Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.75
      1 /*	$NetBSD: i82557.c,v 1.75 2003/05/26 16:14:49 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice unmodified, this list of conditions, and the following
     50  *    disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
     68  */
     69 
     70 /*
     71  * Device driver for the Intel i82557 fast Ethernet controller,
     72  * and its successors, the i82558 and i82559.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.75 2003/05/26 16:14:49 yamt Exp $");
     77 
     78 #include "bpfilter.h"
     79 #include "rnd.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/callout.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/malloc.h>
     86 #include <sys/kernel.h>
     87 #include <sys/socket.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/errno.h>
     90 #include <sys/device.h>
     91 
     92 #include <machine/endian.h>
     93 
     94 #include <uvm/uvm_extern.h>
     95 
     96 #if NRND > 0
     97 #include <sys/rnd.h>
     98 #endif
     99 
    100 #include <net/if.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 #include <net/if_ether.h>
    104 
    105 #if NBPFILTER > 0
    106 #include <net/bpf.h>
    107 #endif
    108 
    109 #include <machine/bus.h>
    110 #include <machine/intr.h>
    111 
    112 #include <dev/mii/miivar.h>
    113 
    114 #include <dev/ic/i82557reg.h>
    115 #include <dev/ic/i82557var.h>
    116 
    117 #include <dev/microcode/i8255x/rcvbundl.h>
    118 
    119 /*
    120  * NOTE!  On the Alpha, we have an alignment constraint.  The
    121  * card DMAs the packet immediately following the RFA.  However,
    122  * the first thing in the packet is a 14-byte Ethernet header.
    123  * This means that the packet is misaligned.  To compensate,
    124  * we actually offset the RFA 2 bytes into the cluster.  This
    125  * alignes the packet after the Ethernet header at a 32-bit
    126  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    127  */
    128 #define	RFA_ALIGNMENT_FUDGE	2
    129 
    130 /*
    131  * The configuration byte map has several undefined fields which
    132  * must be one or must be zero.  Set up a template for these bits
    133  * only (assuming an i82557 chip), leaving the actual configuration
    134  * for fxp_init().
    135  *
    136  * See the definition of struct fxp_cb_config for the bit definitions.
    137  */
    138 const u_int8_t fxp_cb_config_template[] = {
    139 	0x0, 0x0,		/* cb_status */
    140 	0x0, 0x0,		/* cb_command */
    141 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
    142 	0x0,	/*  0 */
    143 	0x0,	/*  1 */
    144 	0x0,	/*  2 */
    145 	0x0,	/*  3 */
    146 	0x0,	/*  4 */
    147 	0x0,	/*  5 */
    148 	0x32,	/*  6 */
    149 	0x0,	/*  7 */
    150 	0x0,	/*  8 */
    151 	0x0,	/*  9 */
    152 	0x6,	/* 10 */
    153 	0x0,	/* 11 */
    154 	0x0,	/* 12 */
    155 	0x0,	/* 13 */
    156 	0xf2,	/* 14 */
    157 	0x48,	/* 15 */
    158 	0x0,	/* 16 */
    159 	0x40,	/* 17 */
    160 	0xf0,	/* 18 */
    161 	0x0,	/* 19 */
    162 	0x3f,	/* 20 */
    163 	0x5,	/* 21 */
    164 	0x0,	/* 22 */
    165 	0x0,	/* 23 */
    166 	0x0,	/* 24 */
    167 	0x0,	/* 25 */
    168 	0x0,	/* 26 */
    169 	0x0,	/* 27 */
    170 	0x0,	/* 28 */
    171 	0x0,	/* 29 */
    172 	0x0,	/* 30 */
    173 	0x0,	/* 31 */
    174 };
    175 
    176 void	fxp_mii_initmedia(struct fxp_softc *);
    177 int	fxp_mii_mediachange(struct ifnet *);
    178 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
    179 
    180 void	fxp_80c24_initmedia(struct fxp_softc *);
    181 int	fxp_80c24_mediachange(struct ifnet *);
    182 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
    183 
    184 void	fxp_start(struct ifnet *);
    185 int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
    186 void	fxp_watchdog(struct ifnet *);
    187 int	fxp_init(struct ifnet *);
    188 void	fxp_stop(struct ifnet *, int);
    189 
    190 void	fxp_txintr(struct fxp_softc *);
    191 void	fxp_rxintr(struct fxp_softc *);
    192 
    193 void	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
    194 
    195 void	fxp_rxdrain(struct fxp_softc *);
    196 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
    197 int	fxp_mdi_read(struct device *, int, int);
    198 void	fxp_statchg(struct device *);
    199 void	fxp_mdi_write(struct device *, int, int, int);
    200 void	fxp_autosize_eeprom(struct fxp_softc*);
    201 void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
    202 void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
    203 void	fxp_eeprom_update_cksum(struct fxp_softc *);
    204 void	fxp_get_info(struct fxp_softc *, u_int8_t *);
    205 void	fxp_tick(void *);
    206 void	fxp_mc_setup(struct fxp_softc *);
    207 void	fxp_load_ucode(struct fxp_softc *);
    208 
    209 void	fxp_shutdown(void *);
    210 void	fxp_power(int, void *);
    211 
    212 int	fxp_copy_small = 0;
    213 
    214 /*
    215  * Variables for interrupt mitigating microcode.
    216  */
    217 int	fxp_int_delay = 1000;		/* usec */
    218 int	fxp_bundle_max = 6;		/* packets */
    219 
    220 struct fxp_phytype {
    221 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    222 	void	(*fp_init)(struct fxp_softc *);
    223 } fxp_phytype_table[] = {
    224 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    225 	{ -1,				fxp_mii_initmedia },
    226 };
    227 
    228 /*
    229  * Set initial transmit threshold at 64 (512 bytes). This is
    230  * increased by 64 (512 bytes) at a time, to maximum of 192
    231  * (1536 bytes), if an underrun occurs.
    232  */
    233 static int tx_threshold = 64;
    234 
    235 /*
    236  * Wait for the previous command to be accepted (but not necessarily
    237  * completed).
    238  */
    239 static __inline void
    240 fxp_scb_wait(struct fxp_softc *sc)
    241 {
    242 	int i = 10000;
    243 
    244 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    245 		delay(2);
    246 	if (i == 0)
    247 		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    248 }
    249 
    250 /*
    251  * Submit a command to the i82557.
    252  */
    253 static __inline void
    254 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
    255 {
    256 
    257 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
    258 }
    259 
    260 /*
    261  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    262  */
    263 void
    264 fxp_attach(struct fxp_softc *sc)
    265 {
    266 	u_int8_t enaddr[ETHER_ADDR_LEN];
    267 	struct ifnet *ifp;
    268 	bus_dma_segment_t seg;
    269 	int rseg, i, error;
    270 	struct fxp_phytype *fp;
    271 
    272 	callout_init(&sc->sc_callout);
    273 
    274 	/*
    275 	 * Enable some good stuff on i82558 and later.
    276 	 */
    277 	if (sc->sc_rev >= FXP_REV_82558_A4) {
    278 		/* Enable the extended TxCB. */
    279 		sc->sc_flags |= FXPF_EXT_TXCB;
    280 	}
    281 
    282         /*
    283 	 * Enable use of extended RFDs and TCBs for 82550
    284 	 * and later chips. Note: we need extended TXCB support
    285 	 * too, but that's already enabled by the code above.
    286 	 * Be careful to do this only on the right devices.
    287 	 */
    288 	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
    289 		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
    290 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
    291 	} else {
    292 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
    293 	}
    294 
    295 	sc->sc_rfa_size =
    296 	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
    297 
    298 	/*
    299 	 * Allocate the control data structures, and create and load the
    300 	 * DMA map for it.
    301 	 */
    302 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    303 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    304 	    0)) != 0) {
    305 		aprint_error(
    306 		    "%s: unable to allocate control data, error = %d\n",
    307 		    sc->sc_dev.dv_xname, error);
    308 		goto fail_0;
    309 	}
    310 
    311 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    312 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
    313 	    BUS_DMA_COHERENT)) != 0) {
    314 		aprint_error("%s: unable to map control data, error = %d\n",
    315 		    sc->sc_dev.dv_xname, error);
    316 		goto fail_1;
    317 	}
    318 	sc->sc_cdseg = seg;
    319 	sc->sc_cdnseg = rseg;
    320 
    321 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
    322 
    323 	if ((error = bus_dmamap_create(sc->sc_dmat,
    324 	    sizeof(struct fxp_control_data), 1,
    325 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    326 		aprint_error("%s: unable to create control data DMA map, "
    327 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    328 		goto fail_2;
    329 	}
    330 
    331 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    332 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    333 	    0)) != 0) {
    334 		aprint_error(
    335 		    "%s: can't load control data DMA map, error = %d\n",
    336 		    sc->sc_dev.dv_xname, error);
    337 		goto fail_3;
    338 	}
    339 
    340 	/*
    341 	 * Create the transmit buffer DMA maps.
