i82557.c revision 1.78 1 /* $NetBSD: i82557.c,v 1.78 2003/12/06 11:27:28 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.78 2003/12/06 11:27:28 yamt Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91
92 #include <machine/endian.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #if NRND > 0
97 #include <sys/rnd.h>
98 #endif
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111
112 #include <dev/mii/miivar.h>
113
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116
117 #include <dev/microcode/i8255x/rcvbundl.h>
118
119 /*
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
127 */
128 #define RFA_ALIGNMENT_FUDGE 2
129
130 /*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138 const u_int8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
174 };
175
176 void fxp_mii_initmedia(struct fxp_softc *);
177 int fxp_mii_mediachange(struct ifnet *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 void fxp_rxintr(struct fxp_softc *);
192
193 void fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
194
195 void fxp_rxdrain(struct fxp_softc *);
196 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197 int fxp_mdi_read(struct device *, int, int);
198 void fxp_statchg(struct device *);
199 void fxp_mdi_write(struct device *, int, int, int);
200 void fxp_autosize_eeprom(struct fxp_softc*);
201 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_eeprom_update_cksum(struct fxp_softc *);
204 void fxp_get_info(struct fxp_softc *, u_int8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207 void fxp_load_ucode(struct fxp_softc *);
208
209 void fxp_shutdown(void *);
210 void fxp_power(int, void *);
211
212 int fxp_copy_small = 0;
213
214 /*
215 * Variables for interrupt mitigating microcode.
216 */
217 int fxp_int_delay = 1000; /* usec */
218 int fxp_bundle_max = 6; /* packets */
219
220 struct fxp_phytype {
221 int fp_phy; /* type of PHY, -1 for MII at the end. */
222 void (*fp_init)(struct fxp_softc *);
223 } fxp_phytype_table[] = {
224 { FXP_PHY_80C24, fxp_80c24_initmedia },
225 { -1, fxp_mii_initmedia },
226 };
227
228 /*
229 * Set initial transmit threshold at 64 (512 bytes). This is
230 * increased by 64 (512 bytes) at a time, to maximum of 192
231 * (1536 bytes), if an underrun occurs.
232 */
233 static int tx_threshold = 64;
234
235 /*
236 * Wait for the previous command to be accepted (but not necessarily
237 * completed).
238 */
239 static __inline void
240 fxp_scb_wait(struct fxp_softc *sc)
241 {
242 int i = 10000;
243
244 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
245 delay(2);
246 if (i == 0)
247 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
248 }
249
250 /*
251 * Submit a command to the i82557.
252 */
253 static __inline void
254 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
255 {
256
257 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
258 }
259
260 /*
261 * Finish attaching an i82557 interface. Called by bus-specific front-end.
262 */
263 void
264 fxp_attach(struct fxp_softc *sc)
265 {
266 u_int8_t enaddr[ETHER_ADDR_LEN];
267 struct ifnet *ifp;
268 bus_dma_segment_t seg;
269 int rseg, i, error;
270 struct fxp_phytype *fp;
271
272 callout_init(&sc->sc_callout);
273
274 /*
275 * Enable some good stuff on i82558 and later.
276 */
277 if (sc->sc_rev >= FXP_REV_82558_A4) {
278 /* Enable the extended TxCB. */
279 sc->sc_flags |= FXPF_EXT_TXCB;
280 }
281
282 /*
283 * Enable use of extended RFDs and TCBs for 82550
284 * and later chips. Note: we need extended TXCB support
285 * too, but that's already enabled by the code above.
286 * Be careful to do this only on the right devices.
287 */
288 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
289 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
290 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
291 } else {
292 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
293 }
294
295 sc->sc_rfa_size =
296 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
297
298 /*
299 * Allocate the control data structures, and create and load the
300 * DMA map for it.
301 */
302 if ((error = bus_dmamem_alloc(sc->sc_dmat,
303 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
304 0)) != 0) {
305 aprint_error(
306 "%s: unable to allocate control data, error = %d\n",
307 sc->sc_dev.dv_xname, error);
308 goto fail_0;
309 }
310
311 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
312 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
313 BUS_DMA_COHERENT)) != 0) {
314 aprint_error("%s: unable to map control data, error = %d\n",
315 sc->sc_dev.dv_xname, error);
316 goto fail_1;
317 }
318 sc->sc_cdseg = seg;
319 sc->sc_cdnseg = rseg;
320
321 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
322
323 if ((error = bus_dmamap_create(sc->sc_dmat,
324 sizeof(struct fxp_control_data), 1,
325 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
326 aprint_error("%s: unable to create control data DMA map, "
327 "error = %d\n", sc->sc_dev.dv_xname, error);
328 goto fail_2;
329 }
330
331 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
332 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
333 0)) != 0) {
334 aprint_error(
335 "%s: can't load control data DMA map, error = %d\n",
336 sc->sc_dev.dv_xname, error);
337 goto fail_3;
338 }
339
340 /*
341 * Create the transmit buffer DMA maps.
342 */
343 for (i = 0; i < FXP_NTXCB; i++) {
344 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
345 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
346 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
347 aprint_error("%s: unable to create tx DMA map %d, "
348 "error = %d\n", sc->sc_dev.dv_xname, i, error);
349 goto fail_4;
350 }
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < FXP_NRFABUFS; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
359 aprint_error("%s: unable to create rx DMA map %d, "
360 "error = %d\n", sc->sc_dev.dv_xname, i, error);
361 goto fail_5;
362 }
363 }
364
365 /* Initialize MAC address and media structures. */
366 fxp_get_info(sc, enaddr);
367
368 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
369 ether_sprintf(enaddr));
370
371 ifp = &sc->sc_ethercom.ec_if;
372
373 /*
374 * Get info about our media interface, and initialize it. Note
375 * the table terminates itself with a phy of -1, indicating
376 * that we're using MII.
377 */
378 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
379 if (fp->fp_phy == sc->phy_primary_device)
380 break;
381 (*fp->fp_init)(sc);
382
383 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
384 ifp->if_softc = sc;
385 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
386 ifp->if_ioctl = fxp_ioctl;
387 ifp->if_start = fxp_start;
388 ifp->if_watchdog = fxp_watchdog;
389 ifp->if_init = fxp_init;
390 ifp->if_stop = fxp_stop;
391 IFQ_SET_READY(&ifp->if_snd);
392
393 if (sc->sc_flags & FXPF_IPCB) {
394 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
395 /*
396 * IFCAP_CSUM_IPv4 seems to have a problem,
397 * at least, on i82550 rev.12.
398 * specifically, it doesn't calculate ipv4 checksum correctly
399 * when sending 20 byte ipv4 header + 1 or 2 byte data.
400 * FreeBSD driver has related comments.
401 *
402 * XXX we should have separate IFCAP flags
403 * for transmit and receive.
404 */
405 ifp->if_capabilities =
406 /*IFCAP_CSUM_IPv4 |*/ IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
407 }
408
409 /*
410 * We can support 802.1Q VLAN-sized frames.
411 */
412 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
413
414 /*
415 * Attach the interface.
416 */
417 if_attach(ifp);
418 ether_ifattach(ifp, enaddr);
419 #if NRND > 0
420 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
421 RND_TYPE_NET, 0);
422 #endif
423
424 #ifdef FXP_EVENT_COUNTERS
425 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
426 NULL, sc->sc_dev.dv_xname, "txstall");
427 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
428 NULL, sc->sc_dev.dv_xname, "txintr");
429 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
430 NULL, sc->sc_dev.dv_xname, "rxintr");
431 #endif /* FXP_EVENT_COUNTERS */
432
433 /*
434 * Add shutdown hook so that DMA is disabled prior to reboot. Not
435 * doing do could allow DMA to corrupt kernel memory during the
436 * reboot before the driver initializes.
