i82557.c revision 1.87 1 /* $NetBSD: i82557.c,v 1.87 2004/09/20 07:32:02 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.87 2004/09/20 07:32:02 simonb Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91
92 #include <machine/endian.h>
93
94 #include <uvm/uvm_extern.h>
95
96 #if NRND > 0
97 #include <sys/rnd.h>
98 #endif
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111
112 #include <dev/mii/miivar.h>
113
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116
117 #include <dev/microcode/i8255x/rcvbundl.h>
118
119 /*
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
127 */
128 #define RFA_ALIGNMENT_FUDGE 2
129
130 /*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138 const u_int8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
174 };
175
176 void fxp_mii_initmedia(struct fxp_softc *);
177 int fxp_mii_mediachange(struct ifnet *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 void fxp_rxintr(struct fxp_softc *);
192
193 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
194
195 void fxp_rxdrain(struct fxp_softc *);
196 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197 int fxp_mdi_read(struct device *, int, int);
198 void fxp_statchg(struct device *);
199 void fxp_mdi_write(struct device *, int, int, int);
200 void fxp_autosize_eeprom(struct fxp_softc*);
201 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_eeprom_update_cksum(struct fxp_softc *);
204 void fxp_get_info(struct fxp_softc *, u_int8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207 void fxp_load_ucode(struct fxp_softc *);
208
209 void fxp_shutdown(void *);
210 void fxp_power(int, void *);
211
212 int fxp_copy_small = 0;
213
214 /*
215 * Variables for interrupt mitigating microcode.
216 */
217 int fxp_int_delay = 1000; /* usec */
218 int fxp_bundle_max = 6; /* packets */
219
220 struct fxp_phytype {
221 int fp_phy; /* type of PHY, -1 for MII at the end. */
222 void (*fp_init)(struct fxp_softc *);
223 } fxp_phytype_table[] = {
224 { FXP_PHY_80C24, fxp_80c24_initmedia },
225 { -1, fxp_mii_initmedia },
226 };
227
228 /*
229 * Set initial transmit threshold at 64 (512 bytes). This is
230 * increased by 64 (512 bytes) at a time, to maximum of 192
231 * (1536 bytes), if an underrun occurs.
232 */
233 static int tx_threshold = 64;
234
235 /*
236 * Wait for the previous command to be accepted (but not necessarily
237 * completed).
238 */
239 static __inline void
240 fxp_scb_wait(struct fxp_softc *sc)
241 {
242 int i = 10000;
243
244 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
245 delay(2);
246 if (i == 0)
247 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
248 }
249
250 /*
251 * Submit a command to the i82557.
252 */
253 static __inline void
254 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
255 {
256
257 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
258 }
259
260 /*
261 * Finish attaching an i82557 interface. Called by bus-specific front-end.
262 */
263 void
264 fxp_attach(struct fxp_softc *sc)
265 {
266 u_int8_t enaddr[ETHER_ADDR_LEN];
267 struct ifnet *ifp;
268 bus_dma_segment_t seg;
269 int rseg, i, error;
270 struct fxp_phytype *fp;
271
272 callout_init(&sc->sc_callout);
273
274 /*
275 * Enable some good stuff on i82558 and later.
276 */
277 if (sc->sc_rev >= FXP_REV_82558_A4) {
278 /* Enable the extended TxCB. */
279 sc->sc_flags |= FXPF_EXT_TXCB;
280 }
281
282 /*
283 * Enable use of extended RFDs and TCBs for 82550
284 * and later chips. Note: we need extended TXCB support
285 * too, but that's already enabled by the code above.
286 * Be careful to do this only on the right devices.
287 */
288 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
289 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
290 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
291 } else {
292 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
293 }
294
295 sc->sc_rfa_size =
296 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
297
298 /*
299 * Allocate the control data structures, and create and load the
300 * DMA map for it.
