i82557.c revision 1.65 1 /* $NetBSD: i82557.c,v 1.65 2002/05/20 15:23:01 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.65 2002/05/20 15:23:01 mycroft Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91
92 #include <machine/endian.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #if NRND > 0
97 #include <sys/rnd.h>
98 #endif
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111
112 #include <dev/mii/miivar.h>
113
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116
117 #include <dev/microcode/i8255x/rcvbundl.h>
118
119 /*
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
127 */
128 #define RFA_ALIGNMENT_FUDGE 2
129
130 /*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138 const u_int8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
174 };
175
176 void fxp_mii_initmedia(struct fxp_softc *);
177 int fxp_mii_mediachange(struct ifnet *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 void fxp_rxintr(struct fxp_softc *);
192
193 void fxp_rxdrain(struct fxp_softc *);
194 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
195 int fxp_mdi_read(struct device *, int, int);
196 void fxp_statchg(struct device *);
197 void fxp_mdi_write(struct device *, int, int, int);
198 void fxp_autosize_eeprom(struct fxp_softc*);
199 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
200 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
201 void fxp_eeprom_update_cksum(struct fxp_softc *);
202 void fxp_get_info(struct fxp_softc *, u_int8_t *);
203 void fxp_tick(void *);
204 void fxp_mc_setup(struct fxp_softc *);
205 void fxp_load_ucode(struct fxp_softc *);
206
207 void fxp_shutdown(void *);
208 void fxp_power(int, void *);
209
210 int fxp_copy_small = 0;
211
212 /*
213 * Variables for interrupt mitigating microcode.
214 */
215 int fxp_int_delay = 1000; /* usec */
216 int fxp_bundle_max = 6; /* packets */
217
218 struct fxp_phytype {
219 int fp_phy; /* type of PHY, -1 for MII at the end. */
220 void (*fp_init)(struct fxp_softc *);
221 } fxp_phytype_table[] = {
222 { FXP_PHY_80C24, fxp_80c24_initmedia },
223 { -1, fxp_mii_initmedia },
224 };
225
226 /*
227 * Set initial transmit threshold at 64 (512 bytes). This is
228 * increased by 64 (512 bytes) at a time, to maximum of 192
229 * (1536 bytes), if an underrun occurs.
230 */
231 static int tx_threshold = 64;
232
233 /*
234 * Wait for the previous command to be accepted (but not necessarily
235 * completed).
236 */
237 static __inline void
238 fxp_scb_wait(struct fxp_softc *sc)
239 {
240 int i = 10000;
241
242 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
243 delay(2);
244 if (i == 0)
245 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
246 }
247
248 /*
249 * Submit a command to the i82557.
250 */
251 static __inline void
252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253 {
254
255 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256 }
257
258 /*
259 * Finish attaching an i82557 interface. Called by bus-specific front-end.
260 */
261 void
262 fxp_attach(struct fxp_softc *sc)
263 {
264 u_int8_t enaddr[ETHER_ADDR_LEN];
265 struct ifnet *ifp;
266 bus_dma_segment_t seg;
267 int rseg, i, error;
268 struct fxp_phytype *fp;
269
270 callout_init(&sc->sc_callout);
271
272 /* Start out using the standard RFA. */
273 sc->sc_rfa_size = RFA_SIZE;
274
275 /*
276 * Enable some good stuff on i82558 and later.
277 */
278 if (sc->sc_rev >= FXP_REV_82558_A4) {
279 /* Enable the extended TxCB. */
280 sc->sc_flags |= FXPF_EXT_TXCB;
281 }
282
283 /*
284 * Allocate the control data structures, and create and load the
285 * DMA map for it.
286 */
287 if ((error = bus_dmamem_alloc(sc->sc_dmat,
288 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
289 0)) != 0) {
290 printf("%s: unable to allocate control data, error = %d\n",
291 sc->sc_dev.dv_xname, error);
292 goto fail_0;
293 }
294
295 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
296 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
297 BUS_DMA_COHERENT)) != 0) {
298 printf("%s: unable to map control data, error = %d\n",
299 sc->sc_dev.dv_xname, error);
300 goto fail_1;
301 }
302 sc->sc_cdseg = seg;
303 sc->sc_cdnseg = rseg;
304
305 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
306
307 if ((error = bus_dmamap_create(sc->sc_dmat,
308 sizeof(struct fxp_control_data), 1,
309 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
310 printf("%s: unable to create control data DMA map, "
311 "error = %d\n", sc->sc_dev.dv_xname, error);
312 goto fail_2;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
316 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
317 0)) != 0) {
318 printf("%s: can't load control data DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail_3;
321 }
322
323 /*
324 * Create the transmit buffer DMA maps.
325 */
326 for (i = 0; i < FXP_NTXCB; i++) {
327 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
328 FXP_NTXSEG, MCLBYTES, 0, 0,
329 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
330 printf("%s: unable to create tx DMA map %d, "
331 "error = %d\n", sc->sc_dev.dv_xname, i, error);
332 goto fail_4;
333 }
334 }
335
336 /*
337 * Create the receive buffer DMA maps.
338 */
339 for (i = 0; i < FXP_NRFABUFS; i++) {
340 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
341 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
342 printf("%s: unable to create rx DMA map %d, "
343 "error = %d\n", sc->sc_dev.dv_xname, i, error);
344 goto fail_5;
345 }
346 }
347
348 /* Initialize MAC address and media structures. */
349 fxp_get_info(sc, enaddr);
350
351 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
352 ether_sprintf(enaddr));
353
354 ifp = &sc->sc_ethercom.ec_if;
355
356 /*
357 * Get info about our media interface, and initialize it. Note
358 * the table terminates itself with a phy of -1, indicating
359 * that we're using MII.
360 */
361 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362 if (fp->fp_phy == sc->phy_primary_device)
363 break;
364 (*fp->fp_init)(sc);
365
366 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 ifp->if_ioctl = fxp_ioctl;
370 ifp->if_start = fxp_start;
371 ifp->if_watchdog = fxp_watchdog;
372 ifp->if_init = fxp_init;
373 ifp->if_stop = fxp_stop;
374 IFQ_SET_READY(&ifp->if_snd);
375
376 /*
377 * We can support 802.1Q VLAN-sized frames.
378 */
379 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
380
381 /*
382 * Attach the interface.
383 */
384 if_attach(ifp);
385 ether_ifattach(ifp, enaddr);
386 #if NRND > 0
387 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
388 RND_TYPE_NET, 0);
389 #endif
390
391 #ifdef FXP_EVENT_COUNTERS
392 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
393 NULL, sc->sc_dev.dv_xname, "txstall");
394 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
395 NULL, sc->sc_dev.dv_xname, "txintr");
396 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
397 NULL, sc->sc_dev.dv_xname, "rxintr");
398 #endif /* FXP_EVENT_COUNTERS */
399
400 /*
401 * Add shutdown hook so that DMA is disabled prior to reboot. Not
402 * doing do could allow DMA to corrupt kernel memory during the
403 * reboot before the driver initializes.
404 */
405 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
406 if (sc->sc_sdhook == NULL)
407 printf("%s: WARNING: unable to establish shutdown hook\n",
408 sc->sc_dev.dv_xname);
409 /*
410 * Add suspend hook, for similar reasons..