    342 	 */
    343 	for (i = 0; i < FXP_NTXCB; i++) {
    344 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    345 		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
    346 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    347 			aprint_error("%s: unable to create tx DMA map %d, "
    348 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    349 			goto fail_4;
    350 		}
    351 	}
    352 
    353 	/*
    354 	 * Create the receive buffer DMA maps.
    355 	 */
    356 	for (i = 0; i < FXP_NRFABUFS; i++) {
    357 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    358 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    359 			aprint_error("%s: unable to create rx DMA map %d, "
    360 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    361 			goto fail_5;
    362 		}
    363 	}
    364 
    365 	/* Initialize MAC address and media structures. */
    366 	fxp_get_info(sc, enaddr);
    367 
    368 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    369 	    ether_sprintf(enaddr));
    370 
    371 	ifp = &sc->sc_ethercom.ec_if;
    372 
    373 	/*
    374 	 * Get info about our media interface, and initialize it.  Note
    375 	 * the table terminates itself with a phy of -1, indicating
    376 	 * that we're using MII.
    377 	 */
    378 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    379 		if (fp->fp_phy == sc->phy_primary_device)
    380 			break;
    381 	(*fp->fp_init)(sc);
    382 
    383 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    384 	ifp->if_softc = sc;
    385 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    386 	ifp->if_ioctl = fxp_ioctl;
    387 	ifp->if_start = fxp_start;
    388 	ifp->if_watchdog = fxp_watchdog;
    389 	ifp->if_init = fxp_init;
    390 	ifp->if_stop = fxp_stop;
    391 	IFQ_SET_READY(&ifp->if_snd);
    392 
    393 	/*
    394 	 * XXX we should have separate IFCAP flags for transmit and receive.
    395 	 * XXX it isn't problem for this paticular driver, though.
    396 	 */
    397 	if (sc->sc_flags & FXPF_IPCB) {
    398 		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
    399 		ifp->if_capabilities =
    400 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    401 	}
    402 
    403 	/*
    404 	 * We can support 802.1Q VLAN-sized frames.
    405 	 */
    406 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    407 
    408 	/*
    409 	 * Attach the interface.
    410 	 */
    411 	if_attach(ifp);
    412 	ether_ifattach(ifp, enaddr);
    413 #if NRND > 0
    414 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    415 	    RND_TYPE_NET, 0);
    416 #endif
    417 
    418 #ifdef FXP_EVENT_COUNTERS
    419 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    420 	    NULL, sc->sc_dev.dv_xname, "txstall");
    421 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    422 	    NULL, sc->sc_dev.dv_xname, "txintr");
    423 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    424 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    425 #endif /* FXP_EVENT_COUNTERS */
    426 
    427 	/*
    428 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    429 	 * doing do could allow DMA to corrupt kernel memory during the
    430 	 * reboot before the driver initializes.
    431 	 */
    432 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    433 	if (sc->sc_sdhook == NULL)
    434 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    435 		    sc->sc_dev.dv_xname);
    436 	/*
    437   	 * Add suspend hook, for similar reasons..
    438 	 */
    439 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
    440 	if (sc->sc_powerhook == NULL)
    441 		aprint_error("%s: WARNING: unable to establish power hook\n",
    442 		    sc->sc_dev.dv_xname);
    443 
    444 	/* The attach is successful. */
    445 	sc->sc_flags |= FXPF_ATTACHED;
    446 
    447 	return;
    448 
    449 	/*
    450 	 * Free any resources we've allocated during the failed attach
    451 	 * attempt.  Do this in reverse order and fall though.
    452 	 */
    453  fail_5:
    454 	for (i = 0; i < FXP_NRFABUFS; i++) {
    455 		if (sc->sc_rxmaps[i] != NULL)
    456 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    457 	}
    458  fail_4:
    459 	for (i = 0; i < FXP_NTXCB; i++) {
    460 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    461 			bus_dmamap_destroy(sc->sc_dmat,
    462 			    FXP_DSTX(sc, i)->txs_dmamap);
    463 	}
    464 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    465  fail_3:
    466 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    467  fail_2:
    468 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    469 	    sizeof(struct fxp_control_data));
    470  fail_1:
    471 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    472  fail_0:
    473 	return;
    474 }
    475 
    476 void
    477 fxp_mii_initmedia(struct fxp_softc *sc)
    478 {
    479 	int flags;
    480 
    481 	sc->sc_flags |= FXPF_MII;
    482 
    483 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    484 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    485 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    486 	sc->sc_mii.mii_statchg = fxp_statchg;
    487 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
    488 	    fxp_mii_mediastatus);
    489 
    490 	flags = MIIF_NOISOLATE;
    491 	if (sc->sc_rev >= FXP_REV_82558_A4)
    492 		flags |= MIIF_DOPAUSE;
    493 	/*
    494 	 * The i82557 wedges if all of its PHYs are isolated!
    495 	 */
    496 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    497 	    MII_OFFSET_ANY, flags);
    498 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    499 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    500 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    501 	} else
    502 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    503 }
    504 
    505 void
    506 fxp_80c24_initmedia(struct fxp_softc *sc)
    507 {
    508 
    509 	/*
    510 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    511 	 * doesn't have a programming interface of any sort.  The
    512 	 * media is sensed automatically based on how the link partner
    513 	 * is configured.  This is, in essence, manual configuration.
    514 	 */
    515 	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    516 	    sc->sc_dev.dv_xname);
    517 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    518 	    fxp_80c24_mediastatus);
    519 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    520 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    521 }
    522 
    523 /*
    524  * Device shutdown routine. Called at system shutdown after sync. The
    525  * main purpose of this routine is to shut off receiver DMA so that
    526  * kernel memory doesn't get clobbered during warmboot.
    527  */
    528 void
    529 fxp_shutdown(void *arg)
    530 {
    531 	struct fxp_softc *sc = arg;
    532 
    533 	/*
    534 	 * Since the system's going to halt shortly, don't bother
    535 	 * freeing mbufs.
    536 	 */
    537 	fxp_stop(&sc->sc_ethercom.ec_if, 0);
    538 }
    539 /*
    540  * Power handler routine. Called when the system is transitioning
    541  * into/out of power save modes.  As with fxp_shutdown, the main
    542  * purpose of this routine is to shut off receiver DMA so it doesn't
    543  * clobber kernel memory at the wrong time.
    544  */
    545 void
    546 fxp_power(int why, void *arg)
    547 {
    548 	struct fxp_softc *sc = arg;
    549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    550 	int s;
    551 
    552 	s = splnet();
    553 	switch (why) {
    554 	case PWR_SUSPEND:
    555 	case PWR_STANDBY:
    556 		fxp_stop(ifp, 0);
    557 		break;
    558 	case PWR_RESUME:
    559 		if (ifp->if_flags & IFF_UP)
    560 			fxp_init(ifp);
    561 		break;
    562 	case PWR_SOFTSUSPEND:
    563 	case PWR_SOFTSTANDBY:
    564 	case PWR_SOFTRESUME:
    565 		break;
    566 	}
    567 	splx(s);
    568 }
    569 
    570 /*
    571  * Initialize the interface media.
    572  */
    573 void
    574 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
    575 {
    576 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
    577 
    578 	/*
    579 	 * Reset to a stable state.
    580 	 */
    581 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    582 	DELAY(10);
    583 
    584 	sc->sc_eeprom_size = 0;
    585 	fxp_autosize_eeprom(sc);
    586 	if (sc->sc_eeprom_size == 0) {
    587 		aprint_error("%s: failed to detect EEPROM size\n",
    588 		    sc->sc_dev.dv_xname);
    589 		sc->sc_eeprom_size = 6; /* XXX panic here? */
    590 	}
    591 #ifdef DEBUG
    592 	aprint_debug("%s: detected %d word EEPROM\n",
    593 	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
    594 #endif
    595 
    596 	/*
    597 	 * Get info about the primary PHY
    598 	 */
    599 	fxp_read_eeprom(sc, &data, 6, 1);
    600 	sc->phy_primary_device =
    601 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
    602 
    603 	/*
    604 	 * Read MAC address.
    605 	 */
    606 	fxp_read_eeprom(sc, myea, 0, 3);
    607 	enaddr[0] = myea[0] & 0xff;
    608 	enaddr[1] = myea[0] >> 8;
    609 	enaddr[2] = myea[1] & 0xff;
    610 	enaddr[3] = myea[1] >> 8;
    611 	enaddr[4] = myea[2] & 0xff;
    612 	enaddr[5] = myea[2] >> 8;
    613 
    614 	/*
    615 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
    616 	 * as some i82559 designs, have a defect where the chip can
    617 	 * cause a PCI protocol violation if it receives a CU_RESUME
    618 	 * command when it is entering the IDLE state.
    619 	 *
    620 	 * The work-around is to disable Dynamic Standby Mode, so that
    621 	 * the chip never deasserts #CLKRUN, and always remains in the
    622 	 * active state.
    623 	 *
    624 	 * Unfortunately, the only way to disable Dynamic Standby is
    625 	 * to frob an EEPROM setting and reboot (the EEPROM setting
    626 	 * is only consulted when the PCI bus comes out of reset).