301 */
302 if ((error = bus_dmamem_alloc(sc->sc_dmat,
303 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
304 0)) != 0) {
305 aprint_error(
306 "%s: unable to allocate control data, error = %d\n",
307 sc->sc_dev.dv_xname, error);
308 goto fail_0;
309 }
310
311 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
312 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
313 BUS_DMA_COHERENT)) != 0) {
314 aprint_error("%s: unable to map control data, error = %d\n",
315 sc->sc_dev.dv_xname, error);
316 goto fail_1;
317 }
318 sc->sc_cdseg = seg;
319 sc->sc_cdnseg = rseg;
320
321 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
322
323 if ((error = bus_dmamap_create(sc->sc_dmat,
324 sizeof(struct fxp_control_data), 1,
325 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
326 aprint_error("%s: unable to create control data DMA map, "
327 "error = %d\n", sc->sc_dev.dv_xname, error);
328 goto fail_2;
329 }
330
331 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
332 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
333 0)) != 0) {
334 aprint_error(
335 "%s: can't load control data DMA map, error = %d\n",
336 sc->sc_dev.dv_xname, error);
337 goto fail_3;
338 }
339
340 /*
341 * Create the transmit buffer DMA maps.
342 */
343 for (i = 0; i < FXP_NTXCB; i++) {
344 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
345 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
346 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
347 aprint_error("%s: unable to create tx DMA map %d, "
348 "error = %d\n", sc->sc_dev.dv_xname, i, error);
349 goto fail_4;
350 }
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < FXP_NRFABUFS; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
359 aprint_error("%s: unable to create rx DMA map %d, "
360 "error = %d\n", sc->sc_dev.dv_xname, i, error);
361 goto fail_5;
362 }
363 }
364
365 /* Initialize MAC address and media structures. */
366 fxp_get_info(sc, enaddr);
367
368 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
369 ether_sprintf(enaddr));
370
371 ifp = &sc->sc_ethercom.ec_if;
372
373 /*
374 * Get info about our media interface, and initialize it. Note
375 * the table terminates itself with a phy of -1, indicating
376 * that we're using MII.
377 */
378 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
379 if (fp->fp_phy == sc->phy_primary_device)
380 break;
381 (*fp->fp_init)(sc);
382
383 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
384 ifp->if_softc = sc;
385 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
386 ifp->if_ioctl = fxp_ioctl;
387 ifp->if_start = fxp_start;
388 ifp->if_watchdog = fxp_watchdog;
389 ifp->if_init = fxp_init;
390 ifp->if_stop = fxp_stop;
391 IFQ_SET_READY(&ifp->if_snd);
392
393 if (sc->sc_flags & FXPF_IPCB) {
394 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
395 /*
396 * IFCAP_CSUM_IPv4 seems to have a problem,
397 * at least, on i82550 rev.12.
398 * specifically, it doesn't calculate ipv4 checksum correctly
399 * when sending 20 byte ipv4 header + 1 or 2 byte data.
400 * FreeBSD driver has related comments.
401 *
402 * XXX we should have separate IFCAP flags
403 * for transmit and receive.
404 */
405 ifp->if_capabilities =
406 /*IFCAP_CSUM_IPv4 |*/ IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
407 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
408 }
409
410 /*
411 * We can support 802.1Q VLAN-sized frames.
412 */
413 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
414
415 /*
416 * Attach the interface.
417 */
418 if_attach(ifp);
419 ether_ifattach(ifp, enaddr);
420 #if NRND > 0
421 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
422 RND_TYPE_NET, 0);
423 #endif
424
425 #ifdef FXP_EVENT_COUNTERS
426 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
427 NULL, sc->sc_dev.dv_xname, "txstall");
428 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
429 NULL, sc->sc_dev.dv_xname, "txintr");
430 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
431 NULL, sc->sc_dev.dv_xname, "rxintr");
432 if (sc->sc_rev >= FXP_REV_82558_A4) {
433 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
434 NULL, sc->sc_dev.dv_xname, "txpause");
435 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
436 NULL, sc->sc_dev.dv_xname, "rxpause");
437 }
438 #endif /* FXP_EVENT_COUNTERS */
439
440 /*
441 * Add shutdown hook so that DMA is disabled prior to reboot. Not
442 * doing do could allow DMA to corrupt kernel memory during the
443 * reboot before the driver initializes.
444 */
445 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
446 if (sc->sc_sdhook == NULL)
447 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
448 sc->sc_dev.dv_xname);
449 /*
450 * Add suspend hook, for similar reasons..