411 */
412 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
413 if (sc->sc_powerhook == NULL)
414 printf("%s: WARNING: unable to establish power hook\n",
415 sc->sc_dev.dv_xname);
416
417 /* The attach is successful. */
418 sc->sc_flags |= FXPF_ATTACHED;
419
420 return;
421
422 /*
423 * Free any resources we've allocated during the failed attach
424 * attempt. Do this in reverse order and fall though.
425 */
426 fail_5:
427 for (i = 0; i < FXP_NRFABUFS; i++) {
428 if (sc->sc_rxmaps[i] != NULL)
429 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
430 }
431 fail_4:
432 for (i = 0; i < FXP_NTXCB; i++) {
433 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
434 bus_dmamap_destroy(sc->sc_dmat,
435 FXP_DSTX(sc, i)->txs_dmamap);
436 }
437 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
438 fail_3:
439 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
440 fail_2:
441 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
442 sizeof(struct fxp_control_data));
443 fail_1:
444 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
445 fail_0:
446 return;
447 }
448
449 void
450 fxp_mii_initmedia(struct fxp_softc *sc)
451 {
452 int flags;
453
454 sc->sc_flags |= FXPF_MII;
455
456 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
457 sc->sc_mii.mii_readreg = fxp_mdi_read;
458 sc->sc_mii.mii_writereg = fxp_mdi_write;
459 sc->sc_mii.mii_statchg = fxp_statchg;
460 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
461 fxp_mii_mediastatus);
462
463 flags = MIIF_NOISOLATE;
464 if (sc->sc_rev >= FXP_REV_82558_A4)
465 flags |= MIIF_DOPAUSE;
466 /*
467 * The i82557 wedges if all of its PHYs are isolated!
468 */
469 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
470 MII_OFFSET_ANY, flags);
471 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
472 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
473 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
474 } else
475 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
476 }
477
478 void
479 fxp_80c24_initmedia(struct fxp_softc *sc)
480 {
481
482 /*
483 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
484 * doesn't have a programming interface of any sort. The
485 * media is sensed automatically based on how the link partner
486 * is configured. This is, in essence, manual configuration.
487 */
488 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
489 sc->sc_dev.dv_xname);
490 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
491 fxp_80c24_mediastatus);
492 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
493 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
494 }
495
496 /*
497 * Device shutdown routine. Called at system shutdown after sync. The
498 * main purpose of this routine is to shut off receiver DMA so that
499 * kernel memory doesn't get clobbered during warmboot.
500 */
501 void
502 fxp_shutdown(void *arg)
503 {
504 struct fxp_softc *sc = arg;
505
506 /*
507 * Since the system's going to halt shortly, don't bother
508 * freeing mbufs.
509 */
510 fxp_stop(&sc->sc_ethercom.ec_if, 0);
511 }
512 /*
513 * Power handler routine. Called when the system is transitioning
514 * into/out of power save modes. As with fxp_shutdown, the main
515 * purpose of this routine is to shut off receiver DMA so it doesn't
516 * clobber kernel memory at the wrong time.
517 */
518 void
519 fxp_power(int why, void *arg)
520 {
521 struct fxp_softc *sc = arg;
522 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
523 int s;
524
525 s = splnet();
526 switch (why) {
527 case PWR_SUSPEND:
528 case PWR_STANDBY:
529 fxp_stop(ifp, 0);
530 break;
531 case PWR_RESUME:
532 if (ifp->if_flags & IFF_UP)
533 fxp_init(ifp);
534 break;
535 case PWR_SOFTSUSPEND:
536 case PWR_SOFTSTANDBY:
537 case PWR_SOFTRESUME:
538 break;
539 }
540 splx(s);
541 }
542
543 /*
544 * Initialize the interface media.
545 */
546 void
547 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
548 {
549 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
550
551 /*
552 * Reset to a stable state.
553 */
554 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
555 DELAY(10);
556
557 sc->sc_eeprom_size = 0;
558 fxp_autosize_eeprom(sc);
559 if(sc->sc_eeprom_size == 0) {
560 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
561 sc->sc_eeprom_size = 6; /* XXX panic here? */
562 }
563 #ifdef DEBUG
564 printf("%s: detected %d word EEPROM\n",
565 sc->sc_dev.dv_xname,
566 1 << sc->sc_eeprom_size);
567 #endif
568
569 /*
570 * Get info about the primary PHY
571 */
572 fxp_read_eeprom(sc, &data, 6, 1);
573 sc->phy_primary_device =
574 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
575
576 /*
577 * Read MAC address.
578 */
579 fxp_read_eeprom(sc, myea, 0, 3);
580 enaddr[0] = myea[0] & 0xff;
581 enaddr[1] = myea[0] >> 8;
582 enaddr[2] = myea[1] & 0xff;
583 enaddr[3] = myea[1] >> 8;
584 enaddr[4] = myea[2] & 0xff;
585 enaddr[5] = myea[2] >> 8;
586
587 /*
588 * Systems based on the ICH2/ICH2-M chip from Intel, as well
589 * as some i82559 designs, have a defect where the chip can
590 * cause a PCI protocol violation if it receives a CU_RESUME
591 * command when it is entering the IDLE state.
592 *
593 * The work-around is to disable Dynamic Standby Mode, so that
594 * the chip never deasserts #CLKRUN, and always remains in the
595 * active state.
596 *
597 * Unfortunately, the only way to disable Dynamic Standby is
598 * to frob an EEPROM setting and reboot (the EEPROM setting
599 * is only consulted when the PCI bus comes out of reset).
600 *
601 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
602 */
603 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
604 fxp_read_eeprom(sc, &data, 10, 1);
605 if (data & 0x02) { /* STB enable */
606 printf("%s: WARNING: Disabling dynamic standby mode in EEPROM to work around a", sc->sc_dev.dv_xname);
607 printf("%s: WARNING: hardware bug. You must reset the system before using this", sc->sc_dev.dv_xname);
608 printf("%s: WARNING: interface.", sc->sc_dev.dv_xname);
609 data &= ~0x02;
610 fxp_write_eeprom(sc, &data, 10, 1);
611 printf("%s: new EEPROM ID: 0x%04x\n",
612 sc->sc_dev.dv_xname, data);
613 fxp_eeprom_update_cksum(sc);
614 }
615 }
616 }
617
618 static void
619 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
620 {
621 uint16_t reg;
622 int x;
623
624 for (x = 1 << (len - 1); x != 0; x >>= 1) {
625 if (data & x)
626 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
627 else
628 reg = FXP_EEPROM_EECS;
629 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
630 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
631 reg | FXP_EEPROM_EESK);
632 DELAY(4);
633 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
634 DELAY(4);
635 }
636 }
637
638 /*
639 * Figure out EEPROM size.
640 *
641 * 559's can have either 64-word or 256-word EEPROMs, the 558
642 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
643 * talks about the existance of 16 to 256 word EEPROMs.
644 *
645 * The only known sizes are 64 and 256, where the 256 version is used
646 * by CardBus cards to store CIS information.
647 *
648 * The address is shifted in msb-to-lsb, and after the last
649 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
650 * after which follows the actual data. We try to detect this zero, by
651 * probing the data-out bit in the EEPROM control register just after
652 * having shifted in a bit. If the bit is zero, we assume we've
653 * shifted enough address bits. The data-out should be tri-state,
654 * before this, which should translate to a logical one.
655 *
656 * Other ways to do this would be to try to read a register with known
657 * contents with a varying number of address bits, but no such
658 * register seem to be available. The high bits of register 10 are 01
659 * on the 558 and 559, but apparently not on the 557.
