i82557.c revision 1.74 1 /* $NetBSD: i82557.c,v 1.74 2003/05/25 15:10:23 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.74 2003/05/25 15:10:23 yamt Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91
92 #include <machine/endian.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #if NRND > 0
97 #include <sys/rnd.h>
98 #endif
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111
112 #include <dev/mii/miivar.h>
113
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116
117 #include <dev/microcode/i8255x/rcvbundl.h>
118
119 /*
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
127 */
128 #define RFA_ALIGNMENT_FUDGE 2
129
130 /*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138 const u_int8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
174 };
175
176 void fxp_mii_initmedia(struct fxp_softc *);
177 int fxp_mii_mediachange(struct ifnet *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 void fxp_rxintr(struct fxp_softc *);
192
193 void fxp_rxdrain(struct fxp_softc *);
194 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
195 int fxp_mdi_read(struct device *, int, int);
196 void fxp_statchg(struct device *);
197 void fxp_mdi_write(struct device *, int, int, int);
198 void fxp_autosize_eeprom(struct fxp_softc*);
199 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
200 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
201 void fxp_eeprom_update_cksum(struct fxp_softc *);
202 void fxp_get_info(struct fxp_softc *, u_int8_t *);
203 void fxp_tick(void *);
204 void fxp_mc_setup(struct fxp_softc *);
205 void fxp_load_ucode(struct fxp_softc *);
206
207 void fxp_shutdown(void *);
208 void fxp_power(int, void *);
209
210 int fxp_copy_small = 0;
211
212 /*
213 * Variables for interrupt mitigating microcode.
214 */
215 int fxp_int_delay = 1000; /* usec */
216 int fxp_bundle_max = 6; /* packets */
217
218 struct fxp_phytype {
219 int fp_phy; /* type of PHY, -1 for MII at the end. */
220 void (*fp_init)(struct fxp_softc *);
221 } fxp_phytype_table[] = {
222 { FXP_PHY_80C24, fxp_80c24_initmedia },
223 { -1, fxp_mii_initmedia },
224 };
225
226 /*
227 * Set initial transmit threshold at 64 (512 bytes). This is
228 * increased by 64 (512 bytes) at a time, to maximum of 192
229 * (1536 bytes), if an underrun occurs.
230 */
231 static int tx_threshold = 64;
232
233 /*
234 * Wait for the previous command to be accepted (but not necessarily
235 * completed).
236 */
237 static __inline void
238 fxp_scb_wait(struct fxp_softc *sc)
239 {
240 int i = 10000;
241
242 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
243 delay(2);
244 if (i == 0)
245 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
246 }
247
248 /*
249 * Submit a command to the i82557.
250 */
251 static __inline void
252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253 {
254
255 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256 }
257
258 /*
259 * Finish attaching an i82557 interface. Called by bus-specific front-end.
260 */
261 void
262 fxp_attach(struct fxp_softc *sc)
263 {
264 u_int8_t enaddr[ETHER_ADDR_LEN];
265 struct ifnet *ifp;
266 bus_dma_segment_t seg;
267 int rseg, i, error;
268 struct fxp_phytype *fp;
269
270 callout_init(&sc->sc_callout);
271
272 /* Start out using the standard RFA. */
273 sc->sc_rfa_size = RFA_SIZE;
274
275 /*
276 * Enable some good stuff on i82558 and later.
277 */
278 if (sc->sc_rev >= FXP_REV_82558_A4) {
279 /* Enable the extended TxCB. */
280 sc->sc_flags |= FXPF_EXT_TXCB;
281 }
282
283 /*
284 * Allocate the control data structures, and create and load the
285 * DMA map for it.
286 */
287 if ((error = bus_dmamem_alloc(sc->sc_dmat,
288 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
289 0)) != 0) {
290 aprint_error(
291 "%s: unable to allocate control data, error = %d\n",
292 sc->sc_dev.dv_xname, error);
293 goto fail_0;
294 }
295
296 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
297 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
298 BUS_DMA_COHERENT)) != 0) {
299 aprint_error("%s: unable to map control data, error = %d\n",
300 sc->sc_dev.dv_xname, error);
301 goto fail_1;
302 }
303 sc->sc_cdseg = seg;
304 sc->sc_cdnseg = rseg;
305
306 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
307
308 if ((error = bus_dmamap_create(sc->sc_dmat,
309 sizeof(struct fxp_control_data), 1,
310 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
311 aprint_error("%s: unable to create control data DMA map, "
312 "error = %d\n", sc->sc_dev.dv_xname, error);
313 goto fail_2;
314 }
315
316 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
317 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
318 0)) != 0) {
319 aprint_error(
320 "%s: can't load control data DMA map, error = %d\n",
321 sc->sc_dev.dv_xname, error);
322 goto fail_3;
323 }
324
325 /*
326 * Create the transmit buffer DMA maps.
327 */
328 for (i = 0; i < FXP_NTXCB; i++) {
329 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
330 FXP_NTXSEG, MCLBYTES, 0, 0,
331 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
332 aprint_error("%s: unable to create tx DMA map %d, "
333 "error = %d\n", sc->sc_dev.dv_xname, i, error);
334 goto fail_4;
335 }
336 }
337
338 /*
339 * Create the receive buffer DMA maps.
340 */
341 for (i = 0; i < FXP_NRFABUFS; i++) {
342 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
343 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
344 aprint_error("%s: unable to create rx DMA map %d, "
345 "error = %d\n", sc->sc_dev.dv_xname, i, error);
346 goto fail_5;
347 }
348 }
349
350 /* Initialize MAC address and media structures. */
351 fxp_get_info(sc, enaddr);
352
353 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
354 ether_sprintf(enaddr));
355
356 ifp = &sc->sc_ethercom.ec_if;
357
358 /*
359 * Get info about our media interface, and initialize it. Note
360 * the table terminates itself with a phy of -1, indicating
361 * that we're using MII.
362 */
363 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
364 if (fp->fp_phy == sc->phy_primary_device)
365 break;
366 (*fp->fp_init)(sc);
367
368 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
369 ifp->if_softc = sc;
370 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
371 ifp->if_ioctl = fxp_ioctl;
372 ifp->if_start = fxp_start;
373 ifp->if_watchdog = fxp_watchdog;
374 ifp->if_init = fxp_init;
375 ifp->if_stop = fxp_stop;
376 IFQ_SET_READY(&ifp->if_snd);
377
378 /*
379 * We can support 802.1Q VLAN-sized frames.
380 */
381 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
382
383 /*
384 * Attach the interface.
385 */
386 if_attach(ifp);
387 ether_ifattach(ifp, enaddr);
388 #if NRND > 0
389 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
390 RND_TYPE_NET, 0);
391 #endif
392
393 #ifdef FXP_EVENT_COUNTERS
394 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
395 NULL, sc->sc_dev.dv_xname, "txstall");
396 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
397 NULL, sc->sc_dev.dv_xname, "txintr");
398 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
399 NULL, sc->sc_dev.dv_xname, "rxintr");
400 #endif /* FXP_EVENT_COUNTERS */
401
402 /*
403 * Add shutdown hook so that DMA is disabled prior to reboot. Not
404 * doing do could allow DMA to corrupt kernel memory during the
405 * reboot before the driver initializes.
406 */
407 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
408 if (sc->sc_sdhook == NULL)
409 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
410 sc->sc_dev.dv_xname);
411 /*
412 * Add suspend hook, for similar reasons..
