i82557.c revision 1.80 1 /* $NetBSD: i82557.c,v 1.80 2004/02/19 13:34:51 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.80 2004/02/19 13:34:51 yamt Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91
92 #include <machine/endian.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #if NRND > 0
97 #include <sys/rnd.h>
98 #endif
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111
112 #include <dev/mii/miivar.h>
113
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116
117 #include <dev/microcode/i8255x/rcvbundl.h>
118
119 /*
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
127 */
128 #define RFA_ALIGNMENT_FUDGE 2
129
130 /*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138 const u_int8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
174 };
175
176 void fxp_mii_initmedia(struct fxp_softc *);
177 int fxp_mii_mediachange(struct ifnet *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 void fxp_rxintr(struct fxp_softc *);
192
193 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
194
195 void fxp_rxdrain(struct fxp_softc *);
196 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197 int fxp_mdi_read(struct device *, int, int);
198 void fxp_statchg(struct device *);
199 void fxp_mdi_write(struct device *, int, int, int);
200 void fxp_autosize_eeprom(struct fxp_softc*);
201 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_eeprom_update_cksum(struct fxp_softc *);
204 void fxp_get_info(struct fxp_softc *, u_int8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207 void fxp_load_ucode(struct fxp_softc *);
208
209 void fxp_shutdown(void *);
210 void fxp_power(int, void *);
211
212 int fxp_copy_small = 0;
213
214 /*
215 * Variables for interrupt mitigating microcode.
216 */
217 int fxp_int_delay = 1000; /* usec */
218 int fxp_bundle_max = 6; /* packets */
219
220 struct fxp_phytype {
221 int fp_phy; /* type of PHY, -1 for MII at the end. */
222 void (*fp_init)(struct fxp_softc *);
223 } fxp_phytype_table[] = {
224 { FXP_PHY_80C24, fxp_80c24_initmedia },
225 { -1, fxp_mii_initmedia },
226 };
227
228 /*
229 * Set initial transmit threshold at 64 (512 bytes). This is
230 * increased by 64 (512 bytes) at a time, to maximum of 192
231 * (1536 bytes), if an underrun occurs.
232 */
233 static int tx_threshold = 64;
234
235 /*
236 * Wait for the previous command to be accepted (but not necessarily
237 * completed).
238 */
239 static __inline void
240 fxp_scb_wait(struct fxp_softc *sc)
241 {
242 int i = 10000;
243
244 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
245 delay(2);
246 if (i == 0)
247 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
248 }
249
250 /*
251 * Submit a command to the i82557.
252 */
253 static __inline void
254 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
255 {
256
257 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
258 }
259
260 /*
261 * Finish attaching an i82557 interface. Called by bus-specific front-end.
262 */
263 void
264 fxp_attach(struct fxp_softc *sc)
265 {
266 u_int8_t enaddr[ETHER_ADDR_LEN];
267 struct ifnet *ifp;
268 bus_dma_segment_t seg;
269 int rseg, i, error;
270 struct fxp_phytype *fp;
271
272 callout_init(&sc->sc_callout);
273
274 /*
275 * Enable some good stuff on i82558 and later.
276 */
277 if (sc->sc_rev >= FXP_REV_82558_A4) {
278 /* Enable the extended TxCB. */
279 sc->sc_flags |= FXPF_EXT_TXCB;
280 }
281
282 /*
283 * Enable use of extended RFDs and TCBs for 82550
284 * and later chips. Note: we need extended TXCB support
285 * too, but that's already enabled by the code above.
286 * Be careful to do this only on the right devices.
287 */
288 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
289 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
290 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
291 } else {
292 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
293 }
294
295 sc->sc_rfa_size =
296 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
297
298 /*
299 * Allocate the control data structures, and create and load the
300 * DMA map for it.
301 */
302 if ((error = bus_dmamem_alloc(sc->sc_dmat,
303 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
304 0)) != 0) {
305 aprint_error(
306 "%s: unable to allocate control data, error = %d\n",
307 sc->sc_dev.dv_xname, error);
308 goto fail_0;
309 }
310
311 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
312 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
313 BUS_DMA_COHERENT)) != 0) {
314 aprint_error("%s: unable to map control data, error = %d\n",
315 sc->sc_dev.dv_xname, error);
316 goto fail_1;
317 }
318 sc->sc_cdseg = seg;
319 sc->sc_cdnseg = rseg;
320
321 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
322
323 if ((error = bus_dmamap_create(sc->sc_dmat,
324 sizeof(struct fxp_control_data), 1,
325 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
326 aprint_error("%s: unable to create control data DMA map, "
327 "error = %d\n", sc->sc_dev.dv_xname, error);
328 goto fail_2;
329 }
330
331 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
332 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
333 0)) != 0) {
334 aprint_error(
335 "%s: can't load control data DMA map, error = %d\n",
336 sc->sc_dev.dv_xname, error);
337 goto fail_3;
338 }
339
340 /*
341 * Create the transmit buffer DMA maps.
342 */
343 for (i = 0; i < FXP_NTXCB; i++) {
344 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
345 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
346 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
347 aprint_error("%s: unable to create tx DMA map %d, "
348 "error = %d\n", sc->sc_dev.dv_xname, i, error);
349 goto fail_4;
350 }
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < FXP_NRFABUFS; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
359 aprint_error("%s: unable to create rx DMA map %d, "
360 "error = %d\n", sc->sc_dev.dv_xname, i, error);
361 goto fail_5;
362 }
363 }
364
365 /* Initialize MAC address and media structures. */
366 fxp_get_info(sc, enaddr);
367
368 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
369 ether_sprintf(enaddr));
370
371 ifp = &sc->sc_ethercom.ec_if;
372
373 /*
374 * Get info about our media interface, and initialize it. Note
375 * the table terminates itself with a phy of -1, indicating
376 * that we're using MII.
377 */
378 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
379 if (fp->fp_phy == sc->phy_primary_device)
380 break;
381 (*fp->fp_init)(sc);
382
383 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
384 ifp->if_softc = sc;
385 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
386 ifp->if_ioctl = fxp_ioctl;
387 ifp->if_start = fxp_start;
388 ifp->if_watchdog = fxp_watchdog;
389 ifp->if_init = fxp_init;
390 ifp->if_stop = fxp_stop;
391 IFQ_SET_READY(&ifp->if_snd);
392
393 if (sc->sc_flags & FXPF_IPCB) {
394 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
395 /*
396 * IFCAP_CSUM_IPv4 seems to have a problem,
397 * at least, on i82550 rev.12.
398 * specifically, it doesn't calculate ipv4 checksum correctly
399 * when sending 20 byte ipv4 header + 1 or 2 byte data.
400 * FreeBSD driver has related comments.
401 *
402 * XXX we should have separate IFCAP flags
403 * for transmit and receive.
404 */
405 ifp->if_capabilities =
406 /*IFCAP_CSUM_IPv4 |*/ IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
407 }
408
409 /*
410 * We can support 802.1Q VLAN-sized frames.
411 */
412 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
413
414 /*
415 * Attach the interface.
416 */
417 if_attach(ifp);
418 ether_ifattach(ifp, enaddr);
419 #if NRND > 0
420 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
421 RND_TYPE_NET, 0);
422 #endif
423
424 #ifdef FXP_EVENT_COUNTERS
425 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
426 NULL, sc->sc_dev.dv_xname, "txstall");
427 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
428 NULL, sc->sc_dev.dv_xname, "txintr");
429 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
430 NULL, sc->sc_dev.dv_xname, "rxintr");
431 #endif /* FXP_EVENT_COUNTERS */
432
433 /*
434 * Add shutdown hook so that DMA is disabled prior to reboot. Not
435 * doing do could allow DMA to corrupt kernel memory during the
436 * reboot before the driver initializes.
437 */
438 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
439 if (sc->sc_sdhook == NULL)
440 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
441 sc->sc_dev.dv_xname);
442 /*
443 * Add suspend hook, for similar reasons..