660 *
661 * The Linux driver computes a checksum on the EEPROM data, but the
662 * value of this checksum is not very well documented.
663 */
664
665 void
666 fxp_autosize_eeprom(struct fxp_softc *sc)
667 {
668 int x;
669
670 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
671
672 /* Shift in read opcode. */
673 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
674
675 /*
676 * Shift in address, wait for the dummy zero following a correct
677 * address shift.
678 */
679 for (x = 1; x <= 8; x++) {
680 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
681 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
682 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
683 DELAY(4);
684 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
685 FXP_EEPROM_EEDO) == 0)
686 break;
687 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
688 DELAY(4);
689 }
690 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
691 DELAY(4);
692 if(x != 6 && x != 8) {
693 #ifdef DEBUG
694 printf("%s: strange EEPROM size (%d)\n",
695 sc->sc_dev.dv_xname, 1 << x);
696 #endif
697 } else
698 sc->sc_eeprom_size = x;
699 }
700
701 /*
702 * Read from the serial EEPROM. Basically, you manually shift in
703 * the read opcode (one bit at a time) and then shift in the address,
704 * and then you shift out the data (all of this one bit at a time).
705 * The word size is 16 bits, so you have to provide the address for
706 * every 16 bits of data.
707 */
708 void
709 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
710 {
711 u_int16_t reg;
712 int i, x;
713
714 for (i = 0; i < words; i++) {
715 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
716
717 /* Shift in read opcode. */
718 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
719
720 /* Shift in address. */
721 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
722
723 reg = FXP_EEPROM_EECS;
724 data[i] = 0;
725
726 /* Shift out data. */
727 for (x = 16; x > 0; x--) {
728 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
729 reg | FXP_EEPROM_EESK);
730 DELAY(4);
731 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
732 FXP_EEPROM_EEDO)
733 data[i] |= (1 << (x - 1));
734 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
735 DELAY(4);
736 }
737 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
738 DELAY(4);
739 }
740 }
741
742 /*
743 * Write data to the serial EEPROM.
744 */
745 void
746 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
747 {
748 int i, j;
749
750 for (i = 0; i < words; i++) {
751 /* Erase/write enable. */
752 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
753 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
754 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
755 sc->sc_eeprom_size);
756 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
757 DELAY(4);
758
759 /* Shift in write opcode, address, data. */
760 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
761 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
762 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
763 fxp_eeprom_shiftin(sc, data[i], 16);
764 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
765 DELAY(4);
766
767 /* Wait for the EEPROM to finish up. */
768 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
769 DELAY(4);
770 for (j = 0; j < 1000; j++) {
771 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
772 FXP_EEPROM_EEDO)
773 break;
774 DELAY(50);
775 }
776 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
777 DELAY(4);
778
779 /* Erase/write disable. */
780 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
781 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
782 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
783 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
784 DELAY(4);
785 }
786 }
787
788 /*
789 * Update the checksum of the EEPROM.
790 */
791 void
792 fxp_eeprom_update_cksum(struct fxp_softc *sc)
793 {
794 int i;
795 uint16_t data, cksum;
796
797 cksum = 0;
798 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
799 fxp_read_eeprom(sc, &data, i, 1);
800 cksum += data;
801 }
802 i = (1 << sc->sc_eeprom_size) - 1;
803 cksum = 0xbaba - cksum;
804 fxp_read_eeprom(sc, &data, i, 1);
805 fxp_write_eeprom(sc, &cksum, i, 1);
806 printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
807 sc->sc_dev.dv_xname, i, data, cksum);
808 }
809
810 /*
811 * Start packet transmission on the interface.
812 */
813 void
814 fxp_start(struct ifnet *ifp)
815 {
816 struct fxp_softc *sc = ifp->if_softc;
817 struct mbuf *m0, *m;
818 struct fxp_txdesc *txd;
819 struct fxp_txsoft *txs;
820 bus_dmamap_t dmamap;
821 int error, lasttx, nexttx, opending, seg;
822
823 /*
824 * If we want a re-init, bail out now.
825 */
826 if (sc->sc_flags & FXPF_WANTINIT) {
827 ifp->if_flags |= IFF_OACTIVE;
828 return;
829 }
830
831 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
832 return;
833
834 /*
835 * Remember the previous txpending and the current lasttx.
836 */
837 opending = sc->sc_txpending;
838 lasttx = sc->sc_txlast;
839
840 /*
841 * Loop through the send queue, setting up transmit descriptors
842 * until we drain the queue, or use up all available transmit
843 * descriptors.
844 */
845 for (;;) {
846 /*
847 * Grab a packet off the queue.
848 */
849 IFQ_POLL(&ifp->if_snd, m0);
850 if (m0 == NULL)
851 break;
852 m = NULL;
853
854 if (sc->sc_txpending == FXP_NTXCB) {
855 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
856 break;
857 }
858
859 /*
860 * Get the next available transmit descriptor.
861 */
862 nexttx = FXP_NEXTTX(sc->sc_txlast);
863 txd = FXP_CDTX(sc, nexttx);
864 txs = FXP_DSTX(sc, nexttx);
865 dmamap = txs->txs_dmamap;
866
867 /*
868 * Load the DMA map. If this fails, the packet either
869 * didn't fit in the allotted number of frags, or we were
870 * short on resources. In this case, we'll copy and try
871 * again.
872 */
873 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
874 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
875 MGETHDR(m, M_DONTWAIT, MT_DATA);
876 if (m == NULL) {
877 printf("%s: unable to allocate Tx mbuf\n",
878 sc->sc_dev.dv_xname);
879 break;
880 }
881 if (m0->m_pkthdr.len > MHLEN) {
882 MCLGET(m, M_DONTWAIT);
883 if ((m->m_flags & M_EXT) == 0) {
884 printf("%s: unable to allocate Tx "
885 "cluster\n", sc->sc_dev.dv_xname);
886 m_freem(m);
887 break;
888 }
889 }
890 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
891 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
892 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
893 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
894 if (error) {
895 printf("%s: unable to load Tx buffer, "
896 "error = %d\n", sc->sc_dev.dv_xname, error);
897 break;
898 }
899 }
900
901 IFQ_DEQUEUE(&ifp->if_snd, m0);
902 if (m != NULL) {
903 m_freem(m0);
904 m0 = m;
905 }
906
907 /* Initialize the fraglist. */
908 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
909 txd->txd_tbd[seg].tb_addr =
910 htole32(dmamap->dm_segs[seg].ds_addr);
911 txd->txd_tbd[seg].tb_size =
912 htole32(dmamap->dm_segs[seg].ds_len);
913 }
914
915 /* Sync the DMA map. */
916 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
917 BUS_DMASYNC_PREWRITE);
918
919 /*
920 * Store a pointer to the packet so we can free it later.
921 */
922 txs->txs_mbuf = m0;
923
924 /*
925 * Initialize the transmit descriptor.
926 */
927 /* BIG_ENDIAN: no need to swap to store 0 */
928 txd->txd_txcb.cb_status = 0;
929 txd->txd_txcb.cb_command =
930 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
931 txd->txd_txcb.tx_threshold = tx_threshold;
932 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
933
934 FXP_CDTXSYNC(sc, nexttx,
935 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
936
937 /* Advance the tx pointer. */
938 sc->sc_txpending++;
939 sc->sc_txlast = nexttx;
940
941 #if NBPFILTER > 0
942 /*
943 * Pass packet to bpf if there is a listener.