413 */
414 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
415 if (sc->sc_powerhook == NULL)
416 aprint_error("%s: WARNING: unable to establish power hook\n",
417 sc->sc_dev.dv_xname);
418
419 /* The attach is successful. */
420 sc->sc_flags |= FXPF_ATTACHED;
421
422 return;
423
424 /*
425 * Free any resources we've allocated during the failed attach
426 * attempt. Do this in reverse order and fall though.
427 */
428 fail_5:
429 for (i = 0; i < FXP_NRFABUFS; i++) {
430 if (sc->sc_rxmaps[i] != NULL)
431 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
432 }
433 fail_4:
434 for (i = 0; i < FXP_NTXCB; i++) {
435 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
436 bus_dmamap_destroy(sc->sc_dmat,
437 FXP_DSTX(sc, i)->txs_dmamap);
438 }
439 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
440 fail_3:
441 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
442 fail_2:
443 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
444 sizeof(struct fxp_control_data));
445 fail_1:
446 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
447 fail_0:
448 return;
449 }
450
451 void
452 fxp_mii_initmedia(struct fxp_softc *sc)
453 {
454 int flags;
455
456 sc->sc_flags |= FXPF_MII;
457
458 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
459 sc->sc_mii.mii_readreg = fxp_mdi_read;
460 sc->sc_mii.mii_writereg = fxp_mdi_write;
461 sc->sc_mii.mii_statchg = fxp_statchg;
462 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
463 fxp_mii_mediastatus);
464
465 flags = MIIF_NOISOLATE;
466 if (sc->sc_rev >= FXP_REV_82558_A4)
467 flags |= MIIF_DOPAUSE;
468 /*
469 * The i82557 wedges if all of its PHYs are isolated!
470 */
471 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
472 MII_OFFSET_ANY, flags);
473 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
474 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
475 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
476 } else
477 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
478 }
479
480 void
481 fxp_80c24_initmedia(struct fxp_softc *sc)
482 {
483
484 /*
485 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
486 * doesn't have a programming interface of any sort. The
487 * media is sensed automatically based on how the link partner
488 * is configured. This is, in essence, manual configuration.
489 */
490 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
491 sc->sc_dev.dv_xname);
492 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
493 fxp_80c24_mediastatus);
494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
495 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
496 }
497
498 /*
499 * Device shutdown routine. Called at system shutdown after sync. The
500 * main purpose of this routine is to shut off receiver DMA so that
501 * kernel memory doesn't get clobbered during warmboot.
502 */
503 void
504 fxp_shutdown(void *arg)
505 {
506 struct fxp_softc *sc = arg;
507
508 /*
509 * Since the system's going to halt shortly, don't bother
510 * freeing mbufs.
511 */
512 fxp_stop(&sc->sc_ethercom.ec_if, 0);
513 }
514 /*
515 * Power handler routine. Called when the system is transitioning
516 * into/out of power save modes. As with fxp_shutdown, the main
517 * purpose of this routine is to shut off receiver DMA so it doesn't
518 * clobber kernel memory at the wrong time.
519 */
520 void
521 fxp_power(int why, void *arg)
522 {
523 struct fxp_softc *sc = arg;
524 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
525 int s;
526
527 s = splnet();
528 switch (why) {
529 case PWR_SUSPEND:
530 case PWR_STANDBY:
531 fxp_stop(ifp, 0);
532 break;
533 case PWR_RESUME:
534 if (ifp->if_flags & IFF_UP)
535 fxp_init(ifp);
536 break;
537 case PWR_SOFTSUSPEND:
538 case PWR_SOFTSTANDBY:
539 case PWR_SOFTRESUME:
540 break;
541 }
542 splx(s);
543 }
544
545 /*
546 * Initialize the interface media.
547 */
548 void
549 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
550 {
551 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
552
553 /*
554 * Reset to a stable state.
555 */
556 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
557 DELAY(10);
558
559 sc->sc_eeprom_size = 0;
560 fxp_autosize_eeprom(sc);
561 if (sc->sc_eeprom_size == 0) {
562 aprint_error("%s: failed to detect EEPROM size\n",
563 sc->sc_dev.dv_xname);
564 sc->sc_eeprom_size = 6; /* XXX panic here? */
565 }
566 #ifdef DEBUG
567 aprint_debug("%s: detected %d word EEPROM\n",
568 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
569 #endif
570
571 /*
572 * Get info about the primary PHY
573 */
574 fxp_read_eeprom(sc, &data, 6, 1);
575 sc->phy_primary_device =
576 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
577
578 /*
579 * Read MAC address.
580 */
581 fxp_read_eeprom(sc, myea, 0, 3);
582 enaddr[0] = myea[0] & 0xff;
583 enaddr[1] = myea[0] >> 8;
584 enaddr[2] = myea[1] & 0xff;
585 enaddr[3] = myea[1] >> 8;
586 enaddr[4] = myea[2] & 0xff;
587 enaddr[5] = myea[2] >> 8;
588
589 /*
590 * Systems based on the ICH2/ICH2-M chip from Intel, as well
591 * as some i82559 designs, have a defect where the chip can
592 * cause a PCI protocol violation if it receives a CU_RESUME
593 * command when it is entering the IDLE state.
594 *
595 * The work-around is to disable Dynamic Standby Mode, so that
596 * the chip never deasserts #CLKRUN, and always remains in the
597 * active state.
598 *
599 * Unfortunately, the only way to disable Dynamic Standby is
600 * to frob an EEPROM setting and reboot (the EEPROM setting
601 * is only consulted when the PCI bus comes out of reset).
602 *
603 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
604 */
605 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
606 fxp_read_eeprom(sc, &data, 10, 1);
607 if (data & 0x02) { /* STB enable */
608 aprint_error("%s: WARNING: "
609 "Disabling dynamic standby mode in EEPROM "
610 "to work around a\n",
611 sc->sc_dev.dv_xname);
612 aprint_normal(
613 "%s: WARNING: hardware bug. You must reset "
614 "the system before using this\n",
615 sc->sc_dev.dv_xname);
616 aprint_normal("%s: WARNING: interface.\n",
617 sc->sc_dev.dv_xname);
618 data &= ~0x02;
619 fxp_write_eeprom(sc, &data, 10, 1);
620 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
621 sc->sc_dev.dv_xname, data);
622 fxp_eeprom_update_cksum(sc);
623 }
624 }
625 }
626
627 static void
628 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
629 {
630 uint16_t reg;
631 int x;
632
633 for (x = 1 << (len - 1); x != 0; x >>= 1) {
634 if (data & x)
635 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
636 else
637 reg = FXP_EEPROM_EECS;
638 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
639 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
640 reg | FXP_EEPROM_EESK);
641 DELAY(4);
642 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
643 DELAY(4);
644 }
645 }
646
647 /*
648 * Figure out EEPROM size.
649 *
650 * 559's can have either 64-word or 256-word EEPROMs, the 558
651 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
652 * talks about the existance of 16 to 256 word EEPROMs.
653 *
654 * The only known sizes are 64 and 256, where the 256 version is used
655 * by CardBus cards to store CIS information.
656 *
657 * The address is shifted in msb-to-lsb, and after the last
658 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
659 * after which follows the actual data. We try to detect this zero, by
660 * probing the data-out bit in the EEPROM control register just after
661 * having shifted in a bit. If the bit is zero, we assume we've
662 * shifted enough address bits. The data-out should be tri-state,
663 * before this, which should translate to a logical one.
