i82557.c revision 1.85 1 /* $NetBSD: i82557.c,v 1.85 2004/05/16 02:41:46 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.85 2004/05/16 02:41:46 thorpej Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91
92 #include <machine/endian.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #if NRND > 0
97 #include <sys/rnd.h>
98 #endif
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111
112 #include <dev/mii/miivar.h>
113
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116
117 #include <dev/microcode/i8255x/rcvbundl.h>
118
119 /*
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
127 */
128 #define RFA_ALIGNMENT_FUDGE 2
129
130 /*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138 const u_int8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
174 };
175
176 void fxp_mii_initmedia(struct fxp_softc *);
177 int fxp_mii_mediachange(struct ifnet *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 void fxp_rxintr(struct fxp_softc *);
192
193 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
194
195 void fxp_rxdrain(struct fxp_softc *);
196 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197 int fxp_mdi_read(struct device *, int, int);
198 void fxp_statchg(struct device *);
199 void fxp_mdi_write(struct device *, int, int, int);
200 void fxp_autosize_eeprom(struct fxp_softc*);
201 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_eeprom_update_cksum(struct fxp_softc *);
204 void fxp_get_info(struct fxp_softc *, u_int8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207 void fxp_load_ucode(struct fxp_softc *);
208
209 void fxp_shutdown(void *);
210 void fxp_power(int, void *);
211
212 int fxp_copy_small = 0;
213
214 /*
215 * Variables for interrupt mitigating microcode.
216 */
217 int fxp_int_delay = 1000; /* usec */
218 int fxp_bundle_max = 6; /* packets */
219
220 struct fxp_phytype {
221 int fp_phy; /* type of PHY, -1 for MII at the end. */
222 void (*fp_init)(struct fxp_softc *);
223 } fxp_phytype_table[] = {
224 { FXP_PHY_80C24, fxp_80c24_initmedia },
225 { -1, fxp_mii_initmedia },
226 };
227
228 /*
229 * Set initial transmit threshold at 64 (512 bytes). This is
230 * increased by 64 (512 bytes) at a time, to maximum of 192
231 * (1536 bytes), if an underrun occurs.
232 */
233 static int tx_threshold = 64;
234
235 /*
236 * Wait for the previous command to be accepted (but not necessarily
237 * completed).
238 */
239 static __inline void
240 fxp_scb_wait(struct fxp_softc *sc)
241 {
242 int i = 10000;
243
244 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
245 delay(2);
246 if (i == 0)
247 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
248 }
249
250 /*
251 * Submit a command to the i82557.
252 */
253 static __inline void
254 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
255 {
256
257 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
258 }
259
260 /*
261 * Finish attaching an i82557 interface. Called by bus-specific front-end.
262 */
263 void
264 fxp_attach(struct fxp_softc *sc)
265 {
266 u_int8_t enaddr[ETHER_ADDR_LEN];
267 struct ifnet *ifp;
268 bus_dma_segment_t seg;
269 int rseg, i, error;
270 struct fxp_phytype *fp;
271
272 callout_init(&sc->sc_callout);
273
274 /*
275 * Enable some good stuff on i82558 and later.
276 */
277 if (sc->sc_rev >= FXP_REV_82558_A4) {
278 /* Enable the extended TxCB. */
279 sc->sc_flags |= FXPF_EXT_TXCB;
280 }
281
282 /*
283 * Enable use of extended RFDs and TCBs for 82550
284 * and later chips. Note: we need extended TXCB support
285 * too, but that's already enabled by the code above.
286 * Be careful to do this only on the right devices.
287 */
288 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
289 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
290 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
291 } else {
292 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
293 }
294
295 sc->sc_rfa_size =
296 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
297
298 /*
299 * Allocate the control data structures, and create and load the
300 * DMA map for it.
301 */
302 if ((error = bus_dmamem_alloc(sc->sc_dmat,
303 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
304 0)) != 0) {
305 aprint_error(
306 "%s: unable to allocate control data, error = %d\n",
307 sc->sc_dev.dv_xname, error);
308 goto fail_0;
309 }
310
311 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
312 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
313 BUS_DMA_COHERENT)) != 0) {
314 aprint_error("%s: unable to map control data, error = %d\n",
315 sc->sc_dev.dv_xname, error);
316 goto fail_1;
317 }
318 sc->sc_cdseg = seg;
319 sc->sc_cdnseg = rseg;
320
321 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
322
323 if ((error = bus_dmamap_create(sc->sc_dmat,
324 sizeof(struct fxp_control_data), 1,
325 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
326 aprint_error("%s: unable to create control data DMA map, "
327 "error = %d\n", sc->sc_dev.dv_xname, error);
328 goto fail_2;
329 }
330
331 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
332 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
333 0)) != 0) {
334 aprint_error(
335 "%s: can't load control data DMA map, error = %d\n",
336 sc->sc_dev.dv_xname, error);
337 goto fail_3;
338 }
339
340 /*
341 * Create the transmit buffer DMA maps.
342 */
343 for (i = 0; i < FXP_NTXCB; i++) {
344 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
345 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
346 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
347 aprint_error("%s: unable to create tx DMA map %d, "
348 "error = %d\n", sc->sc_dev.dv_xname, i, error);
349 goto fail_4;
350 }
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < FXP_NRFABUFS; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
359 aprint_error("%s: unable to create rx DMA map %d, "
360 "error = %d\n", sc->sc_dev.dv_xname, i, error);
361 goto fail_5;
362 }
363 }
364
365 /* Initialize MAC address and media structures. */
366 fxp_get_info(sc, enaddr);
367
368 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
369 ether_sprintf(enaddr));
370
371 ifp = &sc->sc_ethercom.ec_if;
372
373 /*
374 * Get info about our media interface, and initialize it. Note
375 * the table terminates itself with a phy of -1, indicating
376 * that we're using MII.
377 */
378 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
379 if (fp->fp_phy == sc->phy_primary_device)
380 break;
381 (*fp->fp_init)(sc);
382
383 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
384 ifp->if_softc = sc;
385 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
386 ifp->if_ioctl = fxp_ioctl;
387 ifp->if_start = fxp_start;
388 ifp->if_watchdog = fxp_watchdog;
389 ifp->if_init = fxp_init;
390 ifp->if_stop = fxp_stop;
391 IFQ_SET_READY(&ifp->if_snd);
392
393 if (sc->sc_flags & FXPF_IPCB) {
394 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
395 /*
396 * IFCAP_CSUM_IPv4 seems to have a problem,
397 * at least, on i82550 rev.12.
398 * specifically, it doesn't calculate ipv4 checksum correctly
399 * when sending 20 byte ipv4 header + 1 or 2 byte data.
400 * FreeBSD driver has related comments.
401 *
402 * XXX we should have separate IFCAP flags
403 * for transmit and receive.
404 */
405 ifp->if_capabilities =
406 /*IFCAP_CSUM_IPv4 |*/ IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
407 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
408 }
409
410 /*
411 * We can support 802.1Q VLAN-sized frames.
412 */
413 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
414
415 /*
416 * Attach the interface.
417 */
418 if_attach(ifp);
419 ether_ifattach(ifp, enaddr);
420 #if NRND > 0
421 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
422 RND_TYPE_NET, 0);
423 #endif
424
425 #ifdef FXP_EVENT_COUNTERS
426 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
427 NULL, sc->sc_dev.dv_xname, "txstall");
428 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
429 NULL, sc->sc_dev.dv_xname, "txintr");
430 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
431 NULL, sc->sc_dev.dv_xname, "rxintr");
432 #endif /* FXP_EVENT_COUNTERS */
433
434 /*
435 * Add shutdown hook so that DMA is disabled prior to reboot. Not
436 * doing do could allow DMA to corrupt kernel memory during the
437 * reboot before the driver initializes.
438 */
439 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
440 if (sc->sc_sdhook == NULL)
441 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
442 sc->sc_dev.dv_xname);
443 /*
444 * Add suspend hook, for similar reasons..
