i82557.c revision 1.70 1 /* $NetBSD: i82557.c,v 1.70 2003/01/06 13:10:28 wiz Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.70 2003/01/06 13:10:28 wiz Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91
92 #include <machine/endian.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #if NRND > 0
97 #include <sys/rnd.h>
98 #endif
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111
112 #include <dev/mii/miivar.h>
113
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116
117 #include <dev/microcode/i8255x/rcvbundl.h>
118
119 /*
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
127 */
128 #define RFA_ALIGNMENT_FUDGE 2
129
130 /*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138 const u_int8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
174 };
175
176 void fxp_mii_initmedia(struct fxp_softc *);
177 int fxp_mii_mediachange(struct ifnet *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 void fxp_rxintr(struct fxp_softc *);
192
193 void fxp_rxdrain(struct fxp_softc *);
194 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
195 int fxp_mdi_read(struct device *, int, int);
196 void fxp_statchg(struct device *);
197 void fxp_mdi_write(struct device *, int, int, int);
198 void fxp_autosize_eeprom(struct fxp_softc*);
199 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
200 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
201 void fxp_eeprom_update_cksum(struct fxp_softc *);
202 void fxp_get_info(struct fxp_softc *, u_int8_t *);
203 void fxp_tick(void *);
204 void fxp_mc_setup(struct fxp_softc *);
205 void fxp_load_ucode(struct fxp_softc *);
206
207 void fxp_shutdown(void *);
208 void fxp_power(int, void *);
209
210 int fxp_copy_small = 0;
211
212 /*
213 * Variables for interrupt mitigating microcode.
214 */
215 int fxp_int_delay = 1000; /* usec */
216 int fxp_bundle_max = 6; /* packets */
217
218 struct fxp_phytype {
219 int fp_phy; /* type of PHY, -1 for MII at the end. */
220 void (*fp_init)(struct fxp_softc *);
221 } fxp_phytype_table[] = {
222 { FXP_PHY_80C24, fxp_80c24_initmedia },
223 { -1, fxp_mii_initmedia },
224 };
225
226 /*
227 * Set initial transmit threshold at 64 (512 bytes). This is
228 * increased by 64 (512 bytes) at a time, to maximum of 192
229 * (1536 bytes), if an underrun occurs.
230 */
231 static int tx_threshold = 64;
232
233 /*
234 * Wait for the previous command to be accepted (but not necessarily
235 * completed).
236 */
237 static __inline void
238 fxp_scb_wait(struct fxp_softc *sc)
239 {
240 int i = 10000;
241
242 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
243 delay(2);
244 if (i == 0)
245 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
246 }
247
248 /*
249 * Submit a command to the i82557.
250 */
251 static __inline void
252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253 {
254
255 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256 }
257
258 /*
259 * Finish attaching an i82557 interface. Called by bus-specific front-end.
260 */
261 void
262 fxp_attach(struct fxp_softc *sc)
263 {
264 u_int8_t enaddr[ETHER_ADDR_LEN];
265 struct ifnet *ifp;
266 bus_dma_segment_t seg;
267 int rseg, i, error;
268 struct fxp_phytype *fp;
269
270 callout_init(&sc->sc_callout);
271
272 /* Start out using the standard RFA. */
273 sc->sc_rfa_size = RFA_SIZE;
274
275 /*
276 * Enable some good stuff on i82558 and later.
277 */
278 if (sc->sc_rev >= FXP_REV_82558_A4) {
279 /* Enable the extended TxCB. */
280 sc->sc_flags |= FXPF_EXT_TXCB;
281 }
282
283 /*
284 * Allocate the control data structures, and create and load the
285 * DMA map for it.
286 */
287 if ((error = bus_dmamem_alloc(sc->sc_dmat,
288 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
289 0)) != 0) {
290 printf("%s: unable to allocate control data, error = %d\n",
291 sc->sc_dev.dv_xname, error);
292 goto fail_0;
293 }
294
295 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
296 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
297 BUS_DMA_COHERENT)) != 0) {
298 printf("%s: unable to map control data, error = %d\n",
299 sc->sc_dev.dv_xname, error);
300 goto fail_1;
301 }
302 sc->sc_cdseg = seg;
303 sc->sc_cdnseg = rseg;
304
305 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
306
307 if ((error = bus_dmamap_create(sc->sc_dmat,
308 sizeof(struct fxp_control_data), 1,
309 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
310 printf("%s: unable to create control data DMA map, "
311 "error = %d\n", sc->sc_dev.dv_xname, error);
312 goto fail_2;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
316 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
317 0)) != 0) {
318 printf("%s: can't load control data DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail_3;
321 }
322
323 /*
324 * Create the transmit buffer DMA maps.
325 */
326 for (i = 0; i < FXP_NTXCB; i++) {
327 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
328 FXP_NTXSEG, MCLBYTES, 0, 0,
329 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
330 printf("%s: unable to create tx DMA map %d, "
331 "error = %d\n", sc->sc_dev.dv_xname, i, error);
332 goto fail_4;
333 }
334 }
335
336 /*
337 * Create the receive buffer DMA maps.
338 */
339 for (i = 0; i < FXP_NRFABUFS; i++) {
340 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
341 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
342 printf("%s: unable to create rx DMA map %d, "
343 "error = %d\n", sc->sc_dev.dv_xname, i, error);
344 goto fail_5;
345 }
346 }
347
348 /* Initialize MAC address and media structures. */
349 fxp_get_info(sc, enaddr);
350
351 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
352 ether_sprintf(enaddr));
353
354 ifp = &sc->sc_ethercom.ec_if;
355
356 /*
357 * Get info about our media interface, and initialize it. Note
358 * the table terminates itself with a phy of -1, indicating
359 * that we're using MII.
360 */
361 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362 if (fp->fp_phy == sc->phy_primary_device)
363 break;
364 (*fp->fp_init)(sc);
365
366 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 ifp->if_ioctl = fxp_ioctl;
370 ifp->if_start = fxp_start;
371 ifp->if_watchdog = fxp_watchdog;
372 ifp->if_init = fxp_init;
373 ifp->if_stop = fxp_stop;
374 IFQ_SET_READY(&ifp->if_snd);
375
376 /*
377 * We can support 802.1Q VLAN-sized frames.
378 */
379 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
380
381 /*
382 * Attach the interface.
383 */
384 if_attach(ifp);
385 ether_ifattach(ifp, enaddr);
386 #if NRND > 0
387 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
388 RND_TYPE_NET, 0);
389 #endif
390
391 #ifdef FXP_EVENT_COUNTERS
392 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
393 NULL, sc->sc_dev.dv_xname, "txstall");
394 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
395 NULL, sc->sc_dev.dv_xname, "txintr");
396 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
397 NULL, sc->sc_dev.dv_xname, "rxintr");
398 #endif /* FXP_EVENT_COUNTERS */
399
400 /*
401 * Add shutdown hook so that DMA is disabled prior to reboot. Not
402 * doing do could allow DMA to corrupt kernel memory during the
403 * reboot before the driver initializes.
404 */
405 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
406 if (sc->sc_sdhook == NULL)
407 printf("%s: WARNING: unable to establish shutdown hook\n",
408 sc->sc_dev.dv_xname);
409 /*
410 * Add suspend hook, for similar reasons..