664 *
665 * Other ways to do this would be to try to read a register with known
666 * contents with a varying number of address bits, but no such
667 * register seem to be available. The high bits of register 10 are 01
668 * on the 558 and 559, but apparently not on the 557.
669 *
670 * The Linux driver computes a checksum on the EEPROM data, but the
671 * value of this checksum is not very well documented.
672 */
673
674 void
675 fxp_autosize_eeprom(struct fxp_softc *sc)
676 {
677 int x;
678
679 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
680
681 /* Shift in read opcode. */
682 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
683
684 /*
685 * Shift in address, wait for the dummy zero following a correct
686 * address shift.
687 */
688 for (x = 1; x <= 8; x++) {
689 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
690 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
691 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
692 DELAY(4);
693 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
694 FXP_EEPROM_EEDO) == 0)
695 break;
696 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
697 DELAY(4);
698 }
699 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
700 DELAY(4);
701 if (x != 6 && x != 8) {
702 #ifdef DEBUG
703 printf("%s: strange EEPROM size (%d)\n",
704 sc->sc_dev.dv_xname, 1 << x);
705 #endif
706 } else
707 sc->sc_eeprom_size = x;
708 }
709
710 /*
711 * Read from the serial EEPROM. Basically, you manually shift in
712 * the read opcode (one bit at a time) and then shift in the address,
713 * and then you shift out the data (all of this one bit at a time).
714 * The word size is 16 bits, so you have to provide the address for
715 * every 16 bits of data.
716 */
717 void
718 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
719 {
720 u_int16_t reg;
721 int i, x;
722
723 for (i = 0; i < words; i++) {
724 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
725
726 /* Shift in read opcode. */
727 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
728
729 /* Shift in address. */
730 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
731
732 reg = FXP_EEPROM_EECS;
733 data[i] = 0;
734
735 /* Shift out data. */
736 for (x = 16; x > 0; x--) {
737 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
738 reg | FXP_EEPROM_EESK);
739 DELAY(4);
740 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
741 FXP_EEPROM_EEDO)
742 data[i] |= (1 << (x - 1));
743 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
744 DELAY(4);
745 }
746 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
747 DELAY(4);
748 }
749 }
750
751 /*
752 * Write data to the serial EEPROM.
753 */
754 void
755 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
756 {
757 int i, j;
758
759 for (i = 0; i < words; i++) {
760 /* Erase/write enable. */
761 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
762 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
763 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
764 sc->sc_eeprom_size);
765 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
766 DELAY(4);
767
768 /* Shift in write opcode, address, data. */
769 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
770 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
771 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
772 fxp_eeprom_shiftin(sc, data[i], 16);
773 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
774 DELAY(4);
775
776 /* Wait for the EEPROM to finish up. */
777 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
778 DELAY(4);
779 for (j = 0; j < 1000; j++) {
780 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
781 FXP_EEPROM_EEDO)
782 break;
783 DELAY(50);
784 }
785 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
786 DELAY(4);
787
788 /* Erase/write disable. */
789 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
790 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
791 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
792 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
793 DELAY(4);
794 }
795 }
796
797 /*
798 * Update the checksum of the EEPROM.
799 */
800 void
801 fxp_eeprom_update_cksum(struct fxp_softc *sc)
802 {
803 int i;
804 uint16_t data, cksum;
805
806 cksum = 0;
807 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
808 fxp_read_eeprom(sc, &data, i, 1);
809 cksum += data;
810 }
811 i = (1 << sc->sc_eeprom_size) - 1;
812 cksum = 0xbaba - cksum;
813 fxp_read_eeprom(sc, &data, i, 1);
814 fxp_write_eeprom(sc, &cksum, i, 1);
815 printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
816 sc->sc_dev.dv_xname, i, data, cksum);
817 }
818
819 /*
820 * Start packet transmission on the interface.
821 */
822 void
823 fxp_start(struct ifnet *ifp)
824 {
825 struct fxp_softc *sc = ifp->if_softc;
826 struct mbuf *m0, *m;
827 struct fxp_txdesc *txd;
828 struct fxp_txsoft *txs;
829 bus_dmamap_t dmamap;
830 int error, lasttx, nexttx, opending, seg;
831
832 /*
833 * If we want a re-init, bail out now.
834 */
835 if (sc->sc_flags & FXPF_WANTINIT) {
836 ifp->if_flags |= IFF_OACTIVE;
837 return;
838 }
839
840 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
841 return;
842
843 /*
844 * Remember the previous txpending and the current lasttx.
845 */
846 opending = sc->sc_txpending;
847 lasttx = sc->sc_txlast;
848
849 /*
850 * Loop through the send queue, setting up transmit descriptors
851 * until we drain the queue, or use up all available transmit
852 * descriptors.
853 */
854 for (;;) {
855 /*
856 * Grab a packet off the queue.
857 */
858 IFQ_POLL(&ifp->if_snd, m0);
859 if (m0 == NULL)
860 break;
861 m = NULL;
862
863 if (sc->sc_txpending == FXP_NTXCB) {
864 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
865 break;
866 }
867
868 /*
869 * Get the next available transmit descriptor.
870 */
871 nexttx = FXP_NEXTTX(sc->sc_txlast);
872 txd = FXP_CDTX(sc, nexttx);
873 txs = FXP_DSTX(sc, nexttx);
874 dmamap = txs->txs_dmamap;
875
876 /*
877 * Load the DMA map. If this fails, the packet either
878 * didn't fit in the allotted number of frags, or we were
879 * short on resources. In this case, we'll copy and try
880 * again.
881 */
882 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
883 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
884 MGETHDR(m, M_DONTWAIT, MT_DATA);
885 if (m == NULL) {
886 printf("%s: unable to allocate Tx mbuf\n",
887 sc->sc_dev.dv_xname);
888 break;
889 }
890 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
891 if (m0->m_pkthdr.len > MHLEN) {
892 MCLGET(m, M_DONTWAIT);
893 if ((m->m_flags & M_EXT) == 0) {
894 printf("%s: unable to allocate Tx "
895 "cluster\n", sc->sc_dev.dv_xname);
896 m_freem(m);
897 break;
898 }
899 }
900 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
901 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
902 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
903 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
904 if (error) {
905 printf("%s: unable to load Tx buffer, "
906 "error = %d\n", sc->sc_dev.dv_xname, error);
907 break;
908 }
909 }
910
911 IFQ_DEQUEUE(&ifp->if_snd, m0);
912 if (m != NULL) {
913 m_freem(m0);
914 m0 = m;
915 }
916
917 /* Initialize the fraglist. */
918 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
919 txd->txd_tbd[seg].tb_addr =
920 htole32(dmamap->dm_segs[seg].ds_addr);
921 txd->txd_tbd[seg].tb_size =
922 htole32(dmamap->dm_segs[seg].ds_len);
923 }
924
925 /* Sync the DMA map. */
926 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
927 BUS_DMASYNC_PREWRITE);
928
929 /*
930 * Store a pointer to the packet so we can free it later.
931 */
932 txs->txs_mbuf = m0;
933
934 /*
935 * Initialize the transmit descriptor.
936 */
937 /* BIG_ENDIAN: no need to swap to store 0 */
938 txd->txd_txcb.cb_status = 0;
939 txd->txd_txcb.cb_command =
940 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
941 txd->txd_txcb.tx_threshold = tx_threshold;
942 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
943
944 FXP_CDTXSYNC(sc, nexttx,
945 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
946
947 /* Advance the tx pointer. */
948 sc->sc_txpending++;
949 sc->sc_txlast = nexttx;
950
951 #if NBPFILTER > 0
952 /*
953 * Pass packet to bpf if there is a listener.