437 */
438 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
439 if (sc->sc_sdhook == NULL)
440 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
441 sc->sc_dev.dv_xname);
442 /*
443 * Add suspend hook, for similar reasons..
444 */
445 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
446 if (sc->sc_powerhook == NULL)
447 aprint_error("%s: WARNING: unable to establish power hook\n",
448 sc->sc_dev.dv_xname);
449
450 /* The attach is successful. */
451 sc->sc_flags |= FXPF_ATTACHED;
452
453 return;
454
455 /*
456 * Free any resources we've allocated during the failed attach
457 * attempt. Do this in reverse order and fall though.
458 */
459 fail_5:
460 for (i = 0; i < FXP_NRFABUFS; i++) {
461 if (sc->sc_rxmaps[i] != NULL)
462 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
463 }
464 fail_4:
465 for (i = 0; i < FXP_NTXCB; i++) {
466 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
467 bus_dmamap_destroy(sc->sc_dmat,
468 FXP_DSTX(sc, i)->txs_dmamap);
469 }
470 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
471 fail_3:
472 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
473 fail_2:
474 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
475 sizeof(struct fxp_control_data));
476 fail_1:
477 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
478 fail_0:
479 return;
480 }
481
482 void
483 fxp_mii_initmedia(struct fxp_softc *sc)
484 {
485 int flags;
486
487 sc->sc_flags |= FXPF_MII;
488
489 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
490 sc->sc_mii.mii_readreg = fxp_mdi_read;
491 sc->sc_mii.mii_writereg = fxp_mdi_write;
492 sc->sc_mii.mii_statchg = fxp_statchg;
493 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
494 fxp_mii_mediastatus);
495
496 flags = MIIF_NOISOLATE;
497 if (sc->sc_rev >= FXP_REV_82558_A4)
498 flags |= MIIF_DOPAUSE;
499 /*
500 * The i82557 wedges if all of its PHYs are isolated!
501 */
502 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
503 MII_OFFSET_ANY, flags);
504 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
505 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
506 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
507 } else
508 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
509 }
510
511 void
512 fxp_80c24_initmedia(struct fxp_softc *sc)
513 {
514
515 /*
516 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
517 * doesn't have a programming interface of any sort. The
518 * media is sensed automatically based on how the link partner
519 * is configured. This is, in essence, manual configuration.
520 */
521 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
522 sc->sc_dev.dv_xname);
523 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
524 fxp_80c24_mediastatus);
525 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
526 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
527 }
528
529 /*
530 * Device shutdown routine. Called at system shutdown after sync. The
531 * main purpose of this routine is to shut off receiver DMA so that
532 * kernel memory doesn't get clobbered during warmboot.
533 */
534 void
535 fxp_shutdown(void *arg)
536 {
537 struct fxp_softc *sc = arg;
538
539 /*
540 * Since the system's going to halt shortly, don't bother
541 * freeing mbufs.
542 */
543 fxp_stop(&sc->sc_ethercom.ec_if, 0);
544 }
545 /*
546 * Power handler routine. Called when the system is transitioning
547 * into/out of power save modes. As with fxp_shutdown, the main
548 * purpose of this routine is to shut off receiver DMA so it doesn't
549 * clobber kernel memory at the wrong time.
550 */
551 void
552 fxp_power(int why, void *arg)
553 {
554 struct fxp_softc *sc = arg;
555 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
556 int s;
557
558 s = splnet();
559 switch (why) {
560 case PWR_SUSPEND:
561 case PWR_STANDBY:
562 fxp_stop(ifp, 0);
563 break;
564 case PWR_RESUME:
565 if (ifp->if_flags & IFF_UP)
566 fxp_init(ifp);
567 break;
568 case PWR_SOFTSUSPEND:
569 case PWR_SOFTSTANDBY:
570 case PWR_SOFTRESUME:
571 break;
572 }
573 splx(s);
574 }
575
576 /*
577 * Initialize the interface media.
578 */
579 void
580 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
581 {
582 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
583
584 /*
585 * Reset to a stable state.
586 */
587 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
588 DELAY(10);
589
590 sc->sc_eeprom_size = 0;
591 fxp_autosize_eeprom(sc);
592 if (sc->sc_eeprom_size == 0) {
593 aprint_error("%s: failed to detect EEPROM size\n",
594 sc->sc_dev.dv_xname);
595 sc->sc_eeprom_size = 6; /* XXX panic here? */
596 }
597 #ifdef DEBUG
598 aprint_debug("%s: detected %d word EEPROM\n",
599 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
600 #endif
601
602 /*
603 * Get info about the primary PHY
604 */
605 fxp_read_eeprom(sc, &data, 6, 1);
606 sc->phy_primary_device =
607 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
608
609 /*
610 * Read MAC address.
611 */
612 fxp_read_eeprom(sc, myea, 0, 3);
613 enaddr[0] = myea[0] & 0xff;
614 enaddr[1] = myea[0] >> 8;
615 enaddr[2] = myea[1] & 0xff;
616 enaddr[3] = myea[1] >> 8;
617 enaddr[4] = myea[2] & 0xff;
618 enaddr[5] = myea[2] >> 8;
619
620 /*
621 * Systems based on the ICH2/ICH2-M chip from Intel, as well
622 * as some i82559 designs, have a defect where the chip can
623 * cause a PCI protocol violation if it receives a CU_RESUME
624 * command when it is entering the IDLE state.
625 *
626 * The work-around is to disable Dynamic Standby Mode, so that
627 * the chip never deasserts #CLKRUN, and always remains in the
628 * active state.
629 *
630 * Unfortunately, the only way to disable Dynamic Standby is
631 * to frob an EEPROM setting and reboot (the EEPROM setting
632 * is only consulted when the PCI bus comes out of reset).
633 *
634 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
635 */
636 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
637 fxp_read_eeprom(sc, &data, 10, 1);
638 if (data & 0x02) { /* STB enable */
639 aprint_error("%s: WARNING: "
640 "Disabling dynamic standby mode in EEPROM "
641 "to work around a\n",
642 sc->sc_dev.dv_xname);
643 aprint_normal(
644 "%s: WARNING: hardware bug. You must reset "
645 "the system before using this\n",
646 sc->sc_dev.dv_xname);
647 aprint_normal("%s: WARNING: interface.\n",
648 sc->sc_dev.dv_xname);
649 data &= ~0x02;
650 fxp_write_eeprom(sc, &data, 10, 1);
651 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
652 sc->sc_dev.dv_xname, data);
653 fxp_eeprom_update_cksum(sc);
654 }
655 }
656 }
657
658 static void
659 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
660 {
661 uint16_t reg;
662 int x;
663
664 for (x = 1 << (len - 1); x != 0; x >>= 1) {
665 if (data & x)
666 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
667 else
668 reg = FXP_EEPROM_EECS;
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
670 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
671 reg | FXP_EEPROM_EESK);
672 DELAY(4);
673 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
674 DELAY(4);
675 }
676 }
677
678 /*
679 * Figure out EEPROM size.
680 *
681 * 559's can have either 64-word or 256-word EEPROMs, the 558
682 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
683 * talks about the existence of 16 to 256 word EEPROMs.
684 *
685 * The only known sizes are 64 and 256, where the 256 version is used
686 * by CardBus cards to store CIS information.
687 *
688 * The address is shifted in msb-to-lsb, and after the last
689 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
690 * after which follows the actual data. We try to detect this zero, by
691 * probing the data-out bit in the EEPROM control register just after
692 * having shifted in a bit. If the bit is zero, we assume we've
693 * shifted enough address bits. The data-out should be tri-state,
694 * before this, which should translate to a logical one.
695 *
696 * Other ways to do this would be to try to read a register with known
697 * contents with a varying number of address bits, but no such
698 * register seem to be available. The high bits of register 10 are 01
699 * on the 558 and 559, but apparently not on the 557.