411 */
412 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
413 if (sc->sc_powerhook == NULL)
414 printf("%s: WARNING: unable to establish power hook\n",
415 sc->sc_dev.dv_xname);
416
417 /* The attach is successful. */
418 sc->sc_flags |= FXPF_ATTACHED;
419
420 return;
421
422 /*
423 * Free any resources we've allocated during the failed attach
424 * attempt. Do this in reverse order and fall though.
425 */
426 fail_5:
427 for (i = 0; i < FXP_NRFABUFS; i++) {
428 if (sc->sc_rxmaps[i] != NULL)
429 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
430 }
431 fail_4:
432 for (i = 0; i < FXP_NTXCB; i++) {
433 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
434 bus_dmamap_destroy(sc->sc_dmat,
435 FXP_DSTX(sc, i)->txs_dmamap);
436 }
437 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
438 fail_3:
439 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
440 fail_2:
441 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
442 sizeof(struct fxp_control_data));
443 fail_1:
444 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
445 fail_0:
446 return;
447 }
448
449 void
450 fxp_mii_initmedia(struct fxp_softc *sc)
451 {
452 int flags;
453
454 sc->sc_flags |= FXPF_MII;
455
456 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
457 sc->sc_mii.mii_readreg = fxp_mdi_read;
458 sc->sc_mii.mii_writereg = fxp_mdi_write;
459 sc->sc_mii.mii_statchg = fxp_statchg;
460 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
461 fxp_mii_mediastatus);
462
463 flags = MIIF_NOISOLATE;
464 if (sc->sc_rev >= FXP_REV_82558_A4)
465 flags |= MIIF_DOPAUSE;
466 /*
467 * The i82557 wedges if all of its PHYs are isolated!
468 */
469 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
470 MII_OFFSET_ANY, flags);
471 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
472 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
473 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
474 } else
475 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
476 }
477
478 void
479 fxp_80c24_initmedia(struct fxp_softc *sc)
480 {
481
482 /*
483 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
484 * doesn't have a programming interface of any sort. The
485 * media is sensed automatically based on how the link partner
486 * is configured. This is, in essence, manual configuration.
487 */
488 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
489 sc->sc_dev.dv_xname);
490 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
491 fxp_80c24_mediastatus);
492 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
493 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
494 }
495
496 /*
497 * Device shutdown routine. Called at system shutdown after sync. The
498 * main purpose of this routine is to shut off receiver DMA so that
499 * kernel memory doesn't get clobbered during warmboot.
500 */
501 void
502 fxp_shutdown(void *arg)
503 {
504 struct fxp_softc *sc = arg;
505
506 /*
507 * Since the system's going to halt shortly, don't bother
508 * freeing mbufs.
509 */
510 fxp_stop(&sc->sc_ethercom.ec_if, 0);
511 }
512 /*
513 * Power handler routine. Called when the system is transitioning
514 * into/out of power save modes. As with fxp_shutdown, the main
515 * purpose of this routine is to shut off receiver DMA so it doesn't
516 * clobber kernel memory at the wrong time.
517 */
518 void
519 fxp_power(int why, void *arg)
520 {
521 struct fxp_softc *sc = arg;
522 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
523 int s;
524
525 s = splnet();
526 switch (why) {
527 case PWR_SUSPEND:
528 case PWR_STANDBY:
529 fxp_stop(ifp, 0);
530 break;
531 case PWR_RESUME:
532 if (ifp->if_flags & IFF_UP)
533 fxp_init(ifp);
534 break;
535 case PWR_SOFTSUSPEND:
536 case PWR_SOFTSTANDBY:
537 case PWR_SOFTRESUME:
538 break;
539 }
540 splx(s);
541 }
542
543 /*
544 * Initialize the interface media.
545 */
546 void
547 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
548 {
549 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
550
551 /*
552 * Reset to a stable state.
553 */
554 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
555 DELAY(10);
556
557 sc->sc_eeprom_size = 0;
558 fxp_autosize_eeprom(sc);
559 if (sc->sc_eeprom_size == 0) {
560 printf("%s: failed to detect EEPROM size\n",
561 sc->sc_dev.dv_xname);
562 sc->sc_eeprom_size = 6; /* XXX panic here? */
563 }
564 #ifdef DEBUG
565 printf("%s: detected %d word EEPROM\n",
566 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
567 #endif
568
569 /*
570 * Get info about the primary PHY
571 */
572 fxp_read_eeprom(sc, &data, 6, 1);
573 sc->phy_primary_device =
574 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
575
576 /*
577 * Read MAC address.
578 */
579 fxp_read_eeprom(sc, myea, 0, 3);
580 enaddr[0] = myea[0] & 0xff;
581 enaddr[1] = myea[0] >> 8;
582 enaddr[2] = myea[1] & 0xff;
583 enaddr[3] = myea[1] >> 8;
584 enaddr[4] = myea[2] & 0xff;
585 enaddr[5] = myea[2] >> 8;
586
587 /*
588 * Systems based on the ICH2/ICH2-M chip from Intel, as well
589 * as some i82559 designs, have a defect where the chip can
590 * cause a PCI protocol violation if it receives a CU_RESUME
591 * command when it is entering the IDLE state.
592 *
593 * The work-around is to disable Dynamic Standby Mode, so that
594 * the chip never deasserts #CLKRUN, and always remains in the
595 * active state.
596 *
597 * Unfortunately, the only way to disable Dynamic Standby is
598 * to frob an EEPROM setting and reboot (the EEPROM setting
599 * is only consulted when the PCI bus comes out of reset).
600 *
601 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
602 */
603 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
604 fxp_read_eeprom(sc, &data, 10, 1);
605 if (data & 0x02) { /* STB enable */
606 printf("%s: WARNING: "
607 "Disabling dynamic standby mode in EEPROM "
608 "to work around a\n",
609 sc->sc_dev.dv_xname);
610 printf("%s: WARNING: hardware bug. You must reset "
611 "the system before using this\n",
612 sc->sc_dev.dv_xname);
613 printf("%s: WARNING: interface.\n",
614 sc->sc_dev.dv_xname);
615 data &= ~0x02;
616 fxp_write_eeprom(sc, &data, 10, 1);
617 printf("%s: new EEPROM ID: 0x%04x\n",
618 sc->sc_dev.dv_xname, data);
619 fxp_eeprom_update_cksum(sc);
620 }
621 }
622 }
623
624 static void
625 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
626 {
627 uint16_t reg;
628 int x;
629
630 for (x = 1 << (len - 1); x != 0; x >>= 1) {
631 if (data & x)
632 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
633 else
634 reg = FXP_EEPROM_EECS;
635 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
636 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
637 reg | FXP_EEPROM_EESK);
638 DELAY(4);
639 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
640 DELAY(4);
641 }
642 }
643
644 /*
645 * Figure out EEPROM size.
646 *
647 * 559's can have either 64-word or 256-word EEPROMs, the 558
648 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
649 * talks about the existance of 16 to 256 word EEPROMs.
650 *
651 * The only known sizes are 64 and 256, where the 256 version is used
652 * by CardBus cards to store CIS information.
653 *
654 * The address is shifted in msb-to-lsb, and after the last
655 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
656 * after which follows the actual data. We try to detect this zero, by
657 * probing the data-out bit in the EEPROM control register just after
658 * having shifted in a bit. If the bit is zero, we assume we've
659 * shifted enough address bits. The data-out should be tri-state,
660 * before this, which should translate to a logical one.
661 *
662 * Other ways to do this would be to try to read a register with known
663 * contents with a varying number of address bits, but no such
664 * register seem to be available. The high bits of register 10 are 01
665 * on the 558 and 559, but apparently not on the 557.