451 */
452 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
453 if (sc->sc_powerhook == NULL)
454 aprint_error("%s: WARNING: unable to establish power hook\n",
455 sc->sc_dev.dv_xname);
456
457 /* The attach is successful. */
458 sc->sc_flags |= FXPF_ATTACHED;
459
460 return;
461
462 /*
463 * Free any resources we've allocated during the failed attach
464 * attempt. Do this in reverse order and fall though.
465 */
466 fail_5:
467 for (i = 0; i < FXP_NRFABUFS; i++) {
468 if (sc->sc_rxmaps[i] != NULL)
469 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
470 }
471 fail_4:
472 for (i = 0; i < FXP_NTXCB; i++) {
473 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
474 bus_dmamap_destroy(sc->sc_dmat,
475 FXP_DSTX(sc, i)->txs_dmamap);
476 }
477 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
478 fail_3:
479 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
480 fail_2:
481 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
482 sizeof(struct fxp_control_data));
483 fail_1:
484 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
485 fail_0:
486 return;
487 }
488
489 void
490 fxp_mii_initmedia(struct fxp_softc *sc)
491 {
492 int flags;
493
494 sc->sc_flags |= FXPF_MII;
495
496 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
497 sc->sc_mii.mii_readreg = fxp_mdi_read;
498 sc->sc_mii.mii_writereg = fxp_mdi_write;
499 sc->sc_mii.mii_statchg = fxp_statchg;
500 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
501 fxp_mii_mediastatus);
502
503 flags = MIIF_NOISOLATE;
504 if (sc->sc_rev >= FXP_REV_82558_A4)
505 flags |= MIIF_DOPAUSE;
506 /*
507 * The i82557 wedges if all of its PHYs are isolated!
508 */
509 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
510 MII_OFFSET_ANY, flags);
511 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
512 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
513 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
514 } else
515 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
516 }
517
518 void
519 fxp_80c24_initmedia(struct fxp_softc *sc)
520 {
521
522 /*
523 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
524 * doesn't have a programming interface of any sort. The
525 * media is sensed automatically based on how the link partner
526 * is configured. This is, in essence, manual configuration.
527 */
528 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
529 sc->sc_dev.dv_xname);
530 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
531 fxp_80c24_mediastatus);
532 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
533 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
534 }
535
536 /*
537 * Device shutdown routine. Called at system shutdown after sync. The
538 * main purpose of this routine is to shut off receiver DMA so that
539 * kernel memory doesn't get clobbered during warmboot.
540 */
541 void
542 fxp_shutdown(void *arg)
543 {
544 struct fxp_softc *sc = arg;
545
546 /*
547 * Since the system's going to halt shortly, don't bother
548 * freeing mbufs.
549 */
550 fxp_stop(&sc->sc_ethercom.ec_if, 0);
551 }
552 /*
553 * Power handler routine. Called when the system is transitioning
554 * into/out of power save modes. As with fxp_shutdown, the main
555 * purpose of this routine is to shut off receiver DMA so it doesn't
556 * clobber kernel memory at the wrong time.
557 */
558 void
559 fxp_power(int why, void *arg)
560 {
561 struct fxp_softc *sc = arg;
562 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
563 int s;
564
565 s = splnet();
566 switch (why) {
567 case PWR_SUSPEND:
568 case PWR_STANDBY:
569 fxp_stop(ifp, 0);
570 break;
571 case PWR_RESUME:
572 if (ifp->if_flags & IFF_UP)
573 fxp_init(ifp);
574 break;
575 case PWR_SOFTSUSPEND:
576 case PWR_SOFTSTANDBY:
577 case PWR_SOFTRESUME:
578 break;
579 }
580 splx(s);
581 }
582
583 /*
584 * Initialize the interface media.
585 */
586 void
587 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
588 {
589 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
590
591 /*
592 * Reset to a stable state.