944 */
945 if (ifp->if_bpf)
946 bpf_mtap(ifp->if_bpf, m0);
947 #endif
948 }
949
950 if (sc->sc_txpending == FXP_NTXCB) {
951 /* No more slots; notify upper layer. */
952 ifp->if_flags |= IFF_OACTIVE;
953 }
954
955 if (sc->sc_txpending != opending) {
956 /*
957 * We enqueued packets. If the transmitter was idle,
958 * reset the txdirty pointer.
959 */
960 if (opending == 0)
961 sc->sc_txdirty = FXP_NEXTTX(lasttx);
962
963 /*
964 * Cause the chip to interrupt and suspend command
965 * processing once the last packet we've enqueued
966 * has been transmitted.
967 */
968 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
969 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
970 FXP_CDTXSYNC(sc, sc->sc_txlast,
971 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
972
973 /*
974 * The entire packet chain is set up. Clear the suspend bit
975 * on the command prior to the first packet we set up.
976 */
977 FXP_CDTXSYNC(sc, lasttx,
978 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
979 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
980 htole16(~FXP_CB_COMMAND_S);
981 FXP_CDTXSYNC(sc, lasttx,
982 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
983
984 /*
985 * Issue a Resume command in case the chip was suspended.
986 */
987 fxp_scb_wait(sc);
988 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
989
990 /* Set a watchdog timer in case the chip flakes out. */
991 ifp->if_timer = 5;
992 }
993 }
994
995 /*
996 * Process interface interrupts.
997 */
998 int
999 fxp_intr(void *arg)
1000 {
1001 struct fxp_softc *sc = arg;
1002 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1003 bus_dmamap_t rxmap;
1004 int claimed = 0;
1005 u_int8_t statack;
1006
1007 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1008 return (0);
1009 /*
1010 * If the interface isn't running, don't try to
1011 * service the interrupt.. just ack it and bail.
1012 */
1013 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1014 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1015 if (statack) {
1016 claimed = 1;
1017 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1018 }
1019 return (claimed);
1020 }
1021
1022 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1023 claimed = 1;
1024
1025 /*
1026 * First ACK all the interrupts in this pass.
1027 */
1028 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1029
1030 /*
1031 * Process receiver interrupts. If a no-resource (RNR)
1032 * condition exists, get whatever packets we can and
1033 * re-start the receiver.
1034 */
1035 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1036 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1037 fxp_rxintr(sc);
1038 }
1039
1040 if (statack & FXP_SCB_STATACK_RNR) {
1041 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1042 fxp_scb_wait(sc);
1043 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1044 rxmap->dm_segs[0].ds_addr +
1045 RFA_ALIGNMENT_FUDGE);
1046 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1047 }
1048
1049 /*
1050 * Free any finished transmit mbuf chains.
1051 */
1052 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1053 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1054 fxp_txintr(sc);
1055
1056 /*
1057 * Try to get more packets going.
1058 */
1059 fxp_start(ifp);
1060
1061 if (sc->sc_txpending == 0) {
1062 /*
1063 * If we want a re-init, do that now.
1064 */
1065 if (sc->sc_flags & FXPF_WANTINIT)
1066 (void) fxp_init(ifp);
1067 }
1068 }
1069 }
1070
1071 #if NRND > 0
1072 if (claimed)
1073 rnd_add_uint32(&sc->rnd_source, statack);
1074 #endif
1075 return (claimed);
1076 }
1077
1078 /*
1079 * Handle transmit completion interrupts.
1080 */
1081 void
1082 fxp_txintr(struct fxp_softc *sc)
1083 {
1084 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1085 struct fxp_txdesc *txd;
1086 struct fxp_txsoft *txs;
1087 int i;
1088 u_int16_t txstat;
1089
1090 ifp->if_flags &= ~IFF_OACTIVE;
1091 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1092 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1093 txd = FXP_CDTX(sc, i);
1094 txs = FXP_DSTX(sc, i);
1095
1096 FXP_CDTXSYNC(sc, i,
1097 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1098
1099 txstat = le16toh(txd->txd_txcb.cb_status);
1100
1101 if ((txstat & FXP_CB_STATUS_C) == 0)
1102 break;
1103
1104 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1105 0, txs->txs_dmamap->dm_mapsize,
1106 BUS_DMASYNC_POSTWRITE);
1107 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1108 m_freem(txs->txs_mbuf);
1109 txs->txs_mbuf = NULL;
1110 }
1111
1112 /* Update the dirty transmit buffer pointer. */
1113 sc->sc_txdirty = i;
1114
1115 /*
1116 * Cancel the watchdog timer if there are no pending
1117 * transmissions.
1118 */
1119 if (sc->sc_txpending == 0)
1120 ifp->if_timer = 0;
1121 }
1122
1123 /*
1124 * Handle receive interrupts.
1125 */
1126 void
1127 fxp_rxintr(struct fxp_softc *sc)
1128 {
1129 struct ethercom *ec = &sc->sc_ethercom;
1130 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1131 struct mbuf *m, *m0;
1132 bus_dmamap_t rxmap;
1133 struct fxp_rfa *rfa;
1134 u_int16_t len, rxstat;
1135
1136 for (;;) {
1137 m = sc->sc_rxq.ifq_head;
1138 rfa = FXP_MTORFA(m);
1139 rxmap = M_GETCTX(m, bus_dmamap_t);
1140
1141 FXP_RFASYNC(sc, m,
1142 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1143
1144 rxstat = le16toh(rfa->rfa_status);
1145
1146 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1147 /*
1148 * We have processed all of the
1149 * receive buffers.
1150 */
1151 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1152 return;
1153 }
1154
1155 IF_DEQUEUE(&sc->sc_rxq, m);
1156
1157 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1158
1159 len = le16toh(rfa->actual_size) &
1160 (m->m_ext.ext_size - 1);
1161
1162 if (len < sizeof(struct ether_header)) {
1163 /*
1164 * Runt packet; drop it now.
1165 */
1166 FXP_INIT_RFABUF(sc, m);
1167 continue;
1168 }
1169
1170 /*
1171 * If support for 802.1Q VLAN sized frames is
1172 * enabled, we need to do some additional error
1173 * checking (as we are saving bad frames, in
1174 * order to receive the larger ones).
1175 */
1176 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1177 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1178 FXP_RFA_STATUS_RNR|
1179 FXP_RFA_STATUS_ALIGN|
1180 FXP_RFA_STATUS_CRC)) != 0) {
1181 FXP_INIT_RFABUF(sc, m);
1182 continue;
1183 }
1184
1185 /*
1186 * If the packet is small enough to fit in a
1187 * single header mbuf, allocate one and copy
1188 * the data into it. This greatly reduces
1189 * memory consumption when we receive lots
1190 * of small packets.
1191 *
1192 * Otherwise, we add a new buffer to the receive
1193 * chain. If this fails, we drop the packet and
1194 * recycle the old buffer.
1195 */
1196 if (fxp_copy_small != 0 && len <= MHLEN) {
1197 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1198 if (m == NULL)
1199 goto dropit;
1200 memcpy(mtod(m0, caddr_t),
1201 mtod(m, caddr_t), len);
1202 FXP_INIT_RFABUF(sc, m);
1203 m = m0;
1204 } else {
1205 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1206 dropit:
1207 ifp->if_ierrors++;
1208 FXP_INIT_RFABUF(sc, m);
1209 continue;
1210 }
1211 }
1212
1213 m->m_pkthdr.rcvif = ifp;
1214 m->m_pkthdr.len = m->m_len = len;
1215
1216 #if NBPFILTER > 0
1217 /*
1218 * Pass this up to any BPF listeners, but only
1219 * pass it up the stack it its for us.