666 *
667 * The Linux driver computes a checksum on the EEPROM data, but the
668 * value of this checksum is not very well documented.
669 */
670
671 void
672 fxp_autosize_eeprom(struct fxp_softc *sc)
673 {
674 int x;
675
676 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
677
678 /* Shift in read opcode. */
679 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
680
681 /*
682 * Shift in address, wait for the dummy zero following a correct
683 * address shift.
684 */
685 for (x = 1; x <= 8; x++) {
686 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
687 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
688 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
689 DELAY(4);
690 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
691 FXP_EEPROM_EEDO) == 0)
692 break;
693 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
694 DELAY(4);
695 }
696 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
697 DELAY(4);
698 if (x != 6 && x != 8) {
699 #ifdef DEBUG
700 printf("%s: strange EEPROM size (%d)\n",
701 sc->sc_dev.dv_xname, 1 << x);
702 #endif
703 } else
704 sc->sc_eeprom_size = x;
705 }
706
707 /*
708 * Read from the serial EEPROM. Basically, you manually shift in
709 * the read opcode (one bit at a time) and then shift in the address,
710 * and then you shift out the data (all of this one bit at a time).
711 * The word size is 16 bits, so you have to provide the address for
712 * every 16 bits of data.
713 */
714 void
715 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
716 {
717 u_int16_t reg;
718 int i, x;
719
720 for (i = 0; i < words; i++) {
721 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
722
723 /* Shift in read opcode. */
724 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
725
726 /* Shift in address. */
727 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
728
729 reg = FXP_EEPROM_EECS;
730 data[i] = 0;
731
732 /* Shift out data. */
733 for (x = 16; x > 0; x--) {
734 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
735 reg | FXP_EEPROM_EESK);
736 DELAY(4);
737 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
738 FXP_EEPROM_EEDO)
739 data[i] |= (1 << (x - 1));
740 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
741 DELAY(4);
742 }
743 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
744 DELAY(4);
745 }
746 }
747
748 /*
749 * Write data to the serial EEPROM.
750 */
751 void
752 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
753 {
754 int i, j;
755
756 for (i = 0; i < words; i++) {
757 /* Erase/write enable. */
758 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
759 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
760 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
761 sc->sc_eeprom_size);
762 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
763 DELAY(4);
764
765 /* Shift in write opcode, address, data. */
766 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
767 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
768 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
769 fxp_eeprom_shiftin(sc, data[i], 16);
770 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
771 DELAY(4);
772
773 /* Wait for the EEPROM to finish up. */
774 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
775 DELAY(4);
776 for (j = 0; j < 1000; j++) {
777 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
778 FXP_EEPROM_EEDO)
779 break;
780 DELAY(50);
781 }
782 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
783 DELAY(4);
784
785 /* Erase/write disable. */
786 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
787 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
788 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
789 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
790 DELAY(4);
791 }
792 }
793
794 /*
795 * Update the checksum of the EEPROM.
796 */
797 void
798 fxp_eeprom_update_cksum(struct fxp_softc *sc)
799 {
800 int i;
801 uint16_t data, cksum;
802
803 cksum = 0;
804 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
805 fxp_read_eeprom(sc, &data, i, 1);
806 cksum += data;
807 }
808 i = (1 << sc->sc_eeprom_size) - 1;
809 cksum = 0xbaba - cksum;
810 fxp_read_eeprom(sc, &data, i, 1);
811 fxp_write_eeprom(sc, &cksum, i, 1);
812 printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
813 sc->sc_dev.dv_xname, i, data, cksum);
814 }
815
816 /*
817 * Start packet transmission on the interface.
818 */
819 void
820 fxp_start(struct ifnet *ifp)
821 {
822 struct fxp_softc *sc = ifp->if_softc;
823 struct mbuf *m0, *m;
824 struct fxp_txdesc *txd;
825 struct fxp_txsoft *txs;
826 bus_dmamap_t dmamap;
827 int error, lasttx, nexttx, opending, seg;
828
829 /*
830 * If we want a re-init, bail out now.
831 */
832 if (sc->sc_flags & FXPF_WANTINIT) {
833 ifp->if_flags |= IFF_OACTIVE;
834 return;
835 }
836
837 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
838 return;
839
840 /*
841 * Remember the previous txpending and the current lasttx.
842 */
843 opending = sc->sc_txpending;
844 lasttx = sc->sc_txlast;
845
846 /*
847 * Loop through the send queue, setting up transmit descriptors
848 * until we drain the queue, or use up all available transmit
849 * descriptors.
850 */
851 for (;;) {
852 /*
853 * Grab a packet off the queue.
854 */
855 IFQ_POLL(&ifp->if_snd, m0);
856 if (m0 == NULL)
857 break;
858 m = NULL;
859
860 if (sc->sc_txpending == FXP_NTXCB) {
861 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
862 break;
863 }
864
865 /*
866 * Get the next available transmit descriptor.
867 */
868 nexttx = FXP_NEXTTX(sc->sc_txlast);
869 txd = FXP_CDTX(sc, nexttx);
870 txs = FXP_DSTX(sc, nexttx);
871 dmamap = txs->txs_dmamap;
872
873 /*
874 * Load the DMA map. If this fails, the packet either
875 * didn't fit in the allotted number of frags, or we were
876 * short on resources. In this case, we'll copy and try
877 * again.
878 */
879 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
880 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
881 MGETHDR(m, M_DONTWAIT, MT_DATA);
882 if (m == NULL) {
883 printf("%s: unable to allocate Tx mbuf\n",
884 sc->sc_dev.dv_xname);
885 break;
886 }
887 if (m0->m_pkthdr.len > MHLEN) {
888 MCLGET(m, M_DONTWAIT);
889 if ((m->m_flags & M_EXT) == 0) {
890 printf("%s: unable to allocate Tx "
891 "cluster\n", sc->sc_dev.dv_xname);
892 m_freem(m);
893 break;
894 }
895 }
896 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
897 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
898 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
899 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
900 if (error) {
901 printf("%s: unable to load Tx buffer, "
902 "error = %d\n", sc->sc_dev.dv_xname, error);
903 break;
904 }
905 }
906
907 IFQ_DEQUEUE(&ifp->if_snd, m0);
908 if (m != NULL) {
909 m_freem(m0);
910 m0 = m;
911 }
912
913 /* Initialize the fraglist. */
914 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
915 txd->txd_tbd[seg].tb_addr =
916 htole32(dmamap->dm_segs[seg].ds_addr);
917 txd->txd_tbd[seg].tb_size =
918 htole32(dmamap->dm_segs[seg].ds_len);
919 }
920
921 /* Sync the DMA map. */
922 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
923 BUS_DMASYNC_PREWRITE);
924
925 /*
926 * Store a pointer to the packet so we can free it later.
927 */
928 txs->txs_mbuf = m0;
929
930 /*
931 * Initialize the transmit descriptor.
932 */
933 /* BIG_ENDIAN: no need to swap to store 0 */
934 txd->txd_txcb.cb_status = 0;
935 txd->txd_txcb.cb_command =
936 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
937 txd->txd_txcb.tx_threshold = tx_threshold;
938 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
939
940 FXP_CDTXSYNC(sc, nexttx,
941 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
942
943 /* Advance the tx pointer. */
944 sc->sc_txpending++;
945 sc->sc_txlast = nexttx;
946
947 #if NBPFILTER > 0
948 /*
949 * Pass packet to bpf if there is a listener.