445 */
446 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
447 if (sc->sc_powerhook == NULL)
448 aprint_error("%s: WARNING: unable to establish power hook\n",
449 sc->sc_dev.dv_xname);
450
451 /* The attach is successful. */
452 sc->sc_flags |= FXPF_ATTACHED;
453
454 return;
455
456 /*
457 * Free any resources we've allocated during the failed attach
458 * attempt. Do this in reverse order and fall though.
459 */
460 fail_5:
461 for (i = 0; i < FXP_NRFABUFS; i++) {
462 if (sc->sc_rxmaps[i] != NULL)
463 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
464 }
465 fail_4:
466 for (i = 0; i < FXP_NTXCB; i++) {
467 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
468 bus_dmamap_destroy(sc->sc_dmat,
469 FXP_DSTX(sc, i)->txs_dmamap);
470 }
471 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
472 fail_3:
473 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
474 fail_2:
475 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
476 sizeof(struct fxp_control_data));
477 fail_1:
478 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
479 fail_0:
480 return;
481 }
482
483 void
484 fxp_mii_initmedia(struct fxp_softc *sc)
485 {
486 int flags;
487
488 sc->sc_flags |= FXPF_MII;
489
490 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
491 sc->sc_mii.mii_readreg = fxp_mdi_read;
492 sc->sc_mii.mii_writereg = fxp_mdi_write;
493 sc->sc_mii.mii_statchg = fxp_statchg;
494 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
495 fxp_mii_mediastatus);
496
497 flags = MIIF_NOISOLATE;
498 if (sc->sc_rev >= FXP_REV_82558_A4)
499 flags |= MIIF_DOPAUSE;
500 /*
501 * The i82557 wedges if all of its PHYs are isolated!
502 */
503 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
504 MII_OFFSET_ANY, flags);
505 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
506 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
507 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
508 } else
509 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
510 }
511
512 void
513 fxp_80c24_initmedia(struct fxp_softc *sc)
514 {
515
516 /*
517 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
518 * doesn't have a programming interface of any sort. The
519 * media is sensed automatically based on how the link partner
520 * is configured. This is, in essence, manual configuration.
521 */
522 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
523 sc->sc_dev.dv_xname);
524 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
525 fxp_80c24_mediastatus);
526 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
527 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
528 }
529
530 /*
531 * Device shutdown routine. Called at system shutdown after sync. The
532 * main purpose of this routine is to shut off receiver DMA so that
533 * kernel memory doesn't get clobbered during warmboot.
534 */
535 void
536 fxp_shutdown(void *arg)
537 {
538 struct fxp_softc *sc = arg;
539
540 /*
541 * Since the system's going to halt shortly, don't bother
542 * freeing mbufs.
543 */
544 fxp_stop(&sc->sc_ethercom.ec_if, 0);
545 }
546 /*
547 * Power handler routine. Called when the system is transitioning
548 * into/out of power save modes. As with fxp_shutdown, the main
549 * purpose of this routine is to shut off receiver DMA so it doesn't
550 * clobber kernel memory at the wrong time.
551 */
552 void
553 fxp_power(int why, void *arg)
554 {
555 struct fxp_softc *sc = arg;
556 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
557 int s;
558
559 s = splnet();
560 switch (why) {
561 case PWR_SUSPEND:
562 case PWR_STANDBY:
563 fxp_stop(ifp, 0);
564 break;
565 case PWR_RESUME:
566 if (ifp->if_flags & IFF_UP)
567 fxp_init(ifp);
568 break;
569 case PWR_SOFTSUSPEND:
570 case PWR_SOFTSTANDBY:
571 case PWR_SOFTRESUME:
572 break;
573 }
574 splx(s);
575 }
576
577 /*
578 * Initialize the interface media.
579 */
580 void
581 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
582 {
583 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
584
585 /*
586 * Reset to a stable state.
587 */
588 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
589 DELAY(100);
590
591 sc->sc_eeprom_size = 0;
592 fxp_autosize_eeprom(sc);
593 if (sc->sc_eeprom_size == 0) {
594 aprint_error("%s: failed to detect EEPROM size\n",
595 sc->sc_dev.dv_xname);
596 sc->sc_eeprom_size = 6; /* XXX panic here? */
597 }
598 #ifdef DEBUG
599 aprint_debug("%s: detected %d word EEPROM\n",
600 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
601 #endif
602
603 /*
604 * Get info about the primary PHY
605 */
606 fxp_read_eeprom(sc, &data, 6, 1);
607 sc->phy_primary_device =
608 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
609
610 /*
611 * Read MAC address.
612 */
613 fxp_read_eeprom(sc, myea, 0, 3);
614 enaddr[0] = myea[0] & 0xff;
615 enaddr[1] = myea[0] >> 8;
616 enaddr[2] = myea[1] & 0xff;
617 enaddr[3] = myea[1] >> 8;
618 enaddr[4] = myea[2] & 0xff;
619 enaddr[5] = myea[2] >> 8;
620
621 /*
622 * Systems based on the ICH2/ICH2-M chip from Intel, as well
623 * as some i82559 designs, have a defect where the chip can
624 * cause a PCI protocol violation if it receives a CU_RESUME
625 * command when it is entering the IDLE state.
626 *
627 * The work-around is to disable Dynamic Standby Mode, so that
628 * the chip never deasserts #CLKRUN, and always remains in the
629 * active state.
630 *
631 * Unfortunately, the only way to disable Dynamic Standby is
632 * to frob an EEPROM setting and reboot (the EEPROM setting
633 * is only consulted when the PCI bus comes out of reset).
634 *
635 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
636 */
637 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
638 fxp_read_eeprom(sc, &data, 10, 1);
639 if (data & 0x02) { /* STB enable */
640 aprint_error("%s: WARNING: "
641 "Disabling dynamic standby mode in EEPROM "
642 "to work around a\n",
643 sc->sc_dev.dv_xname);
644 aprint_normal(
645 "%s: WARNING: hardware bug. You must reset "
646 "the system before using this\n",
647 sc->sc_dev.dv_xname);
648 aprint_normal("%s: WARNING: interface.\n",
649 sc->sc_dev.dv_xname);
650 data &= ~0x02;
651 fxp_write_eeprom(sc, &data, 10, 1);
652 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
653 sc->sc_dev.dv_xname, data);
654 fxp_eeprom_update_cksum(sc);
655 }
656 }
657
658 /* Receiver lock-up workaround detection. */
659 fxp_read_eeprom(sc, &data, 3, 1);
660 if ((data & 0x03) != 0x03) {
661 aprint_verbose("%s: Enabling receiver lock-up workaround\n",
662 sc->sc_dev.dv_xname);
663 sc->sc_flags |= FXPF_RECV_WORKAROUND;
664 }
665 }
666
667 static void
668 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
669 {
670 uint16_t reg;
671 int x;
672
673 for (x = 1 << (len - 1); x != 0; x >>= 1) {
674 DELAY(40);
675 if (data & x)
676 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
677 else
678 reg = FXP_EEPROM_EECS;
679 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
680 DELAY(40);
681 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
682 reg | FXP_EEPROM_EESK);
683 DELAY(40);
684 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
685 }
686 DELAY(40);
687 }
688
689 /*
690 * Figure out EEPROM size.
691 *
692 * 559's can have either 64-word or 256-word EEPROMs, the 558
693 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
694 * talks about the existence of 16 to 256 word EEPROMs.
695 *
696 * The only known sizes are 64 and 256, where the 256 version is used
697 * by CardBus cards to store CIS information.
698 *
699 * The address is shifted in msb-to-lsb, and after the last
700 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
701 * after which follows the actual data. We try to detect this zero, by
702 * probing the data-out bit in the EEPROM control register just after
703 * having shifted in a bit. If the bit is zero, we assume we've
704 * shifted enough address bits. The data-out should be tri-state,
705 * before this, which should translate to a logical one.
706 *
707 * Other ways to do this would be to try to read a register with known
708 * contents with a varying number of address bits, but no such
709 * register seem to be available. The high bits of register 10 are 01
710 * on the 558 and 559, but apparently not on the 557.