1220 */
1221 if (ifp->if_bpf)
1222 bpf_mtap(ifp->if_bpf, m);
1223 #endif
1224
1225 /* Pass it on. */
1226 (*ifp->if_input)(ifp, m);
1227 }
1228 }
1229
1230 /*
1231 * Update packet in/out/collision statistics. The i82557 doesn't
1232 * allow you to access these counters without doing a fairly
1233 * expensive DMA to get _all_ of the statistics it maintains, so
1234 * we do this operation here only once per second. The statistics
1235 * counters in the kernel are updated from the previous dump-stats
1236 * DMA and then a new dump-stats DMA is started. The on-chip
1237 * counters are zeroed when the DMA completes. If we can't start
1238 * the DMA immediately, we don't wait - we just prepare to read
1239 * them again next time.
1240 */
1241 void
1242 fxp_tick(void *arg)
1243 {
1244 struct fxp_softc *sc = arg;
1245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1246 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1247 int s;
1248
1249 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1250 return;
1251
1252 s = splnet();
1253
1254 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1255
1256 ifp->if_opackets += le32toh(sp->tx_good);
1257 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1258 if (sp->rx_good) {
1259 ifp->if_ipackets += le32toh(sp->rx_good);
1260 sc->sc_rxidle = 0;
1261 } else {
1262 sc->sc_rxidle++;
1263 }
1264 ifp->if_ierrors +=
1265 le32toh(sp->rx_crc_errors) +
1266 le32toh(sp->rx_alignment_errors) +
1267 le32toh(sp->rx_rnr_errors) +
1268 le32toh(sp->rx_overrun_errors);
1269 /*
1270 * If any transmit underruns occurred, bump up the transmit
1271 * threshold by another 512 bytes (64 * 8).
1272 */
1273 if (sp->tx_underruns) {
1274 ifp->if_oerrors += le32toh(sp->tx_underruns);
1275 if (tx_threshold < 192)
1276 tx_threshold += 64;
1277 }
1278
1279 /*
1280 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1281 * then assume the receiver has locked up and attempt to clear
1282 * the condition by reprogramming the multicast filter (actually,
1283 * resetting the interface). This is a work-around for a bug in
1284 * the 82557 where the receiver locks up if it gets certain types
1285 * of garbage in the syncronization bits prior to the packet header.
1286 * This bug is supposed to only occur in 10Mbps mode, but has been
1287 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1288 * speed transition).
1289 */
1290 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1291 (void) fxp_init(ifp);
1292 splx(s);
1293 return;
1294 }
1295 /*
1296 * If there is no pending command, start another stats
1297 * dump. Otherwise punt for now.
1298 */
1299 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1300 /*
1301 * Start another stats dump.
1302 */
1303 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1304 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1305 } else {
1306 /*
1307 * A previous command is still waiting to be accepted.
1308 * Just zero our copy of the stats and wait for the
1309 * next timer event to update them.
1310 */
1311 /* BIG_ENDIAN: no swap required to store 0 */
1312 sp->tx_good = 0;
1313 sp->tx_underruns = 0;
1314 sp->tx_total_collisions = 0;
1315
1316 sp->rx_good = 0;
1317 sp->rx_crc_errors = 0;
1318 sp->rx_alignment_errors = 0;
1319 sp->rx_rnr_errors = 0;
1320 sp->rx_overrun_errors = 0;
1321 }
1322
1323 if (sc->sc_flags & FXPF_MII) {
1324 /* Tick the MII clock. */
1325 mii_tick(&sc->sc_mii);
1326 }
1327
1328 splx(s);
1329
1330 /*
1331 * Schedule another timeout one second from now.
1332 */
1333 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1334 }
1335
1336 /*
1337 * Drain the receive queue.
1338 */
1339 void
1340 fxp_rxdrain(struct fxp_softc *sc)
1341 {
1342 bus_dmamap_t rxmap;
1343 struct mbuf *m;
1344
1345 for (;;) {
1346 IF_DEQUEUE(&sc->sc_rxq, m);
1347 if (m == NULL)
1348 break;
1349 rxmap = M_GETCTX(m, bus_dmamap_t);
1350 bus_dmamap_unload(sc->sc_dmat, rxmap);
1351 FXP_RXMAP_PUT(sc, rxmap);
1352 m_freem(m);
1353 }
1354 }
1355
1356 /*
1357 * Stop the interface. Cancels the statistics updater and resets
1358 * the interface.
1359 */
1360 void
1361 fxp_stop(struct ifnet *ifp, int disable)
1362 {
1363 struct fxp_softc *sc = ifp->if_softc;
1364 struct fxp_txsoft *txs;
1365 int i;
1366
1367 /*
1368 * Turn down interface (done early to avoid bad interactions
1369 * between panics, shutdown hooks, and the watchdog timer)
1370 */
1371 ifp->if_timer = 0;
1372 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1373
1374 /*
1375 * Cancel stats updater.
1376 */
1377 callout_stop(&sc->sc_callout);
1378 if (sc->sc_flags & FXPF_MII) {
1379 /* Down the MII. */
1380 mii_down(&sc->sc_mii);
1381 }
1382
1383 /*
1384 * Issue software reset. This unloads any microcode that
1385 * might already be loaded.
1386 */
1387 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1388 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1389 DELAY(50);
1390
1391 /*
1392 * Release any xmit buffers.
1393 */
1394 for (i = 0; i < FXP_NTXCB; i++) {
1395 txs = FXP_DSTX(sc, i);
1396 if (txs->txs_mbuf != NULL) {
1397 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1398 m_freem(txs->txs_mbuf);
1399 txs->txs_mbuf = NULL;
1400 }
1401 }
1402 sc->sc_txpending = 0;
1403
1404 if (disable) {
1405 fxp_rxdrain(sc);
1406 fxp_disable(sc);
1407 }
1408
1409 }
1410
1411 /*
1412 * Watchdog/transmission transmit timeout handler. Called when a
1413 * transmission is started on the interface, but no interrupt is
1414 * received before the timeout. This usually indicates that the
1415 * card has wedged for some reason.
1416 */
1417 void
1418 fxp_watchdog(struct ifnet *ifp)
1419 {
1420 struct fxp_softc *sc = ifp->if_softc;
1421
1422 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1423 ifp->if_oerrors++;
1424
1425 (void) fxp_init(ifp);
1426 }
1427
1428 /*
1429 * Initialize the interface. Must be called at splnet().
1430 */
1431 int
1432 fxp_init(struct ifnet *ifp)
1433 {
1434 struct fxp_softc *sc = ifp->if_softc;
1435 struct fxp_cb_config *cbp;
1436 struct fxp_cb_ias *cb_ias;
1437 struct fxp_txdesc *txd;
1438 bus_dmamap_t rxmap;
1439 int i, prm, save_bf, lrxen, allm, error = 0;
1440
1441 if ((error = fxp_enable(sc)) != 0)
1442 goto out;
1443
1444 /*
1445 * Cancel any pending I/O
1446 */
1447 fxp_stop(ifp, 0);
1448
1449 /*
1450 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1451 * flag, and this prevents the MII from detaching resulting in
1452 * a panic. The flags field should perhaps be split in runtime
1453 * flags and more static information. For now, just clear the
1454 * only other flag set.