444 */
445 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
446 if (sc->sc_powerhook == NULL)
447 aprint_error("%s: WARNING: unable to establish power hook\n",
448 sc->sc_dev.dv_xname);
449
450 /* The attach is successful. */
451 sc->sc_flags |= FXPF_ATTACHED;
452
453 return;
454
455 /*
456 * Free any resources we've allocated during the failed attach
457 * attempt. Do this in reverse order and fall though.
458 */
459 fail_5:
460 for (i = 0; i < FXP_NRFABUFS; i++) {
461 if (sc->sc_rxmaps[i] != NULL)
462 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
463 }
464 fail_4:
465 for (i = 0; i < FXP_NTXCB; i++) {
466 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
467 bus_dmamap_destroy(sc->sc_dmat,
468 FXP_DSTX(sc, i)->txs_dmamap);
469 }
470 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
471 fail_3:
472 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
473 fail_2:
474 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
475 sizeof(struct fxp_control_data));
476 fail_1:
477 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
478 fail_0:
479 return;
480 }
481
482 void
483 fxp_mii_initmedia(struct fxp_softc *sc)
484 {
485 int flags;
486
487 sc->sc_flags |= FXPF_MII;
488
489 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
490 sc->sc_mii.mii_readreg = fxp_mdi_read;
491 sc->sc_mii.mii_writereg = fxp_mdi_write;
492 sc->sc_mii.mii_statchg = fxp_statchg;
493 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
494 fxp_mii_mediastatus);
495
496 flags = MIIF_NOISOLATE;
497 if (sc->sc_rev >= FXP_REV_82558_A4)
498 flags |= MIIF_DOPAUSE;
499 /*
500 * The i82557 wedges if all of its PHYs are isolated!
501 */
502 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
503 MII_OFFSET_ANY, flags);
504 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
505 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
506 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
507 } else
508 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
509 }
510
511 void
512 fxp_80c24_initmedia(struct fxp_softc *sc)
513 {
514
515 /*
516 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
517 * doesn't have a programming interface of any sort. The
518 * media is sensed automatically based on how the link partner
519 * is configured. This is, in essence, manual configuration.
520 */
521 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
522 sc->sc_dev.dv_xname);
523 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
524 fxp_80c24_mediastatus);
525 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
526 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
527 }
528
529 /*
530 * Device shutdown routine. Called at system shutdown after sync. The
531 * main purpose of this routine is to shut off receiver DMA so that
532 * kernel memory doesn't get clobbered during warmboot.
533 */
534 void
535 fxp_shutdown(void *arg)
536 {
537 struct fxp_softc *sc = arg;
538
539 /*
540 * Since the system's going to halt shortly, don't bother
541 * freeing mbufs.
542 */
543 fxp_stop(&sc->sc_ethercom.ec_if, 0);
544 }
545 /*
546 * Power handler routine. Called when the system is transitioning
547 * into/out of power save modes. As with fxp_shutdown, the main
548 * purpose of this routine is to shut off receiver DMA so it doesn't
549 * clobber kernel memory at the wrong time.
550 */
551 void
552 fxp_power(int why, void *arg)
553 {
554 struct fxp_softc *sc = arg;
555 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
556 int s;
557
558 s = splnet();
559 switch (why) {
560 case PWR_SUSPEND:
561 case PWR_STANDBY:
562 fxp_stop(ifp, 0);
563 break;
564 case PWR_RESUME:
565 if (ifp->if_flags & IFF_UP)
566 fxp_init(ifp);
567 break;
568 case PWR_SOFTSUSPEND:
569 case PWR_SOFTSTANDBY:
570 case PWR_SOFTRESUME:
571 break;
572 }
573 splx(s);
574 }
575
576 /*
577 * Initialize the interface media.
578 */
579 void
580 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
581 {
582 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
583
584 /*
585 * Reset to a stable state.
586 */
587 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
588 DELAY(100);
589
590 sc->sc_eeprom_size = 0;
591 fxp_autosize_eeprom(sc);
592 if (sc->sc_eeprom_size == 0) {
593 aprint_error("%s: failed to detect EEPROM size\n",
594 sc->sc_dev.dv_xname);
595 sc->sc_eeprom_size = 6; /* XXX panic here? */
596 }
597 #ifdef DEBUG
598 aprint_debug("%s: detected %d word EEPROM\n",
599 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
600 #endif
601
602 /*
603 * Get info about the primary PHY
604 */
605 fxp_read_eeprom(sc, &data, 6, 1);
606 sc->phy_primary_device =
607 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
608
609 /*
610 * Read MAC address.
611 */
612 fxp_read_eeprom(sc, myea, 0, 3);
613 enaddr[0] = myea[0] & 0xff;
614 enaddr[1] = myea[0] >> 8;
615 enaddr[2] = myea[1] & 0xff;
616 enaddr[3] = myea[1] >> 8;
617 enaddr[4] = myea[2] & 0xff;
618 enaddr[5] = myea[2] >> 8;
619
620 /*
621 * Systems based on the ICH2/ICH2-M chip from Intel, as well
622 * as some i82559 designs, have a defect where the chip can
623 * cause a PCI protocol violation if it receives a CU_RESUME
624 * command when it is entering the IDLE state.
625 *
626 * The work-around is to disable Dynamic Standby Mode, so that
627 * the chip never deasserts #CLKRUN, and always remains in the
628 * active state.
629 *
630 * Unfortunately, the only way to disable Dynamic Standby is
631 * to frob an EEPROM setting and reboot (the EEPROM setting
632 * is only consulted when the PCI bus comes out of reset).
633 *
634 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
635 */
636 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
637 fxp_read_eeprom(sc, &data, 10, 1);
638 if (data & 0x02) { /* STB enable */
639 aprint_error("%s: WARNING: "
640 "Disabling dynamic standby mode in EEPROM "
641 "to work around a\n",
642 sc->sc_dev.dv_xname);
643 aprint_normal(
644 "%s: WARNING: hardware bug. You must reset "
645 "the system before using this\n",
646 sc->sc_dev.dv_xname);
647 aprint_normal("%s: WARNING: interface.\n",
648 sc->sc_dev.dv_xname);
649 data &= ~0x02;
650 fxp_write_eeprom(sc, &data, 10, 1);
651 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
652 sc->sc_dev.dv_xname, data);
653 fxp_eeprom_update_cksum(sc);
654 }
655 }
656 }
657
658 static void
659 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
660 {
661 uint16_t reg;
662 int x;
663
664 for (x = 1 << (len - 1); x != 0; x >>= 1) {
665 DELAY(40);
666 if (data & x)
667 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
668 else
669 reg = FXP_EEPROM_EECS;
670 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
671 DELAY(40);
672 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
673 reg | FXP_EEPROM_EESK);
674 DELAY(40);
675 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
676 }
677 DELAY(40);
678 }
679
680 /*
681 * Figure out EEPROM size.
682 *
683 * 559's can have either 64-word or 256-word EEPROMs, the 558
684 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
685 * talks about the existence of 16 to 256 word EEPROMs.
686 *
687 * The only known sizes are 64 and 256, where the 256 version is used
688 * by CardBus cards to store CIS information.
689 *
690 * The address is shifted in msb-to-lsb, and after the last
691 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
692 * after which follows the actual data. We try to detect this zero, by
693 * probing the data-out bit in the EEPROM control register just after
694 * having shifted in a bit. If the bit is zero, we assume we've
695 * shifted enough address bits. The data-out should be tri-state,
696 * before this, which should translate to a logical one.
697 *
698 * Other ways to do this would be to try to read a register with known
699 * contents with a varying number of address bits, but no such
700 * register seem to be available. The high bits of register 10 are 01
701 * on the 558 and 559, but apparently not on the 557.
702 *
703 * The Linux driver computes a checksum on the EEPROM data, but the
704 * value of this checksum is not very well documented.