    627 	 *
    628 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
    629 	 */
    630 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
    631 		fxp_read_eeprom(sc, &data, 10, 1);
    632 		if (data & 0x02) {		/* STB enable */
    633 			aprint_error("%s: WARNING: "
    634 			    "Disabling dynamic standby mode in EEPROM "
    635 			    "to work around a\n",
    636 			    sc->sc_dev.dv_xname);
    637 			aprint_normal(
    638 			    "%s: WARNING: hardware bug.  You must reset "
    639 			    "the system before using this\n",
    640 			    sc->sc_dev.dv_xname);
    641 			aprint_normal("%s: WARNING: interface.\n",
    642 			    sc->sc_dev.dv_xname);
    643 			data &= ~0x02;
    644 			fxp_write_eeprom(sc, &data, 10, 1);
    645 			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
    646 			    sc->sc_dev.dv_xname, data);
    647 			fxp_eeprom_update_cksum(sc);
    648 		}
    649 	}
    650 }
    651 
    652 static void
    653 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
    654 {
    655 	uint16_t reg;
    656 	int x;
    657 
    658 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
    659 		if (data & x)
    660 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    661 		else
    662 			reg = FXP_EEPROM_EECS;
    663 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    664 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    665 		    reg | FXP_EEPROM_EESK);
    666 		DELAY(4);
    667 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    668 		DELAY(4);
    669 	}
    670 }
    671 
    672 /*
    673  * Figure out EEPROM size.
    674  *
    675  * 559's can have either 64-word or 256-word EEPROMs, the 558
    676  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    677  * talks about the existance of 16 to 256 word EEPROMs.
    678  *
    679  * The only known sizes are 64 and 256, where the 256 version is used
    680  * by CardBus cards to store CIS information.
    681  *
    682  * The address is shifted in msb-to-lsb, and after the last
    683  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    684  * after which follows the actual data. We try to detect this zero, by
    685  * probing the data-out bit in the EEPROM control register just after
    686  * having shifted in a bit. If the bit is zero, we assume we've
    687  * shifted enough address bits. The data-out should be tri-state,
    688  * before this, which should translate to a logical one.
    689  *
    690  * Other ways to do this would be to try to read a register with known
    691  * contents with a varying number of address bits, but no such
    692  * register seem to be available. The high bits of register 10 are 01
    693  * on the 558 and 559, but apparently not on the 557.
    694  *
    695  * The Linux driver computes a checksum on the EEPROM data, but the
    696  * value of this checksum is not very well documented.
    697  */
    698 
    699 void
    700 fxp_autosize_eeprom(struct fxp_softc *sc)
    701 {
    702 	int x;
    703 
    704 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    705 
    706 	/* Shift in read opcode. */
    707 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    708 
    709 	/*
    710 	 * Shift in address, wait for the dummy zero following a correct
    711 	 * address shift.
    712 	 */
    713 	for (x = 1; x <= 8; x++) {
    714 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    715 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    716 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    717 		DELAY(4);
    718 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    719 		    FXP_EEPROM_EEDO) == 0)
    720 			break;
    721 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    722 		DELAY(4);
    723 	}
    724 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    725 	DELAY(4);
    726 	if (x != 6 && x != 8) {
    727 #ifdef DEBUG
    728 		printf("%s: strange EEPROM size (%d)\n",
    729 		    sc->sc_dev.dv_xname, 1 << x);
    730 #endif
    731 	} else
    732 		sc->sc_eeprom_size = x;
    733 }
    734 
    735 /*
    736  * Read from the serial EEPROM. Basically, you manually shift in
    737  * the read opcode (one bit at a time) and then shift in the address,
    738  * and then you shift out the data (all of this one bit at a time).
    739  * The word size is 16 bits, so you have to provide the address for
    740  * every 16 bits of data.
    741  */
    742 void
    743 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
    744 {
    745 	u_int16_t reg;
    746 	int i, x;
    747 
    748 	for (i = 0; i < words; i++) {
    749 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    750 
    751 		/* Shift in read opcode. */
    752 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    753 
    754 		/* Shift in address. */
    755 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    756 
    757 		reg = FXP_EEPROM_EECS;
    758 		data[i] = 0;
    759 
    760 		/* Shift out data. */
    761 		for (x = 16; x > 0; x--) {
    762 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    763 			    reg | FXP_EEPROM_EESK);
    764 			DELAY(4);
    765 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    766 			    FXP_EEPROM_EEDO)
    767 				data[i] |= (1 << (x - 1));
    768 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    769 			DELAY(4);
    770 		}
    771 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    772 		DELAY(4);
    773 	}
    774 }
    775 
    776 /*
    777  * Write data to the serial EEPROM.
    778  */
    779 void
    780 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
    781 {
    782 	int i, j;
    783 
    784 	for (i = 0; i < words; i++) {
    785 		/* Erase/write enable. */
    786 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    787 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    788 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
    789 		    sc->sc_eeprom_size);
    790 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    791 		DELAY(4);
    792 
    793 		/* Shift in write opcode, address, data. */
    794 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    795 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
    796 		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
    797 		fxp_eeprom_shiftin(sc, data[i], 16);
    798 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    799 		DELAY(4);
    800 
    801 		/* Wait for the EEPROM to finish up. */
    802 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    803 		DELAY(4);
    804 		for (j = 0; j < 1000; j++) {
    805 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    806 			    FXP_EEPROM_EEDO)
    807 				break;
    808 			DELAY(50);
    809 		}
    810 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    811 		DELAY(4);
    812 
    813 		/* Erase/write disable. */
    814 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    815 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    816 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
    817 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    818 		DELAY(4);
    819 	}
    820 }
    821 
    822 /*
    823  * Update the checksum of the EEPROM.
    824  */
    825 void
    826 fxp_eeprom_update_cksum(struct fxp_softc *sc)
    827 {
    828 	int i;
    829 	uint16_t data, cksum;
    830 
    831 	cksum = 0;
    832 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
    833 		fxp_read_eeprom(sc, &data, i, 1);
    834 		cksum += data;
    835 	}
    836 	i = (1 << sc->sc_eeprom_size) - 1;
    837 	cksum = 0xbaba - cksum;
    838 	fxp_read_eeprom(sc, &data, i, 1);
    839 	fxp_write_eeprom(sc, &cksum, i, 1);
    840 	printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
    841 	    sc->sc_dev.dv_xname, i, data, cksum);
    842 }
    843 
    844 /*
    845  * Start packet transmission on the interface.
    846  */
    847 void
    848 fxp_start(struct ifnet *ifp)
    849 {
    850 	struct fxp_softc *sc = ifp->if_softc;
    851 	struct mbuf *m0, *m;
    852 	struct fxp_txdesc *txd;
    853 	struct fxp_txsoft *txs;
    854 	bus_dmamap_t dmamap;
    855 	int error, lasttx, nexttx, opending, seg;
    856 
    857 	/*
    858 	 * If we want a re-init, bail out now.
    859 	 */
    860 	if (sc->sc_flags & FXPF_WANTINIT) {
    861 		ifp->if_flags |= IFF_OACTIVE;
    862 		return;
    863 	}
    864 
    865 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    866 		return;
    867 
    868 	/*
    869 	 * Remember the previous txpending and the current lasttx.
    870 	 */
    871 	opending = sc->sc_txpending;
    872 	lasttx = sc->sc_txlast;
    873 
    874 	/*
    875 	 * Loop through the send queue, setting up transmit descriptors
    876 	 * until we drain the queue, or use up all available transmit
    877 	 * descriptors.
    878 	 */
    879 	for (;;) {
    880 		struct fxp_tbd *tbdp;
    881 		int csum_flags;
    882 
    883 		/*
    884 		 * Grab a packet off the queue.
    885 		 */
    886 		IFQ_POLL(&ifp->if_snd, m0);
    887 		if (m0 == NULL)
    888 			break;
    889 		m = NULL;
    890 
    891 		if (sc->sc_txpending == FXP_NTXCB) {
    892 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
    893 			break;
    894 		}
    895 
    896 		/*
    897 		 * Get the next available transmit descriptor.
    898 		 */
    899 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    900 		txd = FXP_CDTX(sc, nexttx);
    901 		txs = FXP_DSTX(sc, nexttx);
    902 		dmamap = txs->txs_dmamap;
    903 
    904 		/*
    905 		 * Load the DMA map.  If this fails, the packet either
    906 		 * didn't fit in the allotted number of frags, or we were
    907 		 * short on resources.  In this case, we'll copy and try
    908 		 * again.