1455 */
1456
1457 sc->sc_flags &= ~FXPF_WANTINIT;
1458
1459 /*
1460 * Initialize base of CBL and RFA memory. Loading with zero
1461 * sets it up for regular linear addressing.
1462 */
1463 fxp_scb_wait(sc);
1464 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1465 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1466
1467 fxp_scb_wait(sc);
1468 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1469
1470 /*
1471 * Initialize the multicast filter. Do this now, since we might
1472 * have to setup the config block differently.
1473 */
1474 fxp_mc_setup(sc);
1475
1476 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1477 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1478
1479 /*
1480 * In order to support receiving 802.1Q VLAN frames, we have to
1481 * enable "save bad frames", since they are 4 bytes larger than
1482 * the normal Ethernet maximum frame length. On i82558 and later,
1483 * we have a better mechanism for this.
1484 */
1485 save_bf = 0;
1486 lrxen = 0;
1487 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1488 if (sc->sc_rev < FXP_REV_82558_A4)
1489 save_bf = 1;
1490 else
1491 lrxen = 1;
1492 }
1493
1494 /*
1495 * Initialize base of dump-stats buffer.
1496 */
1497 fxp_scb_wait(sc);
1498 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1499 sc->sc_cddma + FXP_CDSTATSOFF);
1500 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1501 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1502
1503 cbp = &sc->sc_control_data->fcd_configcb;
1504 memset(cbp, 0, sizeof(struct fxp_cb_config));
1505
1506 /*
1507 * Load microcode for this controller.
1508 */
1509 fxp_load_ucode(sc);
1510
1511 /*
1512 * This copy is kind of disgusting, but there are a bunch of must be
1513 * zero and must be one bits in this structure and this is the easiest
1514 * way to initialize them all to proper values.
1515 */
1516 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1517
1518 /* BIG_ENDIAN: no need to swap to store 0 */
1519 cbp->cb_status = 0;
1520 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1521 FXP_CB_COMMAND_EL);
1522 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1523 cbp->link_addr = 0xffffffff; /* (no) next command */
1524 /* bytes in config block */
1525 cbp->byte_count = FXP_CONFIG_LEN;
1526 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1527 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1528 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1529 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1530 cbp->type_enable = 0; /* actually reserved */
1531 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1532 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1533 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1534 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1535 cbp->dma_mbce = 0; /* (disable) dma max counters */
1536 cbp->late_scb = 0; /* (don't) defer SCB update */
1537 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1538 cbp->ci_int = 1; /* interrupt on CU idle */
1539 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1540 cbp->ext_stats_dis = 1; /* disable extended counters */
1541 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1542 cbp->save_bf = save_bf;/* save bad frames */
1543 cbp->disc_short_rx = !prm; /* discard short packets */
1544 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1545 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1546 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1547 /* interface mode */
1548 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1549 cbp->csma_dis = 0; /* (don't) disable link */
1550 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1551 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1552 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1553 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1554 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1555 cbp->nsai = 1; /* (don't) disable source addr insert */
1556 cbp->preamble_length = 2; /* (7 byte) preamble */
1557 cbp->loopback = 0; /* (don't) loopback */
1558 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1559 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1560 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1561 cbp->promiscuous = prm; /* promiscuous mode */
1562 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1563 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1564 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1565 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1566 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1567 cbp->stripping = !prm; /* truncate rx packet to byte count */
1568 cbp->padding = 1; /* (do) pad short tx packets */
1569 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1570 cbp->long_rx_en = lrxen; /* long packet receive enable */
1571 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1572 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1573 /* must set wake_en in PMCSR also */
1574 cbp->force_fdx = 0; /* (don't) force full duplex */
1575 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1576 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1577 cbp->mc_all = allm; /* accept all multicasts */
1578
1579 if (sc->sc_rev < FXP_REV_82558_A4) {
1580 /*
1581 * The i82557 has no hardware flow control, the values
1582 * here are the defaults for the chip.
1583 */
1584 cbp->fc_delay_lsb = 0;
1585 cbp->fc_delay_msb = 0x40;
1586 cbp->pri_fc_thresh = 3;
1587 cbp->tx_fc_dis = 0;
1588 cbp->rx_fc_restop = 0;
1589 cbp->rx_fc_restart = 0;
1590 cbp->fc_filter = 0;
1591 cbp->pri_fc_loc = 1;
1592 } else {
1593 cbp->fc_delay_lsb = 0x1f;
1594 cbp->fc_delay_msb = 0x01;
1595 cbp->pri_fc_thresh = 3;
1596 cbp->tx_fc_dis = 0; /* enable transmit FC */
1597 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1598 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1599 cbp->fc_filter = !prm; /* drop FC frames to host */
1600 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1601 }
1602
1603 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1604
1605 /*
1606 * Start the config command/DMA.
1607 */
1608 fxp_scb_wait(sc);
1609 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1610 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1611 /* ...and wait for it to complete. */
1612 i = 1000;
1613 do {
1614 FXP_CDCONFIGSYNC(sc,
1615 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1616 DELAY(1);
1617 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1618 if (i == 0) {
1619 printf("%s at line %d: dmasync timeout\n",
1620 sc->sc_dev.dv_xname, __LINE__);
1621 return ETIMEDOUT;
1622 }
1623
1624 /*
1625 * Initialize the station address.
1626 */
1627 cb_ias = &sc->sc_control_data->fcd_iascb;
1628 /* BIG_ENDIAN: no need to swap to store 0 */
1629 cb_ias->cb_status = 0;
1630 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1631 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1632 cb_ias->link_addr = 0xffffffff;
1633 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1634
1635 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1636
1637 /*
1638 * Start the IAS (Individual Address Setup) command/DMA.
1639 */
1640 fxp_scb_wait(sc);
1641 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1642 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1643 /* ...and wait for it to complete. */
1644 i = 1000;
1645 do {
1646 FXP_CDIASSYNC(sc,
1647 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1648 DELAY(1);
1649 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1650 if (i == 0) {
1651 printf("%s at line %d: dmasync timeout\n",
1652 sc->sc_dev.dv_xname, __LINE__);
1653 return ETIMEDOUT;
1654 }
1655
1656 /*
1657 * Initialize the transmit descriptor ring. txlast is initialized
1658 * to the end of the list so that it will wrap around to the first
1659 * descriptor when the first packet is transmitted.
1660 */
1661 for (i = 0; i < FXP_NTXCB; i++) {
1662 txd = FXP_CDTX(sc, i);
1663 memset(txd, 0, sizeof(*txd));
1664 txd->txd_txcb.cb_command =
1665 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1666 txd->txd_txcb.link_addr =
1667 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1668 if (sc->sc_flags & FXPF_EXT_TXCB)
1669 txd->txd_txcb.tbd_array_addr =
1670 htole32(FXP_CDTBDADDR(sc, i) +
1671 (2 * sizeof(struct fxp_tbd)));
1672 else
1673 txd->txd_txcb.tbd_array_addr =
1674 htole32(FXP_CDTBDADDR(sc, i));
1675 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1676 }
1677 sc->sc_txpending = 0;
1678 sc->sc_txdirty = 0;
1679 sc->sc_txlast = FXP_NTXCB - 1;
1680
1681 /*
1682 * Initialize the receive buffer list.