705 */
706
707 void
708 fxp_autosize_eeprom(struct fxp_softc *sc)
709 {
710 int x;
711
712 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
713 DELAY(40);
714
715 /* Shift in read opcode. */
716 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
717
718 /*
719 * Shift in address, wait for the dummy zero following a correct
720 * address shift.
721 */
722 for (x = 1; x <= 8; x++) {
723 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
724 DELAY(40);
725 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
726 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
727 DELAY(40);
728 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
729 FXP_EEPROM_EEDO) == 0)
730 break;
731 DELAY(40);
732 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
733 DELAY(40);
734 }
735 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
736 DELAY(40);
737 if (x != 6 && x != 8) {
738 #ifdef DEBUG
739 printf("%s: strange EEPROM size (%d)\n",
740 sc->sc_dev.dv_xname, 1 << x);
741 #endif
742 } else
743 sc->sc_eeprom_size = x;
744 }
745
746 /*
747 * Read from the serial EEPROM. Basically, you manually shift in
748 * the read opcode (one bit at a time) and then shift in the address,
749 * and then you shift out the data (all of this one bit at a time).
750 * The word size is 16 bits, so you have to provide the address for
751 * every 16 bits of data.
752 */
753 void
754 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
755 {
756 u_int16_t reg;
757 int i, x;
758
759 for (i = 0; i < words; i++) {
760 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
761
762 /* Shift in read opcode. */
763 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
764
765 /* Shift in address. */
766 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
767
768 reg = FXP_EEPROM_EECS;
769 data[i] = 0;
770
771 /* Shift out data. */
772 for (x = 16; x > 0; x--) {
773 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
774 reg | FXP_EEPROM_EESK);
775 DELAY(40);
776 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
777 FXP_EEPROM_EEDO)
778 data[i] |= (1 << (x - 1));
779 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
780 DELAY(40);
781 }
782 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
783 DELAY(40);
784 }
785 }
786
787 /*
788 * Write data to the serial EEPROM.
789 */
790 void
791 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
792 {
793 int i, j;
794
795 for (i = 0; i < words; i++) {
796 /* Erase/write enable. */
797 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
798 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
799 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
800 sc->sc_eeprom_size);
801 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
802 DELAY(4);
803
804 /* Shift in write opcode, address, data. */
805 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
806 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
807 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
808 fxp_eeprom_shiftin(sc, data[i], 16);
809 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
810 DELAY(4);
811
812 /* Wait for the EEPROM to finish up. */
813 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
814 DELAY(4);
815 for (j = 0; j < 1000; j++) {
816 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
817 FXP_EEPROM_EEDO)
818 break;
819 DELAY(50);
820 }
821 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
822 DELAY(4);
823
824 /* Erase/write disable. */
825 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
826 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
827 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
828 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
829 DELAY(4);
830 }
831 }
832
833 /*
834 * Update the checksum of the EEPROM.
835 */
836 void
837 fxp_eeprom_update_cksum(struct fxp_softc *sc)
838 {
839 int i;
840 uint16_t data, cksum;
841
842 cksum = 0;
843 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
844 fxp_read_eeprom(sc, &data, i, 1);
845 cksum += data;
846 }
847 i = (1 << sc->sc_eeprom_size) - 1;
848 cksum = 0xbaba - cksum;
849 fxp_read_eeprom(sc, &data, i, 1);
850 fxp_write_eeprom(sc, &cksum, i, 1);
851 printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
852 sc->sc_dev.dv_xname, i, data, cksum);
853 }
854
855 /*
856 * Start packet transmission on the interface.
857 */
858 void
859 fxp_start(struct ifnet *ifp)
860 {
861 struct fxp_softc *sc = ifp->if_softc;
862 struct mbuf *m0, *m;
863 struct fxp_txdesc *txd;
864 struct fxp_txsoft *txs;
865 bus_dmamap_t dmamap;
866 int error, lasttx, nexttx, opending, seg;
867
868 /*
869 * If we want a re-init, bail out now.
870 */
871 if (sc->sc_flags & FXPF_WANTINIT) {
872 ifp->if_flags |= IFF_OACTIVE;
873 return;
874 }
875
876 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
877 return;
878
879 /*
880 * Remember the previous txpending and the current lasttx.
881 */
882 opending = sc->sc_txpending;
883 lasttx = sc->sc_txlast;
884
885 /*
886 * Loop through the send queue, setting up transmit descriptors
887 * until we drain the queue, or use up all available transmit
888 * descriptors.
889 */
890 for (;;) {
891 struct fxp_tbd *tbdp;
892 int csum_flags;
893
894 /*
895 * Grab a packet off the queue.
896 */
897 IFQ_POLL(&ifp->if_snd, m0);
898 if (m0 == NULL)
899 break;
900 m = NULL;
901
902 if (sc->sc_txpending == FXP_NTXCB) {
903 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
904 break;
905 }
906
907 /*
908 * Get the next available transmit descriptor.
909 */
910 nexttx = FXP_NEXTTX(sc->sc_txlast);
911 txd = FXP_CDTX(sc, nexttx);
912 txs = FXP_DSTX(sc, nexttx);
913 dmamap = txs->txs_dmamap;
914
915 /*
916 * Load the DMA map. If this fails, the packet either
917 * didn't fit in the allotted number of frags, or we were
918 * short on resources. In this case, we'll copy and try
919 * again.
920 */
921 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
922 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
923 MGETHDR(m, M_DONTWAIT, MT_DATA);
924 if (m == NULL) {
925 printf("%s: unable to allocate Tx mbuf\n",
926 sc->sc_dev.dv_xname);
927 break;
928 }
929 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
930 if (m0->m_pkthdr.len > MHLEN) {
931 MCLGET(m, M_DONTWAIT);
932 if ((m->m_flags & M_EXT) == 0) {
933 printf("%s: unable to allocate Tx "
934 "cluster\n", sc->sc_dev.dv_xname);
935 m_freem(m);
936 break;
937 }
938 }
939 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
940 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
941 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
942 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
943 if (error) {
944 printf("%s: unable to load Tx buffer, "
945 "error = %d\n", sc->sc_dev.dv_xname, error);
946 break;
947 }
948 }
949
950 IFQ_DEQUEUE(&ifp->if_snd, m0);
951 csum_flags = m0->m_pkthdr.csum_flags;
952 if (m != NULL) {
953 m_freem(m0);
954 m0 = m;
955 }
956
957 /* Initialize the fraglist. */
958 tbdp = txd->txd_tbd;
959 if (sc->sc_flags & FXPF_IPCB)
960 tbdp++;
961 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
962 tbdp[seg].tb_addr =
963 htole32(dmamap->dm_segs[seg].ds_addr);
964 tbdp[seg].tb_size =
965 htole32(dmamap->dm_segs[seg].ds_len);
966 }
967
968 /* Sync the DMA map. */
969 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
970 BUS_DMASYNC_PREWRITE);
971
972 /*
973 * Store a pointer to the packet so we can free it later.
974 */
975 txs->txs_mbuf = m0;
976
977 /*
978 * Initialize the transmit descriptor.
979 */
980 /* BIG_ENDIAN: no need to swap to store 0 */
981 txd->txd_txcb.cb_status = 0;
982 txd->txd_txcb.cb_command =
983 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
984 txd->txd_txcb.tx_threshold = tx_threshold;
985 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
986
987 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
988 if (sc->sc_flags & FXPF_IPCB) {
989 struct fxp_ipcb *ipcb;
990 /*
991 * Deal with TCP/IP checksum offload. Note that
992 * in order for TCP checksum offload to work,
993 * the pseudo header checksum must have already
994 * been computed and stored in the checksum field
995 * in the TCP header. The stack should have
996 * already done this for us.
997 */
998 ipcb = &txd->txd_u.txdu_ipcb;
999 memset(ipcb, 0, sizeof(*ipcb));
1000 /*
1001 * always do hardware parsing.