950 */
951 if (ifp->if_bpf)
952 bpf_mtap(ifp->if_bpf, m0);
953 #endif
954 }
955
956 if (sc->sc_txpending == FXP_NTXCB) {
957 /* No more slots; notify upper layer. */
958 ifp->if_flags |= IFF_OACTIVE;
959 }
960
961 if (sc->sc_txpending != opending) {
962 /*
963 * We enqueued packets. If the transmitter was idle,
964 * reset the txdirty pointer.
965 */
966 if (opending == 0)
967 sc->sc_txdirty = FXP_NEXTTX(lasttx);
968
969 /*
970 * Cause the chip to interrupt and suspend command
971 * processing once the last packet we've enqueued
972 * has been transmitted.
973 */
974 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
975 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
976 FXP_CDTXSYNC(sc, sc->sc_txlast,
977 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
978
979 /*
980 * The entire packet chain is set up. Clear the suspend bit
981 * on the command prior to the first packet we set up.
982 */
983 FXP_CDTXSYNC(sc, lasttx,
984 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
985 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
986 htole16(~FXP_CB_COMMAND_S);
987 FXP_CDTXSYNC(sc, lasttx,
988 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
989
990 /*
991 * Issue a Resume command in case the chip was suspended.
992 */
993 fxp_scb_wait(sc);
994 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
995
996 /* Set a watchdog timer in case the chip flakes out. */
997 ifp->if_timer = 5;
998 }
999 }
1000
1001 /*
1002 * Process interface interrupts.
1003 */
1004 int
1005 fxp_intr(void *arg)
1006 {
1007 struct fxp_softc *sc = arg;
1008 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1009 bus_dmamap_t rxmap;
1010 int claimed = 0;
1011 u_int8_t statack;
1012
1013 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1014 return (0);
1015 /*
1016 * If the interface isn't running, don't try to
1017 * service the interrupt.. just ack it and bail.
1018 */
1019 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1020 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1021 if (statack) {
1022 claimed = 1;
1023 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1024 }
1025 return (claimed);
1026 }
1027
1028 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1029 claimed = 1;
1030
1031 /*
1032 * First ACK all the interrupts in this pass.
1033 */
1034 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1035
1036 /*
1037 * Process receiver interrupts. If a no-resource (RNR)
1038 * condition exists, get whatever packets we can and
1039 * re-start the receiver.
1040 */
1041 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1042 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1043 fxp_rxintr(sc);
1044 }
1045
1046 if (statack & FXP_SCB_STATACK_RNR) {
1047 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1048 fxp_scb_wait(sc);
1049 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1050 rxmap->dm_segs[0].ds_addr +
1051 RFA_ALIGNMENT_FUDGE);
1052 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1053 }
1054
1055 /*
1056 * Free any finished transmit mbuf chains.
1057 */
1058 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1059 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1060 fxp_txintr(sc);
1061
1062 /*
1063 * Try to get more packets going.
1064 */
1065 fxp_start(ifp);
1066
1067 if (sc->sc_txpending == 0) {
1068 /*
1069 * If we want a re-init, do that now.
1070 */
1071 if (sc->sc_flags & FXPF_WANTINIT)
1072 (void) fxp_init(ifp);
1073 }
1074 }
1075 }
1076
1077 #if NRND > 0
1078 if (claimed)
1079 rnd_add_uint32(&sc->rnd_source, statack);
1080 #endif
1081 return (claimed);
1082 }
1083
1084 /*
1085 * Handle transmit completion interrupts.
1086 */
1087 void
1088 fxp_txintr(struct fxp_softc *sc)
1089 {
1090 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1091 struct fxp_txdesc *txd;
1092 struct fxp_txsoft *txs;
1093 int i;
1094 u_int16_t txstat;
1095
1096 ifp->if_flags &= ~IFF_OACTIVE;
1097 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1098 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1099 txd = FXP_CDTX(sc, i);
1100 txs = FXP_DSTX(sc, i);
1101
1102 FXP_CDTXSYNC(sc, i,
1103 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1104
1105 txstat = le16toh(txd->txd_txcb.cb_status);
1106
1107 if ((txstat & FXP_CB_STATUS_C) == 0)
1108 break;
1109
1110 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1111 0, txs->txs_dmamap->dm_mapsize,
1112 BUS_DMASYNC_POSTWRITE);
1113 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1114 m_freem(txs->txs_mbuf);
1115 txs->txs_mbuf = NULL;
1116 }
1117
1118 /* Update the dirty transmit buffer pointer. */
1119 sc->sc_txdirty = i;
1120
1121 /*
1122 * Cancel the watchdog timer if there are no pending
1123 * transmissions.
1124 */
1125 if (sc->sc_txpending == 0)
1126 ifp->if_timer = 0;
1127 }
1128
1129 /*
1130 * Handle receive interrupts.
1131 */
1132 void
1133 fxp_rxintr(struct fxp_softc *sc)
1134 {
1135 struct ethercom *ec = &sc->sc_ethercom;
1136 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1137 struct mbuf *m, *m0;
1138 bus_dmamap_t rxmap;
1139 struct fxp_rfa *rfa;
1140 u_int16_t len, rxstat;
1141
1142 for (;;) {
1143 m = sc->sc_rxq.ifq_head;
1144 rfa = FXP_MTORFA(m);
1145 rxmap = M_GETCTX(m, bus_dmamap_t);
1146
1147 FXP_RFASYNC(sc, m,
1148 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1149
1150 rxstat = le16toh(rfa->rfa_status);
1151
1152 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1153 /*
1154 * We have processed all of the
1155 * receive buffers.
1156 */
1157 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1158 return;
1159 }
1160
1161 IF_DEQUEUE(&sc->sc_rxq, m);
1162
1163 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1164
1165 len = le16toh(rfa->actual_size) &
1166 (m->m_ext.ext_size - 1);
1167
1168 if (len < sizeof(struct ether_header)) {
1169 /*
1170 * Runt packet; drop it now.
1171 */
1172 FXP_INIT_RFABUF(sc, m);
1173 continue;
1174 }
1175
1176 /*
1177 * If support for 802.1Q VLAN sized frames is
1178 * enabled, we need to do some additional error
1179 * checking (as we are saving bad frames, in
1180 * order to receive the larger ones).
1181 */
1182 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1183 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1184 FXP_RFA_STATUS_RNR|
1185 FXP_RFA_STATUS_ALIGN|
1186 FXP_RFA_STATUS_CRC)) != 0) {
1187 FXP_INIT_RFABUF(sc, m);
1188 continue;
1189 }
1190
1191 /*
1192 * If the packet is small enough to fit in a
1193 * single header mbuf, allocate one and copy
1194 * the data into it. This greatly reduces
1195 * memory consumption when we receive lots
1196 * of small packets.
1197 *
1198 * Otherwise, we add a new buffer to the receive
1199 * chain. If this fails, we drop the packet and
1200 * recycle the old buffer.
