(sc, lasttx,
    992 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    993 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
    994 		    htole16(~FXP_CB_COMMAND_S);
    995 		FXP_CDTXSYNC(sc, lasttx,
    996 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    997 
    998 		/*
    999 		 * Issue a Resume command in case the chip was suspended.
   1000 		 */
   1001 		fxp_scb_wait(sc);
   1002 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
   1003 
   1004 		/* Set a watchdog timer in case the chip flakes out. */
   1005 		ifp->if_timer = 5;
   1006 	}
   1007 }
   1008 
   1009 /*
   1010  * Process interface interrupts.
   1011  */
   1012 int
   1013 fxp_intr(void *arg)
   1014 {
   1015 	struct fxp_softc *sc = arg;
   1016 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1017 	bus_dmamap_t rxmap;
   1018 	int claimed = 0;
   1019 	u_int8_t statack;
   1020 
   1021 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1022 		return (0);
   1023 	/*
   1024 	 * If the interface isn't running, don't try to
   1025 	 * service the interrupt.. just ack it and bail.
   1026 	 */
   1027 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1028 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
   1029 		if (statack) {
   1030 			claimed = 1;
   1031 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1032 		}
   1033 		return (claimed);
   1034 	}
   1035 
   1036 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
   1037 		claimed = 1;
   1038 
   1039 		/*
   1040 		 * First ACK all the interrupts in this pass.
   1041 		 */
   1042 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1043 
   1044 		/*
   1045 		 * Process receiver interrupts. If a no-resource (RNR)
   1046 		 * condition exists, get whatever packets we can and
   1047 		 * re-start the receiver.
   1048 		 */
   1049 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
   1050 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1051 			fxp_rxintr(sc);
   1052 		}
   1053 
   1054 		if (statack & FXP_SCB_STATACK_RNR) {
   1055 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1056 			fxp_scb_wait(sc);
   1057 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1058 			    rxmap->dm_segs[0].ds_addr +
   1059 			    RFA_ALIGNMENT_FUDGE);
   1060 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1061 		}
   1062 
   1063 		/*
   1064 		 * Free any finished transmit mbuf chains.
   1065 		 */
   1066 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1067 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
   1068 			fxp_txintr(sc);
   1069 
   1070 			/*
   1071 			 * Try to get more packets going.
   1072 			 */
   1073 			fxp_start(ifp);
   1074 
   1075 			if (sc->sc_txpending == 0) {
   1076 				/*
   1077 				 * If we want a re-init, do that now.
   1078 				 */
   1079 				if (sc->sc_flags & FXPF_WANTINIT)
   1080 					(void) fxp_init(ifp);
   1081 			}
   1082 		}
   1083 	}
   1084 
   1085 #if NRND > 0
   1086 	if (claimed)
   1087 		rnd_add_uint32(&sc->rnd_source, statack);
   1088 #endif
   1089 	return (claimed);
   1090 }
   1091 
   1092 /*
   1093  * Handle transmit completion interrupts.
   1094  */
   1095 void
   1096 fxp_txintr(struct fxp_softc *sc)
   1097 {
   1098 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1099 	struct fxp_txdesc *txd;
   1100 	struct fxp_txsoft *txs;
   1101 	int i;
   1102 	u_int16_t txstat;
   1103 
   1104 	ifp->if_flags &= ~IFF_OACTIVE;
   1105 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1106 	     i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1107 		txd = FXP_CDTX(sc, i);
   1108 		txs = FXP_DSTX(sc, i);
   1109 
   1110 		FXP_CDTXSYNC(sc, i,
   1111 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1112 
   1113 		txstat = le16toh(txd->txd_txcb.cb_status);
   1114 
   1115 		if ((txstat & FXP_CB_STATUS_C) == 0)
   1116 			break;
   1117 
   1118 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1119 		    0, txs->txs_dmamap->dm_mapsize,
   1120 		    BUS_DMASYNC_POSTWRITE);
   1121 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1122 		m_freem(txs->txs_mbuf);
   1123 		txs->txs_mbuf = NULL;
   1124 	}
   1125 
   1126 	/* Update the dirty transmit buffer pointer. */
   1127 	sc->sc_txdirty = i;
   1128 
   1129 	/*
   1130 	 * Cancel the watchdog timer if there are no pending
   1131 	 * transmissions.
   1132 	 */
   1133 	if (sc->sc_txpending == 0)
   1134 		ifp->if_timer = 0;
   1135 }
   1136 
   1137 /*
   1138  * Handle receive interrupts.
   1139  */
   1140 void
   1141 fxp_rxintr(struct fxp_softc *sc)
   1142 {
   1143 	struct ethercom *ec = &sc->sc_ethercom;
   1144 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1145 	struct mbuf *m, *m0;
   1146 	bus_dmamap_t rxmap;
   1147 	struct fxp_rfa *rfa;
   1148 	u_int16_t len, rxstat;
   1149 
   1150 	for (;;) {
   1151 		m = sc->sc_rxq.ifq_head;
   1152 		rfa = FXP_MTORFA(m);
   1153 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1154 
   1155 		FXP_RFASYNC(sc, m,
   1156 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1157 
   1158 		rxstat = le16toh(rfa->rfa_status);
   1159 
   1160 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
   1161 			/*
   1162 			 * We have processed all of the
   1163 			 * receive buffers.