    909 		 */
    910 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    911 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    912 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    913 			if (m == NULL) {
    914 				printf("%s: unable to allocate Tx mbuf\n",
    915 				    sc->sc_dev.dv_xname);
    916 				break;
    917 			}
    918 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    919 			if (m0->m_pkthdr.len > MHLEN) {
    920 				MCLGET(m, M_DONTWAIT);
    921 				if ((m->m_flags & M_EXT) == 0) {
    922 					printf("%s: unable to allocate Tx "
    923 					    "cluster\n", sc->sc_dev.dv_xname);
    924 					m_freem(m);
    925 					break;
    926 				}
    927 			}
    928 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    929 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    930 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    931 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    932 			if (error) {
    933 				printf("%s: unable to load Tx buffer, "
    934 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    935 				break;
    936 			}
    937 		}
    938 
    939 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    940 		csum_flags = m0->m_pkthdr.csum_flags;
    941 		if (m != NULL) {
    942 			m_freem(m0);
    943 			m0 = m;
    944 		}
    945 
    946 		/* Initialize the fraglist. */
    947 		tbdp = txd->txd_tbd;
    948 		if (sc->sc_flags & FXPF_IPCB)
    949 			tbdp++;
    950 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    951 			tbdp[seg].tb_addr =
    952 			    htole32(dmamap->dm_segs[seg].ds_addr);
    953 			tbdp[seg].tb_size =
    954 			    htole32(dmamap->dm_segs[seg].ds_len);
    955 		}
    956 
    957 		/* Sync the DMA map. */
    958 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    959 		    BUS_DMASYNC_PREWRITE);
    960 
    961 		/*
    962 		 * Store a pointer to the packet so we can free it later.
    963 		 */
    964 		txs->txs_mbuf = m0;
    965 
    966 		/*
    967 		 * Initialize the transmit descriptor.
    968 		 */
    969 		/* BIG_ENDIAN: no need to swap to store 0 */
    970 		txd->txd_txcb.cb_status = 0;
    971 		txd->txd_txcb.cb_command =
    972 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
    973 		txd->txd_txcb.tx_threshold = tx_threshold;
    974 		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
    975 
    976 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
    977 		if (sc->sc_flags & FXPF_IPCB) {
    978 			struct fxp_ipcb *ipcb;
    979 			/*
    980 			 * Deal with TCP/IP checksum offload. Note that
    981 			 * in order for TCP checksum offload to work,
    982 			 * the pseudo header checksum must have already
    983 			 * been computed and stored in the checksum field
    984 			 * in the TCP header. The stack should have
    985 			 * already done this for us.
    986 			 */
    987 			ipcb = &txd->txd_u.txdu_ipcb;
    988 			memset(ipcb, 0, sizeof(*ipcb));
    989 			/*
    990 			 * always do hardware parsing.
    991 			 */
    992 			ipcb->ipcb_ip_activation_high =
    993 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
    994 			/*
    995 			 * ip checksum offloading.
    996 			 */
    997 			if (csum_flags & M_CSUM_IPv4) {
    998 				ipcb->ipcb_ip_schedule |=
    999 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
   1000 			}
   1001 			/*
   1002 			 * TCP/UDP checksum offloading.
   1003 			 */
   1004 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
   1005 				ipcb->ipcb_ip_schedule |=
   1006 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
   1007 			}
   1008 		} else {
   1009 			KASSERT((csum_flags &
   1010 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
   1011 		}
   1012 
   1013 		FXP_CDTXSYNC(sc, nexttx,
   1014 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1015 
   1016 		/* Advance the tx pointer. */
   1017 		sc->sc_txpending++;
   1018 		sc->sc_txlast = nexttx;
   1019 
   1020 #if NBPFILTER > 0
   1021 		/*
   1022 		 * Pass packet to bpf if there is a listener.
   1023 		 */
   1024 		if (ifp->if_bpf)
   1025 			bpf_mtap(ifp->if_bpf, m0);
   1026 #endif
   1027 	}
   1028 
   1029 	if (sc->sc_txpending == FXP_NTXCB) {
   1030 		/* No more slots; notify upper layer. */
   1031 		ifp->if_flags |= IFF_OACTIVE;
   1032 	}
   1033 
   1034 	if (sc->sc_txpending != opending) {
   1035 		/*
   1036 		 * We enqueued packets.  If the transmitter was idle,
   1037 		 * reset the txdirty pointer.
   1038 		 */
   1039 		if (opending == 0)
   1040 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
   1041 
   1042 		/*
   1043 		 * Cause the chip to interrupt and suspend command
   1044 		 * processing once the last packet we've enqueued
   1045 		 * has been transmitted.
   1046 		 */
   1047 		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
   1048 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
   1049 		FXP_CDTXSYNC(sc, sc->sc_txlast,
   1050 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1051 
   1052 		/*
   1053 		 * The entire packet chain is set up.  Clear the suspend bit
   1054 		 * on the command prior to the first packet we set up.
   1055 		 */
   1056 		FXP_CDTXSYNC(sc, lasttx,
   1057 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1058 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
   1059 		    htole16(~FXP_CB_COMMAND_S);
   1060 		FXP_CDTXSYNC(sc, lasttx,
   1061 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1062 
   1063 		/*
   1064 		 * Issue a Resume command in case the chip was suspended.
   1065 		 */
   1066 		fxp_scb_wait(sc);
   1067 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
   1068 
   1069 		/* Set a watchdog timer in case the chip flakes out. */
   1070 		ifp->if_timer = 5;
   1071 	}
   1072 }
   1073 
   1074 /*
   1075  * Process interface interrupts.
   1076  */
   1077 int
   1078 fxp_intr(void *arg)
   1079 {
   1080 	struct fxp_softc *sc = arg;
   1081 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1082 	bus_dmamap_t rxmap;
   1083 	int claimed = 0;
   1084 	u_int8_t statack;
   1085 
   1086 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1087 		return (0);
   1088 	/*
   1089 	 * If the interface isn't running, don't try to
   1090 	 * service the interrupt.. just ack it and bail.
   1091 	 */
   1092 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1093 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
   1094 		if (statack) {
   1095 			claimed = 1;
   1096 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1097 		}
   1098 		return (claimed);
   1099 	}
   1100 
   1101 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
   1102 		claimed = 1;
   1103 
   1104 		/*
   1105 		 * First ACK all the interrupts in this pass.
   1106 		 */
   1107 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1108 
   1109 		/*
   1110 		 * Process receiver interrupts. If a no-resource (RNR)
   1111 		 * condition exists, get whatever packets we can and
   1112 		 * re-start the receiver.
   1113 		 */
   1114 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
   1115 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1116 			fxp_rxintr(sc);
   1117 		}
   1118 
   1119 		if (statack & FXP_SCB_STATACK_RNR) {
   1120 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1121 			fxp_scb_wait(sc);
   1122 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1123 			    rxmap->dm_segs[0].ds_addr +
   1124 			    RFA_ALIGNMENT_FUDGE);
   1125 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1126 		}
   1127 
   1128 		/*
   1129 		 * Free any finished transmit mbuf chains.
   1130 		 */
   1131 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1132 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
   1133 			fxp_txintr(sc);
   1134 
   1135 			/*
   1136 			 * Try to get more packets going.
   1137 			 */
   1138 			fxp_start(ifp);
   1139 
   1140 			if (sc->sc_txpending == 0) {
   1141 				/*
   1142 				 * If we want a re-init, do that now.
   1143 				 */
   1144 				if (sc->sc_flags & FXPF_WANTINIT)
   1145 					(void) fxp_init(ifp);
   1146 			}
   1147 		}
   1148 	}
   1149 
   1150 #if NRND > 0
   1151 	if (claimed)
   1152 		rnd_add_uint32(&sc->rnd_source, statack);
   1153 #endif
   1154 	return (claimed);
   1155 }
   1156 
   1157 /*
   1158  * Handle transmit completion interrupts.
   1159  */
   1160 void
   1161 fxp_txintr(struct fxp_softc *sc)
   1162 {
   1163 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1164 	struct fxp_txdesc *txd;
   1165 	struct fxp_txsoft *txs;
   1166 	int i;
   1167 	u_int16_t txstat;
   1168 
   1169 	ifp->if_flags &= ~IFF_OACTIVE;
   1170 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1171 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1172 		txd = FXP_CDTX(sc, i);
   1173 		txs = FXP_DSTX(sc, i);
   1174 
   1175 		FXP_CDTXSYNC(sc, i,
   1176 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1177 
   1178 		txstat = le16toh(txd->txd_txcb.cb_status);
   1179 
   1180 		if ((txstat & FXP_CB_STATUS_C) == 0)
   1181 			break;
   1182 
   1183 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1184 		    0, txs->txs_dmamap->dm_mapsize,
   1185 		    BUS_DMASYNC_POSTWRITE);
   1186 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1187 		m_freem(txs->txs_mbuf);
   1188 		txs->txs_mbuf = NULL;
   1189 	}
   1190 
   1191 	/* Update the dirty transmit buffer pointer. */
   1192 	sc->sc_txdirty = i;
   1193 
   1194 	/*
   1195 	 * Cancel the watchdog timer if there are no pending
   1196 	 * transmissions.