954 */
955 if (ifp->if_bpf)
956 bpf_mtap(ifp->if_bpf, m0);
957 #endif
958 }
959
960 if (sc->sc_txpending == FXP_NTXCB) {
961 /* No more slots; notify upper layer. */
962 ifp->if_flags |= IFF_OACTIVE;
963 }
964
965 if (sc->sc_txpending != opending) {
966 /*
967 * We enqueued packets. If the transmitter was idle,
968 * reset the txdirty pointer.
969 */
970 if (opending == 0)
971 sc->sc_txdirty = FXP_NEXTTX(lasttx);
972
973 /*
974 * Cause the chip to interrupt and suspend command
975 * processing once the last packet we've enqueued
976 * has been transmitted.
977 */
978 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
979 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
980 FXP_CDTXSYNC(sc, sc->sc_txlast,
981 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
982
983 /*
984 * The entire packet chain is set up. Clear the suspend bit
985 * on the command prior to the first packet we set up.
986 */
987 FXP_CDTXSYNC(sc, lasttx,
988 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
989 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
990 htole16(~FXP_CB_COMMAND_S);
991 FXP_CDTXSYNC(sc, lasttx,
992 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
993
994 /*
995 * Issue a Resume command in case the chip was suspended.
996 */
997 fxp_scb_wait(sc);
998 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
999
1000 /* Set a watchdog timer in case the chip flakes out. */
1001 ifp->if_timer = 5;
1002 }
1003 }
1004
1005 /*
1006 * Process interface interrupts.
1007 */
1008 int
1009 fxp_intr(void *arg)
1010 {
1011 struct fxp_softc *sc = arg;
1012 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1013 bus_dmamap_t rxmap;
1014 int claimed = 0;
1015 u_int8_t statack;
1016
1017 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1018 return (0);
1019 /*
1020 * If the interface isn't running, don't try to
1021 * service the interrupt.. just ack it and bail.
1022 */
1023 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1024 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1025 if (statack) {
1026 claimed = 1;
1027 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1028 }
1029 return (claimed);
1030 }
1031
1032 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1033 claimed = 1;
1034
1035 /*
1036 * First ACK all the interrupts in this pass.
1037 */
1038 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1039
1040 /*
1041 * Process receiver interrupts. If a no-resource (RNR)
1042 * condition exists, get whatever packets we can and
1043 * re-start the receiver.
1044 */
1045 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1046 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1047 fxp_rxintr(sc);
1048 }
1049
1050 if (statack & FXP_SCB_STATACK_RNR) {
1051 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1052 fxp_scb_wait(sc);
1053 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1054 rxmap->dm_segs[0].ds_addr +
1055 RFA_ALIGNMENT_FUDGE);
1056 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1057 }
1058
1059 /*
1060 * Free any finished transmit mbuf chains.
1061 */
1062 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1063 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1064 fxp_txintr(sc);
1065
1066 /*
1067 * Try to get more packets going.
1068 */
1069 fxp_start(ifp);
1070
1071 if (sc->sc_txpending == 0) {
1072 /*
1073 * If we want a re-init, do that now.
1074 */
1075 if (sc->sc_flags & FXPF_WANTINIT)
1076 (void) fxp_init(ifp);
1077 }
1078 }
1079 }
1080
1081 #if NRND > 0
1082 if (claimed)
1083 rnd_add_uint32(&sc->rnd_source, statack);
1084 #endif
1085 return (claimed);
1086 }
1087
1088 /*
1089 * Handle transmit completion interrupts.
1090 */
1091 void
1092 fxp_txintr(struct fxp_softc *sc)
1093 {
1094 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1095 struct fxp_txdesc *txd;
1096 struct fxp_txsoft *txs;
1097 int i;
1098 u_int16_t txstat;
1099
1100 ifp->if_flags &= ~IFF_OACTIVE;
1101 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1102 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1103 txd = FXP_CDTX(sc, i);
1104 txs = FXP_DSTX(sc, i);
1105
1106 FXP_CDTXSYNC(sc, i,
1107 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1108
1109 txstat = le16toh(txd->txd_txcb.cb_status);
1110
1111 if ((txstat & FXP_CB_STATUS_C) == 0)
1112 break;
1113
1114 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1115 0, txs->txs_dmamap->dm_mapsize,
1116 BUS_DMASYNC_POSTWRITE);
1117 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1118 m_freem(txs->txs_mbuf);
1119 txs->txs_mbuf = NULL;
1120 }
1121
1122 /* Update the dirty transmit buffer pointer. */
1123 sc->sc_txdirty = i;
1124
1125 /*
1126 * Cancel the watchdog timer if there are no pending
1127 * transmissions.
1128 */
1129 if (sc->sc_txpending == 0)
1130 ifp->if_timer = 0;
1131 }
1132
1133 /*
1134 * Handle receive interrupts.
1135 */
1136 void
1137 fxp_rxintr(struct fxp_softc *sc)
1138 {
1139 struct ethercom *ec = &sc->sc_ethercom;
1140 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1141 struct mbuf *m, *m0;
1142 bus_dmamap_t rxmap;
1143 struct fxp_rfa *rfa;
1144 u_int16_t len, rxstat;
1145
1146 for (;;) {
1147 m = sc->sc_rxq.ifq_head;
1148 rfa = FXP_MTORFA(m);
1149 rxmap = M_GETCTX(m, bus_dmamap_t);
1150
1151 FXP_RFASYNC(sc, m,
1152 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1153
1154 rxstat = le16toh(rfa->rfa_status);
1155
1156 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1157 /*
1158 * We have processed all of the
1159 * receive buffers.
1160 */
1161 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1162 return;
1163 }
1164
1165 IF_DEQUEUE(&sc->sc_rxq, m);
1166
1167 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1168
1169 len = le16toh(rfa->actual_size) &
1170 (m->m_ext.ext_size - 1);
1171
1172 if (len < sizeof(struct ether_header)) {
1173 /*
1174 * Runt packet; drop it now.
1175 */
1176 FXP_INIT_RFABUF(sc, m);
1177 continue;
1178 }
1179
1180 /*
1181 * If support for 802.1Q VLAN sized frames is
1182 * enabled, we need to do some additional error
1183 * checking (as we are saving bad frames, in
1184 * order to receive the larger ones).
1185 */
1186 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1187 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1188 FXP_RFA_STATUS_RNR|
1189 FXP_RFA_STATUS_ALIGN|
1190 FXP_RFA_STATUS_CRC)) != 0) {
1191 FXP_INIT_RFABUF(sc, m);
1192 continue;
1193 }
1194
1195 /*
1196 * If the packet is small enough to fit in a
1197 * single header mbuf, allocate one and copy
1198 * the data into it. This greatly reduces
1199 * memory consumption when we receive lots
1200 * of small packets.
1201 *
1202 * Otherwise, we add a new buffer to the receive
1203 * chain. If this fails, we drop the packet and
1204 * recycle the old buffer.