   1164 			 */
   1165 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
   1166 			return;
   1167 		}
   1168 
   1169 		IF_DEQUEUE(&sc->sc_rxq, m);
   1170 
   1171 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
   1172 
   1173 		len = le16toh(rfa->actual_size) &
   1174 		    (m->m_ext.ext_size - 1);
   1175 
   1176 		if (len < sizeof(struct ether_header)) {
   1177 			/*
   1178 			 * Runt packet; drop it now.
   1179 			 */
   1180 			FXP_INIT_RFABUF(sc, m);
   1181 			continue;
   1182 		}
   1183 
   1184 		/*
   1185 		 * If support for 802.1Q VLAN sized frames is
   1186 		 * enabled, we need to do some additional error
   1187 		 * checking (as we are saving bad frames, in
   1188 		 * order to receive the larger ones).
   1189 		 */
   1190 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
   1191 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
   1192 			       FXP_RFA_STATUS_RNR|
   1193 			       FXP_RFA_STATUS_ALIGN|
   1194 			       FXP_RFA_STATUS_CRC)) != 0) {
   1195 			FXP_INIT_RFABUF(sc, m);
   1196 			continue;
   1197 		}
   1198 
   1199 		/*
   1200 		 * If the packet is small enough to fit in a
   1201 		 * single header mbuf, allocate one and copy
   1202 		 * the data into it.  This greatly reduces
   1203 		 * memory consumption when we receive lots
   1204 		 * of small packets.
   1205 		 *
   1206 		 * Otherwise, we add a new buffer to the receive
   1207 		 * chain.  If this fails, we drop the packet and
   1208 		 * recycle the old buffer.
   1209 		 */
   1210 		if (fxp_copy_small != 0 && len <= MHLEN) {
   1211 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
   1212 			if (m == NULL)
   1213 				goto dropit;
   1214 			memcpy(mtod(m0, caddr_t),
   1215 			    mtod(m, caddr_t), len);
   1216 			FXP_INIT_RFABUF(sc, m);
   1217 			m = m0;
   1218 		} else {
   1219 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
   1220  dropit:
   1221 				ifp->if_ierrors++;
   1222 				FXP_INIT_RFABUF(sc, m);
   1223 				continue;
   1224 			}
   1225 		}
   1226 
   1227 		m->m_pkthdr.rcvif = ifp;
   1228 		m->m_pkthdr.len = m->m_len = len;
   1229 
   1230 #if NBPFILTER > 0
   1231 		/*
   1232 		 * Pass this up to any BPF listeners, but only
   1233 		 * pass it up the stack it its for us.
   1234 		 */
   1235 		if (ifp->if_bpf)
   1236 			bpf_mtap(ifp->if_bpf, m);
   1237 #endif
   1238 
   1239 		/* Pass it on. */
   1240 		(*ifp->if_input)(ifp, m);
   1241 	}
   1242 }
   1243 
   1244 /*
   1245  * Update packet in/out/collision statistics. The i82557 doesn't
   1246  * allow you to access these counters without doing a fairly
   1247  * expensive DMA to get _all_ of the statistics it maintains, so
   1248  * we do this operation here only once per second. The statistics
   1249  * counters in the kernel are updated from the previous dump-stats
   1250  * DMA and then a new dump-stats DMA is started. The on-chip
   1251  * counters are zeroed when the DMA completes. If we can't start
   1252  * the DMA immediately, we don't wait - we just prepare to read
   1253  * them again next time.
   1254  */
   1255 void
   1256 fxp_tick(void *arg)
   1257 {
   1258 	struct fxp_softc *sc = arg;
   1259 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1260 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1261 	int s;
   1262 
   1263 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1264 		return;
   1265 
   1266 	s = splnet();
   1267 
   1268 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1269 
   1270 	ifp->if_opackets += le32toh(sp->tx_good);
   1271 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1272 	if (sp->rx_good) {
   1273 		ifp->if_ipackets += le32toh(sp->rx_good);
   1274 		sc->sc_rxidle = 0;
   1275 	} else {
   1276 		sc->sc_rxidle++;
   1277 	}
   1278 	ifp->if_ierrors +=
   1279 	    le32toh(sp->rx_crc_errors) +
   1280 	    le32toh(sp->rx_alignment_errors) +
   1281 	    le32toh(sp->rx_rnr_errors) +
   1282 	    le32toh(sp->rx_overrun_errors);
   1283 	/*
   1284 	 * If any transmit underruns occurred, bump up the transmit
   1285 	 * threshold by another 512 bytes (64 * 8).
   1286 	 */
   1287 	if (sp->tx_underruns) {
   1288 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1289 		if (tx_threshold < 192)
   1290 			tx_threshold += 64;
   1291 	}
   1292 
   1293 	/*
   1294 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
   1295 	 * then assume the receiver has locked up and attempt to clear
   1296 	 * the condition by reprogramming the multicast filter (actually,
   1297 	 * resetting the interface). This is a work-around for a bug in
   1298 	 * the 82557 where the receiver locks up if it gets certain types
   1299 	 * of garbage in the syncronization bits prior to the packet header.