700 *
701 * The Linux driver computes a checksum on the EEPROM data, but the
702 * value of this checksum is not very well documented.
703 */
704
705 void
706 fxp_autosize_eeprom(struct fxp_softc *sc)
707 {
708 int x;
709
710 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
711
712 /* Shift in read opcode. */
713 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
714
715 /*
716 * Shift in address, wait for the dummy zero following a correct
717 * address shift.
718 */
719 for (x = 1; x <= 8; x++) {
720 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
721 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
722 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
723 DELAY(4);
724 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
725 FXP_EEPROM_EEDO) == 0)
726 break;
727 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
728 DELAY(4);
729 }
730 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
731 DELAY(4);
732 if (x != 6 && x != 8) {
733 #ifdef DEBUG
734 printf("%s: strange EEPROM size (%d)\n",
735 sc->sc_dev.dv_xname, 1 << x);
736 #endif
737 } else
738 sc->sc_eeprom_size = x;
739 }
740
741 /*
742 * Read from the serial EEPROM. Basically, you manually shift in
743 * the read opcode (one bit at a time) and then shift in the address,
744 * and then you shift out the data (all of this one bit at a time).
745 * The word size is 16 bits, so you have to provide the address for
746 * every 16 bits of data.
747 */
748 void
749 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
750 {
751 u_int16_t reg;
752 int i, x;
753
754 for (i = 0; i < words; i++) {
755 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
756
757 /* Shift in read opcode. */
758 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
759
760 /* Shift in address. */
761 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
762
763 reg = FXP_EEPROM_EECS;
764 data[i] = 0;
765
766 /* Shift out data. */
767 for (x = 16; x > 0; x--) {
768 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
769 reg | FXP_EEPROM_EESK);
770 DELAY(4);
771 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
772 FXP_EEPROM_EEDO)
773 data[i] |= (1 << (x - 1));
774 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
775 DELAY(4);
776 }
777 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
778 DELAY(4);
779 }
780 }
781
782 /*
783 * Write data to the serial EEPROM.
784 */
785 void
786 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
787 {
788 int i, j;
789
790 for (i = 0; i < words; i++) {
791 /* Erase/write enable. */
792 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
793 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
794 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
795 sc->sc_eeprom_size);
796 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
797 DELAY(4);
798
799 /* Shift in write opcode, address, data. */
800 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
801 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
802 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
803 fxp_eeprom_shiftin(sc, data[i], 16);
804 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
805 DELAY(4);
806
807 /* Wait for the EEPROM to finish up. */
808 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
809 DELAY(4);
810 for (j = 0; j < 1000; j++) {
811 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
812 FXP_EEPROM_EEDO)
813 break;
814 DELAY(50);
815 }
816 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
817 DELAY(4);
818
819 /* Erase/write disable. */
820 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
821 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
822 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
823 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
824 DELAY(4);
825 }
826 }
827
828 /*
829 * Update the checksum of the EEPROM.
830 */
831 void
832 fxp_eeprom_update_cksum(struct fxp_softc *sc)
833 {
834 int i;
835 uint16_t data, cksum;
836
837 cksum = 0;
838 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
839 fxp_read_eeprom(sc, &data, i, 1);
840 cksum += data;
841 }
842 i = (1 << sc->sc_eeprom_size) - 1;
843 cksum = 0xbaba - cksum;
844 fxp_read_eeprom(sc, &data, i, 1);
845 fxp_write_eeprom(sc, &cksum, i, 1);
846 printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
847 sc->sc_dev.dv_xname, i, data, cksum);
848 }
849
850 /*
851 * Start packet transmission on the interface.
852 */
853 void
854 fxp_start(struct ifnet *ifp)
855 {
856 struct fxp_softc *sc = ifp->if_softc;
857 struct mbuf *m0, *m;
858 struct fxp_txdesc *txd;
859 struct fxp_txsoft *txs;
860 bus_dmamap_t dmamap;
861 int error, lasttx, nexttx, opending, seg;
862
863 /*
864 * If we want a re-init, bail out now.
865 */
866 if (sc->sc_flags & FXPF_WANTINIT) {
867 ifp->if_flags |= IFF_OACTIVE;
868 return;
869 }
870
871 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
872 return;
873
874 /*
875 * Remember the previous txpending and the current lasttx.
876 */
877 opending = sc->sc_txpending;
878 lasttx = sc->sc_txlast;
879
880 /*
881 * Loop through the send queue, setting up transmit descriptors
882 * until we drain the queue, or use up all available transmit
883 * descriptors.
884 */
885 for (;;) {
886 struct fxp_tbd *tbdp;
887 int csum_flags;
888
889 /*
890 * Grab a packet off the queue.
891 */
892 IFQ_POLL(&ifp->if_snd, m0);
893 if (m0 == NULL)
894 break;
895 m = NULL;
896
897 if (sc->sc_txpending == FXP_NTXCB) {
898 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
899 break;
900 }
901
902 /*
903 * Get the next available transmit descriptor.
904 */
905 nexttx = FXP_NEXTTX(sc->sc_txlast);
906 txd = FXP_CDTX(sc, nexttx);
907 txs = FXP_DSTX(sc, nexttx);
908 dmamap = txs->txs_dmamap;
909
910 /*
911 * Load the DMA map. If this fails, the packet either
912 * didn't fit in the allotted number of frags, or we were
913 * short on resources. In this case, we'll copy and try
914 * again.
915 */
916 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
917 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
918 MGETHDR(m, M_DONTWAIT, MT_DATA);
919 if (m == NULL) {
920 printf("%s: unable to allocate Tx mbuf\n",
921 sc->sc_dev.dv_xname);
922 break;
923 }
924 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
925 if (m0->m_pkthdr.len > MHLEN) {
926 MCLGET(m, M_DONTWAIT);
927 if ((m->m_flags & M_EXT) == 0) {
928 printf("%s: unable to allocate Tx "
929 "cluster\n", sc->sc_dev.dv_xname);
930 m_freem(m);
931 break;
932 }
933 }
934 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
935 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
936 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
937 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
938 if (error) {
939 printf("%s: unable to load Tx buffer, "
940 "error = %d\n", sc->sc_dev.dv_xname, error);
941 break;
942 }
943 }
944
945 IFQ_DEQUEUE(&ifp->if_snd, m0);
946 csum_flags = m0->m_pkthdr.csum_flags;
947 if (m != NULL) {
948 m_freem(m0);
949 m0 = m;
950 }
951
952 /* Initialize the fraglist. */
953 tbdp = txd->txd_tbd;
954 if (sc->sc_flags & FXPF_IPCB)
955 tbdp++;
956 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
957 tbdp[seg].tb_addr =
958 htole32(dmamap->dm_segs[seg].ds_addr);
959 tbdp[seg].tb_size =
960 htole32(dmamap->dm_segs[seg].ds_len);
961 }
962
963 /* Sync the DMA map. */
964 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
965 BUS_DMASYNC_PREWRITE);
966
967 /*
968 * Store a pointer to the packet so we can free it later.
969 */
970 txs->txs_mbuf = m0;
971
972 /*
973 * Initialize the transmit descriptor.
974 */
975 /* BIG_ENDIAN: no need to swap to store 0 */
976 txd->txd_txcb.cb_status = 0;
977 txd->txd_txcb.cb_command =
978 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
979 txd->txd_txcb.tx_threshold = tx_threshold;
980 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
981
982 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
983 if (sc->sc_flags & FXPF_IPCB) {
984 struct fxp_ipcb *ipcb;
985 /*
986 * Deal with TCP/IP checksum offload. Note that
987 * in order for TCP checksum offload to work,
988 * the pseudo header checksum must have already
989 * been computed and stored in the checksum field
990 * in the TCP header. The stack should have
991 * already done this for us.
992 */
993 ipcb = &txd->txd_u.txdu_ipcb;
994 memset(ipcb, 0, sizeof(*ipcb));
995 /*
996 * always do hardware parsing.