   1197 	 */
   1198 	if (sc->sc_txpending == 0)
   1199 		ifp->if_timer = 0;
   1200 }
   1201 
   1202 void
   1203 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
   1204 {
   1205 	u_int16_t rxparsestat;
   1206 	u_int16_t csum_stat;
   1207 	u_int32_t csum_data;
   1208 	int csum_flags;
   1209 
   1210 	rxparsestat = le16toh(rfa->rx_parse_stat);
   1211 	csum_stat = le16toh(rfa->cksum_stat);
   1212 	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
   1213 		return;
   1214 
   1215 	csum_flags = 0;
   1216 	csum_data = 0;
   1217 
   1218 	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
   1219 		csum_flags = M_CSUM_IPv4;
   1220 		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
   1221 			csum_flags |= M_CSUM_IPv4_BAD;
   1222 	}
   1223 
   1224 	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
   1225 		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
   1226 		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
   1227 			csum_flags |= M_CSUM_TCP_UDP_BAD;
   1228 	}
   1229 
   1230 	m->m_pkthdr.csum_flags = csum_flags;
   1231 	m->m_pkthdr.csum_data = csum_data;
   1232 }
   1233 
   1234 /*
   1235  * Handle receive interrupts.
   1236  */
   1237 void
   1238 fxp_rxintr(struct fxp_softc *sc)
   1239 {
   1240 	struct ethercom *ec = &sc->sc_ethercom;
   1241 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1242 	struct mbuf *m, *m0;
   1243 	bus_dmamap_t rxmap;
   1244 	struct fxp_rfa *rfa;
   1245 	u_int16_t len, rxstat;
   1246 
   1247 	for (;;) {
   1248 		m = sc->sc_rxq.ifq_head;
   1249 		rfa = FXP_MTORFA(m);
   1250 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1251 
   1252 		FXP_RFASYNC(sc, m,
   1253 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1254 
   1255 		rxstat = le16toh(rfa->rfa_status);
   1256 
   1257 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
   1258 			/*
   1259 			 * We have processed all of the
   1260 			 * receive buffers.
   1261 			 */
   1262 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
   1263 			return;
   1264 		}
   1265 
   1266 		IF_DEQUEUE(&sc->sc_rxq, m);
   1267 
   1268 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
   1269 
   1270 		len = le16toh(rfa->actual_size) &
   1271 		    (m->m_ext.ext_size - 1);
   1272 
   1273 		if (len < sizeof(struct ether_header)) {
   1274 			/*
   1275 			 * Runt packet; drop it now.
   1276 			 */
   1277 			FXP_INIT_RFABUF(sc, m);
   1278 			continue;
   1279 		}
   1280 
   1281 		/*
   1282 		 * If support for 802.1Q VLAN sized frames is
   1283 		 * enabled, we need to do some additional error
   1284 		 * checking (as we are saving bad frames, in
   1285 		 * order to receive the larger ones).
   1286 		 */
   1287 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
   1288 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
   1289 			       FXP_RFA_STATUS_RNR|
   1290 			       FXP_RFA_STATUS_ALIGN|
   1291 			       FXP_RFA_STATUS_CRC)) != 0) {
   1292 			FXP_INIT_RFABUF(sc, m);
   1293 			continue;
   1294 		}
   1295 
   1296 		/* Do checksum checking. */
   1297 		m->m_pkthdr.csum_flags = 0;
   1298 		if (sc->sc_flags & FXPF_EXT_RFA)
   1299 			fxp_rx_hwcksum(m, rfa);
   1300 
   1301 		/*
   1302 		 * If the packet is small enough to fit in a
   1303 		 * single header mbuf, allocate one and copy
   1304 		 * the data into it.  This greatly reduces
   1305 		 * memory consumption when we receive lots
   1306 		 * of small packets.
   1307 		 *
   1308 		 * Otherwise, we add a new buffer to the receive
   1309 		 * chain.  If this fails, we drop the packet and
   1310 		 * recycle the old buffer.
   1311 		 */
   1312 		if (fxp_copy_small != 0 && len <= MHLEN) {
   1313 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
   1314 			if (m0 == NULL)
   1315 				goto dropit;
   1316 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
   1317 			memcpy(mtod(m0, caddr_t),
   1318 			    mtod(m, caddr_t), len);
   1319 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
   1320 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
   1321 			FXP_INIT_RFABUF(sc, m);
   1322 			m = m0;
   1323 		} else {
   1324 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
   1325  dropit:
   1326 				ifp->if_ierrors++;
   1327 				FXP_INIT_RFABUF(sc, m);
   1328 				continue;
   1329 			}
   1330 		}
   1331 
   1332 		m->m_pkthdr.rcvif = ifp;
   1333 		m->m_pkthdr.len = m->m_len = len;
   1334 
   1335 #if NBPFILTER > 0
   1336 		/*
   1337 		 * Pass this up to any BPF listeners, but only
   1338 		 * pass it up the stack it its for us.
   1339 		 */
   1340 		if (ifp->if_bpf)
   1341 			bpf_mtap(ifp->if_bpf, m);
   1342 #endif
   1343 
   1344 		/* Pass it on. */
   1345 		(*ifp->if_input)(ifp, m);
   1346 	}
   1347 }
   1348 
   1349 /*
   1350  * Update packet in/out/collision statistics. The i82557 doesn't
   1351  * allow you to access these counters without doing a fairly
   1352  * expensive DMA to get _all_ of the statistics it maintains, so
   1353  * we do this operation here only once per second. The statistics
   1354  * counters in the kernel are updated from the previous dump-stats
   1355  * DMA and then a new dump-stats DMA is started. The on-chip
   1356  * counters are zeroed when the DMA completes. If we can't start
   1357  * the DMA immediately, we don't wait - we just prepare to read
   1358  * them again next time.
   1359  */
   1360 void
   1361 fxp_tick(void *arg)
   1362 {
   1363 	struct fxp_softc *sc = arg;
   1364 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1365 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1366 	int s;
   1367 
   1368 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1369 		return;
   1370 
   1371 	s = splnet();
   1372 
   1373 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1374 
   1375 	ifp->if_opackets += le32toh(sp->tx_good);
   1376 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1377 	if (sp->rx_good) {
   1378 		ifp->if_ipackets += le32toh(sp->rx_good);
   1379 		sc->sc_rxidle = 0;
   1380 	} else {
   1381 		sc->sc_rxidle++;
   1382 	}
   1383 	ifp->if_ierrors +=
   1384 	    le32toh(sp->rx_crc_errors) +
   1385 	    le32toh(sp->rx_alignment_errors) +
   1386 	    le32toh(sp->rx_rnr_errors) +
   1387 	    le32toh(sp->rx_overrun_errors);
   1388 	/*
   1389 	 * If any transmit underruns occurred, bump up the transmit
   1390 	 * threshold by another 512 bytes (64 * 8).
   1391 	 */
   1392 	if (sp->tx_underruns) {
   1393 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1394 		if (tx_threshold < 192)
   1395 			tx_threshold += 64;
   1396 	}
   1397 
   1398 	/*
   1399 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
   1400 	 * then assume the receiver has locked up and attempt to clear
   1401 	 * the condition by reprogramming the multicast filter (actually,
   1402 	 * resetting the interface). This is a work-around for a bug in
   1403 	 * the 82557 where the receiver locks up if it gets certain types
   1404 	 * of garbage in the synchronization bits prior to the packet header.
   1405 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1406 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1407 	 * speed transition).
   1408 	 */
   1409 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1410 		(void) fxp_init(ifp);
   1411 		splx(s);
   1412 		return;
   1413 	}
   1414 	/*
   1415 	 * If there is no pending command, start another stats
   1416 	 * dump. Otherwise punt for now.
   1417 	 */
   1418 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1419 		/*
   1420 		 * Start another stats dump.
   1421 		 */
   1422 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1423 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
   1424 	} else {
   1425 		/*
   1426 		 * A previous command is still waiting to be accepted.
   1427 		 * Just zero our copy of the stats and wait for the
   1428 		 * next timer event to update them.
   1429 		 */
   1430 		/* BIG_ENDIAN: no swap required to store 0 */
   1431 		sp->tx_good = 0;
   1432 		sp->tx_underruns = 0;
   1433 		sp->tx_total_collisions = 0;
   1434 
   1435 		sp->rx_good = 0;
   1436 		sp->rx_crc_errors = 0;
   1437 		sp->rx_alignment_errors = 0;
   1438 		sp->rx_rnr_errors = 0;
   1439 		sp->rx_overrun_errors = 0;
   1440 	}
   1441 
   1442 	if (sc->sc_flags & FXPF_MII) {
   1443 		/* Tick the MII clock. */
   1444 		mii_tick(&sc->sc_mii);
   1445 	}
   1446 
   1447 	splx(s);
   1448 
   1449 	/*
   1450 	 * Schedule another timeout one second from now.
   1451 	 */
   1452 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1453 }
   1454 
   1455 /*
   1456  * Drain the receive queue.
   1457  */
   1458 void
   1459 fxp_rxdrain(struct fxp_softc *sc)
   1460 {
   1461 	bus_dmamap_t rxmap;
   1462 	struct mbuf *m;
   1463 
   1464 	for (;;) {
   1465 		IF_DEQUEUE(&sc->sc_rxq, m);
   1466 		if (m == NULL)
   1467 			break;
   1468 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1469 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1470 		FXP_RXMAP_PUT(sc, rxmap);
   1471 		m_freem(m);
   1472 	}
   1473 }
   1474 
   1475 /*
   1476  * Stop the interface. Cancels the statistics updater and resets
   1477  * the interface.