   1300 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1301 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1302 	 * speed transition).
   1303 	 */
   1304 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1305 		(void) fxp_init(ifp);
   1306 		splx(s);
   1307 		return;
   1308 	}
   1309 	/*
   1310 	 * If there is no pending command, start another stats
   1311 	 * dump. Otherwise punt for now.
   1312 	 */
   1313 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1314 		/*
   1315 		 * Start another stats dump.
   1316 		 */
   1317 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1318 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
   1319 	} else {
   1320 		/*
   1321 		 * A previous command is still waiting to be accepted.
   1322 		 * Just zero our copy of the stats and wait for the
   1323 		 * next timer event to update them.
   1324 		 */
   1325 		/* BIG_ENDIAN: no swap required to store 0 */
   1326 		sp->tx_good = 0;
   1327 		sp->tx_underruns = 0;
   1328 		sp->tx_total_collisions = 0;
   1329 
   1330 		sp->rx_good = 0;
   1331 		sp->rx_crc_errors = 0;
   1332 		sp->rx_alignment_errors = 0;
   1333 		sp->rx_rnr_errors = 0;
   1334 		sp->rx_overrun_errors = 0;
   1335 	}
   1336 
   1337 	if (sc->sc_flags & FXPF_MII) {
   1338 		/* Tick the MII clock. */
   1339 		mii_tick(&sc->sc_mii);
   1340 	}
   1341 
   1342 	splx(s);
   1343 
   1344 	/*
   1345 	 * Schedule another timeout one second from now.
   1346 	 */
   1347 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1348 }
   1349 
   1350 /*
   1351  * Drain the receive queue.
   1352  */
   1353 void
   1354 fxp_rxdrain(struct fxp_softc *sc)
   1355 {
   1356 	bus_dmamap_t rxmap;
   1357 	struct mbuf *m;
   1358 
   1359 	for (;;) {
   1360 		IF_DEQUEUE(&sc->sc_rxq, m);
   1361 		if (m == NULL)
   1362 			break;
   1363 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1364 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1365 		FXP_RXMAP_PUT(sc, rxmap);
   1366 		m_freem(m);
   1367 	}
   1368 }
   1369 
   1370 /*
   1371  * Stop the interface. Cancels the statistics updater and resets
   1372  * the interface.
   1373  */
   1374 void
   1375 fxp_stop(struct ifnet *ifp, int disable)
   1376 {
   1377 	struct fxp_softc *sc = ifp->if_softc;
   1378 	struct fxp_txsoft *txs;
   1379 	int i;
   1380 
   1381 	/*
   1382 	 * Turn down interface (done early to avoid bad interactions
   1383 	 * between panics, shutdown hooks, and the watchdog timer)
   1384 	 */
   1385 	ifp->if_timer = 0;
   1386 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1387 
   1388 	/*
   1389 	 * Cancel stats updater.
   1390 	 */
   1391 	callout_stop(&sc->sc_callout);
   1392 	if (sc->sc_flags & FXPF_MII) {
   1393 		/* Down the MII. */
   1394 		mii_down(&sc->sc_mii);
   1395 	}
   1396 
   1397 	/*
   1398 	 * Issue software reset.  This unloads any microcode that
   1399 	 * might already be loaded.
   1400 	 */
   1401 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
   1402 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
   1403 	DELAY(50);
   1404 
   1405 	/*
   1406 	 * Release any xmit buffers.
   1407 	 */
   1408 	for (i = 0; i < FXP_NTXCB; i++) {
   1409 		txs = FXP_DSTX(sc, i);
   1410 		if (txs->txs_mbuf != NULL) {
   1411 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1412 			m_freem(txs->txs_mbuf);
   1413 			txs->txs_mbuf = NULL;
   1414 		}
   1415 	}
   1416 	sc->sc_txpending = 0;
   1417 
   1418 	if (disable) {
   1419 		fxp_rxdrain(sc);
   1420 		fxp_disable(sc);
   1421 	}
   1422 
   1423 }
   1424 
   1425 /*
   1426  * Watchdog/transmission transmit timeout handler. Called when a
   1427  * transmission is started on the interface, but no interrupt is
   1428  * received before the timeout. This usually indicates that the
   1429  * card has wedged for some reason.
   1430  */
   1431 void
   1432 fxp_watchdog(struct ifnet *ifp)
   1433 {
   1434 	struct fxp_softc *sc = ifp->if_softc;
   1435 
   1436 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1437 	ifp->if_oerrors++;
   1438 
   1439 	(void) fxp_init(ifp);
   1440 }
   1441 
   1442 /*
   1443  * Initialize the interface.  Must be called at splnet().