1683 */
1684 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1685 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1686 rxmap = FXP_RXMAP_GET(sc);
1687 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1688 printf("%s: unable to allocate or map rx "
1689 "buffer %d, error = %d\n",
1690 sc->sc_dev.dv_xname,
1691 sc->sc_rxq.ifq_len, error);
1692 /*
1693 * XXX Should attempt to run with fewer receive
1694 * XXX buffers instead of just failing.
1695 */
1696 FXP_RXMAP_PUT(sc, rxmap);
1697 fxp_rxdrain(sc);
1698 goto out;
1699 }
1700 }
1701 sc->sc_rxidle = 0;
1702
1703 /*
1704 * Give the transmit ring to the chip. We do this by pointing
1705 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1706 * issuing a start command. It will execute the NOP and then
1707 * suspend, pointing at the first descriptor.
1708 */
1709 fxp_scb_wait(sc);
1710 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1711 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1712
1713 /*
1714 * Initialize receiver buffer area - RFA.
1715 */
1716 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1717 fxp_scb_wait(sc);
1718 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1719 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1720 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1721
1722 if (sc->sc_flags & FXPF_MII) {
1723 /*
1724 * Set current media.
1725 */
1726 mii_mediachg(&sc->sc_mii);
1727 }
1728
1729 /*
1730 * ...all done!
1731 */
1732 ifp->if_flags |= IFF_RUNNING;
1733 ifp->if_flags &= ~IFF_OACTIVE;
1734
1735 /*
1736 * Start the one second timer.
1737 */
1738 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1739
1740 /*
1741 * Attempt to start output on the interface.
1742 */
1743 fxp_start(ifp);
1744
1745 out:
1746 if (error) {
1747 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1748 ifp->if_timer = 0;
1749 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1750 }
1751 return (error);
1752 }
1753
1754 /*
1755 * Change media according to request.
1756 */
1757 int
1758 fxp_mii_mediachange(struct ifnet *ifp)
1759 {
1760 struct fxp_softc *sc = ifp->if_softc;
1761
1762 if (ifp->if_flags & IFF_UP)
1763 mii_mediachg(&sc->sc_mii);
1764 return (0);
1765 }
1766
1767 /*
1768 * Notify the world which media we're using.
1769 */
1770 void
1771 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1772 {
1773 struct fxp_softc *sc = ifp->if_softc;
1774
1775 if(sc->sc_enabled == 0) {
1776 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1777 ifmr->ifm_status = 0;
1778 return;
1779 }
1780
1781 mii_pollstat(&sc->sc_mii);
1782 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1783 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1784 }
1785
1786 int
1787 fxp_80c24_mediachange(struct ifnet *ifp)
1788 {
1789
1790 /* Nothing to do here. */
1791 return (0);
1792 }
1793
1794 void
1795 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1796 {
1797 struct fxp_softc *sc = ifp->if_softc;
1798
1799 /*
1800 * Media is currently-selected media. We cannot determine
1801 * the link status.
1802 */
1803 ifmr->ifm_status = 0;
1804 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1805 }
1806
1807 /*
1808 * Add a buffer to the end of the RFA buffer list.
1809 * Return 0 if successful, error code on failure.
1810 *
1811 * The RFA struct is stuck at the beginning of mbuf cluster and the
1812 * data pointer is fixed up to point just past it.
1813 */
1814 int
1815 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1816 {
1817 struct mbuf *m;
1818 int error;
1819
1820 MGETHDR(m, M_DONTWAIT, MT_DATA);
1821 if (m == NULL)
1822 return (ENOBUFS);
1823
1824 MCLGET(m, M_DONTWAIT);
1825 if ((m->m_flags & M_EXT) == 0) {
1826 m_freem(m);
1827 return (ENOBUFS);
1828 }
1829
1830 if (unload)
1831 bus_dmamap_unload(sc->sc_dmat, rxmap);
1832
1833 M_SETCTX(m, rxmap);
1834
1835 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1836 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1837 BUS_DMA_READ|BUS_DMA_NOWAIT);
1838 if (error) {
1839 printf("%s: can't load rx DMA map %d, error = %d\n",
1840 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1841 panic("fxp_add_rfabuf"); /* XXX */
1842 }
1843
1844 FXP_INIT_RFABUF(sc, m);
1845
1846 return (0);
1847 }
1848
1849 int
1850 fxp_mdi_read(struct device *self, int phy, int reg)
1851 {
1852 struct fxp_softc *sc = (struct fxp_softc *)self;
1853 int count = 10000;
1854 int value;
1855
1856 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1857 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1858
1859 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1860 && count--)
1861 DELAY(10);
1862
1863 if (count <= 0)
1864 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1865
1866 return (value & 0xffff);
1867 }
1868
1869 void
1870 fxp_statchg(struct device *self)
1871 {
1872
1873 /* Nothing to do. */
1874 }
1875
1876 void
1877 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1878 {
1879 struct fxp_softc *sc = (struct fxp_softc *)self;
1880 int count = 10000;
1881
1882 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1883 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1884 (value & 0xffff));
1885
1886 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1887 count--)
1888 DELAY(10);
1889
1890 if (count <= 0)
1891 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1892 }
1893
1894 int
1895 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1896 {
1897 struct fxp_softc *sc = ifp->if_softc;
1898 struct ifreq *ifr = (struct ifreq *)data;
1899 int s, error;
1900
1901 s = splnet();
1902
1903 switch (cmd) {
1904 case SIOCSIFMEDIA:
1905 case SIOCGIFMEDIA:
1906 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1907 break;
1908
1909 default:
1910 error = ether_ioctl(ifp, cmd, data);
1911 if (error == ENETRESET) {
1912 if (sc->sc_enabled) {
1913 /*
1914 * Multicast list has changed; set the
1915 * hardware filter accordingly.
1916 */
1917 if (sc->sc_txpending) {
1918 sc->sc_flags |= FXPF_WANTINIT;
1919 error = 0;
1920 } else
1921 error = fxp_init(ifp);
1922 } else
1923 error = 0;
1924 }
1925 break;
1926 }
1927
1928 /* Try to get more packets going. */
1929 if (sc->sc_enabled)
1930 fxp_start(ifp);
1931
1932 splx(s);
1933 return (error);
1934 }
1935
1936 /*
1937 * Program the multicast filter.
1938 *
1939 * This function must be called at splnet().
1940 */
1941 void
1942 fxp_mc_setup(struct fxp_softc *sc)
1943 {
1944 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1945 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1946 struct ethercom *ec = &sc->sc_ethercom;
1947 struct ether_multi *enm;
1948 struct ether_multistep step;
1949 int count, nmcasts;
1950
1951 #ifdef DIAGNOSTIC
1952 if (sc->sc_txpending)
1953 panic("fxp_mc_setup: pending transmissions");
1954 #endif
1955
1956 ifp->if_flags &= ~IFF_ALLMULTI;
1957
1958 /*
1959 * Initialize multicast setup descriptor.
1960 */
1961 nmcasts = 0;
1962 ETHER_FIRST_MULTI(step, ec, enm);
1963 while (enm != NULL) {
1964 /*
1965 * Check for too many multicast addresses or if we're
1966 * listening to a range. Either way, we simply have
1967 * to accept all multicasts.