   1478  */
   1479 void
   1480 fxp_stop(struct ifnet *ifp, int disable)
   1481 {
   1482 	struct fxp_softc *sc = ifp->if_softc;
   1483 	struct fxp_txsoft *txs;
   1484 	int i;
   1485 
   1486 	/*
   1487 	 * Turn down interface (done early to avoid bad interactions
   1488 	 * between panics, shutdown hooks, and the watchdog timer)
   1489 	 */
   1490 	ifp->if_timer = 0;
   1491 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1492 
   1493 	/*
   1494 	 * Cancel stats updater.
   1495 	 */
   1496 	callout_stop(&sc->sc_callout);
   1497 	if (sc->sc_flags & FXPF_MII) {
   1498 		/* Down the MII. */
   1499 		mii_down(&sc->sc_mii);
   1500 	}
   1501 
   1502 	/*
   1503 	 * Issue software reset.  This unloads any microcode that
   1504 	 * might already be loaded.
   1505 	 */
   1506 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
   1507 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
   1508 	DELAY(50);
   1509 
   1510 	/*
   1511 	 * Release any xmit buffers.
   1512 	 */
   1513 	for (i = 0; i < FXP_NTXCB; i++) {
   1514 		txs = FXP_DSTX(sc, i);
   1515 		if (txs->txs_mbuf != NULL) {
   1516 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1517 			m_freem(txs->txs_mbuf);
   1518 			txs->txs_mbuf = NULL;
   1519 		}
   1520 	}
   1521 	sc->sc_txpending = 0;
   1522 
   1523 	if (disable) {
   1524 		fxp_rxdrain(sc);
   1525 		fxp_disable(sc);
   1526 	}
   1527 
   1528 }
   1529 
   1530 /*
   1531  * Watchdog/transmission transmit timeout handler. Called when a
   1532  * transmission is started on the interface, but no interrupt is
   1533  * received before the timeout. This usually indicates that the
   1534  * card has wedged for some reason.
   1535  */
   1536 void
   1537 fxp_watchdog(struct ifnet *ifp)
   1538 {
   1539 	struct fxp_softc *sc = ifp->if_softc;
   1540 
   1541 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1542 	ifp->if_oerrors++;
   1543 
   1544 	(void) fxp_init(ifp);
   1545 }
   1546 
   1547 /*
   1548  * Initialize the interface.  Must be called at splnet().
   1549  */
   1550 int
   1551 fxp_init(struct ifnet *ifp)
   1552 {
   1553 	struct fxp_softc *sc = ifp->if_softc;
   1554 	struct fxp_cb_config *cbp;
   1555 	struct fxp_cb_ias *cb_ias;
   1556 	struct fxp_txdesc *txd;
   1557 	bus_dmamap_t rxmap;
   1558 	int i, prm, save_bf, lrxen, allm, error = 0;
   1559 
   1560 	if ((error = fxp_enable(sc)) != 0)
   1561 		goto out;
   1562 
   1563 	/*
   1564 	 * Cancel any pending I/O
   1565 	 */
   1566 	fxp_stop(ifp, 0);
   1567 
   1568 	/*
   1569 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1570 	 * flag, and this prevents the MII from detaching resulting in
   1571 	 * a panic. The flags field should perhaps be split in runtime
   1572 	 * flags and more static information. For now, just clear the
   1573 	 * only other flag set.
   1574 	 */
   1575 
   1576 	sc->sc_flags &= ~FXPF_WANTINIT;
   1577 
   1578 	/*
   1579 	 * Initialize base of CBL and RFA memory. Loading with zero
   1580 	 * sets it up for regular linear addressing.
   1581 	 */
   1582 	fxp_scb_wait(sc);
   1583 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1584 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
   1585 
   1586 	fxp_scb_wait(sc);
   1587 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
   1588 
   1589 	/*
   1590 	 * Initialize the multicast filter.  Do this now, since we might
   1591 	 * have to setup the config block differently.
   1592 	 */
   1593 	fxp_mc_setup(sc);
   1594 
   1595 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1596 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1597 
   1598 	/*
   1599 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1600 	 * enable "save bad frames", since they are 4 bytes larger than
   1601 	 * the normal Ethernet maximum frame length.  On i82558 and later,
   1602 	 * we have a better mechanism for this.
   1603 	 */
   1604 	save_bf = 0;
   1605 	lrxen = 0;
   1606 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1607 		if (sc->sc_rev < FXP_REV_82558_A4)
   1608 			save_bf = 1;
   1609 		else
   1610 			lrxen = 1;
   1611 	}
   1612 
   1613 	/*
   1614 	 * Initialize base of dump-stats buffer.
   1615 	 */
   1616 	fxp_scb_wait(sc);
   1617 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1618 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1619 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1620 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1621 
   1622 	cbp = &sc->sc_control_data->fcd_configcb;
   1623 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1624 
   1625 	/*
   1626 	 * Load microcode for this controller.
   1627 	 */
   1628 	fxp_load_ucode(sc);
   1629 
   1630 	/*
   1631 	 * This copy is kind of disgusting, but there are a bunch of must be
   1632 	 * zero and must be one bits in this structure and this is the easiest
   1633 	 * way to initialize them all to proper values.
   1634 	 */
   1635 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1636 
   1637 	/* BIG_ENDIAN: no need to swap to store 0 */
   1638 	cbp->cb_status =	0;
   1639 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1640 				    FXP_CB_COMMAND_EL);
   1641 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1642 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1643 					/* bytes in config block */
   1644 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
   1645 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
   1646 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1647 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1648 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1649 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
   1650 	cbp->type_enable =	0;	/* actually reserved */
   1651 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
   1652 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
   1653 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1654 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1655 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
   1656 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1657 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
   1658 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1659 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
   1660 	cbp->ext_stats_dis =	1;	/* disable extended counters */
   1661 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
   1662 	cbp->save_bf =		save_bf;/* save bad frames */
   1663 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1664 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1665 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1666 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
   1667 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
   1668 					/* interface mode */
   1669 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
   1670 	cbp->csma_dis =		0;	/* (don't) disable link */
   1671 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
   1672 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
   1673 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
   1674 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
   1675 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
   1676 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1677 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1678 	cbp->loopback =		0;	/* (don't) loopback */
   1679 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1680 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1681 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1682 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1683 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1684 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
   1685 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
   1686 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
   1687 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
   1688 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1689 	cbp->padding =		1;	/* (do) pad short tx packets */
   1690 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1691 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
   1692 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
   1693 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
   1694 					/* must set wake_en in PMCSR also */
   1695 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1696 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1697 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1698 	cbp->mc_all =		allm;	/* accept all multicasts */
   1699 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1700 
   1701 	if (sc->sc_rev < FXP_REV_82558_A4) {
   1702 		/*
   1703 		 * The i82557 has no hardware flow control, the values
   1704 		 * here are the defaults for the chip.
   1705 		 */
   1706 		cbp->fc_delay_lsb =	0;
   1707 		cbp->fc_delay_msb =	0x40;
   1708 		cbp->pri_fc_thresh =	3;
   1709 		cbp->tx_fc_dis =	0;
   1710 		cbp->rx_fc_restop =	0;
   1711 		cbp->rx_fc_restart =	0;
   1712 		cbp->fc_filter =	0;
   1713 		cbp->pri_fc_loc =	1;
   1714 	} else {
   1715 		cbp->fc_delay_lsb =	0x1f;
   1716 		cbp->fc_delay_msb =	0x01;
   1717 		cbp->pri_fc_thresh =	3;
   1718 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
   1719 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
   1720 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
   1721 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
   1722 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
   1723 	}
   1724 
   1725 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1726 
   1727 	/*
   1728 	 * Start the config command/DMA.
   1729 	 */
   1730 	fxp_scb_wait(sc);
   1731 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1732 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1733 	/* ...and wait for it to complete. */
   1734 	i = 1000;
   1735 	do {
   1736 		FXP_CDCONFIGSYNC(sc,
   1737 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1738 		DELAY(1);
   1739 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1740 	if (i == 0) {
   1741 		printf("%s at line %d: dmasync timeout\n",
   1742 		    sc->sc_dev.dv_xname, __LINE__);
   1743 		return (ETIMEDOUT);
   1744 	}
   1745 
   1746 	/*
   1747 	 * Initialize the station address.
   1748 	 */
   1749 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1750 	/* BIG_ENDIAN: no need to swap to store 0 */
   1751 	cb_ias->cb_status = 0;
   1752 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1753 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1754 	cb_ias->link_addr = 0xffffffff;
   1755 	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1756 
   1757 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1758 
   1759 	/*
   1760 	 * Start the IAS (Individual Address Setup) command/DMA.
   1761 	 */
   1762 	fxp_scb_wait(sc);
   1763 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1764 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1765 	/* ...and wait for it to complete. */
   1766 	i = 1000;
   1767 	do {
   1768 		FXP_CDIASSYNC(sc,
   1769 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1770 		DELAY(1);
   1771 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1772 	if (i == 0) {
   1773 		printf("%s at line %d: dmasync timeout\n",
   1774 		    sc->sc_dev.dv_xname, __LINE__);
   1775 		return (ETIMEDOUT);
   1776 	}
   1777 
   1778 	/*
   1779 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1780 	 * to the end of the list so that it will wrap around to the first
   1781 	 * descriptor when the first packet is transmitted.