   1444  */
   1445 int
   1446 fxp_init(struct ifnet *ifp)
   1447 {
   1448 	struct fxp_softc *sc = ifp->if_softc;
   1449 	struct fxp_cb_config *cbp;
   1450 	struct fxp_cb_ias *cb_ias;
   1451 	struct fxp_txdesc *txd;
   1452 	bus_dmamap_t rxmap;
   1453 	int i, prm, save_bf, lrxen, allm, error = 0;
   1454 
   1455 	if ((error = fxp_enable(sc)) != 0)
   1456 		goto out;
   1457 
   1458 	/*
   1459 	 * Cancel any pending I/O
   1460 	 */
   1461 	fxp_stop(ifp, 0);
   1462 
   1463 	/*
   1464 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1465 	 * flag, and this prevents the MII from detaching resulting in
   1466 	 * a panic. The flags field should perhaps be split in runtime
   1467 	 * flags and more static information. For now, just clear the
   1468 	 * only other flag set.
   1469 	 */
   1470 
   1471 	sc->sc_flags &= ~FXPF_WANTINIT;
   1472 
   1473 	/*
   1474 	 * Initialize base of CBL and RFA memory. Loading with zero
   1475 	 * sets it up for regular linear addressing.
   1476 	 */
   1477 	fxp_scb_wait(sc);
   1478 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1479 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
   1480 
   1481 	fxp_scb_wait(sc);
   1482 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
   1483 
   1484 	/*
   1485 	 * Initialize the multicast filter.  Do this now, since we might
   1486 	 * have to setup the config block differently.
   1487 	 */
   1488 	fxp_mc_setup(sc);
   1489 
   1490 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1491 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1492 
   1493 	/*
   1494 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1495 	 * enable "save bad frames", since they are 4 bytes larger than
   1496 	 * the normal Ethernet maximum frame length.  On i82558 and later,
   1497 	 * we have a better mechanism for this.
   1498 	 */
   1499 	save_bf = 0;
   1500 	lrxen = 0;
   1501 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1502 		if (sc->sc_rev < FXP_REV_82558_A4)
   1503 			save_bf = 1;
   1504 		else
   1505 			lrxen = 1;
   1506 	}
   1507 
   1508 	/*
   1509 	 * Initialize base of dump-stats buffer.
   1510 	 */
   1511 	fxp_scb_wait(sc);
   1512 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1513 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1514 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1515 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1516 
   1517 	cbp = &sc->sc_control_data->fcd_configcb;
   1518 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1519 
   1520 	/*
   1521 	 * Load microcode for this controller.
   1522 	 */
   1523 	fxp_load_ucode(sc);
   1524 
   1525 	/*
   1526 	 * This copy is kind of disgusting, but there are a bunch of must be
   1527 	 * zero and must be one bits in this structure and this is the easiest
   1528 	 * way to initialize them all to proper values.
   1529 	 */
   1530 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1531 
   1532 	/* BIG_ENDIAN: no need to swap to store 0 */
   1533 	cbp->cb_status =	0;
   1534 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1535 				    FXP_CB_COMMAND_EL);
   1536 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1537 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1538 					/* bytes in config block */
   1539 	cbp->byte_count =	FXP_CONFIG_LEN;
   1540 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1541 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1542 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1543 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
   1544 	cbp->type_enable =	0;	/* actually reserved */
   1545 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
   1546 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
   1547 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1548 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1549 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
   1550 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1551 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
   1552 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1553 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
   1554 	cbp->ext_stats_dis =	1;	/* disable extended counters */
   1555 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
   1556 	cbp->save_bf =		save_bf;/* save bad frames */
   1557 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1558 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1559 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
   1560 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
   1561 					/* interface mode */
   1562 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
   1563 	cbp->csma_dis =		0;	/* (don't) disable link */
   1564 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
   1565 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
   1566 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
   1567 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
   1568 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
   1569 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1570 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1571 	cbp->loopback =		0;	/* (don't) loopback */
   1572 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1573 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1574 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1575 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1576 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1577 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
   1578 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
   1579 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
   1580 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
   1581 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1582 	cbp->padding =		1;	/* (do) pad short tx packets */
   1583 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1584 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
   1585 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
   1586 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
   1587 					/* must set wake_en in PMCSR also */
   1588 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1589 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1590 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1591 	cbp->mc_all =		allm;	/* accept all multicasts */
   1592 
   1593 	if (sc->sc_rev < FXP_REV_82558_A4) {
   1594 		/*
   1595 		 * The i82557 has no hardware flow control, the values
   1596 		 * here are the defaults for the chip.
   1597 		 */
   1598 		cbp->fc_delay_lsb =	0;
   1599 		cbp->fc_delay_msb =	0x40;
   1600 		cbp->pri_fc_thresh =	3;
   1601 		cbp->tx_fc_dis =	0;
   1602 		cbp->rx_fc_restop =	0;
   1603 		cbp->rx_fc_restart =	0;
   1604 		cbp->fc_filter =	0;
   1605 		cbp->pri_fc_loc =	1;
   1606 	} else {
   1607 		cbp->fc_delay_lsb =	0x1f;
   1608 		cbp->fc_delay_msb =	0x01;
   1609 		cbp->pri_fc_thresh =	3;
   1610 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
   1611 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
   1612 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
   1613 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
   1614 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
   1615 	}
   1616 
   1617 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1618 
   1619 	/*
   1620 	 * Start the config command/DMA.