1205 */
1206 if (fxp_copy_small != 0 && len <= MHLEN) {
1207 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1208 if (m0 == NULL)
1209 goto dropit;
1210 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1211 memcpy(mtod(m0, caddr_t),
1212 mtod(m, caddr_t), len);
1213 FXP_INIT_RFABUF(sc, m);
1214 m = m0;
1215 } else {
1216 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1217 dropit:
1218 ifp->if_ierrors++;
1219 FXP_INIT_RFABUF(sc, m);
1220 continue;
1221 }
1222 }
1223
1224 m->m_pkthdr.rcvif = ifp;
1225 m->m_pkthdr.len = m->m_len = len;
1226
1227 #if NBPFILTER > 0
1228 /*
1229 * Pass this up to any BPF listeners, but only
1230 * pass it up the stack it its for us.
1231 */
1232 if (ifp->if_bpf)
1233 bpf_mtap(ifp->if_bpf, m);
1234 #endif
1235
1236 /* Pass it on. */
1237 (*ifp->if_input)(ifp, m);
1238 }
1239 }
1240
1241 /*
1242 * Update packet in/out/collision statistics. The i82557 doesn't
1243 * allow you to access these counters without doing a fairly
1244 * expensive DMA to get _all_ of the statistics it maintains, so
1245 * we do this operation here only once per second. The statistics
1246 * counters in the kernel are updated from the previous dump-stats
1247 * DMA and then a new dump-stats DMA is started. The on-chip
1248 * counters are zeroed when the DMA completes. If we can't start
1249 * the DMA immediately, we don't wait - we just prepare to read
1250 * them again next time.
1251 */
1252 void
1253 fxp_tick(void *arg)
1254 {
1255 struct fxp_softc *sc = arg;
1256 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1258 int s;
1259
1260 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1261 return;
1262
1263 s = splnet();
1264
1265 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1266
1267 ifp->if_opackets += le32toh(sp->tx_good);
1268 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1269 if (sp->rx_good) {
1270 ifp->if_ipackets += le32toh(sp->rx_good);
1271 sc->sc_rxidle = 0;
1272 } else {
1273 sc->sc_rxidle++;
1274 }
1275 ifp->if_ierrors +=
1276 le32toh(sp->rx_crc_errors) +
1277 le32toh(sp->rx_alignment_errors) +
1278 le32toh(sp->rx_rnr_errors) +
1279 le32toh(sp->rx_overrun_errors);
1280 /*
1281 * If any transmit underruns occurred, bump up the transmit
1282 * threshold by another 512 bytes (64 * 8).
1283 */
1284 if (sp->tx_underruns) {
1285 ifp->if_oerrors += le32toh(sp->tx_underruns);
1286 if (tx_threshold < 192)
1287 tx_threshold += 64;
1288 }
1289
1290 /*
1291 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1292 * then assume the receiver has locked up and attempt to clear
1293 * the condition by reprogramming the multicast filter (actually,
1294 * resetting the interface). This is a work-around for a bug in
1295 * the 82557 where the receiver locks up if it gets certain types
1296 * of garbage in the synchronization bits prior to the packet header.
1297 * This bug is supposed to only occur in 10Mbps mode, but has been
1298 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1299 * speed transition).
1300 */
1301 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1302 (void) fxp_init(ifp);
1303 splx(s);
1304 return;
1305 }
1306 /*
1307 * If there is no pending command, start another stats
1308 * dump. Otherwise punt for now.
1309 */
1310 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1311 /*
1312 * Start another stats dump.
1313 */
1314 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1315 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1316 } else {
1317 /*
1318 * A previous command is still waiting to be accepted.
1319 * Just zero our copy of the stats and wait for the
1320 * next timer event to update them.
1321 */
1322 /* BIG_ENDIAN: no swap required to store 0 */
1323 sp->tx_good = 0;
1324 sp->tx_underruns = 0;
1325 sp->tx_total_collisions = 0;
1326
1327 sp->rx_good = 0;
1328 sp->rx_crc_errors = 0;
1329 sp->rx_alignment_errors = 0;
1330 sp->rx_rnr_errors = 0;
1331 sp->rx_overrun_errors = 0;
1332 }
1333
1334 if (sc->sc_flags & FXPF_MII) {
1335 /* Tick the MII clock. */
1336 mii_tick(&sc->sc_mii);
1337 }
1338
1339 splx(s);
1340
1341 /*
1342 * Schedule another timeout one second from now.
1343 */
1344 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1345 }
1346
1347 /*
1348 * Drain the receive queue.
1349 */
1350 void
1351 fxp_rxdrain(struct fxp_softc *sc)
1352 {
1353 bus_dmamap_t rxmap;
1354 struct mbuf *m;
1355
1356 for (;;) {
1357 IF_DEQUEUE(&sc->sc_rxq, m);
1358 if (m == NULL)
1359 break;
1360 rxmap = M_GETCTX(m, bus_dmamap_t);
1361 bus_dmamap_unload(sc->sc_dmat, rxmap);
1362 FXP_RXMAP_PUT(sc, rxmap);
1363 m_freem(m);
1364 }
1365 }
1366
1367 /*
1368 * Stop the interface. Cancels the statistics updater and resets
1369 * the interface.
1370 */
1371 void
1372 fxp_stop(struct ifnet *ifp, int disable)
1373 {
1374 struct fxp_softc *sc = ifp->if_softc;
1375 struct fxp_txsoft *txs;
1376 int i;
1377
1378 /*
1379 * Turn down interface (done early to avoid bad interactions
1380 * between panics, shutdown hooks, and the watchdog timer)
1381 */
1382 ifp->if_timer = 0;
1383 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1384
1385 /*
1386 * Cancel stats updater.
1387 */
1388 callout_stop(&sc->sc_callout);
1389 if (sc->sc_flags & FXPF_MII) {
1390 /* Down the MII. */
1391 mii_down(&sc->sc_mii);
1392 }
1393
1394 /*
1395 * Issue software reset. This unloads any microcode that
1396 * might already be loaded.
1397 */
1398 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1399 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1400 DELAY(50);
1401
1402 /*
1403 * Release any xmit buffers.
1404 */
1405 for (i = 0; i < FXP_NTXCB; i++) {
1406 txs = FXP_DSTX(sc, i);
1407 if (txs->txs_mbuf != NULL) {
1408 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1409 m_freem(txs->txs_mbuf);
1410 txs->txs_mbuf = NULL;
1411 }
1412 }
1413 sc->sc_txpending = 0;
1414
1415 if (disable) {
1416 fxp_rxdrain(sc);
1417 fxp_disable(sc);
1418 }
1419
1420 }
1421
1422 /*
1423 * Watchdog/transmission transmit timeout handler. Called when a
1424 * transmission is started on the interface, but no interrupt is
1425 * received before the timeout. This usually indicates that the
1426 * card has wedged for some reason.
1427 */
1428 void
1429 fxp_watchdog(struct ifnet *ifp)
1430 {
1431 struct fxp_softc *sc = ifp->if_softc;
1432
1433 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1434 ifp->if_oerrors++;
1435
1436 (void) fxp_init(ifp);
1437 }
1438
1439 /*
1440 * Initialize the interface. Must be called at splnet().
1441 */
1442 int
1443 fxp_init(struct ifnet *ifp)
1444 {
1445 struct fxp_softc *sc = ifp->if_softc;
1446 struct fxp_cb_config *cbp;
1447 struct fxp_cb_ias *cb_ias;
1448 struct fxp_txdesc *txd;
1449 bus_dmamap_t rxmap;
1450 int i, prm, save_bf, lrxen, allm, error = 0;
1451
1452 if ((error = fxp_enable(sc)) != 0)
1453 goto out;
1454
1455 /*
1456 * Cancel any pending I/O
1457 */
1458 fxp_stop(ifp, 0);
1459
1460 /*
1461 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1462 * flag, and this prevents the MII from detaching resulting in
1463 * a panic. The flags field should perhaps be split in runtime
1464 * flags and more static information. For now, just clear the
1465 * only other flag set.