1002 */
1003 ipcb->ipcb_ip_activation_high =
1004 FXP_IPCB_HARDWAREPARSING_ENABLE;
1005 /*
1006 * ip checksum offloading.
1007 */
1008 if (csum_flags & M_CSUM_IPv4) {
1009 ipcb->ipcb_ip_schedule |=
1010 FXP_IPCB_IP_CHECKSUM_ENABLE;
1011 }
1012 /*
1013 * TCP/UDP checksum offloading.
1014 */
1015 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1016 ipcb->ipcb_ip_schedule |=
1017 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1018 }
1019 } else {
1020 KASSERT((csum_flags &
1021 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1022 }
1023
1024 FXP_CDTXSYNC(sc, nexttx,
1025 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1026
1027 /* Advance the tx pointer. */
1028 sc->sc_txpending++;
1029 sc->sc_txlast = nexttx;
1030
1031 #if NBPFILTER > 0
1032 /*
1033 * Pass packet to bpf if there is a listener.
1034 */
1035 if (ifp->if_bpf)
1036 bpf_mtap(ifp->if_bpf, m0);
1037 #endif
1038 }
1039
1040 if (sc->sc_txpending == FXP_NTXCB) {
1041 /* No more slots; notify upper layer. */
1042 ifp->if_flags |= IFF_OACTIVE;
1043 }
1044
1045 if (sc->sc_txpending != opending) {
1046 /*
1047 * We enqueued packets. If the transmitter was idle,
1048 * reset the txdirty pointer.
1049 */
1050 if (opending == 0)
1051 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1052
1053 /*
1054 * Cause the chip to interrupt and suspend command
1055 * processing once the last packet we've enqueued
1056 * has been transmitted.
1057 */
1058 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1059 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1060 FXP_CDTXSYNC(sc, sc->sc_txlast,
1061 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1062
1063 /*
1064 * The entire packet chain is set up. Clear the suspend bit
1065 * on the command prior to the first packet we set up.
1066 */
1067 FXP_CDTXSYNC(sc, lasttx,
1068 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1069 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1070 htole16(~FXP_CB_COMMAND_S);
1071 FXP_CDTXSYNC(sc, lasttx,
1072 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1073
1074 /*
1075 * Issue a Resume command in case the chip was suspended.
1076 */
1077 fxp_scb_wait(sc);
1078 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1079
1080 /* Set a watchdog timer in case the chip flakes out. */
1081 ifp->if_timer = 5;
1082 }
1083 }
1084
1085 /*
1086 * Process interface interrupts.
1087 */
1088 int
1089 fxp_intr(void *arg)
1090 {
1091 struct fxp_softc *sc = arg;
1092 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1093 bus_dmamap_t rxmap;
1094 int claimed = 0;
1095 u_int8_t statack;
1096
1097 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || sc->sc_enabled == 0)
1098 return (0);
1099 /*
1100 * If the interface isn't running, don't try to
1101 * service the interrupt.. just ack it and bail.
1102 */
1103 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1104 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1105 if (statack) {
1106 claimed = 1;
1107 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1108 }
1109 return (claimed);
1110 }
1111
1112 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1113 claimed = 1;
1114
1115 /*
1116 * First ACK all the interrupts in this pass.
1117 */
1118 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1119
1120 /*
1121 * Process receiver interrupts. If a no-resource (RNR)
1122 * condition exists, get whatever packets we can and
1123 * re-start the receiver.
1124 */
1125 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1126 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1127 fxp_rxintr(sc);
1128 }
1129
1130 if (statack & FXP_SCB_STATACK_RNR) {
1131 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1132 fxp_scb_wait(sc);
1133 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1134 rxmap->dm_segs[0].ds_addr +
1135 RFA_ALIGNMENT_FUDGE);
1136 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1137 }
1138
1139 /*
1140 * Free any finished transmit mbuf chains.
1141 */
1142 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1143 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1144 fxp_txintr(sc);
1145
1146 /*
1147 * Try to get more packets going.
1148 */
1149 fxp_start(ifp);
1150
1151 if (sc->sc_txpending == 0) {
1152 /*
1153 * If we want a re-init, do that now.
1154 */
1155 if (sc->sc_flags & FXPF_WANTINIT)
1156 (void) fxp_init(ifp);
1157 }
1158 }
1159 }
1160
1161 #if NRND > 0
1162 if (claimed)
1163 rnd_add_uint32(&sc->rnd_source, statack);
1164 #endif
1165 return (claimed);
1166 }
1167
1168 /*
1169 * Handle transmit completion interrupts.
1170 */
1171 void
1172 fxp_txintr(struct fxp_softc *sc)
1173 {
1174 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1175 struct fxp_txdesc *txd;
1176 struct fxp_txsoft *txs;
1177 int i;
1178 u_int16_t txstat;
1179
1180 ifp->if_flags &= ~IFF_OACTIVE;
1181 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1182 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1183 txd = FXP_CDTX(sc, i);
1184 txs = FXP_DSTX(sc, i);
1185
1186 FXP_CDTXSYNC(sc, i,
1187 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1188
1189 txstat = le16toh(txd->txd_txcb.cb_status);
1190
1191 if ((txstat & FXP_CB_STATUS_C) == 0)
1192 break;
1193
1194 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1195 0, txs->txs_dmamap->dm_mapsize,
1196 BUS_DMASYNC_POSTWRITE);
1197 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1198 m_freem(txs->txs_mbuf);
1199 txs->txs_mbuf = NULL;
1200 }
1201
1202 /* Update the dirty transmit buffer pointer. */
1203 sc->sc_txdirty = i;
1204
1205 /*
1206 * Cancel the watchdog timer if there are no pending
1207 * transmissions.
1208 */
1209 if (sc->sc_txpending == 0)
1210 ifp->if_timer = 0;
1211 }
1212
1213 /*
1214 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1215 */
1216
1217 int
1218 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1219 {
1220 u_int16_t rxparsestat;
1221 u_int16_t csum_stat;
1222 u_int32_t csum_data;
1223 int csum_flags;
1224
1225 /*
1226 * check VLAN tag stripping.
1227 */
1228
1229 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1230 struct m_tag *vtag;
1231
1232 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1233 if (vtag == NULL)
1234 return ENOMEM;
1235 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1236 m_tag_prepend(m, vtag);
1237 }
1238
1239 /*
1240 * check H/W Checksumming.
1241 */
1242
1243 csum_stat = le16toh(rfa->cksum_stat);
1244 rxparsestat = le16toh(rfa->rx_parse_stat);
1245 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1246 return 0;
1247
1248 csum_flags = 0;
1249 csum_data = 0;
1250
1251 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1252 csum_flags = M_CSUM_IPv4;
1253 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1254 csum_flags |= M_CSUM_IPv4_BAD;
1255 }
1256
1257 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1258 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1259 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1260 csum_flags |= M_CSUM_TCP_UDP_BAD;
1261 }
1262
1263 m->m_pkthdr.csum_flags = csum_flags;
1264 m->m_pkthdr.csum_data = csum_data;
1265
1266 return 0;
1267 }
1268
1269 /*
1270 * Handle receive interrupts.
1271 */
1272 void
1273 fxp_rxintr(struct fxp_softc *sc)
1274 {
1275 struct ethercom *ec = &sc->sc_ethercom;
1276 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1277 struct mbuf *m, *m0;
1278 bus_dmamap_t rxmap;
1279 struct fxp_rfa *rfa;
1280 u_int16_t len, rxstat;
1281
1282 for (;;) {
1283 m = sc->sc_rxq.ifq_head;
1284 rfa = FXP_MTORFA(m);
1285 rxmap = M_GETCTX(m, bus_dmamap_t);
1286
1287 FXP_RFASYNC(sc, m,
1288 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1289
1290 rxstat = le16toh(rfa->rfa_status);
1291
1292 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1293 /*
1294 * We have processed all of the
1295 * receive buffers.