711 *
712 * The Linux driver computes a checksum on the EEPROM data, but the
713 * value of this checksum is not very well documented.
714 */
715
716 void
717 fxp_autosize_eeprom(struct fxp_softc *sc)
718 {
719 int x;
720
721 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
722 DELAY(40);
723
724 /* Shift in read opcode. */
725 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
726
727 /*
728 * Shift in address, wait for the dummy zero following a correct
729 * address shift.
730 */
731 for (x = 1; x <= 8; x++) {
732 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
733 DELAY(40);
734 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
735 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
736 DELAY(40);
737 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
738 FXP_EEPROM_EEDO) == 0)
739 break;
740 DELAY(40);
741 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
742 DELAY(40);
743 }
744 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
745 DELAY(40);
746 if (x != 6 && x != 8) {
747 #ifdef DEBUG
748 printf("%s: strange EEPROM size (%d)\n",
749 sc->sc_dev.dv_xname, 1 << x);
750 #endif
751 } else
752 sc->sc_eeprom_size = x;
753 }
754
755 /*
756 * Read from the serial EEPROM. Basically, you manually shift in
757 * the read opcode (one bit at a time) and then shift in the address,
758 * and then you shift out the data (all of this one bit at a time).
759 * The word size is 16 bits, so you have to provide the address for
760 * every 16 bits of data.
761 */
762 void
763 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
764 {
765 u_int16_t reg;
766 int i, x;
767
768 for (i = 0; i < words; i++) {
769 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
770
771 /* Shift in read opcode. */
772 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
773
774 /* Shift in address. */
775 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
776
777 reg = FXP_EEPROM_EECS;
778 data[i] = 0;
779
780 /* Shift out data. */
781 for (x = 16; x > 0; x--) {
782 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
783 reg | FXP_EEPROM_EESK);
784 DELAY(40);
785 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
786 FXP_EEPROM_EEDO)
787 data[i] |= (1 << (x - 1));
788 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
789 DELAY(40);
790 }
791 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
792 DELAY(40);
793 }
794 }
795
796 /*
797 * Write data to the serial EEPROM.
798 */
799 void
800 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
801 {
802 int i, j;
803
804 for (i = 0; i < words; i++) {
805 /* Erase/write enable. */
806 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
807 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
808 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
809 sc->sc_eeprom_size);
810 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
811 DELAY(4);
812
813 /* Shift in write opcode, address, data. */
814 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
815 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
816 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
817 fxp_eeprom_shiftin(sc, data[i], 16);
818 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
819 DELAY(4);
820
821 /* Wait for the EEPROM to finish up. */
822 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
823 DELAY(4);
824 for (j = 0; j < 1000; j++) {
825 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
826 FXP_EEPROM_EEDO)
827 break;
828 DELAY(50);
829 }
830 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
831 DELAY(4);
832
833 /* Erase/write disable. */
834 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
835 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
836 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
837 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
838 DELAY(4);
839 }
840 }
841
842 /*
843 * Update the checksum of the EEPROM.
844 */
845 void
846 fxp_eeprom_update_cksum(struct fxp_softc *sc)
847 {
848 int i;
849 uint16_t data, cksum;
850
851 cksum = 0;
852 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
853 fxp_read_eeprom(sc, &data, i, 1);
854 cksum += data;
855 }
856 i = (1 << sc->sc_eeprom_size) - 1;
857 cksum = 0xbaba - cksum;
858 fxp_read_eeprom(sc, &data, i, 1);
859 fxp_write_eeprom(sc, &cksum, i, 1);
860 printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
861 sc->sc_dev.dv_xname, i, data, cksum);
862 }
863
864 /*
865 * Start packet transmission on the interface.
866 */
867 void
868 fxp_start(struct ifnet *ifp)
869 {
870 struct fxp_softc *sc = ifp->if_softc;
871 struct mbuf *m0, *m;
872 struct fxp_txdesc *txd;
873 struct fxp_txsoft *txs;
874 bus_dmamap_t dmamap;
875 int error, lasttx, nexttx, opending, seg;
876
877 /*
878 * If we want a re-init, bail out now.
879 */
880 if (sc->sc_flags & FXPF_WANTINIT) {
881 ifp->if_flags |= IFF_OACTIVE;
882 return;
883 }
884
885 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
886 return;
887
888 /*
889 * Remember the previous txpending and the current lasttx.
890 */
891 opending = sc->sc_txpending;
892 lasttx = sc->sc_txlast;
893
894 /*
895 * Loop through the send queue, setting up transmit descriptors
896 * until we drain the queue, or use up all available transmit
897 * descriptors.
898 */
899 for (;;) {
900 struct fxp_tbd *tbdp;
901 int csum_flags;
902
903 /*
904 * Grab a packet off the queue.
905 */
906 IFQ_POLL(&ifp->if_snd, m0);
907 if (m0 == NULL)
908 break;
909 m = NULL;
910
911 if (sc->sc_txpending == FXP_NTXCB) {
912 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
913 break;
914 }
915
916 /*
917 * Get the next available transmit descriptor.
918 */
919 nexttx = FXP_NEXTTX(sc->sc_txlast);
920 txd = FXP_CDTX(sc, nexttx);
921 txs = FXP_DSTX(sc, nexttx);
922 dmamap = txs->txs_dmamap;
923
924 /*
925 * Load the DMA map. If this fails, the packet either
926 * didn't fit in the allotted number of frags, or we were
927 * short on resources. In this case, we'll copy and try
928 * again.
929 */
930 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
931 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
932 MGETHDR(m, M_DONTWAIT, MT_DATA);
933 if (m == NULL) {
934 printf("%s: unable to allocate Tx mbuf\n",
935 sc->sc_dev.dv_xname);
936 break;
937 }
938 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
939 if (m0->m_pkthdr.len > MHLEN) {
940 MCLGET(m, M_DONTWAIT);
941 if ((m->m_flags & M_EXT) == 0) {
942 printf("%s: unable to allocate Tx "
943 "cluster\n", sc->sc_dev.dv_xname);
944 m_freem(m);
945 break;
946 }
947 }
948 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
949 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
950 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
951 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
952 if (error) {
953 printf("%s: unable to load Tx buffer, "
954 "error = %d\n", sc->sc_dev.dv_xname, error);
955 break;
956 }
957 }
958
959 IFQ_DEQUEUE(&ifp->if_snd, m0);
960 csum_flags = m0->m_pkthdr.csum_flags;
961 if (m != NULL) {
962 m_freem(m0);
963 m0 = m;
964 }
965
966 /* Initialize the fraglist. */
967 tbdp = txd->txd_tbd;
968 if (sc->sc_flags & FXPF_IPCB)
969 tbdp++;
970 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
971 tbdp[seg].tb_addr =
972 htole32(dmamap->dm_segs[seg].ds_addr);
973 tbdp[seg].tb_size =
974 htole32(dmamap->dm_segs[seg].ds_len);
975 }
976
977 /* Sync the DMA map. */
978 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
979 BUS_DMASYNC_PREWRITE);
980
981 /*
982 * Store a pointer to the packet so we can free it later.
983 */
984 txs->txs_mbuf = m0;
985
986 /*
987 * Initialize the transmit descriptor.
988 */
989 /* BIG_ENDIAN: no need to swap to store 0 */
990 txd->txd_txcb.cb_status = 0;
991 txd->txd_txcb.cb_command =
992 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
993 txd->txd_txcb.tx_threshold = tx_threshold;
994 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
995
996 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
997 if (sc->sc_flags & FXPF_IPCB) {
998 struct fxp_ipcb *ipcb;
999 /*
1000 * Deal with TCP/IP checksum offload. Note that
1001 * in order for TCP checksum offload to work,
1002 * the pseudo header checksum must have already
1003 * been computed and stored in the checksum field
1004 * in the TCP header. The stack should have
1005 * already done this for us.
1006 */
1007 ipcb = &txd->txd_u.txdu_ipcb;
1008 memset(ipcb, 0, sizeof(*ipcb));
1009 /*
1010 * always do hardware parsing.