1466 */
1467
1468 sc->sc_flags &= ~FXPF_WANTINIT;
1469
1470 /*
1471 * Initialize base of CBL and RFA memory. Loading with zero
1472 * sets it up for regular linear addressing.
1473 */
1474 fxp_scb_wait(sc);
1475 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1476 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1477
1478 fxp_scb_wait(sc);
1479 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1480
1481 /*
1482 * Initialize the multicast filter. Do this now, since we might
1483 * have to setup the config block differently.
1484 */
1485 fxp_mc_setup(sc);
1486
1487 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1488 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1489
1490 /*
1491 * In order to support receiving 802.1Q VLAN frames, we have to
1492 * enable "save bad frames", since they are 4 bytes larger than
1493 * the normal Ethernet maximum frame length. On i82558 and later,
1494 * we have a better mechanism for this.
1495 */
1496 save_bf = 0;
1497 lrxen = 0;
1498 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1499 if (sc->sc_rev < FXP_REV_82558_A4)
1500 save_bf = 1;
1501 else
1502 lrxen = 1;
1503 }
1504
1505 /*
1506 * Initialize base of dump-stats buffer.
1507 */
1508 fxp_scb_wait(sc);
1509 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1510 sc->sc_cddma + FXP_CDSTATSOFF);
1511 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1512 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1513
1514 cbp = &sc->sc_control_data->fcd_configcb;
1515 memset(cbp, 0, sizeof(struct fxp_cb_config));
1516
1517 /*
1518 * Load microcode for this controller.
1519 */
1520 fxp_load_ucode(sc);
1521
1522 /*
1523 * This copy is kind of disgusting, but there are a bunch of must be
1524 * zero and must be one bits in this structure and this is the easiest
1525 * way to initialize them all to proper values.
1526 */
1527 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1528
1529 /* BIG_ENDIAN: no need to swap to store 0 */
1530 cbp->cb_status = 0;
1531 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1532 FXP_CB_COMMAND_EL);
1533 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1534 cbp->link_addr = 0xffffffff; /* (no) next command */
1535 /* bytes in config block */
1536 cbp->byte_count = FXP_CONFIG_LEN;
1537 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1538 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1539 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1540 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1541 cbp->type_enable = 0; /* actually reserved */
1542 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1543 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1544 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1545 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1546 cbp->dma_mbce = 0; /* (disable) dma max counters */
1547 cbp->late_scb = 0; /* (don't) defer SCB update */
1548 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1549 cbp->ci_int = 1; /* interrupt on CU idle */
1550 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1551 cbp->ext_stats_dis = 1; /* disable extended counters */
1552 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1553 cbp->save_bf = save_bf;/* save bad frames */
1554 cbp->disc_short_rx = !prm; /* discard short packets */
1555 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1556 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1557 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1558 /* interface mode */
1559 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1560 cbp->csma_dis = 0; /* (don't) disable link */
1561 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1562 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1563 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1564 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1565 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1566 cbp->nsai = 1; /* (don't) disable source addr insert */
1567 cbp->preamble_length = 2; /* (7 byte) preamble */
1568 cbp->loopback = 0; /* (don't) loopback */
1569 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1570 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1571 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1572 cbp->promiscuous = prm; /* promiscuous mode */
1573 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1574 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1575 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1576 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1577 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1578 cbp->stripping = !prm; /* truncate rx packet to byte count */
1579 cbp->padding = 1; /* (do) pad short tx packets */
1580 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1581 cbp->long_rx_en = lrxen; /* long packet receive enable */
1582 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1583 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1584 /* must set wake_en in PMCSR also */
1585 cbp->force_fdx = 0; /* (don't) force full duplex */
1586 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1587 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1588 cbp->mc_all = allm; /* accept all multicasts */
1589
1590 if (sc->sc_rev < FXP_REV_82558_A4) {
1591 /*
1592 * The i82557 has no hardware flow control, the values
1593 * here are the defaults for the chip.
1594 */
1595 cbp->fc_delay_lsb = 0;
1596 cbp->fc_delay_msb = 0x40;
1597 cbp->pri_fc_thresh = 3;
1598 cbp->tx_fc_dis = 0;
1599 cbp->rx_fc_restop = 0;
1600 cbp->rx_fc_restart = 0;
1601 cbp->fc_filter = 0;
1602 cbp->pri_fc_loc = 1;
1603 } else {
1604 cbp->fc_delay_lsb = 0x1f;
1605 cbp->fc_delay_msb = 0x01;
1606 cbp->pri_fc_thresh = 3;
1607 cbp->tx_fc_dis = 0; /* enable transmit FC */
1608 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1609 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1610 cbp->fc_filter = !prm; /* drop FC frames to host */
1611 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1612 }
1613
1614 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1615
1616 /*
1617 * Start the config command/DMA.
1618 */
1619 fxp_scb_wait(sc);
1620 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1621 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1622 /* ...and wait for it to complete. */
1623 i = 1000;
1624 do {
1625 FXP_CDCONFIGSYNC(sc,
1626 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1627 DELAY(1);
1628 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1629 if (i == 0) {
1630 printf("%s at line %d: dmasync timeout\n",
1631 sc->sc_dev.dv_xname, __LINE__);
1632 return (ETIMEDOUT);
1633 }
1634
1635 /*
1636 * Initialize the station address.
1637 */
1638 cb_ias = &sc->sc_control_data->fcd_iascb;
1639 /* BIG_ENDIAN: no need to swap to store 0 */
1640 cb_ias->cb_status = 0;
1641 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1642 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1643 cb_ias->link_addr = 0xffffffff;
1644 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1645
1646 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1647
1648 /*
1649 * Start the IAS (Individual Address Setup) command/DMA.
1650 */
1651 fxp_scb_wait(sc);
1652 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1653 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1654 /* ...and wait for it to complete. */
1655 i = 1000;
1656 do {
1657 FXP_CDIASSYNC(sc,
1658 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1659 DELAY(1);
1660 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1661 if (i == 0) {
1662 printf("%s at line %d: dmasync timeout\n",
1663 sc->sc_dev.dv_xname, __LINE__);
1664 return (ETIMEDOUT);
1665 }
1666
1667 /*
1668 * Initialize the transmit descriptor ring. txlast is initialized
1669 * to the end of the list so that it will wrap around to the first
1670 * descriptor when the first packet is transmitted.
1671 */
1672 for (i = 0; i < FXP_NTXCB; i++) {
1673 txd = FXP_CDTX(sc, i);
1674 memset(txd, 0, sizeof(*txd));
1675 txd->txd_txcb.cb_command =
1676 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1677 txd->txd_txcb.link_addr =
1678 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1679 if (sc->sc_flags & FXPF_EXT_TXCB)
1680 txd->txd_txcb.tbd_array_addr =
1681 htole32(FXP_CDTBDADDR(sc, i) +
1682 (2 * sizeof(struct fxp_tbd)));
1683 else
1684 txd->txd_txcb.tbd_array_addr =
1685 htole32(FXP_CDTBDADDR(sc, i));
1686 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1687 }
1688 sc->sc_txpending = 0;
1689 sc->sc_txdirty = 0;
1690 sc->sc_txlast = FXP_NTXCB - 1;
1691
1692 /*
1693 * Initialize the receive buffer list.