997 */
998 ipcb->ipcb_ip_activation_high =
999 FXP_IPCB_HARDWAREPARSING_ENABLE;
1000 /*
1001 * ip checksum offloading.
1002 */
1003 if (csum_flags & M_CSUM_IPv4) {
1004 ipcb->ipcb_ip_schedule |=
1005 FXP_IPCB_IP_CHECKSUM_ENABLE;
1006 }
1007 /*
1008 * TCP/UDP checksum offloading.
1009 */
1010 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1011 ipcb->ipcb_ip_schedule |=
1012 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1013 }
1014 } else {
1015 KASSERT((csum_flags &
1016 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1017 }
1018
1019 FXP_CDTXSYNC(sc, nexttx,
1020 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1021
1022 /* Advance the tx pointer. */
1023 sc->sc_txpending++;
1024 sc->sc_txlast = nexttx;
1025
1026 #if NBPFILTER > 0
1027 /*
1028 * Pass packet to bpf if there is a listener.
1029 */
1030 if (ifp->if_bpf)
1031 bpf_mtap(ifp->if_bpf, m0);
1032 #endif
1033 }
1034
1035 if (sc->sc_txpending == FXP_NTXCB) {
1036 /* No more slots; notify upper layer. */
1037 ifp->if_flags |= IFF_OACTIVE;
1038 }
1039
1040 if (sc->sc_txpending != opending) {
1041 /*
1042 * We enqueued packets. If the transmitter was idle,
1043 * reset the txdirty pointer.
1044 */
1045 if (opending == 0)
1046 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1047
1048 /*
1049 * Cause the chip to interrupt and suspend command
1050 * processing once the last packet we've enqueued
1051 * has been transmitted.
1052 */
1053 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1054 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1055 FXP_CDTXSYNC(sc, sc->sc_txlast,
1056 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1057
1058 /*
1059 * The entire packet chain is set up. Clear the suspend bit
1060 * on the command prior to the first packet we set up.
1061 */
1062 FXP_CDTXSYNC(sc, lasttx,
1063 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1064 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1065 htole16(~FXP_CB_COMMAND_S);
1066 FXP_CDTXSYNC(sc, lasttx,
1067 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1068
1069 /*
1070 * Issue a Resume command in case the chip was suspended.
1071 */
1072 fxp_scb_wait(sc);
1073 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1074
1075 /* Set a watchdog timer in case the chip flakes out. */
1076 ifp->if_timer = 5;
1077 }
1078 }
1079
1080 /*
1081 * Process interface interrupts.
1082 */
1083 int
1084 fxp_intr(void *arg)
1085 {
1086 struct fxp_softc *sc = arg;
1087 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1088 bus_dmamap_t rxmap;
1089 int claimed = 0;
1090 u_int8_t statack;
1091
1092 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || sc->sc_enabled == 0)
1093 return (0);
1094 /*
1095 * If the interface isn't running, don't try to
1096 * service the interrupt.. just ack it and bail.
1097 */
1098 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1099 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1100 if (statack) {
1101 claimed = 1;
1102 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1103 }
1104 return (claimed);
1105 }
1106
1107 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1108 claimed = 1;
1109
1110 /*
1111 * First ACK all the interrupts in this pass.
1112 */
1113 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1114
1115 /*
1116 * Process receiver interrupts. If a no-resource (RNR)
1117 * condition exists, get whatever packets we can and
1118 * re-start the receiver.
1119 */
1120 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1121 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1122 fxp_rxintr(sc);
1123 }
1124
1125 if (statack & FXP_SCB_STATACK_RNR) {
1126 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1127 fxp_scb_wait(sc);
1128 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1129 rxmap->dm_segs[0].ds_addr +
1130 RFA_ALIGNMENT_FUDGE);
1131 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1132 }
1133
1134 /*
1135 * Free any finished transmit mbuf chains.
1136 */
1137 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1138 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1139 fxp_txintr(sc);
1140
1141 /*
1142 * Try to get more packets going.
1143 */
1144 fxp_start(ifp);
1145
1146 if (sc->sc_txpending == 0) {
1147 /*
1148 * If we want a re-init, do that now.
1149 */
1150 if (sc->sc_flags & FXPF_WANTINIT)
1151 (void) fxp_init(ifp);
1152 }
1153 }
1154 }
1155
1156 #if NRND > 0
1157 if (claimed)
1158 rnd_add_uint32(&sc->rnd_source, statack);
1159 #endif
1160 return (claimed);
1161 }
1162
1163 /*
1164 * Handle transmit completion interrupts.
1165 */
1166 void
1167 fxp_txintr(struct fxp_softc *sc)
1168 {
1169 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1170 struct fxp_txdesc *txd;
1171 struct fxp_txsoft *txs;
1172 int i;
1173 u_int16_t txstat;
1174
1175 ifp->if_flags &= ~IFF_OACTIVE;
1176 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1177 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1178 txd = FXP_CDTX(sc, i);
1179 txs = FXP_DSTX(sc, i);
1180
1181 FXP_CDTXSYNC(sc, i,
1182 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1183
1184 txstat = le16toh(txd->txd_txcb.cb_status);
1185
1186 if ((txstat & FXP_CB_STATUS_C) == 0)
1187 break;
1188
1189 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1190 0, txs->txs_dmamap->dm_mapsize,
1191 BUS_DMASYNC_POSTWRITE);
1192 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1193 m_freem(txs->txs_mbuf);
1194 txs->txs_mbuf = NULL;
1195 }
1196
1197 /* Update the dirty transmit buffer pointer. */
1198 sc->sc_txdirty = i;
1199
1200 /*
1201 * Cancel the watchdog timer if there are no pending
1202 * transmissions.
1203 */
1204 if (sc->sc_txpending == 0)
1205 ifp->if_timer = 0;
1206 }
1207
1208 void
1209 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1210 {
1211 u_int16_t rxparsestat;
1212 u_int16_t csum_stat;
1213 u_int32_t csum_data;
1214 int csum_flags;
1215
1216 rxparsestat = le16toh(rfa->rx_parse_stat);
1217 csum_stat = le16toh(rfa->cksum_stat);
1218 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1219 return;
1220
1221 csum_flags = 0;
1222 csum_data = 0;
1223
1224 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1225 csum_flags = M_CSUM_IPv4;
1226 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1227 csum_flags |= M_CSUM_IPv4_BAD;
1228 }
1229
1230 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1231 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1232 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1233 csum_flags |= M_CSUM_TCP_UDP_BAD;
1234 }
1235
1236 m->m_pkthdr.csum_flags = csum_flags;
1237 m->m_pkthdr.csum_data = csum_data;
1238 }
1239
1240 /*
1241 * Handle receive interrupts.
1242 */
1243 void
1244 fxp_rxintr(struct fxp_softc *sc)
1245 {
1246 struct ethercom *ec = &sc->sc_ethercom;
1247 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1248 struct mbuf *m, *m0;
1249 bus_dmamap_t rxmap;
1250 struct fxp_rfa *rfa;
1251 u_int16_t len, rxstat;
1252
1253 for (;;) {
1254 m = sc->sc_rxq.ifq_head;
1255 rfa = FXP_MTORFA(m);
1256 rxmap = M_GETCTX(m, bus_dmamap_t);
1257
1258 FXP_RFASYNC(sc, m,
1259 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1260
1261 rxstat = le16toh(rfa->rfa_status);
1262
1263 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1264 /*
1265 * We have processed all of the
1266 * receive buffers.
1267 */
1268 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1269 return;
1270 }
1271
1272 IF_DEQUEUE(&sc->sc_rxq, m);
1273
1274 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1275
1276 len = le16toh(rfa->actual_size) &
1277 (m->m_ext.ext_size - 1);
1278
1279 if (len < sizeof(struct ether_header)) {
1280 /*
1281 * Runt packet; drop it now.