1201 */
1202 if (fxp_copy_small != 0 && len <= MHLEN) {
1203 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1204 if (m == NULL)
1205 goto dropit;
1206 memcpy(mtod(m0, caddr_t),
1207 mtod(m, caddr_t), len);
1208 FXP_INIT_RFABUF(sc, m);
1209 m = m0;
1210 } else {
1211 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1212 dropit:
1213 ifp->if_ierrors++;
1214 FXP_INIT_RFABUF(sc, m);
1215 continue;
1216 }
1217 }
1218
1219 m->m_pkthdr.rcvif = ifp;
1220 m->m_pkthdr.len = m->m_len = len;
1221
1222 #if NBPFILTER > 0
1223 /*
1224 * Pass this up to any BPF listeners, but only
1225 * pass it up the stack it its for us.
1226 */
1227 if (ifp->if_bpf)
1228 bpf_mtap(ifp->if_bpf, m);
1229 #endif
1230
1231 /* Pass it on. */
1232 (*ifp->if_input)(ifp, m);
1233 }
1234 }
1235
1236 /*
1237 * Update packet in/out/collision statistics. The i82557 doesn't
1238 * allow you to access these counters without doing a fairly
1239 * expensive DMA to get _all_ of the statistics it maintains, so
1240 * we do this operation here only once per second. The statistics
1241 * counters in the kernel are updated from the previous dump-stats
1242 * DMA and then a new dump-stats DMA is started. The on-chip
1243 * counters are zeroed when the DMA completes. If we can't start
1244 * the DMA immediately, we don't wait - we just prepare to read
1245 * them again next time.
1246 */
1247 void
1248 fxp_tick(void *arg)
1249 {
1250 struct fxp_softc *sc = arg;
1251 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1252 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1253 int s;
1254
1255 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1256 return;
1257
1258 s = splnet();
1259
1260 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1261
1262 ifp->if_opackets += le32toh(sp->tx_good);
1263 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1264 if (sp->rx_good) {
1265 ifp->if_ipackets += le32toh(sp->rx_good);
1266 sc->sc_rxidle = 0;
1267 } else {
1268 sc->sc_rxidle++;
1269 }
1270 ifp->if_ierrors +=
1271 le32toh(sp->rx_crc_errors) +
1272 le32toh(sp->rx_alignment_errors) +
1273 le32toh(sp->rx_rnr_errors) +
1274 le32toh(sp->rx_overrun_errors);
1275 /*
1276 * If any transmit underruns occurred, bump up the transmit
1277 * threshold by another 512 bytes (64 * 8).
1278 */
1279 if (sp->tx_underruns) {
1280 ifp->if_oerrors += le32toh(sp->tx_underruns);
1281 if (tx_threshold < 192)
1282 tx_threshold += 64;
1283 }
1284
1285 /*
1286 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1287 * then assume the receiver has locked up and attempt to clear
1288 * the condition by reprogramming the multicast filter (actually,
1289 * resetting the interface). This is a work-around for a bug in
1290 * the 82557 where the receiver locks up if it gets certain types
1291 * of garbage in the synchronization bits prior to the packet header.
1292 * This bug is supposed to only occur in 10Mbps mode, but has been
1293 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1294 * speed transition).
1295 */
1296 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1297 (void) fxp_init(ifp);
1298 splx(s);
1299 return;
1300 }
1301 /*
1302 * If there is no pending command, start another stats
1303 * dump. Otherwise punt for now.
1304 */
1305 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1306 /*
1307 * Start another stats dump.
1308 */
1309 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1310 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1311 } else {
1312 /*
1313 * A previous command is still waiting to be accepted.
1314 * Just zero our copy of the stats and wait for the
1315 * next timer event to update them.
1316 */
1317 /* BIG_ENDIAN: no swap required to store 0 */
1318 sp->tx_good = 0;
1319 sp->tx_underruns = 0;
1320 sp->tx_total_collisions = 0;
1321
1322 sp->rx_good = 0;
1323 sp->rx_crc_errors = 0;
1324 sp->rx_alignment_errors = 0;
1325 sp->rx_rnr_errors = 0;
1326 sp->rx_overrun_errors = 0;
1327 }
1328
1329 if (sc->sc_flags & FXPF_MII) {
1330 /* Tick the MII clock. */
1331 mii_tick(&sc->sc_mii);
1332 }
1333
1334 splx(s);
1335
1336 /*
1337 * Schedule another timeout one second from now.
1338 */
1339 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1340 }
1341
1342 /*
1343 * Drain the receive queue.
1344 */
1345 void
1346 fxp_rxdrain(struct fxp_softc *sc)
1347 {
1348 bus_dmamap_t rxmap;
1349 struct mbuf *m;
1350
1351 for (;;) {
1352 IF_DEQUEUE(&sc->sc_rxq, m);
1353 if (m == NULL)
1354 break;
1355 rxmap = M_GETCTX(m, bus_dmamap_t);
1356 bus_dmamap_unload(sc->sc_dmat, rxmap);
1357 FXP_RXMAP_PUT(sc, rxmap);
1358 m_freem(m);
1359 }
1360 }
1361
1362 /*
1363 * Stop the interface. Cancels the statistics updater and resets
1364 * the interface.
1365 */
1366 void
1367 fxp_stop(struct ifnet *ifp, int disable)
1368 {
1369 struct fxp_softc *sc = ifp->if_softc;
1370 struct fxp_txsoft *txs;
1371 int i;
1372
1373 /*
1374 * Turn down interface (done early to avoid bad interactions
1375 * between panics, shutdown hooks, and the watchdog timer)
1376 */
1377 ifp->if_timer = 0;
1378 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1379
1380 /*
1381 * Cancel stats updater.
1382 */
1383 callout_stop(&sc->sc_callout);
1384 if (sc->sc_flags & FXPF_MII) {
1385 /* Down the MII. */
1386 mii_down(&sc->sc_mii);
1387 }
1388
1389 /*
1390 * Issue software reset. This unloads any microcode that
1391 * might already be loaded.
1392 */
1393 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1394 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1395 DELAY(50);
1396
1397 /*
1398 * Release any xmit buffers.
1399 */
1400 for (i = 0; i < FXP_NTXCB; i++) {
1401 txs = FXP_DSTX(sc, i);
1402 if (txs->txs_mbuf != NULL) {
1403 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1404 m_freem(txs->txs_mbuf);
1405 txs->txs_mbuf = NULL;
1406 }
1407 }
1408 sc->sc_txpending = 0;
1409
1410 if (disable) {
1411 fxp_rxdrain(sc);
1412 fxp_disable(sc);
1413 }
1414
1415 }
1416
1417 /*
1418 * Watchdog/transmission transmit timeout handler. Called when a
1419 * transmission is started on the interface, but no interrupt is
1420 * received before the timeout. This usually indicates that the
1421 * card has wedged for some reason.
1422 */
1423 void
1424 fxp_watchdog(struct ifnet *ifp)
1425 {
1426 struct fxp_softc *sc = ifp->if_softc;
1427
1428 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1429 ifp->if_oerrors++;
1430
1431 (void) fxp_init(ifp);
1432 }
1433
1434 /*
1435 * Initialize the interface. Must be called at splnet().
1436 */
1437 int
1438 fxp_init(struct ifnet *ifp)
1439 {
1440 struct fxp_softc *sc = ifp->if_softc;
1441 struct fxp_cb_config *cbp;
1442 struct fxp_cb_ias *cb_ias;
1443 struct fxp_txdesc *txd;
1444 bus_dmamap_t rxmap;
1445 int i, prm, save_bf, lrxen, allm, error = 0;
1446
1447 if ((error = fxp_enable(sc)) != 0)
1448 goto out;
1449
1450 /*
1451 * Cancel any pending I/O
1452 */
1453 fxp_stop(ifp, 0);
1454
1455 /*
1456 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1457 * flag, and this prevents the MII from detaching resulting in
1458 * a panic. The flags field should perhaps be split in runtime
1459 * flags and more static information. For now, just clear the
1460 * only other flag set.