593 */
594 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
595 DELAY(100);
596
597 sc->sc_eeprom_size = 0;
598 fxp_autosize_eeprom(sc);
599 if (sc->sc_eeprom_size == 0) {
600 aprint_error("%s: failed to detect EEPROM size\n",
601 sc->sc_dev.dv_xname);
602 sc->sc_eeprom_size = 6; /* XXX panic here? */
603 }
604 #ifdef DEBUG
605 aprint_debug("%s: detected %d word EEPROM\n",
606 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
607 #endif
608
609 /*
610 * Get info about the primary PHY
611 */
612 fxp_read_eeprom(sc, &data, 6, 1);
613 sc->phy_primary_device =
614 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
615
616 /*
617 * Read MAC address.
618 */
619 fxp_read_eeprom(sc, myea, 0, 3);
620 enaddr[0] = myea[0] & 0xff;
621 enaddr[1] = myea[0] >> 8;
622 enaddr[2] = myea[1] & 0xff;
623 enaddr[3] = myea[1] >> 8;
624 enaddr[4] = myea[2] & 0xff;
625 enaddr[5] = myea[2] >> 8;
626
627 /*
628 * Systems based on the ICH2/ICH2-M chip from Intel, as well
629 * as some i82559 designs, have a defect where the chip can
630 * cause a PCI protocol violation if it receives a CU_RESUME
631 * command when it is entering the IDLE state.
632 *
633 * The work-around is to disable Dynamic Standby Mode, so that
634 * the chip never deasserts #CLKRUN, and always remains in the
635 * active state.
636 *
637 * Unfortunately, the only way to disable Dynamic Standby is
638 * to frob an EEPROM setting and reboot (the EEPROM setting
639 * is only consulted when the PCI bus comes out of reset).
640 *
641 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
642 */
643 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
644 fxp_read_eeprom(sc, &data, 10, 1);
645 if (data & 0x02) { /* STB enable */
646 aprint_error("%s: WARNING: "
647 "Disabling dynamic standby mode in EEPROM "
648 "to work around a\n",
649 sc->sc_dev.dv_xname);
650 aprint_normal(
651 "%s: WARNING: hardware bug. You must reset "
652 "the system before using this\n",
653 sc->sc_dev.dv_xname);
654 aprint_normal("%s: WARNING: interface.\n",
655 sc->sc_dev.dv_xname);
656 data &= ~0x02;
657 fxp_write_eeprom(sc, &data, 10, 1);
658 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
659 sc->sc_dev.dv_xname, data);
660 fxp_eeprom_update_cksum(sc);
661 }
662 }
663
664 /* Receiver lock-up workaround detection. */
665 fxp_read_eeprom(sc, &data, 3, 1);
666 if ((data & 0x03) != 0x03) {
667 aprint_verbose("%s: Enabling receiver lock-up workaround\n",
668 sc->sc_dev.dv_xname);
669 sc->sc_flags |= FXPF_RECV_WORKAROUND;
670 }
671 }
672
673 static void
674 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
675 {
676 uint16_t reg;
677 int x;
678
679 for (x = 1 << (len - 1); x != 0; x >>= 1) {
680 DELAY(40);
681 if (data & x)
682 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
683 else
684 reg = FXP_EEPROM_EECS;
685 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
686 DELAY(40);
687 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
688 reg | FXP_EEPROM_EESK);
689 DELAY(40);
690 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
691 }
692 DELAY(40);
693 }
694
695 /*
696 * Figure out EEPROM size.
697 *
698 * 559's can have either 64-word or 256-word EEPROMs, the 558
699 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
700 * talks about the existence of 16 to 256 word EEPROMs.
701 *
702 * The only known sizes are 64 and 256, where the 256 version is used
703 * by CardBus cards to store CIS information.
704 *
705 * The address is shifted in msb-to-lsb, and after the last
706 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
707 * after which follows the actual data. We try to detect this zero, by
708 * probing the data-out bit in the EEPROM control register just after
709 * having shifted in a bit. If the bit is zero, we assume we've
710 * shifted enough address bits. The data-out should be tri-state,
711 * before this, which should translate to a logical one.
712 *
713 * Other ways to do this would be to try to read a register with known
714 * contents with a varying number of address bits, but no such
715 * register seem to be available. The high bits of register 10 are 01
716 * on the 558 and 559, but apparently not on the 557.
717 *
718 * The Linux driver computes a checksum on the EEPROM data, but the
719 * value of this checksum is not very well documented.