   1621 	 */
   1622 	fxp_scb_wait(sc);
   1623 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1624 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1625 	/* ...and wait for it to complete. */
   1626 	i = 1000;
   1627 	do {
   1628 		FXP_CDCONFIGSYNC(sc,
   1629 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1630 		DELAY(1);
   1631 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1632 	if (i == 0) {
   1633 		printf("%s at line %d: dmasync timeout\n",
   1634 		    sc->sc_dev.dv_xname, __LINE__);
   1635 		return ETIMEDOUT;
   1636 	}
   1637 
   1638 	/*
   1639 	 * Initialize the station address.
   1640 	 */
   1641 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1642 	/* BIG_ENDIAN: no need to swap to store 0 */
   1643 	cb_ias->cb_status = 0;
   1644 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1645 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1646 	cb_ias->link_addr = 0xffffffff;
   1647 	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1648 
   1649 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1650 
   1651 	/*
   1652 	 * Start the IAS (Individual Address Setup) command/DMA.
   1653 	 */
   1654 	fxp_scb_wait(sc);
   1655 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1656 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1657 	/* ...and wait for it to complete. */
   1658 	i = 1000;
   1659 	do {
   1660 		FXP_CDIASSYNC(sc,
   1661 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1662 		DELAY(1);
   1663 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1664 	if (i == 0) {
   1665 		printf("%s at line %d: dmasync timeout\n",
   1666 		    sc->sc_dev.dv_xname, __LINE__);
   1667 		return ETIMEDOUT;
   1668 	}
   1669 
   1670 	/*
   1671 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1672 	 * to the end of the list so that it will wrap around to the first
   1673 	 * descriptor when the first packet is transmitted.
   1674 	 */
   1675 	for (i = 0; i < FXP_NTXCB; i++) {
   1676 		txd = FXP_CDTX(sc, i);
   1677 		memset(txd, 0, sizeof(*txd));
   1678 		txd->txd_txcb.cb_command =
   1679 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1680 		txd->txd_txcb.link_addr =
   1681 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1682 		if (sc->sc_flags & FXPF_EXT_TXCB)
   1683 			txd->txd_txcb.tbd_array_addr =
   1684 			    htole32(FXP_CDTBDADDR(sc, i) +
   1685 				    (2 * sizeof(struct fxp_tbd)));
   1686 		else
   1687 			txd->txd_txcb.tbd_array_addr =
   1688 			    htole32(FXP_CDTBDADDR(sc, i));
   1689 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1690 	}
   1691 	sc->sc_txpending = 0;
   1692 	sc->sc_txdirty = 0;
   1693 	sc->sc_txlast = FXP_NTXCB - 1;
   1694 
   1695 	/*
   1696 	 * Initialize the receive buffer list.
   1697 	 */
   1698 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1699 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1700 		rxmap = FXP_RXMAP_GET(sc);
   1701 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1702 			printf("%s: unable to allocate or map rx "
   1703 			    "buffer %d, error = %d\n",
   1704 			    sc->sc_dev.dv_xname,
   1705 			    sc->sc_rxq.ifq_len, error);
   1706 			/*
   1707 			 * XXX Should attempt to run with fewer receive
   1708 			 * XXX buffers instead of just failing.
   1709 			 */
   1710 			FXP_RXMAP_PUT(sc, rxmap);
   1711 			fxp_rxdrain(sc);
   1712 			goto out;
   1713 		}
   1714 	}
   1715 	sc->sc_rxidle = 0;
   1716 
   1717 	/*
   1718 	 * Give the transmit ring to the chip.  We do this by pointing
   1719 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1720 	 * issuing a start command.  It will execute the NOP and then
   1721 	 * suspend, pointing at the first descriptor.
   1722 	 */
   1723 	fxp_scb_wait(sc);
   1724 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1725 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1726 
   1727 	/*
   1728 	 * Initialize receiver buffer area - RFA.
   1729 	 */
   1730 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1731 	fxp_scb_wait(sc);
   1732 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1733 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1734 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1735 
   1736 	if (sc->sc_flags & FXPF_MII) {
   1737 		/*
   1738 		 * Set current media.
   1739 		 */
   1740 		mii_mediachg(&sc->sc_mii);
   1741 	}
   1742 
   1743 	/*
   1744 	 * ...all done!
   1745 	 */
   1746 	ifp->if_flags |= IFF_RUNNING;
   1747 	ifp->if_flags &= ~IFF_OACTIVE;
   1748 
   1749 	/*
   1750 	 * Start the one second timer.
   1751 	 */
   1752 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1753 
   1754 	/*
   1755 	 * Attempt to start output on the interface.
   1756 	 */
   1757 	fxp_start(ifp);
   1758 
   1759  out:
   1760 	if (error) {
   1761 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1762 		ifp->if_timer = 0;
   1763 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1764 	}
   1765 	return (error);
   1766 }
   1767 
   1768 /*
   1769  * Change media according to request.