1461 */
1462
1463 sc->sc_flags &= ~FXPF_WANTINIT;
1464
1465 /*
1466 * Initialize base of CBL and RFA memory. Loading with zero
1467 * sets it up for regular linear addressing.
1468 */
1469 fxp_scb_wait(sc);
1470 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1471 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1472
1473 fxp_scb_wait(sc);
1474 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1475
1476 /*
1477 * Initialize the multicast filter. Do this now, since we might
1478 * have to setup the config block differently.
1479 */
1480 fxp_mc_setup(sc);
1481
1482 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1483 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1484
1485 /*
1486 * In order to support receiving 802.1Q VLAN frames, we have to
1487 * enable "save bad frames", since they are 4 bytes larger than
1488 * the normal Ethernet maximum frame length. On i82558 and later,
1489 * we have a better mechanism for this.
1490 */
1491 save_bf = 0;
1492 lrxen = 0;
1493 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1494 if (sc->sc_rev < FXP_REV_82558_A4)
1495 save_bf = 1;
1496 else
1497 lrxen = 1;
1498 }
1499
1500 /*
1501 * Initialize base of dump-stats buffer.
1502 */
1503 fxp_scb_wait(sc);
1504 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1505 sc->sc_cddma + FXP_CDSTATSOFF);
1506 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1507 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1508
1509 cbp = &sc->sc_control_data->fcd_configcb;
1510 memset(cbp, 0, sizeof(struct fxp_cb_config));
1511
1512 /*
1513 * Load microcode for this controller.
1514 */
1515 fxp_load_ucode(sc);
1516
1517 /*
1518 * This copy is kind of disgusting, but there are a bunch of must be
1519 * zero and must be one bits in this structure and this is the easiest
1520 * way to initialize them all to proper values.
1521 */
1522 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1523
1524 /* BIG_ENDIAN: no need to swap to store 0 */
1525 cbp->cb_status = 0;
1526 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1527 FXP_CB_COMMAND_EL);
1528 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1529 cbp->link_addr = 0xffffffff; /* (no) next command */
1530 /* bytes in config block */
1531 cbp->byte_count = FXP_CONFIG_LEN;
1532 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1533 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1534 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1535 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1536 cbp->type_enable = 0; /* actually reserved */
1537 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1538 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1539 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1540 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1541 cbp->dma_mbce = 0; /* (disable) dma max counters */
1542 cbp->late_scb = 0; /* (don't) defer SCB update */
1543 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1544 cbp->ci_int = 1; /* interrupt on CU idle */
1545 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1546 cbp->ext_stats_dis = 1; /* disable extended counters */
1547 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1548 cbp->save_bf = save_bf;/* save bad frames */
1549 cbp->disc_short_rx = !prm; /* discard short packets */
1550 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1551 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1552 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1553 /* interface mode */
1554 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1555 cbp->csma_dis = 0; /* (don't) disable link */
1556 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1557 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1558 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1559 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1560 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1561 cbp->nsai = 1; /* (don't) disable source addr insert */
1562 cbp->preamble_length = 2; /* (7 byte) preamble */
1563 cbp->loopback = 0; /* (don't) loopback */
1564 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1565 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1566 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1567 cbp->promiscuous = prm; /* promiscuous mode */
1568 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1569 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1570 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1571 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1572 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1573 cbp->stripping = !prm; /* truncate rx packet to byte count */
1574 cbp->padding = 1; /* (do) pad short tx packets */
1575 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1576 cbp->long_rx_en = lrxen; /* long packet receive enable */
1577 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1578 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1579 /* must set wake_en in PMCSR also */
1580 cbp->force_fdx = 0; /* (don't) force full duplex */
1581 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1582 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1583 cbp->mc_all = allm; /* accept all multicasts */
1584
1585 if (sc->sc_rev < FXP_REV_82558_A4) {
1586 /*
1587 * The i82557 has no hardware flow control, the values
1588 * here are the defaults for the chip.
1589 */
1590 cbp->fc_delay_lsb = 0;
1591 cbp->fc_delay_msb = 0x40;
1592 cbp->pri_fc_thresh = 3;
1593 cbp->tx_fc_dis = 0;
1594 cbp->rx_fc_restop = 0;
1595 cbp->rx_fc_restart = 0;
1596 cbp->fc_filter = 0;
1597 cbp->pri_fc_loc = 1;
1598 } else {
1599 cbp->fc_delay_lsb = 0x1f;
1600 cbp->fc_delay_msb = 0x01;
1601 cbp->pri_fc_thresh = 3;
1602 cbp->tx_fc_dis = 0; /* enable transmit FC */
1603 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1604 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1605 cbp->fc_filter = !prm; /* drop FC frames to host */
1606 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1607 }
1608
1609 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1610
1611 /*
1612 * Start the config command/DMA.
1613 */
1614 fxp_scb_wait(sc);
1615 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1616 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1617 /* ...and wait for it to complete. */
1618 i = 1000;
1619 do {
1620 FXP_CDCONFIGSYNC(sc,
1621 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1622 DELAY(1);
1623 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1624 if (i == 0) {
1625 printf("%s at line %d: dmasync timeout\n",
1626 sc->sc_dev.dv_xname, __LINE__);
1627 return (ETIMEDOUT);
1628 }
1629
1630 /*
1631 * Initialize the station address.
1632 */
1633 cb_ias = &sc->sc_control_data->fcd_iascb;
1634 /* BIG_ENDIAN: no need to swap to store 0 */
1635 cb_ias->cb_status = 0;
1636 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1637 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1638 cb_ias->link_addr = 0xffffffff;
1639 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1640
1641 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1642
1643 /*
1644 * Start the IAS (Individual Address Setup) command/DMA.
1645 */
1646 fxp_scb_wait(sc);
1647 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1648 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1649 /* ...and wait for it to complete. */
1650 i = 1000;
1651 do {
1652 FXP_CDIASSYNC(sc,
1653 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1654 DELAY(1);
1655 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1656 if (i == 0) {
1657 printf("%s at line %d: dmasync timeout\n",
1658 sc->sc_dev.dv_xname, __LINE__);
1659 return (ETIMEDOUT);
1660 }
1661
1662 /*
1663 * Initialize the transmit descriptor ring. txlast is initialized
1664 * to the end of the list so that it will wrap around to the first
1665 * descriptor when the first packet is transmitted.
1666 */
1667 for (i = 0; i < FXP_NTXCB; i++) {
1668 txd = FXP_CDTX(sc, i);
1669 memset(txd, 0, sizeof(*txd));
1670 txd->txd_txcb.cb_command =
1671 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1672 txd->txd_txcb.link_addr =
1673 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1674 if (sc->sc_flags & FXPF_EXT_TXCB)
1675 txd->txd_txcb.tbd_array_addr =
1676 htole32(FXP_CDTBDADDR(sc, i) +
1677 (2 * sizeof(struct fxp_tbd)));
1678 else
1679 txd->txd_txcb.tbd_array_addr =
1680 htole32(FXP_CDTBDADDR(sc, i));
1681 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1682 }
1683 sc->sc_txpending = 0;
1684 sc->sc_txdirty = 0;
1685 sc->sc_txlast = FXP_NTXCB - 1;
1686
1687 /*
1688 * Initialize the receive buffer list.