   1782 	 */
   1783 	for (i = 0; i < FXP_NTXCB; i++) {
   1784 		txd = FXP_CDTX(sc, i);
   1785 		memset(txd, 0, sizeof(*txd));
   1786 		txd->txd_txcb.cb_command =
   1787 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1788 		txd->txd_txcb.link_addr =
   1789 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1790 		if (sc->sc_flags & FXPF_EXT_TXCB)
   1791 			txd->txd_txcb.tbd_array_addr =
   1792 			    htole32(FXP_CDTBDADDR(sc, i) +
   1793 				    (2 * sizeof(struct fxp_tbd)));
   1794 		else
   1795 			txd->txd_txcb.tbd_array_addr =
   1796 			    htole32(FXP_CDTBDADDR(sc, i));
   1797 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1798 	}
   1799 	sc->sc_txpending = 0;
   1800 	sc->sc_txdirty = 0;
   1801 	sc->sc_txlast = FXP_NTXCB - 1;
   1802 
   1803 	/*
   1804 	 * Initialize the receive buffer list.
   1805 	 */
   1806 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1807 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1808 		rxmap = FXP_RXMAP_GET(sc);
   1809 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1810 			printf("%s: unable to allocate or map rx "
   1811 			    "buffer %d, error = %d\n",
   1812 			    sc->sc_dev.dv_xname,
   1813 			    sc->sc_rxq.ifq_len, error);
   1814 			/*
   1815 			 * XXX Should attempt to run with fewer receive
   1816 			 * XXX buffers instead of just failing.
   1817 			 */
   1818 			FXP_RXMAP_PUT(sc, rxmap);
   1819 			fxp_rxdrain(sc);
   1820 			goto out;
   1821 		}
   1822 	}
   1823 	sc->sc_rxidle = 0;
   1824 
   1825 	/*
   1826 	 * Give the transmit ring to the chip.  We do this by pointing
   1827 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1828 	 * issuing a start command.  It will execute the NOP and then
   1829 	 * suspend, pointing at the first descriptor.
   1830 	 */
   1831 	fxp_scb_wait(sc);
   1832 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1833 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1834 
   1835 	/*
   1836 	 * Initialize receiver buffer area - RFA.
   1837 	 */
   1838 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1839 	fxp_scb_wait(sc);
   1840 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1841 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1842 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1843 
   1844 	if (sc->sc_flags & FXPF_MII) {
   1845 		/*
   1846 		 * Set current media.
   1847 		 */
   1848 		mii_mediachg(&sc->sc_mii);
   1849 	}
   1850 
   1851 	/*
   1852 	 * ...all done!
   1853 	 */
   1854 	ifp->if_flags |= IFF_RUNNING;
   1855 	ifp->if_flags &= ~IFF_OACTIVE;
   1856 
   1857 	/*
   1858 	 * Start the one second timer.
   1859 	 */
   1860 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1861 
   1862 	/*
   1863 	 * Attempt to start output on the interface.
   1864 	 */
   1865 	fxp_start(ifp);
   1866 
   1867  out:
   1868 	if (error) {
   1869 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1870 		ifp->if_timer = 0;
   1871 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1872 	}
   1873 	return (error);
   1874 }
   1875 
   1876 /*
   1877  * Change media according to request.
   1878  */
   1879 int
   1880 fxp_mii_mediachange(struct ifnet *ifp)
   1881 {
   1882 	struct fxp_softc *sc = ifp->if_softc;
   1883 
   1884 	if (ifp->if_flags & IFF_UP)
   1885 		mii_mediachg(&sc->sc_mii);
   1886 	return (0);
   1887 }
   1888 
   1889 /*
   1890  * Notify the world which media we're using.
   1891  */
   1892 void
   1893 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1894 {
   1895 	struct fxp_softc *sc = ifp->if_softc;
   1896 
   1897 	if (sc->sc_enabled == 0) {
   1898 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1899 		ifmr->ifm_status = 0;
   1900 		return;
   1901 	}
   1902 
   1903 	mii_pollstat(&sc->sc_mii);
   1904 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1905 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1906 }
   1907 
   1908 int
   1909 fxp_80c24_mediachange(struct ifnet *ifp)
   1910 {
   1911 
   1912 	/* Nothing to do here. */
   1913 	return (0);
   1914 }
   1915 
   1916 void
   1917 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1918 {
   1919 	struct fxp_softc *sc = ifp->if_softc;
   1920 
   1921 	/*
   1922 	 * Media is currently-selected media.  We cannot determine
   1923 	 * the link status.
   1924 	 */
   1925 	ifmr->ifm_status = 0;
   1926 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1927 }
   1928 
   1929 /*
   1930  * Add a buffer to the end of the RFA buffer list.
   1931  * Return 0 if successful, error code on failure.
   1932  *
   1933  * The RFA struct is stuck at the beginning of mbuf cluster and the
   1934  * data pointer is fixed up to point just past it.
   1935  */
   1936 int
   1937 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
   1938 {
   1939 	struct mbuf *m;
   1940 	int error;
   1941 
   1942 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1943 	if (m == NULL)
   1944 		return (ENOBUFS);
   1945 
   1946 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1947 	MCLGET(m, M_DONTWAIT);
   1948 	if ((m->m_flags & M_EXT) == 0) {
   1949 		m_freem(m);
   1950 		return (ENOBUFS);
   1951 	}
   1952 
   1953 	if (unload)
   1954 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1955 
   1956 	M_SETCTX(m, rxmap);
   1957 
   1958 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   1959 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
   1960 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1961 	if (error) {
   1962 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1963 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   1964 		panic("fxp_add_rfabuf");		/* XXX */
   1965 	}
   1966 
   1967 	FXP_INIT_RFABUF(sc, m);
   1968 
   1969 	return (0);
   1970 }
   1971 
   1972 int
   1973 fxp_mdi_read(struct device *self, int phy, int reg)
   1974 {
   1975 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1976 	int count = 10000;
   1977 	int value;
   1978 
   1979 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1980 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   1981 
   1982 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
   1983 	    0x10000000) == 0 && count--)
   1984 		DELAY(10);
   1985 
   1986 	if (count <= 0)
   1987 		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   1988 
   1989 	return (value & 0xffff);
   1990 }
   1991 
   1992 void
   1993 fxp_statchg(struct device *self)
   1994 {
   1995 
   1996 	/* Nothing to do. */
   1997 }
   1998 
   1999 void
   2000 fxp_mdi_write(struct device *self, int phy, int reg, int value)
   2001 {
   2002 	struct fxp_softc *sc = (struct fxp_softc *)self;
   2003 	int count = 10000;
   2004 
   2005 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2006 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   2007 	    (value & 0xffff));
   2008 
   2009 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   2010 	    count--)
   2011 		DELAY(10);
   2012 
   2013 	if (count <= 0)
   2014 		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   2015 }
   2016 
   2017 int
   2018 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   2019 {
   2020 	struct fxp_softc *sc = ifp->if_softc;
   2021 	struct ifreq *ifr = (struct ifreq *)data;
   2022 	int s, error;
   2023 
   2024 	s = splnet();
   2025 
   2026 	switch (cmd) {
   2027 	case SIOCSIFMEDIA:
   2028 	case SIOCGIFMEDIA:
   2029 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2030 		break;
   2031 
   2032 	default:
   2033 		error = ether_ioctl(ifp, cmd, data);
   2034 		if (error == ENETRESET) {
   2035 			if (sc->sc_enabled) {
   2036 				/*
   2037 				 * Multicast list has changed; set the
   2038 				 * hardware filter accordingly.
   2039 				 */
   2040 				if (sc->sc_txpending) {
   2041 					sc->sc_flags |= FXPF_WANTINIT;
   2042 					error = 0;
   2043 				} else
   2044 					error = fxp_init(ifp);
   2045 			} else
   2046 				error = 0;
   2047 		}
   2048 		break;
   2049 	}
   2050 
   2051 	/* Try to get more packets going. */
   2052 	if (sc->sc_enabled)
   2053 		fxp_start(ifp);
   2054 
   2055 	splx(s);
   2056 	return (error);
   2057 }
   2058 
   2059 /*
   2060  * Program the multicast filter.
   2061  *
   2062  * This function must be called at splnet().
   2063  */
   2064 void
   2065 fxp_mc_setup(struct fxp_softc *sc)
   2066 {
   2067 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   2068 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2069 	struct ethercom *ec = &sc->sc_ethercom;
   2070 	struct ether_multi *enm;
   2071 	struct ether_multistep step;
   2072 	int count, nmcasts;
   2073 
   2074 #ifdef DIAGNOSTIC
   2075 	if (sc->sc_txpending)
   2076 		panic("fxp_mc_setup: pending transmissions");
   2077 #endif
   2078 
   2079 	ifp->if_flags &= ~IFF_ALLMULTI;
   2080 
   2081 	/*
   2082 	 * Initialize multicast setup descriptor.