   1770  */
   1771 int
   1772 fxp_mii_mediachange(struct ifnet *ifp)
   1773 {
   1774 	struct fxp_softc *sc = ifp->if_softc;
   1775 
   1776 	if (ifp->if_flags & IFF_UP)
   1777 		mii_mediachg(&sc->sc_mii);
   1778 	return (0);
   1779 }
   1780 
   1781 /*
   1782  * Notify the world which media we're using.
   1783  */
   1784 void
   1785 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1786 {
   1787 	struct fxp_softc *sc = ifp->if_softc;
   1788 
   1789 	if(sc->sc_enabled == 0) {
   1790 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1791 		ifmr->ifm_status = 0;
   1792 		return;
   1793 	}
   1794 
   1795 	mii_pollstat(&sc->sc_mii);
   1796 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1797 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1798 }
   1799 
   1800 int
   1801 fxp_80c24_mediachange(struct ifnet *ifp)
   1802 {
   1803 
   1804 	/* Nothing to do here. */
   1805 	return (0);
   1806 }
   1807 
   1808 void
   1809 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1810 {
   1811 	struct fxp_softc *sc = ifp->if_softc;
   1812 
   1813 	/*
   1814 	 * Media is currently-selected media.  We cannot determine
   1815 	 * the link status.
   1816 	 */
   1817 	ifmr->ifm_status = 0;
   1818 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1819 }
   1820 
   1821 /*
   1822  * Add a buffer to the end of the RFA buffer list.
   1823  * Return 0 if successful, error code on failure.
   1824  *
   1825  * The RFA struct is stuck at the beginning of mbuf cluster and the
   1826  * data pointer is fixed up to point just past it.
   1827  */
   1828 int
   1829 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
   1830 {
   1831 	struct mbuf *m;
   1832 	int error;
   1833 
   1834 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1835 	if (m == NULL)
   1836 		return (ENOBUFS);
   1837 
   1838 	MCLGET(m, M_DONTWAIT);
   1839 	if ((m->m_flags & M_EXT) == 0) {
   1840 		m_freem(m);
   1841 		return (ENOBUFS);
   1842 	}
   1843 
   1844 	if (unload)
   1845 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1846 
   1847 	M_SETCTX(m, rxmap);
   1848 
   1849 	error = bus_dmamap_load(sc->sc_dmat, rxmap,
   1850 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1851 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1852 	if (error) {
   1853 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1854 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   1855 		panic("fxp_add_rfabuf");		/* XXX */
   1856 	}
   1857 
   1858 	FXP_INIT_RFABUF(sc, m);
   1859 
   1860 	return (0);
   1861 }
   1862 
   1863 int
   1864 fxp_mdi_read(struct device *self, int phy, int reg)
   1865 {
   1866 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1867 	int count = 10000;
   1868 	int value;
   1869 
   1870 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1871 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   1872 
   1873 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
   1874 	    && count--)
   1875 		DELAY(10);
   1876 
   1877 	if (count <= 0)
   1878 		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   1879 
   1880 	return (value & 0xffff);
   1881 }
   1882 
   1883 void
   1884 fxp_statchg(struct device *self)
   1885 {
   1886 	struct fxp_softc *sc = (void *) self;
   1887 
   1888 	/*
   1889 	 * Determine whether or not we have to work-around the
   1890 	 * Resume Bug.
   1891 	 */
   1892 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
   1893 		if (IFM_TYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
   1894 			sc->sc_flags |= FXPF_FIX_RESUME_BUG;
   1895 		else
   1896 			sc->sc_flags &= ~FXPF_FIX_RESUME_BUG;
   1897 	}
   1898 }
   1899 
   1900 void
   1901 fxp_mdi_write(struct device *self, int phy, int reg, int value)
   1902 {
   1903 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1904 	int count = 10000;
   1905 
   1906 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1907 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   1908 	    (value & 0xffff));
   1909 
   1910 	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   1911 	    count--)
   1912 		DELAY(10);
   1913 
   1914 	if (count <= 0)
   1915 		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   1916 }
   1917 
   1918 int
   1919 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1920 {
   1921 	struct fxp_softc *sc = ifp->if_softc;
   1922 	struct ifreq *ifr = (struct ifreq *)data;
   1923 	int s, error;
   1924 
   1925 	s = splnet();
   1926 
   1927 	switch (cmd) {
   1928 	case SIOCSIFMEDIA:
   1929 	case SIOCGIFMEDIA:
   1930 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1931 		break;
   1932 
   1933 	default:
   1934 		error = ether_ioctl(ifp, cmd, data);
   1935 		if (error == ENETRESET) {
   1936 			if (sc->sc_enabled) {
   1937 				/*
   1938 				 * Multicast list has changed; set the
   1939 				 * hardware filter accordingly.
   1940 				 */
   1941 				if (sc->sc_txpending) {
   1942 					sc->sc_flags |= FXPF_WANTINIT;
   1943 					error = 0;
   1944 				} else
   1945 					error = fxp_init(ifp);
   1946 			} else
   1947 				error = 0;
   1948 		}
   1949 		break;
   1950 	}
   1951 
   1952 	/* Try to get more packets going. */
   1953 	if (sc->sc_enabled)
   1954 		fxp_start(ifp);
   1955 
   1956 	splx(s);
   1957 	return (error);
   1958 }
   1959 
   1960 /*
   1961  * Program the multicast filter.