1296 */
1297 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1298 return;
1299 }
1300
1301 IF_DEQUEUE(&sc->sc_rxq, m);
1302
1303 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1304
1305 len = le16toh(rfa->actual_size) &
1306 (m->m_ext.ext_size - 1);
1307
1308 if (len < sizeof(struct ether_header)) {
1309 /*
1310 * Runt packet; drop it now.
1311 */
1312 FXP_INIT_RFABUF(sc, m);
1313 continue;
1314 }
1315
1316 /*
1317 * If support for 802.1Q VLAN sized frames is
1318 * enabled, we need to do some additional error
1319 * checking (as we are saving bad frames, in
1320 * order to receive the larger ones).
1321 */
1322 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1323 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1324 FXP_RFA_STATUS_RNR|
1325 FXP_RFA_STATUS_ALIGN|
1326 FXP_RFA_STATUS_CRC)) != 0) {
1327 FXP_INIT_RFABUF(sc, m);
1328 continue;
1329 }
1330
1331 /* Do checksum checking. */
1332 m->m_pkthdr.csum_flags = 0;
1333 if (sc->sc_flags & FXPF_EXT_RFA)
1334 if (fxp_rx_hwcksum(m, rfa))
1335 goto dropit;
1336
1337 /*
1338 * If the packet is small enough to fit in a
1339 * single header mbuf, allocate one and copy
1340 * the data into it. This greatly reduces
1341 * memory consumption when we receive lots
1342 * of small packets.
1343 *
1344 * Otherwise, we add a new buffer to the receive
1345 * chain. If this fails, we drop the packet and
1346 * recycle the old buffer.
1347 */
1348 if (fxp_copy_small != 0 && len <= MHLEN) {
1349 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1350 if (m0 == NULL)
1351 goto dropit;
1352 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1353 memcpy(mtod(m0, caddr_t),
1354 mtod(m, caddr_t), len);
1355 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1356 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1357 FXP_INIT_RFABUF(sc, m);
1358 m = m0;
1359 } else {
1360 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1361 dropit:
1362 ifp->if_ierrors++;
1363 FXP_INIT_RFABUF(sc, m);
1364 continue;
1365 }
1366 }
1367
1368 m->m_pkthdr.rcvif = ifp;
1369 m->m_pkthdr.len = m->m_len = len;
1370
1371 #if NBPFILTER > 0
1372 /*
1373 * Pass this up to any BPF listeners, but only
1374 * pass it up the stack it its for us.
1375 */
1376 if (ifp->if_bpf)
1377 bpf_mtap(ifp->if_bpf, m);
1378 #endif
1379
1380 /* Pass it on. */
1381 (*ifp->if_input)(ifp, m);
1382 }
1383 }
1384
1385 /*
1386 * Update packet in/out/collision statistics. The i82557 doesn't
1387 * allow you to access these counters without doing a fairly
1388 * expensive DMA to get _all_ of the statistics it maintains, so
1389 * we do this operation here only once per second. The statistics
1390 * counters in the kernel are updated from the previous dump-stats
1391 * DMA and then a new dump-stats DMA is started. The on-chip
1392 * counters are zeroed when the DMA completes. If we can't start
1393 * the DMA immediately, we don't wait - we just prepare to read
1394 * them again next time.
1395 */
1396 void
1397 fxp_tick(void *arg)
1398 {
1399 struct fxp_softc *sc = arg;
1400 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1401 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1402 int s;
1403
1404 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1405 return;
1406
1407 s = splnet();
1408
1409 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1410
1411 ifp->if_opackets += le32toh(sp->tx_good);
1412 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1413 if (sp->rx_good) {
1414 ifp->if_ipackets += le32toh(sp->rx_good);
1415 sc->sc_rxidle = 0;
1416 } else {
1417 sc->sc_rxidle++;
1418 }
1419 ifp->if_ierrors +=
1420 le32toh(sp->rx_crc_errors) +
1421 le32toh(sp->rx_alignment_errors) +
1422 le32toh(sp->rx_rnr_errors) +
1423 le32toh(sp->rx_overrun_errors);
1424 /*
1425 * If any transmit underruns occurred, bump up the transmit
1426 * threshold by another 512 bytes (64 * 8).
1427 */
1428 if (sp->tx_underruns) {
1429 ifp->if_oerrors += le32toh(sp->tx_underruns);
1430 if (tx_threshold < 192)
1431 tx_threshold += 64;
1432 }
1433
1434 /*
1435 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1436 * then assume the receiver has locked up and attempt to clear
1437 * the condition by reprogramming the multicast filter (actually,
1438 * resetting the interface). This is a work-around for a bug in
1439 * the 82557 where the receiver locks up if it gets certain types
1440 * of garbage in the synchronization bits prior to the packet header.
1441 * This bug is supposed to only occur in 10Mbps mode, but has been
1442 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1443 * speed transition).
1444 */
1445 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1446 (void) fxp_init(ifp);
1447 splx(s);
1448 return;
1449 }
1450 /*
1451 * If there is no pending command, start another stats
1452 * dump. Otherwise punt for now.
1453 */
1454 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1455 /*
1456 * Start another stats dump.
1457 */
1458 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1459 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1460 } else {
1461 /*
1462 * A previous command is still waiting to be accepted.
1463 * Just zero our copy of the stats and wait for the
1464 * next timer event to update them.
1465 */
1466 /* BIG_ENDIAN: no swap required to store 0 */
1467 sp->tx_good = 0;
1468 sp->tx_underruns = 0;
1469 sp->tx_total_collisions = 0;
1470
1471 sp->rx_good = 0;
1472 sp->rx_crc_errors = 0;
1473 sp->rx_alignment_errors = 0;
1474 sp->rx_rnr_errors = 0;
1475 sp->rx_overrun_errors = 0;
1476 }
1477
1478 if (sc->sc_flags & FXPF_MII) {
1479 /* Tick the MII clock. */
1480 mii_tick(&sc->sc_mii);
1481 }
1482
1483 splx(s);
1484
1485 /*
1486 * Schedule another timeout one second from now.
1487 */
1488 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1489 }
1490
1491 /*
1492 * Drain the receive queue.
1493 */
1494 void
1495 fxp_rxdrain(struct fxp_softc *sc)
1496 {
1497 bus_dmamap_t rxmap;
1498 struct mbuf *m;
1499
1500 for (;;) {
1501 IF_DEQUEUE(&sc->sc_rxq, m);
1502 if (m == NULL)
1503 break;
1504 rxmap = M_GETCTX(m, bus_dmamap_t);
1505 bus_dmamap_unload(sc->sc_dmat, rxmap);
1506 FXP_RXMAP_PUT(sc, rxmap);
1507 m_freem(m);
1508 }
1509 }
1510
1511 /*
1512 * Stop the interface. Cancels the statistics updater and resets
1513 * the interface.
1514 */
1515 void
1516 fxp_stop(struct ifnet *ifp, int disable)
1517 {
1518 struct fxp_softc *sc = ifp->if_softc;
1519 struct fxp_txsoft *txs;
1520 int i;
1521
1522 /*
1523 * Turn down interface (done early to avoid bad interactions
1524 * between panics, shutdown hooks, and the watchdog timer)
1525 */
1526 ifp->if_timer = 0;
1527 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1528
1529 /*
1530 * Cancel stats updater.
1531 */
1532 callout_stop(&sc->sc_callout);
1533 if (sc->sc_flags & FXPF_MII) {
1534 /* Down the MII. */
1535 mii_down(&sc->sc_mii);
1536 }
1537
1538 /*
1539 * Issue software reset. This unloads any microcode that
1540 * might already be loaded.
1541 */
1542 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1543 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1544 DELAY(50);
1545
1546 /*
1547 * Release any xmit buffers.