1011 */
1012 ipcb->ipcb_ip_activation_high =
1013 FXP_IPCB_HARDWAREPARSING_ENABLE;
1014 /*
1015 * ip checksum offloading.
1016 */
1017 if (csum_flags & M_CSUM_IPv4) {
1018 ipcb->ipcb_ip_schedule |=
1019 FXP_IPCB_IP_CHECKSUM_ENABLE;
1020 }
1021 /*
1022 * TCP/UDP checksum offloading.
1023 */
1024 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1025 ipcb->ipcb_ip_schedule |=
1026 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1027 }
1028
1029 /*
1030 * request VLAN tag insertion if needed.
1031 */
1032 if (sc->sc_ethercom.ec_nvlans != 0) {
1033 struct m_tag *vtag;
1034
1035 vtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL);
1036 if (vtag) {
1037 ipcb->ipcb_vlan_id =
1038 htobe16(*(u_int *)(vtag + 1));
1039 ipcb->ipcb_ip_activation_high |=
1040 FXP_IPCB_INSERTVLAN_ENABLE;
1041 }
1042 }
1043 } else {
1044 KASSERT((csum_flags &
1045 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1046 }
1047
1048 FXP_CDTXSYNC(sc, nexttx,
1049 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1050
1051 /* Advance the tx pointer. */
1052 sc->sc_txpending++;
1053 sc->sc_txlast = nexttx;
1054
1055 #if NBPFILTER > 0
1056 /*
1057 * Pass packet to bpf if there is a listener.
1058 */
1059 if (ifp->if_bpf)
1060 bpf_mtap(ifp->if_bpf, m0);
1061 #endif
1062 }
1063
1064 if (sc->sc_txpending == FXP_NTXCB) {
1065 /* No more slots; notify upper layer. */
1066 ifp->if_flags |= IFF_OACTIVE;
1067 }
1068
1069 if (sc->sc_txpending != opending) {
1070 /*
1071 * We enqueued packets. If the transmitter was idle,
1072 * reset the txdirty pointer.
1073 */
1074 if (opending == 0)
1075 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1076
1077 /*
1078 * Cause the chip to interrupt and suspend command
1079 * processing once the last packet we've enqueued
1080 * has been transmitted.
1081 */
1082 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1083 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1084 FXP_CDTXSYNC(sc, sc->sc_txlast,
1085 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1086
1087 /*
1088 * The entire packet chain is set up. Clear the suspend bit
1089 * on the command prior to the first packet we set up.
1090 */
1091 FXP_CDTXSYNC(sc, lasttx,
1092 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1093 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1094 htole16(~FXP_CB_COMMAND_S);
1095 FXP_CDTXSYNC(sc, lasttx,
1096 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1097
1098 /*
1099 * Issue a Resume command in case the chip was suspended.
1100 */
1101 fxp_scb_wait(sc);
1102 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1103
1104 /* Set a watchdog timer in case the chip flakes out. */
1105 ifp->if_timer = 5;
1106 }
1107 }
1108
1109 /*
1110 * Process interface interrupts.
1111 */
1112 int
1113 fxp_intr(void *arg)
1114 {
1115 struct fxp_softc *sc = arg;
1116 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1117 bus_dmamap_t rxmap;
1118 int claimed = 0;
1119 u_int8_t statack;
1120
1121 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || sc->sc_enabled == 0)
1122 return (0);
1123 /*
1124 * If the interface isn't running, don't try to
1125 * service the interrupt.. just ack it and bail.
1126 */
1127 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1128 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1129 if (statack) {
1130 claimed = 1;
1131 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1132 }
1133 return (claimed);
1134 }
1135
1136 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1137 claimed = 1;
1138
1139 /*
1140 * First ACK all the interrupts in this pass.
1141 */
1142 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1143
1144 /*
1145 * Process receiver interrupts. If a no-resource (RNR)
1146 * condition exists, get whatever packets we can and
1147 * re-start the receiver.
1148 */
1149 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1150 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1151 fxp_rxintr(sc);
1152 }
1153
1154 if (statack & FXP_SCB_STATACK_RNR) {
1155 fxp_scb_wait(sc);
1156 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1157 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1158 fxp_scb_wait(sc);
1159 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1160 rxmap->dm_segs[0].ds_addr +
1161 RFA_ALIGNMENT_FUDGE);
1162 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1163 }
1164
1165 /*
1166 * Free any finished transmit mbuf chains.
1167 */
1168 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1169 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1170 fxp_txintr(sc);
1171
1172 /*
1173 * Try to get more packets going.
1174 */
1175 fxp_start(ifp);
1176
1177 if (sc->sc_txpending == 0) {
1178 /*
1179 * If we want a re-init, do that now.
1180 */
1181 if (sc->sc_flags & FXPF_WANTINIT)
1182 (void) fxp_init(ifp);
1183 }
1184 }
1185 }
1186
1187 #if NRND > 0
1188 if (claimed)
1189 rnd_add_uint32(&sc->rnd_source, statack);
1190 #endif
1191 return (claimed);
1192 }
1193
1194 /*
1195 * Handle transmit completion interrupts.
1196 */
1197 void
1198 fxp_txintr(struct fxp_softc *sc)
1199 {
1200 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1201 struct fxp_txdesc *txd;
1202 struct fxp_txsoft *txs;
1203 int i;
1204 u_int16_t txstat;
1205
1206 ifp->if_flags &= ~IFF_OACTIVE;
1207 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1208 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1209 txd = FXP_CDTX(sc, i);
1210 txs = FXP_DSTX(sc, i);
1211
1212 FXP_CDTXSYNC(sc, i,
1213 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1214
1215 txstat = le16toh(txd->txd_txcb.cb_status);
1216
1217 if ((txstat & FXP_CB_STATUS_C) == 0)
1218 break;
1219
1220 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1221 0, txs->txs_dmamap->dm_mapsize,
1222 BUS_DMASYNC_POSTWRITE);
1223 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1224 m_freem(txs->txs_mbuf);
1225 txs->txs_mbuf = NULL;
1226 }
1227
1228 /* Update the dirty transmit buffer pointer. */
1229 sc->sc_txdirty = i;
1230
1231 /*
1232 * Cancel the watchdog timer if there are no pending
1233 * transmissions.
1234 */
1235 if (sc->sc_txpending == 0)
1236 ifp->if_timer = 0;
1237 }
1238
1239 /*
1240 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1241 */
1242
1243 int
1244 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1245 {
1246 u_int16_t rxparsestat;
1247 u_int16_t csum_stat;
1248 u_int32_t csum_data;
1249 int csum_flags;
1250
1251 /*
1252 * check VLAN tag stripping.
1253 */
1254
1255 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1256 struct m_tag *vtag;
1257
1258 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1259 if (vtag == NULL)
1260 return ENOMEM;
1261 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1262 m_tag_prepend(m, vtag);
1263 }
1264
1265 /*
1266 * check H/W Checksumming.
1267 */
1268
1269 csum_stat = le16toh(rfa->cksum_stat);
1270 rxparsestat = le16toh(rfa->rx_parse_stat);
1271 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1272 return 0;
1273
1274 csum_flags = 0;
1275 csum_data = 0;
1276
1277 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1278 csum_flags = M_CSUM_IPv4;
1279 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1280 csum_flags |= M_CSUM_IPv4_BAD;
1281 }
1282
1283 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1284 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1285 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1286 csum_flags |= M_CSUM_TCP_UDP_BAD;
1287 }
1288
1289 m->m_pkthdr.csum_flags = csum_flags;
1290 m->m_pkthdr.csum_data = csum_data;
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * Handle receive interrupts.
1297 */
1298 void
1299 fxp_rxintr(struct fxp_softc *sc)
1300 {
1301 struct ethercom *ec = &sc->sc_ethercom;
1302 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1303 struct mbuf *m, *m0;
1304 bus_dmamap_t rxmap;
1305 struct fxp_rfa *rfa;
1306 u_int16_t len, rxstat;
1307
1308 for (;;) {
1309 m = sc->sc_rxq.ifq_head;
1310 rfa = FXP_MTORFA(m);
1311 rxmap = M_GETCTX(m, bus_dmamap_t);
1312
1313 FXP_RFASYNC(sc, m,
1314 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1315
1316 rxstat = le16toh(rfa->rfa_status);
1317
1318 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1319 /*
1320 * We have processed all of the
1321 * receive buffers.