1689 */
1690 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1691 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1692 rxmap = FXP_RXMAP_GET(sc);
1693 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1694 printf("%s: unable to allocate or map rx "
1695 "buffer %d, error = %d\n",
1696 sc->sc_dev.dv_xname,
1697 sc->sc_rxq.ifq_len, error);
1698 /*
1699 * XXX Should attempt to run with fewer receive
1700 * XXX buffers instead of just failing.
1701 */
1702 FXP_RXMAP_PUT(sc, rxmap);
1703 fxp_rxdrain(sc);
1704 goto out;
1705 }
1706 }
1707 sc->sc_rxidle = 0;
1708
1709 /*
1710 * Give the transmit ring to the chip. We do this by pointing
1711 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1712 * issuing a start command. It will execute the NOP and then
1713 * suspend, pointing at the first descriptor.
1714 */
1715 fxp_scb_wait(sc);
1716 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1717 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1718
1719 /*
1720 * Initialize receiver buffer area - RFA.
1721 */
1722 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1723 fxp_scb_wait(sc);
1724 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1725 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1726 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1727
1728 if (sc->sc_flags & FXPF_MII) {
1729 /*
1730 * Set current media.
1731 */
1732 mii_mediachg(&sc->sc_mii);
1733 }
1734
1735 /*
1736 * ...all done!
1737 */
1738 ifp->if_flags |= IFF_RUNNING;
1739 ifp->if_flags &= ~IFF_OACTIVE;
1740
1741 /*
1742 * Start the one second timer.
1743 */
1744 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1745
1746 /*
1747 * Attempt to start output on the interface.
1748 */
1749 fxp_start(ifp);
1750
1751 out:
1752 if (error) {
1753 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1754 ifp->if_timer = 0;
1755 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1756 }
1757 return (error);
1758 }
1759
1760 /*
1761 * Change media according to request.
1762 */
1763 int
1764 fxp_mii_mediachange(struct ifnet *ifp)
1765 {
1766 struct fxp_softc *sc = ifp->if_softc;
1767
1768 if (ifp->if_flags & IFF_UP)
1769 mii_mediachg(&sc->sc_mii);
1770 return (0);
1771 }
1772
1773 /*
1774 * Notify the world which media we're using.
1775 */
1776 void
1777 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1778 {
1779 struct fxp_softc *sc = ifp->if_softc;
1780
1781 if (sc->sc_enabled == 0) {
1782 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1783 ifmr->ifm_status = 0;
1784 return;
1785 }
1786
1787 mii_pollstat(&sc->sc_mii);
1788 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1789 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1790 }
1791
1792 int
1793 fxp_80c24_mediachange(struct ifnet *ifp)
1794 {
1795
1796 /* Nothing to do here. */
1797 return (0);
1798 }
1799
1800 void
1801 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1802 {
1803 struct fxp_softc *sc = ifp->if_softc;
1804
1805 /*
1806 * Media is currently-selected media. We cannot determine
1807 * the link status.
1808 */
1809 ifmr->ifm_status = 0;
1810 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1811 }
1812
1813 /*
1814 * Add a buffer to the end of the RFA buffer list.
1815 * Return 0 if successful, error code on failure.
1816 *
1817 * The RFA struct is stuck at the beginning of mbuf cluster and the
1818 * data pointer is fixed up to point just past it.
1819 */
1820 int
1821 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1822 {
1823 struct mbuf *m;
1824 int error;
1825
1826 MGETHDR(m, M_DONTWAIT, MT_DATA);
1827 if (m == NULL)
1828 return (ENOBUFS);
1829
1830 MCLGET(m, M_DONTWAIT);
1831 if ((m->m_flags & M_EXT) == 0) {
1832 m_freem(m);
1833 return (ENOBUFS);
1834 }
1835
1836 if (unload)
1837 bus_dmamap_unload(sc->sc_dmat, rxmap);
1838
1839 M_SETCTX(m, rxmap);
1840
1841 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1842 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1843 BUS_DMA_READ|BUS_DMA_NOWAIT);
1844 if (error) {
1845 printf("%s: can't load rx DMA map %d, error = %d\n",
1846 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1847 panic("fxp_add_rfabuf"); /* XXX */
1848 }
1849
1850 FXP_INIT_RFABUF(sc, m);
1851
1852 return (0);
1853 }
1854
1855 int
1856 fxp_mdi_read(struct device *self, int phy, int reg)
1857 {
1858 struct fxp_softc *sc = (struct fxp_softc *)self;
1859 int count = 10000;
1860 int value;
1861
1862 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1863 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1864
1865 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
1866 0x10000000) == 0 && count--)
1867 DELAY(10);
1868
1869 if (count <= 0)
1870 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1871
1872 return (value & 0xffff);
1873 }
1874
1875 void
1876 fxp_statchg(struct device *self)
1877 {
1878
1879 /* Nothing to do. */
1880 }
1881
1882 void
1883 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1884 {
1885 struct fxp_softc *sc = (struct fxp_softc *)self;
1886 int count = 10000;
1887
1888 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1889 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1890 (value & 0xffff));
1891
1892 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1893 count--)
1894 DELAY(10);
1895
1896 if (count <= 0)
1897 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1898 }
1899
1900 int
1901 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1902 {
1903 struct fxp_softc *sc = ifp->if_softc;
1904 struct ifreq *ifr = (struct ifreq *)data;
1905 int s, error;
1906
1907 s = splnet();
1908
1909 switch (cmd) {
1910 case SIOCSIFMEDIA:
1911 case SIOCGIFMEDIA:
1912 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1913 break;
1914
1915 default:
1916 error = ether_ioctl(ifp, cmd, data);
1917 if (error == ENETRESET) {
1918 if (sc->sc_enabled) {
1919 /*
1920 * Multicast list has changed; set the
1921 * hardware filter accordingly.
1922 */
1923 if (sc->sc_txpending) {
1924 sc->sc_flags |= FXPF_WANTINIT;
1925 error = 0;
1926 } else
1927 error = fxp_init(ifp);
1928 } else
1929 error = 0;
1930 }
1931 break;
1932 }
1933
1934 /* Try to get more packets going. */
1935 if (sc->sc_enabled)
1936 fxp_start(ifp);
1937
1938 splx(s);
1939 return (error);
1940 }
1941
1942 /*
1943 * Program the multicast filter.
1944 *
1945 * This function must be called at splnet().
1946 */
1947 void
1948 fxp_mc_setup(struct fxp_softc *sc)
1949 {
1950 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1951 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1952 struct ethercom *ec = &sc->sc_ethercom;
1953 struct ether_multi *enm;
1954 struct ether_multistep step;
1955 int count, nmcasts;
1956
1957 #ifdef DIAGNOSTIC
1958 if (sc->sc_txpending)
1959 panic("fxp_mc_setup: pending transmissions");
1960 #endif
1961
1962 ifp->if_flags &= ~IFF_ALLMULTI;
1963
1964 /*
1965 * Initialize multicast setup descriptor.
1966 */
1967 nmcasts = 0;
1968 ETHER_FIRST_MULTI(step, ec, enm);
1969 while (enm != NULL) {
1970 /*
1971 * Check for too many multicast addresses or if we're
1972 * listening to a range. Either way, we simply have
1973 * to accept all multicasts.