1282 */
1283 FXP_INIT_RFABUF(sc, m);
1284 continue;
1285 }
1286
1287 /*
1288 * If support for 802.1Q VLAN sized frames is
1289 * enabled, we need to do some additional error
1290 * checking (as we are saving bad frames, in
1291 * order to receive the larger ones).
1292 */
1293 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1294 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1295 FXP_RFA_STATUS_RNR|
1296 FXP_RFA_STATUS_ALIGN|
1297 FXP_RFA_STATUS_CRC)) != 0) {
1298 FXP_INIT_RFABUF(sc, m);
1299 continue;
1300 }
1301
1302 /* Do checksum checking. */
1303 m->m_pkthdr.csum_flags = 0;
1304 if (sc->sc_flags & FXPF_EXT_RFA)
1305 fxp_rx_hwcksum(m, rfa);
1306
1307 /*
1308 * If the packet is small enough to fit in a
1309 * single header mbuf, allocate one and copy
1310 * the data into it. This greatly reduces
1311 * memory consumption when we receive lots
1312 * of small packets.
1313 *
1314 * Otherwise, we add a new buffer to the receive
1315 * chain. If this fails, we drop the packet and
1316 * recycle the old buffer.
1317 */
1318 if (fxp_copy_small != 0 && len <= MHLEN) {
1319 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1320 if (m0 == NULL)
1321 goto dropit;
1322 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1323 memcpy(mtod(m0, caddr_t),
1324 mtod(m, caddr_t), len);
1325 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1326 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1327 FXP_INIT_RFABUF(sc, m);
1328 m = m0;
1329 } else {
1330 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1331 dropit:
1332 ifp->if_ierrors++;
1333 FXP_INIT_RFABUF(sc, m);
1334 continue;
1335 }
1336 }
1337
1338 m->m_pkthdr.rcvif = ifp;
1339 m->m_pkthdr.len = m->m_len = len;
1340
1341 #if NBPFILTER > 0
1342 /*
1343 * Pass this up to any BPF listeners, but only
1344 * pass it up the stack it its for us.
1345 */
1346 if (ifp->if_bpf)
1347 bpf_mtap(ifp->if_bpf, m);
1348 #endif
1349
1350 /* Pass it on. */
1351 (*ifp->if_input)(ifp, m);
1352 }
1353 }
1354
1355 /*
1356 * Update packet in/out/collision statistics. The i82557 doesn't
1357 * allow you to access these counters without doing a fairly
1358 * expensive DMA to get _all_ of the statistics it maintains, so
1359 * we do this operation here only once per second. The statistics
1360 * counters in the kernel are updated from the previous dump-stats
1361 * DMA and then a new dump-stats DMA is started. The on-chip
1362 * counters are zeroed when the DMA completes. If we can't start
1363 * the DMA immediately, we don't wait - we just prepare to read
1364 * them again next time.
1365 */
1366 void
1367 fxp_tick(void *arg)
1368 {
1369 struct fxp_softc *sc = arg;
1370 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1371 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1372 int s;
1373
1374 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1375 return;
1376
1377 s = splnet();
1378
1379 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1380
1381 ifp->if_opackets += le32toh(sp->tx_good);
1382 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1383 if (sp->rx_good) {
1384 ifp->if_ipackets += le32toh(sp->rx_good);
1385 sc->sc_rxidle = 0;
1386 } else {
1387 sc->sc_rxidle++;
1388 }
1389 ifp->if_ierrors +=
1390 le32toh(sp->rx_crc_errors) +
1391 le32toh(sp->rx_alignment_errors) +
1392 le32toh(sp->rx_rnr_errors) +
1393 le32toh(sp->rx_overrun_errors);
1394 /*
1395 * If any transmit underruns occurred, bump up the transmit
1396 * threshold by another 512 bytes (64 * 8).
1397 */
1398 if (sp->tx_underruns) {
1399 ifp->if_oerrors += le32toh(sp->tx_underruns);
1400 if (tx_threshold < 192)
1401 tx_threshold += 64;
1402 }
1403
1404 /*
1405 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1406 * then assume the receiver has locked up and attempt to clear
1407 * the condition by reprogramming the multicast filter (actually,
1408 * resetting the interface). This is a work-around for a bug in
1409 * the 82557 where the receiver locks up if it gets certain types
1410 * of garbage in the synchronization bits prior to the packet header.
1411 * This bug is supposed to only occur in 10Mbps mode, but has been
1412 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1413 * speed transition).
1414 */
1415 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1416 (void) fxp_init(ifp);
1417 splx(s);
1418 return;
1419 }
1420 /*
1421 * If there is no pending command, start another stats
1422 * dump. Otherwise punt for now.
1423 */
1424 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1425 /*
1426 * Start another stats dump.
1427 */
1428 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1429 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1430 } else {
1431 /*
1432 * A previous command is still waiting to be accepted.
1433 * Just zero our copy of the stats and wait for the
1434 * next timer event to update them.
1435 */
1436 /* BIG_ENDIAN: no swap required to store 0 */
1437 sp->tx_good = 0;
1438 sp->tx_underruns = 0;
1439 sp->tx_total_collisions = 0;
1440
1441 sp->rx_good = 0;
1442 sp->rx_crc_errors = 0;
1443 sp->rx_alignment_errors = 0;
1444 sp->rx_rnr_errors = 0;
1445 sp->rx_overrun_errors = 0;
1446 }
1447
1448 if (sc->sc_flags & FXPF_MII) {
1449 /* Tick the MII clock. */
1450 mii_tick(&sc->sc_mii);
1451 }
1452
1453 splx(s);
1454
1455 /*
1456 * Schedule another timeout one second from now.
1457 */
1458 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1459 }
1460
1461 /*
1462 * Drain the receive queue.
1463 */
1464 void
1465 fxp_rxdrain(struct fxp_softc *sc)
1466 {
1467 bus_dmamap_t rxmap;
1468 struct mbuf *m;
1469
1470 for (;;) {
1471 IF_DEQUEUE(&sc->sc_rxq, m);
1472 if (m == NULL)
1473 break;
1474 rxmap = M_GETCTX(m, bus_dmamap_t);
1475 bus_dmamap_unload(sc->sc_dmat, rxmap);
1476 FXP_RXMAP_PUT(sc, rxmap);
1477 m_freem(m);
1478 }
1479 }
1480
1481 /*
1482 * Stop the interface. Cancels the statistics updater and resets
1483 * the interface.
1484 */
1485 void
1486 fxp_stop(struct ifnet *ifp, int disable)
1487 {
1488 struct fxp_softc *sc = ifp->if_softc;
1489 struct fxp_txsoft *txs;
1490 int i;
1491
1492 /*
1493 * Turn down interface (done early to avoid bad interactions
1494 * between panics, shutdown hooks, and the watchdog timer)
1495 */
1496 ifp->if_timer = 0;
1497 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1498
1499 /*
1500 * Cancel stats updater.
1501 */
1502 callout_stop(&sc->sc_callout);
1503 if (sc->sc_flags & FXPF_MII) {
1504 /* Down the MII. */
1505 mii_down(&sc->sc_mii);
1506 }
1507
1508 /*
1509 * Issue software reset. This unloads any microcode that
1510 * might already be loaded.
1511 */
1512 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1513 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1514 DELAY(50);
1515
1516 /*
1517 * Release any xmit buffers.
1518 */
1519 for (i = 0; i < FXP_NTXCB; i++) {
1520 txs = FXP_DSTX(sc, i);
1521 if (txs->txs_mbuf != NULL) {
1522 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1523 m_freem(txs->txs_mbuf);
1524 txs->txs_mbuf = NULL;
1525 }
1526 }
1527 sc->sc_txpending = 0;
1528
1529 if (disable) {
1530 fxp_rxdrain(sc);
1531 fxp_disable(sc);
1532 }
1533
1534 }
1535
1536 /*
1537 * Watchdog/transmission transmit timeout handler. Called when a
1538 * transmission is started on the interface, but no interrupt is
1539 * received before the timeout. This usually indicates that the
1540 * card has wedged for some reason.