1694 */
1695 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1696 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1697 rxmap = FXP_RXMAP_GET(sc);
1698 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1699 printf("%s: unable to allocate or map rx "
1700 "buffer %d, error = %d\n",
1701 sc->sc_dev.dv_xname,
1702 sc->sc_rxq.ifq_len, error);
1703 /*
1704 * XXX Should attempt to run with fewer receive
1705 * XXX buffers instead of just failing.
1706 */
1707 FXP_RXMAP_PUT(sc, rxmap);
1708 fxp_rxdrain(sc);
1709 goto out;
1710 }
1711 }
1712 sc->sc_rxidle = 0;
1713
1714 /*
1715 * Give the transmit ring to the chip. We do this by pointing
1716 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1717 * issuing a start command. It will execute the NOP and then
1718 * suspend, pointing at the first descriptor.
1719 */
1720 fxp_scb_wait(sc);
1721 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1722 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1723
1724 /*
1725 * Initialize receiver buffer area - RFA.
1726 */
1727 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1728 fxp_scb_wait(sc);
1729 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1730 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1731 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1732
1733 if (sc->sc_flags & FXPF_MII) {
1734 /*
1735 * Set current media.
1736 */
1737 mii_mediachg(&sc->sc_mii);
1738 }
1739
1740 /*
1741 * ...all done!
1742 */
1743 ifp->if_flags |= IFF_RUNNING;
1744 ifp->if_flags &= ~IFF_OACTIVE;
1745
1746 /*
1747 * Start the one second timer.
1748 */
1749 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1750
1751 /*
1752 * Attempt to start output on the interface.
1753 */
1754 fxp_start(ifp);
1755
1756 out:
1757 if (error) {
1758 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1759 ifp->if_timer = 0;
1760 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1761 }
1762 return (error);
1763 }
1764
1765 /*
1766 * Change media according to request.
1767 */
1768 int
1769 fxp_mii_mediachange(struct ifnet *ifp)
1770 {
1771 struct fxp_softc *sc = ifp->if_softc;
1772
1773 if (ifp->if_flags & IFF_UP)
1774 mii_mediachg(&sc->sc_mii);
1775 return (0);
1776 }
1777
1778 /*
1779 * Notify the world which media we're using.
1780 */
1781 void
1782 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1783 {
1784 struct fxp_softc *sc = ifp->if_softc;
1785
1786 if (sc->sc_enabled == 0) {
1787 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1788 ifmr->ifm_status = 0;
1789 return;
1790 }
1791
1792 mii_pollstat(&sc->sc_mii);
1793 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1794 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1795 }
1796
1797 int
1798 fxp_80c24_mediachange(struct ifnet *ifp)
1799 {
1800
1801 /* Nothing to do here. */
1802 return (0);
1803 }
1804
1805 void
1806 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1807 {
1808 struct fxp_softc *sc = ifp->if_softc;
1809
1810 /*
1811 * Media is currently-selected media. We cannot determine
1812 * the link status.
1813 */
1814 ifmr->ifm_status = 0;
1815 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1816 }
1817
1818 /*
1819 * Add a buffer to the end of the RFA buffer list.
1820 * Return 0 if successful, error code on failure.
1821 *
1822 * The RFA struct is stuck at the beginning of mbuf cluster and the
1823 * data pointer is fixed up to point just past it.
1824 */
1825 int
1826 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1827 {
1828 struct mbuf *m;
1829 int error;
1830
1831 MGETHDR(m, M_DONTWAIT, MT_DATA);
1832 if (m == NULL)
1833 return (ENOBUFS);
1834
1835 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1836 MCLGET(m, M_DONTWAIT);
1837 if ((m->m_flags & M_EXT) == 0) {
1838 m_freem(m);
1839 return (ENOBUFS);
1840 }
1841
1842 if (unload)
1843 bus_dmamap_unload(sc->sc_dmat, rxmap);
1844
1845 M_SETCTX(m, rxmap);
1846
1847 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1848 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
1849 BUS_DMA_READ|BUS_DMA_NOWAIT);
1850 if (error) {
1851 printf("%s: can't load rx DMA map %d, error = %d\n",
1852 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1853 panic("fxp_add_rfabuf"); /* XXX */
1854 }
1855
1856 FXP_INIT_RFABUF(sc, m);
1857
1858 return (0);
1859 }
1860
1861 int
1862 fxp_mdi_read(struct device *self, int phy, int reg)
1863 {
1864 struct fxp_softc *sc = (struct fxp_softc *)self;
1865 int count = 10000;
1866 int value;
1867
1868 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1869 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1870
1871 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
1872 0x10000000) == 0 && count--)
1873 DELAY(10);
1874
1875 if (count <= 0)
1876 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1877
1878 return (value & 0xffff);
1879 }
1880
1881 void
1882 fxp_statchg(struct device *self)
1883 {
1884
1885 /* Nothing to do. */
1886 }
1887
1888 void
1889 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1890 {
1891 struct fxp_softc *sc = (struct fxp_softc *)self;
1892 int count = 10000;
1893
1894 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1895 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1896 (value & 0xffff));
1897
1898 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1899 count--)
1900 DELAY(10);
1901
1902 if (count <= 0)
1903 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1904 }
1905
1906 int
1907 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1908 {
1909 struct fxp_softc *sc = ifp->if_softc;
1910 struct ifreq *ifr = (struct ifreq *)data;
1911 int s, error;
1912
1913 s = splnet();
1914
1915 switch (cmd) {
1916 case SIOCSIFMEDIA:
1917 case SIOCGIFMEDIA:
1918 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1919 break;
1920
1921 default:
1922 error = ether_ioctl(ifp, cmd, data);
1923 if (error == ENETRESET) {
1924 if (sc->sc_enabled) {
1925 /*
1926 * Multicast list has changed; set the
1927 * hardware filter accordingly.
1928 */
1929 if (sc->sc_txpending) {
1930 sc->sc_flags |= FXPF_WANTINIT;
1931 error = 0;
1932 } else
1933 error = fxp_init(ifp);
1934 } else
1935 error = 0;
1936 }
1937 break;
1938 }
1939
1940 /* Try to get more packets going. */
1941 if (sc->sc_enabled)
1942 fxp_start(ifp);
1943
1944 splx(s);
1945 return (error);
1946 }
1947
1948 /*
1949 * Program the multicast filter.
1950 *
1951 * This function must be called at splnet().
1952 */
1953 void
1954 fxp_mc_setup(struct fxp_softc *sc)
1955 {
1956 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1957 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1958 struct ethercom *ec = &sc->sc_ethercom;
1959 struct ether_multi *enm;
1960 struct ether_multistep step;
1961 int count, nmcasts;
1962
1963 #ifdef DIAGNOSTIC
1964 if (sc->sc_txpending)
1965 panic("fxp_mc_setup: pending transmissions");
1966 #endif
1967
1968 ifp->if_flags &= ~IFF_ALLMULTI;
1969
1970 /*
1971 * Initialize multicast setup descriptor.
1972 */
1973 nmcasts = 0;
1974 ETHER_FIRST_MULTI(step, ec, enm);
1975 while (enm != NULL) {
1976 /*
1977 * Check for too many multicast addresses or if we're
1978 * listening to a range. Either way, we simply have
1979 * to accept all multicasts.