1322 */
1323 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1324 return;
1325 }
1326
1327 IF_DEQUEUE(&sc->sc_rxq, m);
1328
1329 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1330
1331 len = le16toh(rfa->actual_size) &
1332 (m->m_ext.ext_size - 1);
1333
1334 if (len < sizeof(struct ether_header)) {
1335 /*
1336 * Runt packet; drop it now.
1337 */
1338 FXP_INIT_RFABUF(sc, m);
1339 continue;
1340 }
1341
1342 /*
1343 * If support for 802.1Q VLAN sized frames is
1344 * enabled, we need to do some additional error
1345 * checking (as we are saving bad frames, in
1346 * order to receive the larger ones).
1347 */
1348 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1349 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1350 FXP_RFA_STATUS_RNR|
1351 FXP_RFA_STATUS_ALIGN|
1352 FXP_RFA_STATUS_CRC)) != 0) {
1353 FXP_INIT_RFABUF(sc, m);
1354 continue;
1355 }
1356
1357 /* Do checksum checking. */
1358 m->m_pkthdr.csum_flags = 0;
1359 if (sc->sc_flags & FXPF_EXT_RFA)
1360 if (fxp_rx_hwcksum(m, rfa))
1361 goto dropit;
1362
1363 /*
1364 * If the packet is small enough to fit in a
1365 * single header mbuf, allocate one and copy
1366 * the data into it. This greatly reduces
1367 * memory consumption when we receive lots
1368 * of small packets.
1369 *
1370 * Otherwise, we add a new buffer to the receive
1371 * chain. If this fails, we drop the packet and
1372 * recycle the old buffer.
1373 */
1374 if (fxp_copy_small != 0 && len <= MHLEN) {
1375 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1376 if (m0 == NULL)
1377 goto dropit;
1378 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1379 memcpy(mtod(m0, caddr_t),
1380 mtod(m, caddr_t), len);
1381 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1382 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1383 FXP_INIT_RFABUF(sc, m);
1384 m = m0;
1385 } else {
1386 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1387 dropit:
1388 ifp->if_ierrors++;
1389 FXP_INIT_RFABUF(sc, m);
1390 continue;
1391 }
1392 }
1393
1394 m->m_pkthdr.rcvif = ifp;
1395 m->m_pkthdr.len = m->m_len = len;
1396
1397 #if NBPFILTER > 0
1398 /*
1399 * Pass this up to any BPF listeners, but only
1400 * pass it up the stack it its for us.
1401 */
1402 if (ifp->if_bpf)
1403 bpf_mtap(ifp->if_bpf, m);
1404 #endif
1405
1406 /* Pass it on. */
1407 (*ifp->if_input)(ifp, m);
1408 }
1409 }
1410
1411 /*
1412 * Update packet in/out/collision statistics. The i82557 doesn't
1413 * allow you to access these counters without doing a fairly
1414 * expensive DMA to get _all_ of the statistics it maintains, so
1415 * we do this operation here only once per second. The statistics
1416 * counters in the kernel are updated from the previous dump-stats
1417 * DMA and then a new dump-stats DMA is started. The on-chip
1418 * counters are zeroed when the DMA completes. If we can't start
1419 * the DMA immediately, we don't wait - we just prepare to read
1420 * them again next time.
1421 */
1422 void
1423 fxp_tick(void *arg)
1424 {
1425 struct fxp_softc *sc = arg;
1426 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1427 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1428 int s;
1429
1430 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1431 return;
1432
1433 s = splnet();
1434
1435 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1436
1437 ifp->if_opackets += le32toh(sp->tx_good);
1438 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1439 if (sp->rx_good) {
1440 ifp->if_ipackets += le32toh(sp->rx_good);
1441 sc->sc_rxidle = 0;
1442 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1443 sc->sc_rxidle++;
1444 }
1445 ifp->if_ierrors +=
1446 le32toh(sp->rx_crc_errors) +
1447 le32toh(sp->rx_alignment_errors) +
1448 le32toh(sp->rx_rnr_errors) +
1449 le32toh(sp->rx_overrun_errors);
1450 /*
1451 * If any transmit underruns occurred, bump up the transmit
1452 * threshold by another 512 bytes (64 * 8).
1453 */
1454 if (sp->tx_underruns) {
1455 ifp->if_oerrors += le32toh(sp->tx_underruns);
1456 if (tx_threshold < 192)
1457 tx_threshold += 64;
1458 }
1459
1460 /*
1461 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1462 * then assume the receiver has locked up and attempt to clear
1463 * the condition by reprogramming the multicast filter (actually,
1464 * resetting the interface). This is a work-around for a bug in
1465 * the 82557 where the receiver locks up if it gets certain types
1466 * of garbage in the synchronization bits prior to the packet header.
1467 * This bug is supposed to only occur in 10Mbps mode, but has been
1468 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1469 * speed transition).
1470 */
1471 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1472 (void) fxp_init(ifp);
1473 splx(s);
1474 return;
1475 }
1476 /*
1477 * If there is no pending command, start another stats
1478 * dump. Otherwise punt for now.
1479 */
1480 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1481 /*
1482 * Start another stats dump.
1483 */
1484 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1485 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1486 } else {
1487 /*
1488 * A previous command is still waiting to be accepted.
1489 * Just zero our copy of the stats and wait for the
1490 * next timer event to update them.
1491 */
1492 /* BIG_ENDIAN: no swap required to store 0 */
1493 sp->tx_good = 0;
1494 sp->tx_underruns = 0;
1495 sp->tx_total_collisions = 0;
1496
1497 sp->rx_good = 0;
1498 sp->rx_crc_errors = 0;
1499 sp->rx_alignment_errors = 0;
1500 sp->rx_rnr_errors = 0;
1501 sp->rx_overrun_errors = 0;
1502 }
1503
1504 if (sc->sc_flags & FXPF_MII) {
1505 /* Tick the MII clock. */
1506 mii_tick(&sc->sc_mii);
1507 }
1508
1509 splx(s);
1510
1511 /*
1512 * Schedule another timeout one second from now.
1513 */
1514 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1515 }
1516
1517 /*
1518 * Drain the receive queue.
1519 */
1520 void
1521 fxp_rxdrain(struct fxp_softc *sc)
1522 {
1523 bus_dmamap_t rxmap;
1524 struct mbuf *m;
1525
1526 for (;;) {
1527 IF_DEQUEUE(&sc->sc_rxq, m);
1528 if (m == NULL)
1529 break;
1530 rxmap = M_GETCTX(m, bus_dmamap_t);
1531 bus_dmamap_unload(sc->sc_dmat, rxmap);
1532 FXP_RXMAP_PUT(sc, rxmap);
1533 m_freem(m);
1534 }
1535 }
1536
1537 /*
1538 * Stop the interface. Cancels the statistics updater and resets
1539 * the interface.
1540 */
1541 void
1542 fxp_stop(struct ifnet *ifp, int disable)
1543 {
1544 struct fxp_softc *sc = ifp->if_softc;
1545 struct fxp_txsoft *txs;
1546 int i;
1547
1548 /*
1549 * Turn down interface (done early to avoid bad interactions
1550 * between panics, shutdown hooks, and the watchdog timer)
1551 */
1552 ifp->if_timer = 0;
1553 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1554
1555 /*
1556 * Cancel stats updater.
1557 */
1558 callout_stop(&sc->sc_callout);
1559 if (sc->sc_flags & FXPF_MII) {
1560 /* Down the MII. */
1561 mii_down(&sc->sc_mii);
1562 }
1563
1564 /*
1565 * Issue software reset. This unloads any microcode that
1566 * might already be loaded.