1548 */
1549 for (i = 0; i < FXP_NTXCB; i++) {
1550 txs = FXP_DSTX(sc, i);
1551 if (txs->txs_mbuf != NULL) {
1552 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1553 m_freem(txs->txs_mbuf);
1554 txs->txs_mbuf = NULL;
1555 }
1556 }
1557 sc->sc_txpending = 0;
1558
1559 if (disable) {
1560 fxp_rxdrain(sc);
1561 fxp_disable(sc);
1562 }
1563
1564 }
1565
1566 /*
1567 * Watchdog/transmission transmit timeout handler. Called when a
1568 * transmission is started on the interface, but no interrupt is
1569 * received before the timeout. This usually indicates that the
1570 * card has wedged for some reason.
1571 */
1572 void
1573 fxp_watchdog(struct ifnet *ifp)
1574 {
1575 struct fxp_softc *sc = ifp->if_softc;
1576
1577 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1578 ifp->if_oerrors++;
1579
1580 (void) fxp_init(ifp);
1581 }
1582
1583 /*
1584 * Initialize the interface. Must be called at splnet().
1585 */
1586 int
1587 fxp_init(struct ifnet *ifp)
1588 {
1589 struct fxp_softc *sc = ifp->if_softc;
1590 struct fxp_cb_config *cbp;
1591 struct fxp_cb_ias *cb_ias;
1592 struct fxp_txdesc *txd;
1593 bus_dmamap_t rxmap;
1594 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1595
1596 if ((error = fxp_enable(sc)) != 0)
1597 goto out;
1598
1599 /*
1600 * Cancel any pending I/O
1601 */
1602 fxp_stop(ifp, 0);
1603
1604 /*
1605 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1606 * flag, and this prevents the MII from detaching resulting in
1607 * a panic. The flags field should perhaps be split in runtime
1608 * flags and more static information. For now, just clear the
1609 * only other flag set.
1610 */
1611
1612 sc->sc_flags &= ~FXPF_WANTINIT;
1613
1614 /*
1615 * Initialize base of CBL and RFA memory. Loading with zero
1616 * sets it up for regular linear addressing.
1617 */
1618 fxp_scb_wait(sc);
1619 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1620 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1621
1622 fxp_scb_wait(sc);
1623 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1624
1625 /*
1626 * Initialize the multicast filter. Do this now, since we might
1627 * have to setup the config block differently.
1628 */
1629 fxp_mc_setup(sc);
1630
1631 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1632 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1633
1634 /*
1635 * In order to support receiving 802.1Q VLAN frames, we have to
1636 * enable "save bad frames", since they are 4 bytes larger than
1637 * the normal Ethernet maximum frame length. On i82558 and later,
1638 * we have a better mechanism for this.
1639 */
1640 save_bf = 0;
1641 lrxen = 0;
1642 vlan_drop = 0;
1643 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1644 if (sc->sc_rev < FXP_REV_82558_A4)
1645 save_bf = 1;
1646 else
1647 lrxen = 1;
1648 if (sc->sc_rev >= FXP_REV_82550)
1649 vlan_drop = 1;
1650 }
1651
1652 /*
1653 * Initialize base of dump-stats buffer.
1654 */
1655 fxp_scb_wait(sc);
1656 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1657 sc->sc_cddma + FXP_CDSTATSOFF);
1658 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1659 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1660
1661 cbp = &sc->sc_control_data->fcd_configcb;
1662 memset(cbp, 0, sizeof(struct fxp_cb_config));
1663
1664 /*
1665 * Load microcode for this controller.
1666 */
1667 fxp_load_ucode(sc);
1668
1669 /*
1670 * This copy is kind of disgusting, but there are a bunch of must be
1671 * zero and must be one bits in this structure and this is the easiest
1672 * way to initialize them all to proper values.
1673 */
1674 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1675
1676 /* BIG_ENDIAN: no need to swap to store 0 */
1677 cbp->cb_status = 0;
1678 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1679 FXP_CB_COMMAND_EL);
1680 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1681 cbp->link_addr = 0xffffffff; /* (no) next command */
1682 /* bytes in config block */
1683 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1684 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1685 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1686 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1687 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1688 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1689 cbp->type_enable = 0; /* actually reserved */
1690 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1691 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1692 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1693 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1694 cbp->dma_mbce = 0; /* (disable) dma max counters */
1695 cbp->late_scb = 0; /* (don't) defer SCB update */
1696 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1697 cbp->ci_int = 1; /* interrupt on CU idle */
1698 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1699 cbp->ext_stats_dis = 1; /* disable extended counters */
1700 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1701 cbp->save_bf = save_bf;/* save bad frames */
1702 cbp->disc_short_rx = !prm; /* discard short packets */
1703 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1704 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1705 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1706 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1707 /* interface mode */
1708 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1709 cbp->csma_dis = 0; /* (don't) disable link */
1710 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1711 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1712 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1713 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1714 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1715 cbp->nsai = 1; /* (don't) disable source addr insert */
1716 cbp->preamble_length = 2; /* (7 byte) preamble */
1717 cbp->loopback = 0; /* (don't) loopback */
1718 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1719 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1720 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1721 cbp->promiscuous = prm; /* promiscuous mode */
1722 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1723 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1724 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1725 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1726 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1727 cbp->stripping = !prm; /* truncate rx packet to byte count */
1728 cbp->padding = 1; /* (do) pad short tx packets */
1729 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1730 cbp->long_rx_en = lrxen; /* long packet receive enable */
1731 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1732 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1733 /* must set wake_en in PMCSR also */
1734 cbp->force_fdx = 0; /* (don't) force full duplex */
1735 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1736 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1737 cbp->mc_all = allm; /* accept all multicasts */
1738 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1739 cbp->vlan_drop_en = vlan_drop;
1740
1741 if (sc->sc_rev < FXP_REV_82558_A4) {
1742 /*
1743 * The i82557 has no hardware flow control, the values
1744 * here are the defaults for the chip.
1745 */
1746 cbp->fc_delay_lsb = 0;
1747 cbp->fc_delay_msb = 0x40;
1748 cbp->pri_fc_thresh = 3;
1749 cbp->tx_fc_dis = 0;
1750 cbp->rx_fc_restop = 0;
1751 cbp->rx_fc_restart = 0;
1752 cbp->fc_filter = 0;
1753 cbp->pri_fc_loc = 1;
1754 } else {
1755 cbp->fc_delay_lsb = 0x1f;
1756 cbp->fc_delay_msb = 0x01;
1757 cbp->pri_fc_thresh = 3;
1758 cbp->tx_fc_dis = 0; /* enable transmit FC */
1759 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1760 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1761 cbp->fc_filter = !prm; /* drop FC frames to host */
1762 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1763 }
1764
1765 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1766
1767 /*
1768 * Start the config command/DMA.
1769 */
1770 fxp_scb_wait(sc);
1771 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1772 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1773 /* ...and wait for it to complete. */
1774 i = 1000;
1775 do {
1776 FXP_CDCONFIGSYNC(sc,
1777 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1778 DELAY(1);
1779 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1780 if (i == 0) {
1781 printf("%s at line %d: dmasync timeout\n",
1782 sc->sc_dev.dv_xname, __LINE__);
1783 return (ETIMEDOUT);
1784 }
1785
1786 /*
1787 * Initialize the station address.
1788 */
1789 cb_ias = &sc->sc_control_data->fcd_iascb;
1790 /* BIG_ENDIAN: no need to swap to store 0 */
1791 cb_ias->cb_status = 0;
1792 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1793 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1794 cb_ias->link_addr = 0xffffffff;
1795 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1796
1797 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1798
1799 /*
1800 * Start the IAS (Individual Address Setup) command/DMA.
1801 */
1802 fxp_scb_wait(sc);
1803 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1804 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1805 /* ...and wait for it to complete. */
1806 i = 1000;
1807 do {
1808 FXP_CDIASSYNC(sc,
1809 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1810 DELAY(1);
1811 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1812 if (i == 0) {
1813 printf("%s at line %d: dmasync timeout\n",
1814 sc->sc_dev.dv_xname, __LINE__);
1815 return (ETIMEDOUT);
1816 }
1817
1818 /*
1819 * Initialize the transmit descriptor ring. txlast is initialized
1820 * to the end of the list so that it will wrap around to the first
1821 * descriptor when the first packet is transmitted.