1541 */
1542 void
1543 fxp_watchdog(struct ifnet *ifp)
1544 {
1545 struct fxp_softc *sc = ifp->if_softc;
1546
1547 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1548 ifp->if_oerrors++;
1549
1550 (void) fxp_init(ifp);
1551 }
1552
1553 /*
1554 * Initialize the interface. Must be called at splnet().
1555 */
1556 int
1557 fxp_init(struct ifnet *ifp)
1558 {
1559 struct fxp_softc *sc = ifp->if_softc;
1560 struct fxp_cb_config *cbp;
1561 struct fxp_cb_ias *cb_ias;
1562 struct fxp_txdesc *txd;
1563 bus_dmamap_t rxmap;
1564 int i, prm, save_bf, lrxen, allm, error = 0;
1565
1566 if ((error = fxp_enable(sc)) != 0)
1567 goto out;
1568
1569 /*
1570 * Cancel any pending I/O
1571 */
1572 fxp_stop(ifp, 0);
1573
1574 /*
1575 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1576 * flag, and this prevents the MII from detaching resulting in
1577 * a panic. The flags field should perhaps be split in runtime
1578 * flags and more static information. For now, just clear the
1579 * only other flag set.
1580 */
1581
1582 sc->sc_flags &= ~FXPF_WANTINIT;
1583
1584 /*
1585 * Initialize base of CBL and RFA memory. Loading with zero
1586 * sets it up for regular linear addressing.
1587 */
1588 fxp_scb_wait(sc);
1589 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1590 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1591
1592 fxp_scb_wait(sc);
1593 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1594
1595 /*
1596 * Initialize the multicast filter. Do this now, since we might
1597 * have to setup the config block differently.
1598 */
1599 fxp_mc_setup(sc);
1600
1601 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1602 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1603
1604 /*
1605 * In order to support receiving 802.1Q VLAN frames, we have to
1606 * enable "save bad frames", since they are 4 bytes larger than
1607 * the normal Ethernet maximum frame length. On i82558 and later,
1608 * we have a better mechanism for this.
1609 */
1610 save_bf = 0;
1611 lrxen = 0;
1612 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1613 if (sc->sc_rev < FXP_REV_82558_A4)
1614 save_bf = 1;
1615 else
1616 lrxen = 1;
1617 }
1618
1619 /*
1620 * Initialize base of dump-stats buffer.
1621 */
1622 fxp_scb_wait(sc);
1623 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1624 sc->sc_cddma + FXP_CDSTATSOFF);
1625 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1626 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1627
1628 cbp = &sc->sc_control_data->fcd_configcb;
1629 memset(cbp, 0, sizeof(struct fxp_cb_config));
1630
1631 /*
1632 * Load microcode for this controller.
1633 */
1634 fxp_load_ucode(sc);
1635
1636 /*
1637 * This copy is kind of disgusting, but there are a bunch of must be
1638 * zero and must be one bits in this structure and this is the easiest
1639 * way to initialize them all to proper values.
1640 */
1641 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1642
1643 /* BIG_ENDIAN: no need to swap to store 0 */
1644 cbp->cb_status = 0;
1645 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1646 FXP_CB_COMMAND_EL);
1647 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1648 cbp->link_addr = 0xffffffff; /* (no) next command */
1649 /* bytes in config block */
1650 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1651 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1652 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1653 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1654 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1655 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1656 cbp->type_enable = 0; /* actually reserved */
1657 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1658 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1659 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1660 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1661 cbp->dma_mbce = 0; /* (disable) dma max counters */
1662 cbp->late_scb = 0; /* (don't) defer SCB update */
1663 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1664 cbp->ci_int = 1; /* interrupt on CU idle */
1665 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1666 cbp->ext_stats_dis = 1; /* disable extended counters */
1667 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1668 cbp->save_bf = save_bf;/* save bad frames */
1669 cbp->disc_short_rx = !prm; /* discard short packets */
1670 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1671 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1672 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1673 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1674 /* interface mode */
1675 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1676 cbp->csma_dis = 0; /* (don't) disable link */
1677 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1678 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1679 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1680 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1681 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1682 cbp->nsai = 1; /* (don't) disable source addr insert */
1683 cbp->preamble_length = 2; /* (7 byte) preamble */
1684 cbp->loopback = 0; /* (don't) loopback */
1685 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1686 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1687 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1688 cbp->promiscuous = prm; /* promiscuous mode */
1689 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1690 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1691 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1692 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1693 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1694 cbp->stripping = !prm; /* truncate rx packet to byte count */
1695 cbp->padding = 1; /* (do) pad short tx packets */
1696 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1697 cbp->long_rx_en = lrxen; /* long packet receive enable */
1698 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1699 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1700 /* must set wake_en in PMCSR also */
1701 cbp->force_fdx = 0; /* (don't) force full duplex */
1702 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1703 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1704 cbp->mc_all = allm; /* accept all multicasts */
1705 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1706
1707 if (sc->sc_rev < FXP_REV_82558_A4) {
1708 /*
1709 * The i82557 has no hardware flow control, the values
1710 * here are the defaults for the chip.
1711 */
1712 cbp->fc_delay_lsb = 0;
1713 cbp->fc_delay_msb = 0x40;
1714 cbp->pri_fc_thresh = 3;
1715 cbp->tx_fc_dis = 0;
1716 cbp->rx_fc_restop = 0;
1717 cbp->rx_fc_restart = 0;
1718 cbp->fc_filter = 0;
1719 cbp->pri_fc_loc = 1;
1720 } else {
1721 cbp->fc_delay_lsb = 0x1f;
1722 cbp->fc_delay_msb = 0x01;
1723 cbp->pri_fc_thresh = 3;
1724 cbp->tx_fc_dis = 0; /* enable transmit FC */
1725 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1726 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1727 cbp->fc_filter = !prm; /* drop FC frames to host */
1728 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1729 }
1730
1731 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1732
1733 /*
1734 * Start the config command/DMA.
1735 */
1736 fxp_scb_wait(sc);
1737 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1738 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1739 /* ...and wait for it to complete. */
1740 i = 1000;
1741 do {
1742 FXP_CDCONFIGSYNC(sc,
1743 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1744 DELAY(1);
1745 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1746 if (i == 0) {
1747 printf("%s at line %d: dmasync timeout\n",
1748 sc->sc_dev.dv_xname, __LINE__);
1749 return (ETIMEDOUT);
1750 }
1751
1752 /*
1753 * Initialize the station address.
1754 */
1755 cb_ias = &sc->sc_control_data->fcd_iascb;
1756 /* BIG_ENDIAN: no need to swap to store 0 */
1757 cb_ias->cb_status = 0;
1758 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1759 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1760 cb_ias->link_addr = 0xffffffff;
1761 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1762
1763 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1764
1765 /*
1766 * Start the IAS (Individual Address Setup) command/DMA.
1767 */
1768 fxp_scb_wait(sc);
1769 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1770 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1771 /* ...and wait for it to complete. */
1772 i = 1000;
1773 do {
1774 FXP_CDIASSYNC(sc,
1775 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1776 DELAY(1);
1777 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1778 if (i == 0) {
1779 printf("%s at line %d: dmasync timeout\n",
1780 sc->sc_dev.dv_xname, __LINE__);
1781 return (ETIMEDOUT);
1782 }
1783
1784 /*
1785 * Initialize the transmit descriptor ring. txlast is initialized
1786 * to the end of the list so that it will wrap around to the first
1787 * descriptor when the first packet is transmitted.