1567 */
1568 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1569 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1570 DELAY(50);
1571
1572 /*
1573 * Release any xmit buffers.
1574 */
1575 for (i = 0; i < FXP_NTXCB; i++) {
1576 txs = FXP_DSTX(sc, i);
1577 if (txs->txs_mbuf != NULL) {
1578 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1579 m_freem(txs->txs_mbuf);
1580 txs->txs_mbuf = NULL;
1581 }
1582 }
1583 sc->sc_txpending = 0;
1584
1585 if (disable) {
1586 fxp_rxdrain(sc);
1587 fxp_disable(sc);
1588 }
1589
1590 }
1591
1592 /*
1593 * Watchdog/transmission transmit timeout handler. Called when a
1594 * transmission is started on the interface, but no interrupt is
1595 * received before the timeout. This usually indicates that the
1596 * card has wedged for some reason.
1597 */
1598 void
1599 fxp_watchdog(struct ifnet *ifp)
1600 {
1601 struct fxp_softc *sc = ifp->if_softc;
1602
1603 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1604 ifp->if_oerrors++;
1605
1606 (void) fxp_init(ifp);
1607 }
1608
1609 /*
1610 * Initialize the interface. Must be called at splnet().
1611 */
1612 int
1613 fxp_init(struct ifnet *ifp)
1614 {
1615 struct fxp_softc *sc = ifp->if_softc;
1616 struct fxp_cb_config *cbp;
1617 struct fxp_cb_ias *cb_ias;
1618 struct fxp_txdesc *txd;
1619 bus_dmamap_t rxmap;
1620 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1621
1622 if ((error = fxp_enable(sc)) != 0)
1623 goto out;
1624
1625 /*
1626 * Cancel any pending I/O
1627 */
1628 fxp_stop(ifp, 0);
1629
1630 /*
1631 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1632 * flag, and this prevents the MII from detaching resulting in
1633 * a panic. The flags field should perhaps be split in runtime
1634 * flags and more static information. For now, just clear the
1635 * only other flag set.
1636 */
1637
1638 sc->sc_flags &= ~FXPF_WANTINIT;
1639
1640 /*
1641 * Initialize base of CBL and RFA memory. Loading with zero
1642 * sets it up for regular linear addressing.
1643 */
1644 fxp_scb_wait(sc);
1645 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1646 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1647
1648 fxp_scb_wait(sc);
1649 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1650
1651 /*
1652 * Initialize the multicast filter. Do this now, since we might
1653 * have to setup the config block differently.
1654 */
1655 fxp_mc_setup(sc);
1656
1657 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1658 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1659
1660 /*
1661 * In order to support receiving 802.1Q VLAN frames, we have to
1662 * enable "save bad frames", since they are 4 bytes larger than
1663 * the normal Ethernet maximum frame length. On i82558 and later,
1664 * we have a better mechanism for this.
1665 */
1666 save_bf = 0;
1667 lrxen = 0;
1668 vlan_drop = 0;
1669 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1670 if (sc->sc_rev < FXP_REV_82558_A4)
1671 save_bf = 1;
1672 else
1673 lrxen = 1;
1674 if (sc->sc_rev >= FXP_REV_82550)
1675 vlan_drop = 1;
1676 }
1677
1678 /*
1679 * Initialize base of dump-stats buffer.
1680 */
1681 fxp_scb_wait(sc);
1682 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1683 sc->sc_cddma + FXP_CDSTATSOFF);
1684 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1685 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1686
1687 cbp = &sc->sc_control_data->fcd_configcb;
1688 memset(cbp, 0, sizeof(struct fxp_cb_config));
1689
1690 /*
1691 * Load microcode for this controller.
1692 */
1693 fxp_load_ucode(sc);
1694
1695 /*
1696 * This copy is kind of disgusting, but there are a bunch of must be
1697 * zero and must be one bits in this structure and this is the easiest
1698 * way to initialize them all to proper values.
1699 */
1700 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1701
1702 /* BIG_ENDIAN: no need to swap to store 0 */
1703 cbp->cb_status = 0;
1704 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1705 FXP_CB_COMMAND_EL);
1706 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1707 cbp->link_addr = 0xffffffff; /* (no) next command */
1708 /* bytes in config block */
1709 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1710 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1711 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1712 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1713 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1714 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1715 cbp->type_enable = 0; /* actually reserved */
1716 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1717 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1718 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1719 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1720 cbp->dma_mbce = 0; /* (disable) dma max counters */
1721 cbp->late_scb = 0; /* (don't) defer SCB update */
1722 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1723 cbp->ci_int = 1; /* interrupt on CU idle */
1724 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1725 cbp->ext_stats_dis = 1; /* disable extended counters */
1726 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1727 cbp->save_bf = save_bf;/* save bad frames */
1728 cbp->disc_short_rx = !prm; /* discard short packets */
1729 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1730 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1731 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1732 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1733 /* interface mode */
1734 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1735 cbp->csma_dis = 0; /* (don't) disable link */
1736 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1737 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1738 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1739 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1740 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1741 cbp->nsai = 1; /* (don't) disable source addr insert */
1742 cbp->preamble_length = 2; /* (7 byte) preamble */
1743 cbp->loopback = 0; /* (don't) loopback */
1744 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1745 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1746 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1747 cbp->promiscuous = prm; /* promiscuous mode */
1748 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1749 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1750 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1751 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1752 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1753 cbp->stripping = !prm; /* truncate rx packet to byte count */
1754 cbp->padding = 1; /* (do) pad short tx packets */
1755 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1756 cbp->long_rx_en = lrxen; /* long packet receive enable */
1757 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1758 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1759 /* must set wake_en in PMCSR also */
1760 cbp->force_fdx = 0; /* (don't) force full duplex */
1761 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1762 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1763 cbp->mc_all = allm; /* accept all multicasts */
1764 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1765 cbp->vlan_drop_en = vlan_drop;
1766
1767 if (sc->sc_rev < FXP_REV_82558_A4) {
1768 /*
1769 * The i82557 has no hardware flow control, the values
1770 * here are the defaults for the chip.
1771 */
1772 cbp->fc_delay_lsb = 0;
1773 cbp->fc_delay_msb = 0x40;
1774 cbp->pri_fc_thresh = 3;
1775 cbp->tx_fc_dis = 0;
1776 cbp->rx_fc_restop = 0;
1777 cbp->rx_fc_restart = 0;
1778 cbp->fc_filter = 0;
1779 cbp->pri_fc_loc = 1;
1780 } else {
1781 cbp->fc_delay_lsb = 0x1f;
1782 cbp->fc_delay_msb = 0x01;
1783 cbp->pri_fc_thresh = 3;
1784 cbp->tx_fc_dis = 0; /* enable transmit FC */
1785 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1786 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1787 cbp->fc_filter = !prm; /* drop FC frames to host */
1788 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1789 }
1790
1791 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1792
1793 /*
1794 * Start the config command/DMA.
1795 */
1796 fxp_scb_wait(sc);
1797 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1798 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1799 /* ...and wait for it to complete. */
1800 i = 1000;
1801 do {
1802 FXP_CDCONFIGSYNC(sc,
1803 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1804 DELAY(1);
1805 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1806 if (i == 0) {
1807 printf("%s at line %d: dmasync timeout\n",
1808 sc->sc_dev.dv_xname, __LINE__);
1809 return (ETIMEDOUT);
1810 }
1811
1812 /*
1813 * Initialize the station address.
1814 */
1815 cb_ias = &sc->sc_control_data->fcd_iascb;
1816 /* BIG_ENDIAN: no need to swap to store 0 */
1817 cb_ias->cb_status = 0;
1818 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1819 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1820 cb_ias->link_addr = 0xffffffff;
1821 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1822
1823 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1824
1825 /*
1826 * Start the IAS (Individual Address Setup) command/DMA.