1968 */
1969 if (nmcasts >= MAXMCADDR ||
1970 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1971 ETHER_ADDR_LEN) != 0) {
1972 /*
1973 * Callers of this function must do the
1974 * right thing with this. If we're called
1975 * from outside fxp_init(), the caller must
1976 * detect if the state if IFF_ALLMULTI changes.
1977 * If it does, the caller must then call
1978 * fxp_init(), since allmulti is handled by
1979 * the config block.
1980 */
1981 ifp->if_flags |= IFF_ALLMULTI;
1982 return;
1983 }
1984 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1985 ETHER_ADDR_LEN);
1986 nmcasts++;
1987 ETHER_NEXT_MULTI(step, enm);
1988 }
1989
1990 /* BIG_ENDIAN: no need to swap to store 0 */
1991 mcsp->cb_status = 0;
1992 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1993 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1994 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1995
1996 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1997
1998 /*
1999 * Wait until the command unit is not active. This should never
2000 * happen since nothing is queued, but make sure anyway.
2001 */
2002 count = 100;
2003 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2004 FXP_SCB_CUS_ACTIVE && --count)
2005 DELAY(1);
2006 if (count == 0) {
2007 printf("%s at line %d: command queue timeout\n",
2008 sc->sc_dev.dv_xname, __LINE__);
2009 return;
2010 }
2011
2012 /*
2013 * Start the multicast setup command/DMA.
2014 */
2015 fxp_scb_wait(sc);
2016 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2017 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2018
2019 /* ...and wait for it to complete. */
2020 count = 1000;
2021 do {
2022 FXP_CDMCSSYNC(sc,
2023 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2024 DELAY(1);
2025 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2026 if (count == 0) {
2027 printf("%s at line %d: dmasync timeout\n",
2028 sc->sc_dev.dv_xname, __LINE__);
2029 return;
2030 }
2031 }
2032
2033 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2034 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2035 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2036 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2037 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2038 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2039
2040 #define UCODE(x) x, sizeof(x)
2041
2042 static const struct ucode {
2043 uint32_t revision;
2044 const uint32_t *ucode;
2045 size_t length;
2046 uint16_t int_delay_offset;
2047 uint16_t bundle_max_offset;
2048 } ucode_table[] = {
2049 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2050 D101_CPUSAVER_DWORD, 0 },
2051
2052 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2053 D101_CPUSAVER_DWORD, 0 },
2054
2055 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2056 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2057
2058 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2059 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2060
2061 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2062 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2063
2064 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2065 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2066
2067 { 0, NULL, 0, 0, 0 }
2068 };
2069
2070 void
2071 fxp_load_ucode(struct fxp_softc *sc)
2072 {
2073 const struct ucode *uc;
2074 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2075 int count;
2076
2077 if (sc->sc_flags & FXPF_UCODE_LOADED)
2078 return;
2079
2080 /*
2081 * Only load the uCode if the user has requested that
2082 * we do so.
2083 */
2084 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2085 sc->sc_int_delay = 0;
2086 sc->sc_bundle_max = 0;
2087 return;
2088 }
2089
2090 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2091 if (sc->sc_rev == uc->revision)
2092 break;
2093 }
2094 if (uc->ucode == NULL)
2095 return;
2096
2097 /* BIG ENDIAN: no need to swap to store 0 */
2098 cbp->cb_status = 0;
2099 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2100 cbp->link_addr = 0xffffffff; /* (no) next command */
2101 memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2102
2103 if (uc->int_delay_offset)
2104 *(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2105 htole16(fxp_int_delay + (fxp_int_delay / 2));
2106
2107 if (uc->bundle_max_offset)
2108 *(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2109 htole16(fxp_bundle_max);
2110
2111 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2112
2113 /*
2114 * Download the uCode to the chip.
2115 */
2116 fxp_scb_wait(sc);
2117 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2118 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2119
2120 /* ...and wait for it to complete. */
2121 count = 10000;
2122 do {
2123 FXP_CDUCODESYNC(sc,
2124 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2125 DELAY(2);
2126 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2127 if (count == 0) {
2128 sc->sc_int_delay = 0;
2129 sc->sc_bundle_max = 0;
2130 printf("%s: timeout loading microcode\n",
2131 sc->sc_dev.dv_xname);
2132 return;
2133 }
2134
2135 if (sc->sc_int_delay != fxp_int_delay ||
2136 sc->sc_bundle_max != fxp_bundle_max) {
2137 sc->sc_int_delay = fxp_int_delay;
2138 sc->sc_bundle_max = fxp_bundle_max;
2139 printf("%s: Microcode loaded: int delay: %d usec, "
2140 "max bundle: %d\n", sc->sc_dev.dv_xname,
2141 sc->sc_int_delay,
2142 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2143 }
2144
2145 sc->sc_flags |= FXPF_UCODE_LOADED;
2146 }
2147
2148 int
2149 fxp_enable(struct fxp_softc *sc)
2150 {
2151
2152 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2153 if ((*sc->sc_enable)(sc) != 0) {
2154 printf("%s: device enable failed\n",
2155 sc->sc_dev.dv_xname);
2156 return (EIO);
2157 }
2158 }
2159
2160 sc->sc_enabled = 1;
2161 return (0);
2162 }
2163
2164 void
2165 fxp_disable(struct fxp_softc *sc)
2166 {
2167
2168 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2169 (*sc->sc_disable)(sc);
2170 sc->sc_enabled = 0;
2171 }
2172 }
2173
2174 /*
2175 * fxp_activate:
2176 *
2177 * Handle device activation/deactivation requests.
2178 */
2179 int
2180 fxp_activate(struct device *self, enum devact act)
2181 {
2182 struct fxp_softc *sc = (void *) self;
2183 int s, error = 0;
2184
2185 s = splnet();
2186 switch (act) {
2187 case DVACT_ACTIVATE:
2188 error = EOPNOTSUPP;
2189 break;
2190
2191 case DVACT_DEACTIVATE:
2192 if (sc->sc_flags & FXPF_MII)
2193 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2194 MII_OFFSET_ANY);
2195 if_deactivate(&sc->sc_ethercom.ec_if);
2196 break;
2197 }
2198 splx(s);
2199
2200 return (error);
2201 }
2202
2203 /*
2204 * fxp_detach:
2205 *
2206 * Detach an i82557 interface.
2207 */
2208 int
2209 fxp_detach(struct fxp_softc *sc)
2210 {
2211 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2212 int i;
2213
2214 /* Succeed now if there's no work to do. */
2215 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2216 return (0);
2217
2218 /* Unhook our tick handler. */
2219 callout_stop(&sc->sc_callout);
2220
2221 if (sc->sc_flags & FXPF_MII) {
2222 /* Detach all PHYs */
2223 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2224 }
2225
2226 /* Delete all remaining media. */
2227 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2228
2229 #if NRND > 0
2230 rnd_detach_source(&sc->rnd_source);
2231 #endif
2232 ether_ifdetach(ifp);
2233 if_detach(ifp);
2234
2235 for (i = 0; i < FXP_NRFABUFS; i++) {
2236 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2237 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2238 }
2239
2240 for (i = 0; i < FXP_NTXCB; i++) {
2241 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2242 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2243 }
2244
2245 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2246 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2247 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2248 sizeof(struct fxp_control_data));
2249 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2250
2251 shutdownhook_disestablish(sc->sc_sdhook);
2252 powerhook_disestablish(sc->sc_powerhook);
2253
2254 return (0);
2255 }
2256