1788 */
1789 for (i = 0; i < FXP_NTXCB; i++) {
1790 txd = FXP_CDTX(sc, i);
1791 memset(txd, 0, sizeof(*txd));
1792 txd->txd_txcb.cb_command =
1793 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1794 txd->txd_txcb.link_addr =
1795 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1796 if (sc->sc_flags & FXPF_EXT_TXCB)
1797 txd->txd_txcb.tbd_array_addr =
1798 htole32(FXP_CDTBDADDR(sc, i) +
1799 (2 * sizeof(struct fxp_tbd)));
1800 else
1801 txd->txd_txcb.tbd_array_addr =
1802 htole32(FXP_CDTBDADDR(sc, i));
1803 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1804 }
1805 sc->sc_txpending = 0;
1806 sc->sc_txdirty = 0;
1807 sc->sc_txlast = FXP_NTXCB - 1;
1808
1809 /*
1810 * Initialize the receive buffer list.
1811 */
1812 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1813 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1814 rxmap = FXP_RXMAP_GET(sc);
1815 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1816 printf("%s: unable to allocate or map rx "
1817 "buffer %d, error = %d\n",
1818 sc->sc_dev.dv_xname,
1819 sc->sc_rxq.ifq_len, error);
1820 /*
1821 * XXX Should attempt to run with fewer receive
1822 * XXX buffers instead of just failing.
1823 */
1824 FXP_RXMAP_PUT(sc, rxmap);
1825 fxp_rxdrain(sc);
1826 goto out;
1827 }
1828 }
1829 sc->sc_rxidle = 0;
1830
1831 /*
1832 * Give the transmit ring to the chip. We do this by pointing
1833 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1834 * issuing a start command. It will execute the NOP and then
1835 * suspend, pointing at the first descriptor.
1836 */
1837 fxp_scb_wait(sc);
1838 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1839 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1840
1841 /*
1842 * Initialize receiver buffer area - RFA.
1843 */
1844 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1845 fxp_scb_wait(sc);
1846 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1847 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1848 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1849
1850 if (sc->sc_flags & FXPF_MII) {
1851 /*
1852 * Set current media.
1853 */
1854 mii_mediachg(&sc->sc_mii);
1855 }
1856
1857 /*
1858 * ...all done!
1859 */
1860 ifp->if_flags |= IFF_RUNNING;
1861 ifp->if_flags &= ~IFF_OACTIVE;
1862
1863 /*
1864 * Start the one second timer.
1865 */
1866 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1867
1868 /*
1869 * Attempt to start output on the interface.
1870 */
1871 fxp_start(ifp);
1872
1873 out:
1874 if (error) {
1875 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1876 ifp->if_timer = 0;
1877 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1878 }
1879 return (error);
1880 }
1881
1882 /*
1883 * Change media according to request.
1884 */
1885 int
1886 fxp_mii_mediachange(struct ifnet *ifp)
1887 {
1888 struct fxp_softc *sc = ifp->if_softc;
1889
1890 if (ifp->if_flags & IFF_UP)
1891 mii_mediachg(&sc->sc_mii);
1892 return (0);
1893 }
1894
1895 /*
1896 * Notify the world which media we're using.
1897 */
1898 void
1899 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1900 {
1901 struct fxp_softc *sc = ifp->if_softc;
1902
1903 if (sc->sc_enabled == 0) {
1904 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1905 ifmr->ifm_status = 0;
1906 return;
1907 }
1908
1909 mii_pollstat(&sc->sc_mii);
1910 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1911 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1912 }
1913
1914 int
1915 fxp_80c24_mediachange(struct ifnet *ifp)
1916 {
1917
1918 /* Nothing to do here. */
1919 return (0);
1920 }
1921
1922 void
1923 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1924 {
1925 struct fxp_softc *sc = ifp->if_softc;
1926
1927 /*
1928 * Media is currently-selected media. We cannot determine
1929 * the link status.
1930 */
1931 ifmr->ifm_status = 0;
1932 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1933 }
1934
1935 /*
1936 * Add a buffer to the end of the RFA buffer list.
1937 * Return 0 if successful, error code on failure.
1938 *
1939 * The RFA struct is stuck at the beginning of mbuf cluster and the
1940 * data pointer is fixed up to point just past it.
1941 */
1942 int
1943 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1944 {
1945 struct mbuf *m;
1946 int error;
1947
1948 MGETHDR(m, M_DONTWAIT, MT_DATA);
1949 if (m == NULL)
1950 return (ENOBUFS);
1951
1952 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1953 MCLGET(m, M_DONTWAIT);
1954 if ((m->m_flags & M_EXT) == 0) {
1955 m_freem(m);
1956 return (ENOBUFS);
1957 }
1958
1959 if (unload)
1960 bus_dmamap_unload(sc->sc_dmat, rxmap);
1961
1962 M_SETCTX(m, rxmap);
1963
1964 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1965 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
1966 BUS_DMA_READ|BUS_DMA_NOWAIT);
1967 if (error) {
1968 printf("%s: can't load rx DMA map %d, error = %d\n",
1969 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1970 panic("fxp_add_rfabuf"); /* XXX */
1971 }
1972
1973 FXP_INIT_RFABUF(sc, m);
1974
1975 return (0);
1976 }
1977
1978 int
1979 fxp_mdi_read(struct device *self, int phy, int reg)
1980 {
1981 struct fxp_softc *sc = (struct fxp_softc *)self;
1982 int count = 10000;
1983 int value;
1984
1985 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1986 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1987
1988 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
1989 0x10000000) == 0 && count--)
1990 DELAY(10);
1991
1992 if (count <= 0)
1993 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1994
1995 return (value & 0xffff);
1996 }
1997
1998 void
1999 fxp_statchg(struct device *self)
2000 {
2001
2002 /* Nothing to do. */
2003 }
2004
2005 void
2006 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2007 {
2008 struct fxp_softc *sc = (struct fxp_softc *)self;
2009 int count = 10000;
2010
2011 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2012 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2013 (value & 0xffff));
2014
2015 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2016 count--)
2017 DELAY(10);
2018
2019 if (count <= 0)
2020 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2021 }
2022
2023 int
2024 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2025 {
2026 struct fxp_softc *sc = ifp->if_softc;
2027 struct ifreq *ifr = (struct ifreq *)data;
2028 int s, error;
2029
2030 s = splnet();
2031
2032 switch (cmd) {
2033 case SIOCSIFMEDIA:
2034 case SIOCGIFMEDIA:
2035 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2036 break;
2037
2038 default:
2039 error = ether_ioctl(ifp, cmd, data);
2040 if (error == ENETRESET) {
2041 if (sc->sc_enabled) {
2042 /*
2043 * Multicast list has changed; set the
2044 * hardware filter accordingly.
2045 */
2046 if (sc->sc_txpending) {
2047 sc->sc_flags |= FXPF_WANTINIT;
2048 error = 0;
2049 } else
2050 error = fxp_init(ifp);
2051 } else
2052 error = 0;
2053 }
2054 break;
2055 }
2056
2057 /* Try to get more packets going. */
2058 if (sc->sc_enabled)
2059 fxp_start(ifp);
2060
2061 splx(s);
2062 return (error);
2063 }
2064
2065 /*
2066 * Program the multicast filter.
2067 *
2068 * This function must be called at splnet().
2069 */
2070 void
2071 fxp_mc_setup(struct fxp_softc *sc)
2072 {
2073 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2074 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2075 struct ethercom *ec = &sc->sc_ethercom;
2076 struct ether_multi *enm;
2077 struct ether_multistep step;
2078 int count, nmcasts;
2079
2080 #ifdef DIAGNOSTIC
2081 if (sc->sc_txpending)
2082 panic("fxp_mc_setup: pending transmissions");
2083 #endif
2084
2085 ifp->if_flags &= ~IFF_ALLMULTI;
2086
2087 /*
2088 * Initialize multicast setup descriptor.