1827 */
1828 fxp_scb_wait(sc);
1829 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1830 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1831 /* ...and wait for it to complete. */
1832 i = 1000;
1833 do {
1834 FXP_CDIASSYNC(sc,
1835 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1836 DELAY(1);
1837 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1838 if (i == 0) {
1839 printf("%s at line %d: dmasync timeout\n",
1840 sc->sc_dev.dv_xname, __LINE__);
1841 return (ETIMEDOUT);
1842 }
1843
1844 /*
1845 * Initialize the transmit descriptor ring. txlast is initialized
1846 * to the end of the list so that it will wrap around to the first
1847 * descriptor when the first packet is transmitted.
1848 */
1849 for (i = 0; i < FXP_NTXCB; i++) {
1850 txd = FXP_CDTX(sc, i);
1851 memset(txd, 0, sizeof(*txd));
1852 txd->txd_txcb.cb_command =
1853 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1854 txd->txd_txcb.link_addr =
1855 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1856 if (sc->sc_flags & FXPF_EXT_TXCB)
1857 txd->txd_txcb.tbd_array_addr =
1858 htole32(FXP_CDTBDADDR(sc, i) +
1859 (2 * sizeof(struct fxp_tbd)));
1860 else
1861 txd->txd_txcb.tbd_array_addr =
1862 htole32(FXP_CDTBDADDR(sc, i));
1863 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1864 }
1865 sc->sc_txpending = 0;
1866 sc->sc_txdirty = 0;
1867 sc->sc_txlast = FXP_NTXCB - 1;
1868
1869 /*
1870 * Initialize the receive buffer list.
1871 */
1872 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1873 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1874 rxmap = FXP_RXMAP_GET(sc);
1875 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1876 printf("%s: unable to allocate or map rx "
1877 "buffer %d, error = %d\n",
1878 sc->sc_dev.dv_xname,
1879 sc->sc_rxq.ifq_len, error);
1880 /*
1881 * XXX Should attempt to run with fewer receive
1882 * XXX buffers instead of just failing.
1883 */
1884 FXP_RXMAP_PUT(sc, rxmap);
1885 fxp_rxdrain(sc);
1886 goto out;
1887 }
1888 }
1889 sc->sc_rxidle = 0;
1890
1891 /*
1892 * Give the transmit ring to the chip. We do this by pointing
1893 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1894 * issuing a start command. It will execute the NOP and then
1895 * suspend, pointing at the first descriptor.
1896 */
1897 fxp_scb_wait(sc);
1898 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1899 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1900
1901 /*
1902 * Initialize receiver buffer area - RFA.
1903 */
1904 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1905 fxp_scb_wait(sc);
1906 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1907 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1908 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1909
1910 if (sc->sc_flags & FXPF_MII) {
1911 /*
1912 * Set current media.
1913 */
1914 mii_mediachg(&sc->sc_mii);
1915 }
1916
1917 /*
1918 * ...all done!
1919 */
1920 ifp->if_flags |= IFF_RUNNING;
1921 ifp->if_flags &= ~IFF_OACTIVE;
1922
1923 /*
1924 * Start the one second timer.
1925 */
1926 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1927
1928 /*
1929 * Attempt to start output on the interface.
1930 */
1931 fxp_start(ifp);
1932
1933 out:
1934 if (error) {
1935 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1936 ifp->if_timer = 0;
1937 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1938 }
1939 return (error);
1940 }
1941
1942 /*
1943 * Change media according to request.
1944 */
1945 int
1946 fxp_mii_mediachange(struct ifnet *ifp)
1947 {
1948 struct fxp_softc *sc = ifp->if_softc;
1949
1950 if (ifp->if_flags & IFF_UP)
1951 mii_mediachg(&sc->sc_mii);
1952 return (0);
1953 }
1954
1955 /*
1956 * Notify the world which media we're using.
1957 */
1958 void
1959 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1960 {
1961 struct fxp_softc *sc = ifp->if_softc;
1962
1963 if (sc->sc_enabled == 0) {
1964 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1965 ifmr->ifm_status = 0;
1966 return;
1967 }
1968
1969 mii_pollstat(&sc->sc_mii);
1970 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1971 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1972 }
1973
1974 int
1975 fxp_80c24_mediachange(struct ifnet *ifp)
1976 {
1977
1978 /* Nothing to do here. */
1979 return (0);
1980 }
1981
1982 void
1983 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1984 {
1985 struct fxp_softc *sc = ifp->if_softc;
1986
1987 /*
1988 * Media is currently-selected media. We cannot determine
1989 * the link status.
1990 */
1991 ifmr->ifm_status = 0;
1992 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1993 }
1994
1995 /*
1996 * Add a buffer to the end of the RFA buffer list.
1997 * Return 0 if successful, error code on failure.
1998 *
1999 * The RFA struct is stuck at the beginning of mbuf cluster and the
2000 * data pointer is fixed up to point just past it.
2001 */
2002 int
2003 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2004 {
2005 struct mbuf *m;
2006 int error;
2007
2008 MGETHDR(m, M_DONTWAIT, MT_DATA);
2009 if (m == NULL)
2010 return (ENOBUFS);
2011
2012 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2013 MCLGET(m, M_DONTWAIT);
2014 if ((m->m_flags & M_EXT) == 0) {
2015 m_freem(m);
2016 return (ENOBUFS);
2017 }
2018
2019 if (unload)
2020 bus_dmamap_unload(sc->sc_dmat, rxmap);
2021
2022 M_SETCTX(m, rxmap);
2023
2024 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2025 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2026 BUS_DMA_READ|BUS_DMA_NOWAIT);
2027 if (error) {
2028 printf("%s: can't load rx DMA map %d, error = %d\n",
2029 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2030 panic("fxp_add_rfabuf"); /* XXX */
2031 }
2032
2033 FXP_INIT_RFABUF(sc, m);
2034
2035 return (0);
2036 }
2037
2038 int
2039 fxp_mdi_read(struct device *self, int phy, int reg)
2040 {
2041 struct fxp_softc *sc = (struct fxp_softc *)self;
2042 int count = 10000;
2043 int value;
2044
2045 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2046 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2047
2048 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2049 0x10000000) == 0 && count--)
2050 DELAY(10);
2051
2052 if (count <= 0)
2053 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2054
2055 return (value & 0xffff);
2056 }
2057
2058 void
2059 fxp_statchg(struct device *self)
2060 {
2061
2062 /* Nothing to do. */
2063 }
2064
2065 void
2066 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2067 {
2068 struct fxp_softc *sc = (struct fxp_softc *)self;
2069 int count = 10000;
2070
2071 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2072 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2073 (value & 0xffff));
2074
2075 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2076 count--)
2077 DELAY(10);
2078
2079 if (count <= 0)
2080 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2081 }
2082
2083 int
2084 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2085 {
2086 struct fxp_softc *sc = ifp->if_softc;
2087 struct ifreq *ifr = (struct ifreq *)data;
2088 int s, error;
2089
2090 s = splnet();
2091
2092 switch (cmd) {
2093 case SIOCSIFMEDIA:
2094 case SIOCGIFMEDIA:
2095 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2096 break;
2097
2098 default:
2099 error = ether_ioctl(ifp, cmd, data);
2100 if (error == ENETRESET) {
2101 if (sc->sc_enabled) {
2102 /*
2103 * Multicast list has changed; set the
2104 * hardware filter accordingly.
2105 */
2106 if (sc->sc_txpending) {
2107 sc->sc_flags |= FXPF_WANTINIT;
2108 error = 0;
2109 } else
2110 error = fxp_init(ifp);
2111 } else
2112 error = 0;
2113 }
2114 break;
2115 }
2116
2117 /* Try to get more packets going. */
2118 if (sc->sc_enabled)
2119 fxp_start(ifp);
2120
2121 splx(s);
2122 return (error);
2123 }
2124
2125 /*
2126 * Program the multicast filter.
2127 *
2128 * This function must be called at splnet().
2129 */
2130 void
2131 fxp_mc_setup(struct fxp_softc *sc)
2132 {
2133 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2134 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2135 struct ethercom *ec = &sc->sc_ethercom;
2136 struct ether_multi *enm;
2137 struct ether_multistep step;
2138 int count, nmcasts;
2139
2140 #ifdef DIAGNOSTIC
2141 if (sc->sc_txpending)
2142 panic("fxp_mc_setup: pending transmissions");
2143 #endif
2144
2145 ifp->if_flags &= ~IFF_ALLMULTI;
2146
2147 /*
2148 * Initialize multicast setup descriptor.