1822 */
1823 for (i = 0; i < FXP_NTXCB; i++) {
1824 txd = FXP_CDTX(sc, i);
1825 memset(txd, 0, sizeof(*txd));
1826 txd->txd_txcb.cb_command =
1827 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1828 txd->txd_txcb.link_addr =
1829 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1830 if (sc->sc_flags & FXPF_EXT_TXCB)
1831 txd->txd_txcb.tbd_array_addr =
1832 htole32(FXP_CDTBDADDR(sc, i) +
1833 (2 * sizeof(struct fxp_tbd)));
1834 else
1835 txd->txd_txcb.tbd_array_addr =
1836 htole32(FXP_CDTBDADDR(sc, i));
1837 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1838 }
1839 sc->sc_txpending = 0;
1840 sc->sc_txdirty = 0;
1841 sc->sc_txlast = FXP_NTXCB - 1;
1842
1843 /*
1844 * Initialize the receive buffer list.
1845 */
1846 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1847 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1848 rxmap = FXP_RXMAP_GET(sc);
1849 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1850 printf("%s: unable to allocate or map rx "
1851 "buffer %d, error = %d\n",
1852 sc->sc_dev.dv_xname,
1853 sc->sc_rxq.ifq_len, error);
1854 /*
1855 * XXX Should attempt to run with fewer receive
1856 * XXX buffers instead of just failing.
1857 */
1858 FXP_RXMAP_PUT(sc, rxmap);
1859 fxp_rxdrain(sc);
1860 goto out;
1861 }
1862 }
1863 sc->sc_rxidle = 0;
1864
1865 /*
1866 * Give the transmit ring to the chip. We do this by pointing
1867 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1868 * issuing a start command. It will execute the NOP and then
1869 * suspend, pointing at the first descriptor.
1870 */
1871 fxp_scb_wait(sc);
1872 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1873 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1874
1875 /*
1876 * Initialize receiver buffer area - RFA.
1877 */
1878 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1879 fxp_scb_wait(sc);
1880 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1881 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1882 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1883
1884 if (sc->sc_flags & FXPF_MII) {
1885 /*
1886 * Set current media.
1887 */
1888 mii_mediachg(&sc->sc_mii);
1889 }
1890
1891 /*
1892 * ...all done!
1893 */
1894 ifp->if_flags |= IFF_RUNNING;
1895 ifp->if_flags &= ~IFF_OACTIVE;
1896
1897 /*
1898 * Start the one second timer.
1899 */
1900 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1901
1902 /*
1903 * Attempt to start output on the interface.
1904 */
1905 fxp_start(ifp);
1906
1907 out:
1908 if (error) {
1909 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1910 ifp->if_timer = 0;
1911 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1912 }
1913 return (error);
1914 }
1915
1916 /*
1917 * Change media according to request.
1918 */
1919 int
1920 fxp_mii_mediachange(struct ifnet *ifp)
1921 {
1922 struct fxp_softc *sc = ifp->if_softc;
1923
1924 if (ifp->if_flags & IFF_UP)
1925 mii_mediachg(&sc->sc_mii);
1926 return (0);
1927 }
1928
1929 /*
1930 * Notify the world which media we're using.
1931 */
1932 void
1933 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1934 {
1935 struct fxp_softc *sc = ifp->if_softc;
1936
1937 if (sc->sc_enabled == 0) {
1938 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1939 ifmr->ifm_status = 0;
1940 return;
1941 }
1942
1943 mii_pollstat(&sc->sc_mii);
1944 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1945 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1946 }
1947
1948 int
1949 fxp_80c24_mediachange(struct ifnet *ifp)
1950 {
1951
1952 /* Nothing to do here. */
1953 return (0);
1954 }
1955
1956 void
1957 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1958 {
1959 struct fxp_softc *sc = ifp->if_softc;
1960
1961 /*
1962 * Media is currently-selected media. We cannot determine
1963 * the link status.
1964 */
1965 ifmr->ifm_status = 0;
1966 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1967 }
1968
1969 /*
1970 * Add a buffer to the end of the RFA buffer list.
1971 * Return 0 if successful, error code on failure.
1972 *
1973 * The RFA struct is stuck at the beginning of mbuf cluster and the
1974 * data pointer is fixed up to point just past it.
1975 */
1976 int
1977 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1978 {
1979 struct mbuf *m;
1980 int error;
1981
1982 MGETHDR(m, M_DONTWAIT, MT_DATA);
1983 if (m == NULL)
1984 return (ENOBUFS);
1985
1986 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1987 MCLGET(m, M_DONTWAIT);
1988 if ((m->m_flags & M_EXT) == 0) {
1989 m_freem(m);
1990 return (ENOBUFS);
1991 }
1992
1993 if (unload)
1994 bus_dmamap_unload(sc->sc_dmat, rxmap);
1995
1996 M_SETCTX(m, rxmap);
1997
1998 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1999 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2000 BUS_DMA_READ|BUS_DMA_NOWAIT);
2001 if (error) {
2002 printf("%s: can't load rx DMA map %d, error = %d\n",
2003 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2004 panic("fxp_add_rfabuf"); /* XXX */
2005 }
2006
2007 FXP_INIT_RFABUF(sc, m);
2008
2009 return (0);
2010 }
2011
2012 int
2013 fxp_mdi_read(struct device *self, int phy, int reg)
2014 {
2015 struct fxp_softc *sc = (struct fxp_softc *)self;
2016 int count = 10000;
2017 int value;
2018
2019 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2020 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2021
2022 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2023 0x10000000) == 0 && count--)
2024 DELAY(10);
2025
2026 if (count <= 0)
2027 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2028
2029 return (value & 0xffff);
2030 }
2031
2032 void
2033 fxp_statchg(struct device *self)
2034 {
2035
2036 /* Nothing to do. */
2037 }
2038
2039 void
2040 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2041 {
2042 struct fxp_softc *sc = (struct fxp_softc *)self;
2043 int count = 10000;
2044
2045 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2046 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2047 (value & 0xffff));
2048
2049 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2050 count--)
2051 DELAY(10);
2052
2053 if (count <= 0)
2054 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2055 }
2056
2057 int
2058 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2059 {
2060 struct fxp_softc *sc = ifp->if_softc;
2061 struct ifreq *ifr = (struct ifreq *)data;
2062 int s, error;
2063
2064 s = splnet();
2065
2066 switch (cmd) {
2067 case SIOCSIFMEDIA:
2068 case SIOCGIFMEDIA:
2069 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2070 break;
2071
2072 default:
2073 error = ether_ioctl(ifp, cmd, data);
2074 if (error == ENETRESET) {
2075 if (sc->sc_enabled) {
2076 /*
2077 * Multicast list has changed; set the
2078 * hardware filter accordingly.
2079 */
2080 if (sc->sc_txpending) {
2081 sc->sc_flags |= FXPF_WANTINIT;
2082 error = 0;
2083 } else
2084 error = fxp_init(ifp);
2085 } else
2086 error = 0;
2087 }
2088 break;
2089 }
2090
2091 /* Try to get more packets going. */
2092 if (sc->sc_enabled)
2093 fxp_start(ifp);
2094
2095 splx(s);
2096 return (error);
2097 }
2098
2099 /*
2100 * Program the multicast filter.
2101 *
2102 * This function must be called at splnet().
2103 */
2104 void
2105 fxp_mc_setup(struct fxp_softc *sc)
2106 {
2107 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2108 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2109 struct ethercom *ec = &sc->sc_ethercom;
2110 struct ether_multi *enm;
2111 struct ether_multistep step;
2112 int count, nmcasts;
2113
2114 #ifdef DIAGNOSTIC
2115 if (sc->sc_txpending)
2116 panic("fxp_mc_setup: pending transmissions");
2117 #endif
2118
2119 ifp->if_flags &= ~IFF_ALLMULTI;
2120
2121 /*
2122 * Initialize multicast setup descriptor.