1980 */
1981 if (nmcasts >= MAXMCADDR ||
1982 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1983 ETHER_ADDR_LEN) != 0) {
1984 /*
1985 * Callers of this function must do the
1986 * right thing with this. If we're called
1987 * from outside fxp_init(), the caller must
1988 * detect if the state if IFF_ALLMULTI changes.
1989 * If it does, the caller must then call
1990 * fxp_init(), since allmulti is handled by
1991 * the config block.
1992 */
1993 ifp->if_flags |= IFF_ALLMULTI;
1994 return;
1995 }
1996 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1997 ETHER_ADDR_LEN);
1998 nmcasts++;
1999 ETHER_NEXT_MULTI(step, enm);
2000 }
2001
2002 /* BIG_ENDIAN: no need to swap to store 0 */
2003 mcsp->cb_status = 0;
2004 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2005 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2006 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2007
2008 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2009
2010 /*
2011 * Wait until the command unit is not active. This should never
2012 * happen since nothing is queued, but make sure anyway.
2013 */
2014 count = 100;
2015 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2016 FXP_SCB_CUS_ACTIVE && --count)
2017 DELAY(1);
2018 if (count == 0) {
2019 printf("%s at line %d: command queue timeout\n",
2020 sc->sc_dev.dv_xname, __LINE__);
2021 return;
2022 }
2023
2024 /*
2025 * Start the multicast setup command/DMA.
2026 */
2027 fxp_scb_wait(sc);
2028 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2029 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2030
2031 /* ...and wait for it to complete. */
2032 count = 1000;
2033 do {
2034 FXP_CDMCSSYNC(sc,
2035 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2036 DELAY(1);
2037 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2038 if (count == 0) {
2039 printf("%s at line %d: dmasync timeout\n",
2040 sc->sc_dev.dv_xname, __LINE__);
2041 return;
2042 }
2043 }
2044
2045 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2046 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2047 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2048 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2049 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2050 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2051
2052 #define UCODE(x) x, sizeof(x)
2053
2054 static const struct ucode {
2055 int32_t revision;
2056 const uint32_t *ucode;
2057 size_t length;
2058 uint16_t int_delay_offset;
2059 uint16_t bundle_max_offset;
2060 } ucode_table[] = {
2061 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2062 D101_CPUSAVER_DWORD, 0 },
2063
2064 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2065 D101_CPUSAVER_DWORD, 0 },
2066
2067 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2068 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2069
2070 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2071 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2072
2073 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2074 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2075
2076 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2077 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2078
2079 { 0, NULL, 0, 0, 0 }
2080 };
2081
2082 void
2083 fxp_load_ucode(struct fxp_softc *sc)
2084 {
2085 const struct ucode *uc;
2086 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2087 int count;
2088
2089 if (sc->sc_flags & FXPF_UCODE_LOADED)
2090 return;
2091
2092 /*
2093 * Only load the uCode if the user has requested that
2094 * we do so.
2095 */
2096 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2097 sc->sc_int_delay = 0;
2098 sc->sc_bundle_max = 0;
2099 return;
2100 }
2101
2102 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2103 if (sc->sc_rev == uc->revision)
2104 break;
2105 }
2106 if (uc->ucode == NULL)
2107 return;
2108
2109 /* BIG ENDIAN: no need to swap to store 0 */
2110 cbp->cb_status = 0;
2111 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2112 cbp->link_addr = 0xffffffff; /* (no) next command */
2113 memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2114
2115 if (uc->int_delay_offset)
2116 *(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2117 htole16(fxp_int_delay + (fxp_int_delay / 2));
2118
2119 if (uc->bundle_max_offset)
2120 *(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2121 htole16(fxp_bundle_max);
2122
2123 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2124
2125 /*
2126 * Download the uCode to the chip.
2127 */
2128 fxp_scb_wait(sc);
2129 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2130 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2131
2132 /* ...and wait for it to complete. */
2133 count = 10000;
2134 do {
2135 FXP_CDUCODESYNC(sc,
2136 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2137 DELAY(2);
2138 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2139 if (count == 0) {
2140 sc->sc_int_delay = 0;
2141 sc->sc_bundle_max = 0;
2142 printf("%s: timeout loading microcode\n",
2143 sc->sc_dev.dv_xname);
2144 return;
2145 }
2146
2147 if (sc->sc_int_delay != fxp_int_delay ||
2148 sc->sc_bundle_max != fxp_bundle_max) {
2149 sc->sc_int_delay = fxp_int_delay;
2150 sc->sc_bundle_max = fxp_bundle_max;
2151 printf("%s: Microcode loaded: int delay: %d usec, "
2152 "max bundle: %d\n", sc->sc_dev.dv_xname,
2153 sc->sc_int_delay,
2154 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2155 }
2156
2157 sc->sc_flags |= FXPF_UCODE_LOADED;
2158 }
2159
2160 int
2161 fxp_enable(struct fxp_softc *sc)
2162 {
2163
2164 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2165 if ((*sc->sc_enable)(sc) != 0) {
2166 printf("%s: device enable failed\n",
2167 sc->sc_dev.dv_xname);
2168 return (EIO);
2169 }
2170 }
2171
2172 sc->sc_enabled = 1;
2173 return (0);
2174 }
2175
2176 void
2177 fxp_disable(struct fxp_softc *sc)
2178 {
2179
2180 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2181 (*sc->sc_disable)(sc);
2182 sc->sc_enabled = 0;
2183 }
2184 }
2185
2186 /*
2187 * fxp_activate:
2188 *
2189 * Handle device activation/deactivation requests.
2190 */
2191 int
2192 fxp_activate(struct device *self, enum devact act)
2193 {
2194 struct fxp_softc *sc = (void *) self;
2195 int s, error = 0;
2196
2197 s = splnet();
2198 switch (act) {
2199 case DVACT_ACTIVATE:
2200 error = EOPNOTSUPP;
2201 break;
2202
2203 case DVACT_DEACTIVATE:
2204 if (sc->sc_flags & FXPF_MII)
2205 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2206 MII_OFFSET_ANY);
2207 if_deactivate(&sc->sc_ethercom.ec_if);
2208 break;
2209 }
2210 splx(s);
2211
2212 return (error);
2213 }
2214
2215 /*
2216 * fxp_detach:
2217 *
2218 * Detach an i82557 interface.
2219 */
2220 int
2221 fxp_detach(struct fxp_softc *sc)
2222 {
2223 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2224 int i;
2225
2226 /* Succeed now if there's no work to do. */
2227 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2228 return (0);
2229
2230 /* Unhook our tick handler. */
2231 callout_stop(&sc->sc_callout);
2232
2233 if (sc->sc_flags & FXPF_MII) {
2234 /* Detach all PHYs */
2235 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2236 }
2237
2238 /* Delete all remaining media. */
2239 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2240
2241 #if NRND > 0
2242 rnd_detach_source(&sc->rnd_source);
2243 #endif
2244 ether_ifdetach(ifp);
2245 if_detach(ifp);
2246
2247 for (i = 0; i < FXP_NRFABUFS; i++) {
2248 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2249 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2250 }
2251
2252 for (i = 0; i < FXP_NTXCB; i++) {
2253 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2254 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2255 }
2256
2257 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2258 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2259 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2260 sizeof(struct fxp_control_data));
2261 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2262
2263 shutdownhook_disestablish(sc->sc_sdhook);
2264 powerhook_disestablish(sc->sc_powerhook);
2265
2266 return (0);
2267 }
2268