   1962  *
   1963  * This function must be called at splnet().
   1964  */
   1965 void
   1966 fxp_mc_setup(struct fxp_softc *sc)
   1967 {
   1968 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   1969 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1970 	struct ethercom *ec = &sc->sc_ethercom;
   1971 	struct ether_multi *enm;
   1972 	struct ether_multistep step;
   1973 	int count, nmcasts;
   1974 
   1975 #ifdef DIAGNOSTIC
   1976 	if (sc->sc_txpending)
   1977 		panic("fxp_mc_setup: pending transmissions");
   1978 #endif
   1979 
   1980 	ifp->if_flags &= ~IFF_ALLMULTI;
   1981 
   1982 	/*
   1983 	 * Initialize multicast setup descriptor.
   1984 	 */
   1985 	nmcasts = 0;
   1986 	ETHER_FIRST_MULTI(step, ec, enm);
   1987 	while (enm != NULL) {
   1988 		/*
   1989 		 * Check for too many multicast addresses or if we're
   1990 		 * listening to a range.  Either way, we simply have
   1991 		 * to accept all multicasts.
   1992 		 */
   1993 		if (nmcasts >= MAXMCADDR ||
   1994 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1995 		    ETHER_ADDR_LEN) != 0) {
   1996 			/*
   1997 			 * Callers of this function must do the
   1998 			 * right thing with this.  If we're called
   1999 			 * from outside fxp_init(), the caller must
   2000 			 * detect if the state if IFF_ALLMULTI changes.
   2001 			 * If it does, the caller must then call
   2002 			 * fxp_init(), since allmulti is handled by
   2003 			 * the config block.
   2004 			 */
   2005 			ifp->if_flags |= IFF_ALLMULTI;
   2006 			return;
   2007 		}
   2008 		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   2009 		    ETHER_ADDR_LEN);
   2010 		nmcasts++;
   2011 		ETHER_NEXT_MULTI(step, enm);
   2012 	}
   2013 
   2014 	/* BIG_ENDIAN: no need to swap to store 0 */
   2015 	mcsp->cb_status = 0;
   2016 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   2017 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   2018 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   2019 
   2020 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2021 
   2022 	/*
   2023 	 * Wait until the command unit is not active.  This should never
   2024 	 * happen since nothing is queued, but make sure anyway.
   2025 	 */
   2026 	count = 100;
   2027 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   2028 	    FXP_SCB_CUS_ACTIVE && --count)
   2029 		DELAY(1);
   2030 	if (count == 0) {
   2031 		printf("%s at line %d: command queue timeout\n",
   2032 		    sc->sc_dev.dv_xname, __LINE__);
   2033 		return;
   2034 	}
   2035 
   2036 	/*
   2037 	 * Start the multicast setup command/DMA.
   2038 	 */
   2039 	fxp_scb_wait(sc);
   2040 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   2041 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2042 
   2043 	/* ...and wait for it to complete. */
   2044 	count = 1000;
   2045 	do {
   2046 		FXP_CDMCSSYNC(sc,
   2047 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2048 		DELAY(1);
   2049 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   2050 	if (count == 0) {
   2051 		printf("%s at line %d: dmasync timeout\n",
   2052 		    sc->sc_dev.dv_xname, __LINE__);
   2053 		return;
   2054 	}
   2055 }
   2056 
   2057 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
   2058 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
   2059 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
   2060 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
   2061 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
   2062 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
   2063 
   2064 #define	UCODE(x)	x, sizeof(x)
   2065 
   2066 static const struct ucode {
   2067 	uint32_t	revision;
   2068 	const uint32_t	*ucode;
   2069 	size_t		length;
   2070 	uint16_t	int_delay_offset;
   2071 	uint16_t	bundle_max_offset;
   2072 } ucode_table[] = {
   2073 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
   2074 	  D101_CPUSAVER_DWORD, 0 },
   2075 
   2076 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
   2077 	  D101_CPUSAVER_DWORD, 0 },
   2078 
   2079 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
   2080 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
   2081 
   2082 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
   2083 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
   2084 
   2085 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
   2086 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
   2087 
   2088 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
   2089 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
   2090 
   2091 	{ 0, NULL, 0, 0, 0 }
   2092 };
   2093 
   2094 void
   2095 fxp_load_ucode(struct fxp_softc *sc)
   2096 {
   2097 	const struct ucode *uc;
   2098 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
   2099 	int count;
   2100 
   2101 	if (sc->sc_flags & FXPF_UCODE_LOADED)
   2102 		return;
   2103 
   2104 	/*
   2105 	 * Only load the uCode if the user has requested that
   2106 	 * we do so.