720 */
721
722 void
723 fxp_autosize_eeprom(struct fxp_softc *sc)
724 {
725 int x;
726
727 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
728 DELAY(40);
729
730 /* Shift in read opcode. */
731 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
732
733 /*
734 * Shift in address, wait for the dummy zero following a correct
735 * address shift.
736 */
737 for (x = 1; x <= 8; x++) {
738 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
739 DELAY(40);
740 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
741 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
742 DELAY(40);
743 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
744 FXP_EEPROM_EEDO) == 0)
745 break;
746 DELAY(40);
747 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
748 DELAY(40);
749 }
750 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
751 DELAY(40);
752 if (x != 6 && x != 8) {
753 #ifdef DEBUG
754 printf("%s: strange EEPROM size (%d)\n",
755 sc->sc_dev.dv_xname, 1 << x);
756 #endif
757 } else
758 sc->sc_eeprom_size = x;
759 }
760
761 /*
762 * Read from the serial EEPROM. Basically, you manually shift in
763 * the read opcode (one bit at a time) and then shift in the address,
764 * and then you shift out the data (all of this one bit at a time).
765 * The word size is 16 bits, so you have to provide the address for
766 * every 16 bits of data.
767 */
768 void
769 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
770 {
771 u_int16_t reg;
772 int i, x;
773
774 for (i = 0; i < words; i++) {
775 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
776
777 /* Shift in read opcode. */
778 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
779
780 /* Shift in address. */
781 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
782
783 reg = FXP_EEPROM_EECS;
784 data[i] = 0;
785
786 /* Shift out data. */
787 for (x = 16; x > 0; x--) {
788 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
789 reg | FXP_EEPROM_EESK);
790 DELAY(40);
791 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
792 FXP_EEPROM_EEDO)
793 data[i] |= (1 << (x - 1));
794 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
795 DELAY(40);
796 }
797 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
798 DELAY(40);
799 }
800 }
801
802 /*
803 * Write data to the serial EEPROM.
804 */
805 void
806 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
807 {
808 int i, j;
809
810 for (i = 0; i < words; i++) {
811 /* Erase/write enable. */
812 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
813 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
814 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
815 sc->sc_eeprom_size);
816 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
817 DELAY(4);
818
819 /* Shift in write opcode, address, data. */
820 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
821 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
822 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
823 fxp_eeprom_shiftin(sc, data[i], 16);
824 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
825 DELAY(4);
826
827 /* Wait for the EEPROM to finish up. */
828 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
829 DELAY(4);
830 for (j = 0; j < 1000; j++) {
831 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
832 FXP_EEPROM_EEDO)
833 break;
834 DELAY(50);
835 }
836 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
837 DELAY(4);
838
839 /* Erase/write disable. */
840 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
841 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
842 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
843 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
844 DELAY(4);
845 }
846 }
847
848 /*
849 * Update the checksum of the EEPROM.
850 */
851 void
852 fxp_eeprom_update_cksum(struct fxp_softc *sc)
853 {
854 int i;
855 uint16_t data, cksum;
856
857 cksum = 0;
858 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
859 fxp_read_eeprom(sc, &data, i, 1);
860 cksum += data;
861 }
862 i = (1 << sc->sc_eeprom_size) - 1;
863 cksum = 0xbaba - cksum;
864 fxp_read_eeprom(sc, &data, i, 1);
865 fxp_write_eeprom(sc, &cksum, i, 1);
866 printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
867 sc->sc_dev.dv_xname, i, data, cksum);
868 }
869
870 /*
871 * Start packet transmission on the interface.
872 */
873 void
874 fxp_start(struct ifnet *ifp)
875 {
876 struct fxp_softc *sc = ifp->if_softc;
877 struct mbuf *m0, *m;
878 struct fxp_txdesc *txd;
879 struct fxp_txsoft *txs;
880 bus_dmamap_t dmamap;
881 int error, lasttx, nexttx, opending, seg;
882
883 /*
884 * If we want a re-init, bail out now.
885 */
886 if (sc->sc_flags & FXPF_WANTINIT) {
887 ifp->if_flags |= IFF_OACTIVE;
888 return;
889 }
890
891 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
892 return;
893
894 /*
895 * Remember the previous txpending and the current lasttx.