2149 */
2150 nmcasts = 0;
2151 ETHER_FIRST_MULTI(step, ec, enm);
2152 while (enm != NULL) {
2153 /*
2154 * Check for too many multicast addresses or if we're
2155 * listening to a range. Either way, we simply have
2156 * to accept all multicasts.
2157 */
2158 if (nmcasts >= MAXMCADDR ||
2159 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2160 ETHER_ADDR_LEN) != 0) {
2161 /*
2162 * Callers of this function must do the
2163 * right thing with this. If we're called
2164 * from outside fxp_init(), the caller must
2165 * detect if the state if IFF_ALLMULTI changes.
2166 * If it does, the caller must then call
2167 * fxp_init(), since allmulti is handled by
2168 * the config block.
2169 */
2170 ifp->if_flags |= IFF_ALLMULTI;
2171 return;
2172 }
2173 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2174 ETHER_ADDR_LEN);
2175 nmcasts++;
2176 ETHER_NEXT_MULTI(step, enm);
2177 }
2178
2179 /* BIG_ENDIAN: no need to swap to store 0 */
2180 mcsp->cb_status = 0;
2181 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2182 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2183 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2184
2185 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2186
2187 /*
2188 * Wait until the command unit is not active. This should never
2189 * happen since nothing is queued, but make sure anyway.
2190 */
2191 count = 100;
2192 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2193 FXP_SCB_CUS_ACTIVE && --count)
2194 DELAY(1);
2195 if (count == 0) {
2196 printf("%s at line %d: command queue timeout\n",
2197 sc->sc_dev.dv_xname, __LINE__);
2198 return;
2199 }
2200
2201 /*
2202 * Start the multicast setup command/DMA.
2203 */
2204 fxp_scb_wait(sc);
2205 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2206 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2207
2208 /* ...and wait for it to complete. */
2209 count = 1000;
2210 do {
2211 FXP_CDMCSSYNC(sc,
2212 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2213 DELAY(1);
2214 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2215 if (count == 0) {
2216 printf("%s at line %d: dmasync timeout\n",
2217 sc->sc_dev.dv_xname, __LINE__);
2218 return;
2219 }
2220 }
2221
2222 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2223 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2224 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2225 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2226 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2227 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2228
2229 #define UCODE(x) x, sizeof(x)
2230
2231 static const struct ucode {
2232 int32_t revision;
2233 const uint32_t *ucode;
2234 size_t length;
2235 uint16_t int_delay_offset;
2236 uint16_t bundle_max_offset;
2237 } ucode_table[] = {
2238 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2239 D101_CPUSAVER_DWORD, 0 },
2240
2241 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2242 D101_CPUSAVER_DWORD, 0 },
2243
2244 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2245 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2246
2247 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2248 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2249
2250 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2251 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2252
2253 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2254 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2255
2256 { 0, NULL, 0, 0, 0 }
2257 };
2258
2259 void
2260 fxp_load_ucode(struct fxp_softc *sc)
2261 {
2262 const struct ucode *uc;
2263 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2264 int count;
2265
2266 if (sc->sc_flags & FXPF_UCODE_LOADED)
2267 return;
2268
2269 /*
2270 * Only load the uCode if the user has requested that
2271 * we do so.
2272 */
2273 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2274 sc->sc_int_delay = 0;
2275 sc->sc_bundle_max = 0;
2276 return;
2277 }
2278
2279 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2280 if (sc->sc_rev == uc->revision)
2281 break;
2282 }
2283 if (uc->ucode == NULL)
2284 return;
2285
2286 /* BIG ENDIAN: no need to swap to store 0 */
2287 cbp->cb_status = 0;
2288 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2289 cbp->link_addr = 0xffffffff; /* (no) next command */
2290 memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2291
2292 if (uc->int_delay_offset)
2293 *(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2294 htole16(fxp_int_delay + (fxp_int_delay / 2));
2295
2296 if (uc->bundle_max_offset)
2297 *(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2298 htole16(fxp_bundle_max);
2299
2300 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2301
2302 /*
2303 * Download the uCode to the chip.
2304 */
2305 fxp_scb_wait(sc);
2306 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2307 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2308
2309 /* ...and wait for it to complete. */
2310 count = 10000;
2311 do {
2312 FXP_CDUCODESYNC(sc,
2313 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2314 DELAY(2);
2315 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2316 if (count == 0) {
2317 sc->sc_int_delay = 0;
2318 sc->sc_bundle_max = 0;
2319 printf("%s: timeout loading microcode\n",
2320 sc->sc_dev.dv_xname);
2321 return;
2322 }
2323
2324 if (sc->sc_int_delay != fxp_int_delay ||
2325 sc->sc_bundle_max != fxp_bundle_max) {
2326 sc->sc_int_delay = fxp_int_delay;
2327 sc->sc_bundle_max = fxp_bundle_max;
2328 printf("%s: Microcode loaded: int delay: %d usec, "
2329 "max bundle: %d\n", sc->sc_dev.dv_xname,
2330 sc->sc_int_delay,
2331 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2332 }
2333
2334 sc->sc_flags |= FXPF_UCODE_LOADED;
2335 }
2336
2337 int
2338 fxp_enable(struct fxp_softc *sc)
2339 {
2340
2341 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2342 if ((*sc->sc_enable)(sc) != 0) {
2343 printf("%s: device enable failed\n",
2344 sc->sc_dev.dv_xname);
2345 return (EIO);
2346 }
2347 }
2348
2349 sc->sc_enabled = 1;
2350 return (0);
2351 }
2352
2353 void
2354 fxp_disable(struct fxp_softc *sc)
2355 {
2356
2357 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2358 (*sc->sc_disable)(sc);
2359 sc->sc_enabled = 0;
2360 }
2361 }
2362
2363 /*
2364 * fxp_activate:
2365 *
2366 * Handle device activation/deactivation requests.
2367 */
2368 int
2369 fxp_activate(struct device *self, enum devact act)
2370 {
2371 struct fxp_softc *sc = (void *) self;
2372 int s, error = 0;
2373
2374 s = splnet();
2375 switch (act) {
2376 case DVACT_ACTIVATE:
2377 error = EOPNOTSUPP;
2378 break;
2379
2380 case DVACT_DEACTIVATE:
2381 if (sc->sc_flags & FXPF_MII)
2382 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2383 MII_OFFSET_ANY);
2384 if_deactivate(&sc->sc_ethercom.ec_if);
2385 break;
2386 }
2387 splx(s);
2388
2389 return (error);
2390 }
2391
2392 /*
2393 * fxp_detach:
2394 *
2395 * Detach an i82557 interface.
2396 */
2397 int
2398 fxp_detach(struct fxp_softc *sc)
2399 {
2400 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2401 int i;
2402
2403 /* Succeed now if there's no work to do. */
2404 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2405 return (0);
2406
2407 /* Unhook our tick handler. */
2408 callout_stop(&sc->sc_callout);
2409
2410 if (sc->sc_flags & FXPF_MII) {
2411 /* Detach all PHYs */
2412 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2413 }
2414
2415 /* Delete all remaining media. */
2416 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2417
2418 #if NRND > 0
2419 rnd_detach_source(&sc->rnd_source);
2420 #endif
2421 ether_ifdetach(ifp);
2422 if_detach(ifp);
2423
2424 for (i = 0; i < FXP_NRFABUFS; i++) {
2425 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2426 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2427 }
2428
2429 for (i = 0; i < FXP_NTXCB; i++) {
2430 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2431 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2432 }
2433
2434 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2435 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2436 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2437 sizeof(struct fxp_control_data));
2438 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2439
2440 shutdownhook_disestablish(sc->sc_sdhook);
2441 powerhook_disestablish(sc->sc_powerhook);
2442
2443 return (0);
2444 }
2445