2123 */
2124 nmcasts = 0;
2125 ETHER_FIRST_MULTI(step, ec, enm);
2126 while (enm != NULL) {
2127 /*
2128 * Check for too many multicast addresses or if we're
2129 * listening to a range. Either way, we simply have
2130 * to accept all multicasts.
2131 */
2132 if (nmcasts >= MAXMCADDR ||
2133 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2134 ETHER_ADDR_LEN) != 0) {
2135 /*
2136 * Callers of this function must do the
2137 * right thing with this. If we're called
2138 * from outside fxp_init(), the caller must
2139 * detect if the state if IFF_ALLMULTI changes.
2140 * If it does, the caller must then call
2141 * fxp_init(), since allmulti is handled by
2142 * the config block.
2143 */
2144 ifp->if_flags |= IFF_ALLMULTI;
2145 return;
2146 }
2147 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2148 ETHER_ADDR_LEN);
2149 nmcasts++;
2150 ETHER_NEXT_MULTI(step, enm);
2151 }
2152
2153 /* BIG_ENDIAN: no need to swap to store 0 */
2154 mcsp->cb_status = 0;
2155 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2156 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2157 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2158
2159 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2160
2161 /*
2162 * Wait until the command unit is not active. This should never
2163 * happen since nothing is queued, but make sure anyway.
2164 */
2165 count = 100;
2166 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2167 FXP_SCB_CUS_ACTIVE && --count)
2168 DELAY(1);
2169 if (count == 0) {
2170 printf("%s at line %d: command queue timeout\n",
2171 sc->sc_dev.dv_xname, __LINE__);
2172 return;
2173 }
2174
2175 /*
2176 * Start the multicast setup command/DMA.
2177 */
2178 fxp_scb_wait(sc);
2179 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2180 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2181
2182 /* ...and wait for it to complete. */
2183 count = 1000;
2184 do {
2185 FXP_CDMCSSYNC(sc,
2186 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2187 DELAY(1);
2188 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2189 if (count == 0) {
2190 printf("%s at line %d: dmasync timeout\n",
2191 sc->sc_dev.dv_xname, __LINE__);
2192 return;
2193 }
2194 }
2195
2196 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2197 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2198 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2199 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2200 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2201 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2202
2203 #define UCODE(x) x, sizeof(x)
2204
2205 static const struct ucode {
2206 int32_t revision;
2207 const uint32_t *ucode;
2208 size_t length;
2209 uint16_t int_delay_offset;
2210 uint16_t bundle_max_offset;
2211 } ucode_table[] = {
2212 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2213 D101_CPUSAVER_DWORD, 0 },
2214
2215 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2216 D101_CPUSAVER_DWORD, 0 },
2217
2218 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2219 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2220
2221 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2222 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2223
2224 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2225 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2226
2227 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2228 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2229
2230 { 0, NULL, 0, 0, 0 }
2231 };
2232
2233 void
2234 fxp_load_ucode(struct fxp_softc *sc)
2235 {
2236 const struct ucode *uc;
2237 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2238 int count;
2239
2240 if (sc->sc_flags & FXPF_UCODE_LOADED)
2241 return;
2242
2243 /*
2244 * Only load the uCode if the user has requested that
2245 * we do so.
2246 */
2247 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2248 sc->sc_int_delay = 0;
2249 sc->sc_bundle_max = 0;
2250 return;
2251 }
2252
2253 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2254 if (sc->sc_rev == uc->revision)
2255 break;
2256 }
2257 if (uc->ucode == NULL)
2258 return;
2259
2260 /* BIG ENDIAN: no need to swap to store 0 */
2261 cbp->cb_status = 0;
2262 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2263 cbp->link_addr = 0xffffffff; /* (no) next command */
2264 memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2265
2266 if (uc->int_delay_offset)
2267 *(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2268 htole16(fxp_int_delay + (fxp_int_delay / 2));
2269
2270 if (uc->bundle_max_offset)
2271 *(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2272 htole16(fxp_bundle_max);
2273
2274 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2275
2276 /*
2277 * Download the uCode to the chip.
2278 */
2279 fxp_scb_wait(sc);
2280 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2281 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2282
2283 /* ...and wait for it to complete. */
2284 count = 10000;
2285 do {
2286 FXP_CDUCODESYNC(sc,
2287 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2288 DELAY(2);
2289 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2290 if (count == 0) {
2291 sc->sc_int_delay = 0;
2292 sc->sc_bundle_max = 0;
2293 printf("%s: timeout loading microcode\n",
2294 sc->sc_dev.dv_xname);
2295 return;
2296 }
2297
2298 if (sc->sc_int_delay != fxp_int_delay ||
2299 sc->sc_bundle_max != fxp_bundle_max) {
2300 sc->sc_int_delay = fxp_int_delay;
2301 sc->sc_bundle_max = fxp_bundle_max;
2302 printf("%s: Microcode loaded: int delay: %d usec, "
2303 "max bundle: %d\n", sc->sc_dev.dv_xname,
2304 sc->sc_int_delay,
2305 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2306 }
2307
2308 sc->sc_flags |= FXPF_UCODE_LOADED;
2309 }
2310
2311 int
2312 fxp_enable(struct fxp_softc *sc)
2313 {
2314
2315 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2316 if ((*sc->sc_enable)(sc) != 0) {
2317 printf("%s: device enable failed\n",
2318 sc->sc_dev.dv_xname);
2319 return (EIO);
2320 }
2321 }
2322
2323 sc->sc_enabled = 1;
2324 return (0);
2325 }
2326
2327 void
2328 fxp_disable(struct fxp_softc *sc)
2329 {
2330
2331 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2332 (*sc->sc_disable)(sc);
2333 sc->sc_enabled = 0;
2334 }
2335 }
2336
2337 /*
2338 * fxp_activate:
2339 *
2340 * Handle device activation/deactivation requests.
2341 */
2342 int
2343 fxp_activate(struct device *self, enum devact act)
2344 {
2345 struct fxp_softc *sc = (void *) self;
2346 int s, error = 0;
2347
2348 s = splnet();
2349 switch (act) {
2350 case DVACT_ACTIVATE:
2351 error = EOPNOTSUPP;
2352 break;
2353
2354 case DVACT_DEACTIVATE:
2355 if (sc->sc_flags & FXPF_MII)
2356 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2357 MII_OFFSET_ANY);
2358 if_deactivate(&sc->sc_ethercom.ec_if);
2359 break;
2360 }
2361 splx(s);
2362
2363 return (error);
2364 }
2365
2366 /*
2367 * fxp_detach:
2368 *
2369 * Detach an i82557 interface.
2370 */
2371 int
2372 fxp_detach(struct fxp_softc *sc)
2373 {
2374 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2375 int i;
2376
2377 /* Succeed now if there's no work to do. */
2378 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2379 return (0);
2380
2381 /* Unhook our tick handler. */
2382 callout_stop(&sc->sc_callout);
2383
2384 if (sc->sc_flags & FXPF_MII) {
2385 /* Detach all PHYs */
2386 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2387 }
2388
2389 /* Delete all remaining media. */
2390 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2391
2392 #if NRND > 0
2393 rnd_detach_source(&sc->rnd_source);
2394 #endif
2395 ether_ifdetach(ifp);
2396 if_detach(ifp);
2397
2398 for (i = 0; i < FXP_NRFABUFS; i++) {
2399 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2400 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2401 }
2402
2403 for (i = 0; i < FXP_NTXCB; i++) {
2404 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2405 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2406 }
2407
2408 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2409 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2410 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2411 sizeof(struct fxp_control_data));
2412 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2413
2414 shutdownhook_disestablish(sc->sc_sdhook);
2415 powerhook_disestablish(sc->sc_powerhook);
2416
2417 return (0);
2418 }
2419