   2107 	 */
   2108 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
   2109 		sc->sc_int_delay = 0;
   2110 		sc->sc_bundle_max = 0;
   2111 		return;
   2112 	}
   2113 
   2114 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
   2115 		if (sc->sc_rev == uc->revision)
   2116 			break;
   2117 	}
   2118 	if (uc->ucode == NULL)
   2119 		return;
   2120 
   2121 	/* BIG ENDIAN: no need to swap to store 0 */
   2122 	cbp->cb_status = 0;
   2123 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
   2124 	cbp->link_addr = 0xffffffff;		/* (no) next command */
   2125 	memcpy((void *) cbp->ucode, uc->ucode, uc->length);
   2126 
   2127 	if (uc->int_delay_offset)
   2128 		*(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
   2129 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
   2130 
   2131 	if (uc->bundle_max_offset)
   2132 		*(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
   2133 		    htole16(fxp_bundle_max);
   2134 
   2135 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2136 
   2137 	/*
   2138 	 * Download the uCode to the chip.
   2139 	 */
   2140 	fxp_scb_wait(sc);
   2141 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
   2142 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2143 
   2144 	/* ...and wait for it to complete. */
   2145 	count = 10000;
   2146 	do {
   2147 		FXP_CDUCODESYNC(sc,
   2148 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2149 		DELAY(2);
   2150 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   2151 	if (count == 0) {
   2152 		sc->sc_int_delay = 0;
   2153 		sc->sc_bundle_max = 0;
   2154 		printf("%s: timeout loading microcode\n",
   2155 		    sc->sc_dev.dv_xname);
   2156 		return;
   2157 	}
   2158 
   2159 	if (sc->sc_int_delay != fxp_int_delay ||
   2160 	    sc->sc_bundle_max != fxp_bundle_max) {
   2161 		sc->sc_int_delay = fxp_int_delay;
   2162 		sc->sc_bundle_max = fxp_bundle_max;
   2163 		printf("%s: Microcode loaded: int delay: %d usec, "
   2164 		    "max bundle: %d\n", sc->sc_dev.dv_xname,
   2165 		    sc->sc_int_delay,
   2166 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
   2167 	}
   2168 
   2169 	sc->sc_flags |= FXPF_UCODE_LOADED;
   2170 }
   2171 
   2172 int
   2173 fxp_enable(struct fxp_softc *sc)
   2174 {
   2175 
   2176 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   2177 		if ((*sc->sc_enable)(sc) != 0) {
   2178 			printf("%s: device enable failed\n",
   2179 			    sc->sc_dev.dv_xname);
   2180 			return (EIO);
   2181 		}
   2182 	}
   2183 
   2184 	sc->sc_enabled = 1;
   2185 	return (0);
   2186 }
   2187 
   2188 void
   2189 fxp_disable(struct fxp_softc *sc)
   2190 {
   2191 
   2192 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   2193 		(*sc->sc_disable)(sc);
   2194 		sc->sc_enabled = 0;
   2195 	}
   2196 }
   2197 
   2198 /*
   2199  * fxp_activate:
   2200  *
   2201  *	Handle device activation/deactivation requests.
   2202  */
   2203 int
   2204 fxp_activate(struct device *self, enum devact act)
   2205 {
   2206 	struct fxp_softc *sc = (void *) self;
   2207 	int s, error = 0;
   2208 
   2209 	s = splnet();
   2210 	switch (act) {
   2211 	case DVACT_ACTIVATE:
   2212 		error = EOPNOTSUPP;
   2213 		break;
   2214 
   2215 	case DVACT_DEACTIVATE:
   2216 		if (sc->sc_flags & FXPF_MII)
   2217 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   2218 			    MII_OFFSET_ANY);
   2219 		if_deactivate(&sc->sc_ethercom.ec_if);
   2220 		break;
   2221 	}
   2222 	splx(s);
   2223 
   2224 	return (error);
   2225 }
   2226 
   2227 /*
   2228  * fxp_detach:
   2229  *
   2230  *	Detach an i82557 interface.
   2231  */
   2232 int
   2233 fxp_detach(struct fxp_softc *sc)
   2234 {
   2235 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2236 	int i;
   2237 
   2238 	/* Succeed now if there's no work to do. */
   2239 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2240 		return (0);
   2241 
   2242 	/* Unhook our tick handler. */
   2243 	callout_stop(&sc->sc_callout);
   2244 
   2245 	if (sc->sc_flags & FXPF_MII) {
   2246 		/* Detach all PHYs */
   2247 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2248 	}
   2249 
   2250 	/* Delete all remaining media. */
   2251 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2252 
   2253 #if NRND > 0
   2254 	rnd_detach_source(&sc->rnd_source);
   2255 #endif
   2256 	ether_ifdetach(ifp);
   2257 	if_detach(ifp);
   2258 
   2259 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2260 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2261 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2262 	}
   2263 
   2264 	for (i = 0; i < FXP_NTXCB; i++) {
   2265 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2266 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2267 	}
   2268 
   2269 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2270 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2271 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2272 	    sizeof(struct fxp_control_data));
   2273 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2274 
   2275 	shutdownhook_disestablish(sc->sc_sdhook);
   2276 	powerhook_disestablish(sc->sc_powerhook);
   2277 
   2278 	return (0);
   2279 }
   2280