   2083 	 */
   2084 	nmcasts = 0;
   2085 	ETHER_FIRST_MULTI(step, ec, enm);
   2086 	while (enm != NULL) {
   2087 		/*
   2088 		 * Check for too many multicast addresses or if we're
   2089 		 * listening to a range.  Either way, we simply have
   2090 		 * to accept all multicasts.
   2091 		 */
   2092 		if (nmcasts >= MAXMCADDR ||
   2093 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2094 		    ETHER_ADDR_LEN) != 0) {
   2095 			/*
   2096 			 * Callers of this function must do the
   2097 			 * right thing with this.  If we're called
   2098 			 * from outside fxp_init(), the caller must
   2099 			 * detect if the state if IFF_ALLMULTI changes.
   2100 			 * If it does, the caller must then call
   2101 			 * fxp_init(), since allmulti is handled by
   2102 			 * the config block.
   2103 			 */
   2104 			ifp->if_flags |= IFF_ALLMULTI;
   2105 			return;
   2106 		}
   2107 		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   2108 		    ETHER_ADDR_LEN);
   2109 		nmcasts++;
   2110 		ETHER_NEXT_MULTI(step, enm);
   2111 	}
   2112 
   2113 	/* BIG_ENDIAN: no need to swap to store 0 */
   2114 	mcsp->cb_status = 0;
   2115 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   2116 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   2117 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   2118 
   2119 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2120 
   2121 	/*
   2122 	 * Wait until the command unit is not active.  This should never
   2123 	 * happen since nothing is queued, but make sure anyway.
   2124 	 */
   2125 	count = 100;
   2126 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   2127 	    FXP_SCB_CUS_ACTIVE && --count)
   2128 		DELAY(1);
   2129 	if (count == 0) {
   2130 		printf("%s at line %d: command queue timeout\n",
   2131 		    sc->sc_dev.dv_xname, __LINE__);
   2132 		return;
   2133 	}
   2134 
   2135 	/*
   2136 	 * Start the multicast setup command/DMA.
   2137 	 */
   2138 	fxp_scb_wait(sc);
   2139 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   2140 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2141 
   2142 	/* ...and wait for it to complete. */
   2143 	count = 1000;
   2144 	do {
   2145 		FXP_CDMCSSYNC(sc,
   2146 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2147 		DELAY(1);
   2148 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   2149 	if (count == 0) {
   2150 		printf("%s at line %d: dmasync timeout\n",
   2151 		    sc->sc_dev.dv_xname, __LINE__);
   2152 		return;
   2153 	}
   2154 }
   2155 
   2156 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
   2157 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
   2158 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
   2159 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
   2160 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
   2161 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
   2162 
   2163 #define	UCODE(x)	x, sizeof(x)
   2164 
   2165 static const struct ucode {
   2166 	int32_t		revision;
   2167 	const uint32_t	*ucode;
   2168 	size_t		length;
   2169 	uint16_t	int_delay_offset;
   2170 	uint16_t	bundle_max_offset;
   2171 } ucode_table[] = {
   2172 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
   2173 	  D101_CPUSAVER_DWORD, 0 },
   2174 
   2175 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
   2176 	  D101_CPUSAVER_DWORD, 0 },
   2177 
   2178 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
   2179 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
   2180 
   2181 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
   2182 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
   2183 
   2184 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
   2185 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
   2186 
   2187 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
   2188 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
   2189 
   2190 	{ 0, NULL, 0, 0, 0 }
   2191 };
   2192 
   2193 void
   2194 fxp_load_ucode(struct fxp_softc *sc)
   2195 {
   2196 	const struct ucode *uc;
   2197 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
   2198 	int count;
   2199 
   2200 	if (sc->sc_flags & FXPF_UCODE_LOADED)
   2201 		return;
   2202 
   2203 	/*
   2204 	 * Only load the uCode if the user has requested that
   2205 	 * we do so.
   2206 	 */
   2207 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
   2208 		sc->sc_int_delay = 0;
   2209 		sc->sc_bundle_max = 0;
   2210 		return;
   2211 	}
   2212 
   2213 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
   2214 		if (sc->sc_rev == uc->revision)
   2215 			break;
   2216 	}
   2217 	if (uc->ucode == NULL)
   2218 		return;
   2219 
   2220 	/* BIG ENDIAN: no need to swap to store 0 */
   2221 	cbp->cb_status = 0;
   2222 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
   2223 	cbp->link_addr = 0xffffffff;		/* (no) next command */
   2224 	memcpy((void *) cbp->ucode, uc->ucode, uc->length);
   2225 
   2226 	if (uc->int_delay_offset)
   2227 		*(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
   2228 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
   2229 
   2230 	if (uc->bundle_max_offset)
   2231 		*(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
   2232 		    htole16(fxp_bundle_max);
   2233 
   2234 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2235 
   2236 	/*
   2237 	 * Download the uCode to the chip.
   2238 	 */
   2239 	fxp_scb_wait(sc);
   2240 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
   2241 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2242 
   2243 	/* ...and wait for it to complete. */
   2244 	count = 10000;
   2245 	do {
   2246 		FXP_CDUCODESYNC(sc,
   2247 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2248 		DELAY(2);
   2249 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   2250 	if (count == 0) {
   2251 		sc->sc_int_delay = 0;
   2252 		sc->sc_bundle_max = 0;
   2253 		printf("%s: timeout loading microcode\n",
   2254 		    sc->sc_dev.dv_xname);
   2255 		return;
   2256 	}
   2257 
   2258 	if (sc->sc_int_delay != fxp_int_delay ||
   2259 	    sc->sc_bundle_max != fxp_bundle_max) {
   2260 		sc->sc_int_delay = fxp_int_delay;
   2261 		sc->sc_bundle_max = fxp_bundle_max;
   2262 		printf("%s: Microcode loaded: int delay: %d usec, "
   2263 		    "max bundle: %d\n", sc->sc_dev.dv_xname,
   2264 		    sc->sc_int_delay,
   2265 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
   2266 	}
   2267 
   2268 	sc->sc_flags |= FXPF_UCODE_LOADED;
   2269 }
   2270 
   2271 int
   2272 fxp_enable(struct fxp_softc *sc)
   2273 {
   2274 
   2275 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   2276 		if ((*sc->sc_enable)(sc) != 0) {
   2277 			printf("%s: device enable failed\n",
   2278 			    sc->sc_dev.dv_xname);
   2279 			return (EIO);
   2280 		}
   2281 	}
   2282 
   2283 	sc->sc_enabled = 1;
   2284 	return (0);
   2285 }
   2286 
   2287 void
   2288 fxp_disable(struct fxp_softc *sc)
   2289 {
   2290 
   2291 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   2292 		(*sc->sc_disable)(sc);
   2293 		sc->sc_enabled = 0;
   2294 	}
   2295 }
   2296 
   2297 /*
   2298  * fxp_activate:
   2299  *
   2300  *	Handle device activation/deactivation requests.
   2301  */
   2302 int
   2303 fxp_activate(struct device *self, enum devact act)
   2304 {
   2305 	struct fxp_softc *sc = (void *) self;
   2306 	int s, error = 0;
   2307 
   2308 	s = splnet();
   2309 	switch (act) {
   2310 	case DVACT_ACTIVATE:
   2311 		error = EOPNOTSUPP;
   2312 		break;
   2313 
   2314 	case DVACT_DEACTIVATE:
   2315 		if (sc->sc_flags & FXPF_MII)
   2316 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   2317 			    MII_OFFSET_ANY);
   2318 		if_deactivate(&sc->sc_ethercom.ec_if);
   2319 		break;
   2320 	}
   2321 	splx(s);
   2322 
   2323 	return (error);
   2324 }
   2325 
   2326 /*
   2327  * fxp_detach:
   2328  *
   2329  *	Detach an i82557 interface.
   2330  */
   2331 int
   2332 fxp_detach(struct fxp_softc *sc)
   2333 {
   2334 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2335 	int i;
   2336 
   2337 	/* Succeed now if there's no work to do. */
   2338 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2339 		return (0);
   2340 
   2341 	/* Unhook our tick handler. */
   2342 	callout_stop(&sc->sc_callout);
   2343 
   2344 	if (sc->sc_flags & FXPF_MII) {
   2345 		/* Detach all PHYs */
   2346 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2347 	}
   2348 
   2349 	/* Delete all remaining media. */
   2350 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2351 
   2352 #if NRND > 0
   2353 	rnd_detach_source(&sc->rnd_source);
   2354 #endif
   2355 	ether_ifdetach(ifp);
   2356 	if_detach(ifp);
   2357 
   2358 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2359 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2360 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2361 	}
   2362 
   2363 	for (i = 0; i < FXP_NTXCB; i++) {
   2364 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2365 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2366 	}
   2367 
   2368 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2369 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2370 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2371 	    sizeof(struct fxp_control_data));
   2372 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2373 
   2374 	shutdownhook_disestablish(sc->sc_sdhook);
   2375 	powerhook_disestablish(sc->sc_powerhook);
   2376 
   2377 	return (0);
   2378 }
   2379