2089 */
2090 nmcasts = 0;
2091 ETHER_FIRST_MULTI(step, ec, enm);
2092 while (enm != NULL) {
2093 /*
2094 * Check for too many multicast addresses or if we're
2095 * listening to a range. Either way, we simply have
2096 * to accept all multicasts.
2097 */
2098 if (nmcasts >= MAXMCADDR ||
2099 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2100 ETHER_ADDR_LEN) != 0) {
2101 /*
2102 * Callers of this function must do the
2103 * right thing with this. If we're called
2104 * from outside fxp_init(), the caller must
2105 * detect if the state if IFF_ALLMULTI changes.
2106 * If it does, the caller must then call
2107 * fxp_init(), since allmulti is handled by
2108 * the config block.
2109 */
2110 ifp->if_flags |= IFF_ALLMULTI;
2111 return;
2112 }
2113 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2114 ETHER_ADDR_LEN);
2115 nmcasts++;
2116 ETHER_NEXT_MULTI(step, enm);
2117 }
2118
2119 /* BIG_ENDIAN: no need to swap to store 0 */
2120 mcsp->cb_status = 0;
2121 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2122 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2123 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2124
2125 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2126
2127 /*
2128 * Wait until the command unit is not active. This should never
2129 * happen since nothing is queued, but make sure anyway.
2130 */
2131 count = 100;
2132 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2133 FXP_SCB_CUS_ACTIVE && --count)
2134 DELAY(1);
2135 if (count == 0) {
2136 printf("%s at line %d: command queue timeout\n",
2137 sc->sc_dev.dv_xname, __LINE__);
2138 return;
2139 }
2140
2141 /*
2142 * Start the multicast setup command/DMA.
2143 */
2144 fxp_scb_wait(sc);
2145 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2146 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2147
2148 /* ...and wait for it to complete. */
2149 count = 1000;
2150 do {
2151 FXP_CDMCSSYNC(sc,
2152 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2153 DELAY(1);
2154 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2155 if (count == 0) {
2156 printf("%s at line %d: dmasync timeout\n",
2157 sc->sc_dev.dv_xname, __LINE__);
2158 return;
2159 }
2160 }
2161
2162 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2163 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2164 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2165 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2166 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2167 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2168
2169 #define UCODE(x) x, sizeof(x)
2170
2171 static const struct ucode {
2172 int32_t revision;
2173 const uint32_t *ucode;
2174 size_t length;
2175 uint16_t int_delay_offset;
2176 uint16_t bundle_max_offset;
2177 } ucode_table[] = {
2178 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2179 D101_CPUSAVER_DWORD, 0 },
2180
2181 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2182 D101_CPUSAVER_DWORD, 0 },
2183
2184 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2185 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2186
2187 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2188 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2189
2190 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2191 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2192
2193 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2194 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2195
2196 { 0, NULL, 0, 0, 0 }
2197 };
2198
2199 void
2200 fxp_load_ucode(struct fxp_softc *sc)
2201 {
2202 const struct ucode *uc;
2203 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2204 int count;
2205
2206 if (sc->sc_flags & FXPF_UCODE_LOADED)
2207 return;
2208
2209 /*
2210 * Only load the uCode if the user has requested that
2211 * we do so.
2212 */
2213 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2214 sc->sc_int_delay = 0;
2215 sc->sc_bundle_max = 0;
2216 return;
2217 }
2218
2219 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2220 if (sc->sc_rev == uc->revision)
2221 break;
2222 }
2223 if (uc->ucode == NULL)
2224 return;
2225
2226 /* BIG ENDIAN: no need to swap to store 0 */
2227 cbp->cb_status = 0;
2228 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2229 cbp->link_addr = 0xffffffff; /* (no) next command */
2230 memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2231
2232 if (uc->int_delay_offset)
2233 *(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2234 htole16(fxp_int_delay + (fxp_int_delay / 2));
2235
2236 if (uc->bundle_max_offset)
2237 *(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2238 htole16(fxp_bundle_max);
2239
2240 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2241
2242 /*
2243 * Download the uCode to the chip.
2244 */
2245 fxp_scb_wait(sc);
2246 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2247 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2248
2249 /* ...and wait for it to complete. */
2250 count = 10000;
2251 do {
2252 FXP_CDUCODESYNC(sc,
2253 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2254 DELAY(2);
2255 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2256 if (count == 0) {
2257 sc->sc_int_delay = 0;
2258 sc->sc_bundle_max = 0;
2259 printf("%s: timeout loading microcode\n",
2260 sc->sc_dev.dv_xname);
2261 return;
2262 }
2263
2264 if (sc->sc_int_delay != fxp_int_delay ||
2265 sc->sc_bundle_max != fxp_bundle_max) {
2266 sc->sc_int_delay = fxp_int_delay;
2267 sc->sc_bundle_max = fxp_bundle_max;
2268 printf("%s: Microcode loaded: int delay: %d usec, "
2269 "max bundle: %d\n", sc->sc_dev.dv_xname,
2270 sc->sc_int_delay,
2271 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2272 }
2273
2274 sc->sc_flags |= FXPF_UCODE_LOADED;
2275 }
2276
2277 int
2278 fxp_enable(struct fxp_softc *sc)
2279 {
2280
2281 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2282 if ((*sc->sc_enable)(sc) != 0) {
2283 printf("%s: device enable failed\n",
2284 sc->sc_dev.dv_xname);
2285 return (EIO);
2286 }
2287 }
2288
2289 sc->sc_enabled = 1;
2290 return (0);
2291 }
2292
2293 void
2294 fxp_disable(struct fxp_softc *sc)
2295 {
2296
2297 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2298 (*sc->sc_disable)(sc);
2299 sc->sc_enabled = 0;
2300 }
2301 }
2302
2303 /*
2304 * fxp_activate:
2305 *
2306 * Handle device activation/deactivation requests.
2307 */
2308 int
2309 fxp_activate(struct device *self, enum devact act)
2310 {
2311 struct fxp_softc *sc = (void *) self;
2312 int s, error = 0;
2313
2314 s = splnet();
2315 switch (act) {
2316 case DVACT_ACTIVATE:
2317 error = EOPNOTSUPP;
2318 break;
2319
2320 case DVACT_DEACTIVATE:
2321 if (sc->sc_flags & FXPF_MII)
2322 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2323 MII_OFFSET_ANY);
2324 if_deactivate(&sc->sc_ethercom.ec_if);
2325 break;
2326 }
2327 splx(s);
2328
2329 return (error);
2330 }
2331
2332 /*
2333 * fxp_detach:
2334 *
2335 * Detach an i82557 interface.
2336 */
2337 int
2338 fxp_detach(struct fxp_softc *sc)
2339 {
2340 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2341 int i;
2342
2343 /* Succeed now if there's no work to do. */
2344 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2345 return (0);
2346
2347 /* Unhook our tick handler. */
2348 callout_stop(&sc->sc_callout);
2349
2350 if (sc->sc_flags & FXPF_MII) {
2351 /* Detach all PHYs */
2352 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2353 }
2354
2355 /* Delete all remaining media. */
2356 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2357
2358 #if NRND > 0
2359 rnd_detach_source(&sc->rnd_source);
2360 #endif
2361 ether_ifdetach(ifp);
2362 if_detach(ifp);
2363
2364 for (i = 0; i < FXP_NRFABUFS; i++) {
2365 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2366 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2367 }
2368
2369 for (i = 0; i < FXP_NTXCB; i++) {
2370 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2371 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2372 }
2373
2374 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2375 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2376 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2377 sizeof(struct fxp_control_data));
2378 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2379
2380 shutdownhook_disestablish(sc->sc_sdhook);
2381 powerhook_disestablish(sc->sc_powerhook);
2382
2383 return (0);
2384 }
2385