1974 */
1975 if (nmcasts >= MAXMCADDR ||
1976 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1977 ETHER_ADDR_LEN) != 0) {
1978 /*
1979 * Callers of this function must do the
1980 * right thing with this. If we're called
1981 * from outside fxp_init(), the caller must
1982 * detect if the state if IFF_ALLMULTI changes.
1983 * If it does, the caller must then call
1984 * fxp_init(), since allmulti is handled by
1985 * the config block.
1986 */
1987 ifp->if_flags |= IFF_ALLMULTI;
1988 return;
1989 }
1990 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1991 ETHER_ADDR_LEN);
1992 nmcasts++;
1993 ETHER_NEXT_MULTI(step, enm);
1994 }
1995
1996 /* BIG_ENDIAN: no need to swap to store 0 */
1997 mcsp->cb_status = 0;
1998 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1999 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2000 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2001
2002 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2003
2004 /*
2005 * Wait until the command unit is not active. This should never
2006 * happen since nothing is queued, but make sure anyway.
2007 */
2008 count = 100;
2009 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2010 FXP_SCB_CUS_ACTIVE && --count)
2011 DELAY(1);
2012 if (count == 0) {
2013 printf("%s at line %d: command queue timeout\n",
2014 sc->sc_dev.dv_xname, __LINE__);
2015 return;
2016 }
2017
2018 /*
2019 * Start the multicast setup command/DMA.
2020 */
2021 fxp_scb_wait(sc);
2022 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2023 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2024
2025 /* ...and wait for it to complete. */
2026 count = 1000;
2027 do {
2028 FXP_CDMCSSYNC(sc,
2029 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2030 DELAY(1);
2031 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2032 if (count == 0) {
2033 printf("%s at line %d: dmasync timeout\n",
2034 sc->sc_dev.dv_xname, __LINE__);
2035 return;
2036 }
2037 }
2038
2039 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2040 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2041 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2042 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2043 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2044 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2045
2046 #define UCODE(x) x, sizeof(x)
2047
2048 static const struct ucode {
2049 int32_t revision;
2050 const uint32_t *ucode;
2051 size_t length;
2052 uint16_t int_delay_offset;
2053 uint16_t bundle_max_offset;
2054 } ucode_table[] = {
2055 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2056 D101_CPUSAVER_DWORD, 0 },
2057
2058 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2059 D101_CPUSAVER_DWORD, 0 },
2060
2061 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2062 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2063
2064 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2065 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2066
2067 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2068 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2069
2070 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2071 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2072
2073 { 0, NULL, 0, 0, 0 }
2074 };
2075
2076 void
2077 fxp_load_ucode(struct fxp_softc *sc)
2078 {
2079 const struct ucode *uc;
2080 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2081 int count;
2082
2083 if (sc->sc_flags & FXPF_UCODE_LOADED)
2084 return;
2085
2086 /*
2087 * Only load the uCode if the user has requested that
2088 * we do so.
2089 */
2090 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2091 sc->sc_int_delay = 0;
2092 sc->sc_bundle_max = 0;
2093 return;
2094 }
2095
2096 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2097 if (sc->sc_rev == uc->revision)
2098 break;
2099 }
2100 if (uc->ucode == NULL)
2101 return;
2102
2103 /* BIG ENDIAN: no need to swap to store 0 */
2104 cbp->cb_status = 0;
2105 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2106 cbp->link_addr = 0xffffffff; /* (no) next command */
2107 memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2108
2109 if (uc->int_delay_offset)
2110 *(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2111 htole16(fxp_int_delay + (fxp_int_delay / 2));
2112
2113 if (uc->bundle_max_offset)
2114 *(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2115 htole16(fxp_bundle_max);
2116
2117 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2118
2119 /*
2120 * Download the uCode to the chip.
2121 */
2122 fxp_scb_wait(sc);
2123 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2124 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2125
2126 /* ...and wait for it to complete. */
2127 count = 10000;
2128 do {
2129 FXP_CDUCODESYNC(sc,
2130 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2131 DELAY(2);
2132 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2133 if (count == 0) {
2134 sc->sc_int_delay = 0;
2135 sc->sc_bundle_max = 0;
2136 printf("%s: timeout loading microcode\n",
2137 sc->sc_dev.dv_xname);
2138 return;
2139 }
2140
2141 if (sc->sc_int_delay != fxp_int_delay ||
2142 sc->sc_bundle_max != fxp_bundle_max) {
2143 sc->sc_int_delay = fxp_int_delay;
2144 sc->sc_bundle_max = fxp_bundle_max;
2145 printf("%s: Microcode loaded: int delay: %d usec, "
2146 "max bundle: %d\n", sc->sc_dev.dv_xname,
2147 sc->sc_int_delay,
2148 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2149 }
2150
2151 sc->sc_flags |= FXPF_UCODE_LOADED;
2152 }
2153
2154 int
2155 fxp_enable(struct fxp_softc *sc)
2156 {
2157
2158 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2159 if ((*sc->sc_enable)(sc) != 0) {
2160 printf("%s: device enable failed\n",
2161 sc->sc_dev.dv_xname);
2162 return (EIO);
2163 }
2164 }
2165
2166 sc->sc_enabled = 1;
2167 return (0);
2168 }
2169
2170 void
2171 fxp_disable(struct fxp_softc *sc)
2172 {
2173
2174 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2175 (*sc->sc_disable)(sc);
2176 sc->sc_enabled = 0;
2177 }
2178 }
2179
2180 /*
2181 * fxp_activate:
2182 *
2183 * Handle device activation/deactivation requests.
2184 */
2185 int
2186 fxp_activate(struct device *self, enum devact act)
2187 {
2188 struct fxp_softc *sc = (void *) self;
2189 int s, error = 0;
2190
2191 s = splnet();
2192 switch (act) {
2193 case DVACT_ACTIVATE:
2194 error = EOPNOTSUPP;
2195 break;
2196
2197 case DVACT_DEACTIVATE:
2198 if (sc->sc_flags & FXPF_MII)
2199 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2200 MII_OFFSET_ANY);
2201 if_deactivate(&sc->sc_ethercom.ec_if);
2202 break;
2203 }
2204 splx(s);
2205
2206 return (error);
2207 }
2208
2209 /*
2210 * fxp_detach:
2211 *
2212 * Detach an i82557 interface.
2213 */
2214 int
2215 fxp_detach(struct fxp_softc *sc)
2216 {
2217 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2218 int i;
2219
2220 /* Succeed now if there's no work to do. */
2221 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2222 return (0);
2223
2224 /* Unhook our tick handler. */
2225 callout_stop(&sc->sc_callout);
2226
2227 if (sc->sc_flags & FXPF_MII) {
2228 /* Detach all PHYs */
2229 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2230 }
2231
2232 /* Delete all remaining media. */
2233 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2234
2235 #if NRND > 0
2236 rnd_detach_source(&sc->rnd_source);
2237 #endif
2238 ether_ifdetach(ifp);
2239 if_detach(ifp);
2240
2241 for (i = 0; i < FXP_NRFABUFS; i++) {
2242 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2243 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2244 }
2245
2246 for (i = 0; i < FXP_NTXCB; i++) {
2247 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2248 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2249 }
2250
2251 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2252 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2253 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2254 sizeof(struct fxp_control_data));
2255 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2256
2257 shutdownhook_disestablish(sc->sc_sdhook);
2258 powerhook_disestablish(sc->sc_powerhook);
2259
2260 return (0);
2261 }
2262