896 */
897 opending = sc->sc_txpending;
898 lasttx = sc->sc_txlast;
899
900 /*
901 * Loop through the send queue, setting up transmit descriptors
902 * until we drain the queue, or use up all available transmit
903 * descriptors.
904 */
905 for (;;) {
906 struct fxp_tbd *tbdp;
907 int csum_flags;
908
909 /*
910 * Grab a packet off the queue.
911 */
912 IFQ_POLL(&ifp->if_snd, m0);
913 if (m0 == NULL)
914 break;
915 m = NULL;
916
917 if (sc->sc_txpending == FXP_NTXCB) {
918 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
919 break;
920 }
921
922 /*
923 * Get the next available transmit descriptor.
924 */
925 nexttx = FXP_NEXTTX(sc->sc_txlast);
926 txd = FXP_CDTX(sc, nexttx);
927 txs = FXP_DSTX(sc, nexttx);
928 dmamap = txs->txs_dmamap;
929
930 /*
931 * Load the DMA map. If this fails, the packet either
932 * didn't fit in the allotted number of frags, or we were
933 * short on resources. In this case, we'll copy and try
934 * again.
935 */
936 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
937 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
938 MGETHDR(m, M_DONTWAIT, MT_DATA);
939 if (m == NULL) {
940 printf("%s: unable to allocate Tx mbuf\n",
941 sc->sc_dev.dv_xname);
942 break;
943 }
944 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
945 if (m0->m_pkthdr.len > MHLEN) {
946 MCLGET(m, M_DONTWAIT);
947 if ((m->m_flags & M_EXT) == 0) {
948 printf("%s: unable to allocate Tx "
949 "cluster\n", sc->sc_dev.dv_xname);
950 m_freem(m);
951 break;
952 }
953 }
954 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
955 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
956 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
957 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
958 if (error) {
959 printf("%s: unable to load Tx buffer, "
960 "error = %d\n", sc->sc_dev.dv_xname, error);
961 break;
962 }
963 }
964
965 IFQ_DEQUEUE(&ifp->if_snd, m0);
966 csum_flags = m0->m_pkthdr.csum_flags;
967 if (m != NULL) {
968 m_freem(m0);
969 m0 = m;
970 }
971
972 /* Initialize the fraglist. */
973 tbdp = txd->txd_tbd;
974 if (sc->sc_flags & FXPF_IPCB)
975 tbdp++;
976 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
977 tbdp[seg].tb_addr =
978 htole32(dmamap->dm_segs[seg].ds_addr);
979 tbdp[seg].tb_size =
980 htole32(dmamap->dm_segs[seg].ds_len);
981 }
982
983 /* Sync the DMA map. */
984 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
985 BUS_DMASYNC_PREWRITE);
986
987 /*
988 * Store a pointer to the packet so we can free it later.
989 */
990 txs->txs_mbuf = m0;
991
992 /*
993 * Initialize the transmit descriptor.
994 */
995 /* BIG_ENDIAN: no need to swap to store 0 */
996 txd->txd_txcb.cb_status = 0;
997 txd->txd_txcb.cb_command =
998 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
999 txd->txd_txcb.tx_threshold = tx_threshold;
1000 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
1001
1002 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
1003 if (sc->sc_flags & FXPF_IPCB) {
1004 struct fxp_ipcb *ipcb;
1005 /*
1006 * Deal with TCP/IP checksum offload. Note that
1007 * in order for TCP checksum offload to work,
1008 * the pseudo header checksum must have already
1009 * been computed and stored in the checksum field
1010 * in the TCP header. The stack should have
1011 * already done this for us.
1012 */
1013 ipcb = &txd->txd_u.txdu_ipcb;
1014 memset(ipcb, 0, sizeof(*ipcb));
1015 /*
1016 * always do hardware parsing.
1017 */
1018 ipcb->ipcb_ip_activation_high =
1019 FXP_IPCB_HARDWAREPARSING_ENABLE;
1020 /*
1021 * ip checksum offloading.
1022 */
1023 if (csum_flags & M_CSUM_IPv4) {
1024 ipcb->ipcb_ip_schedule |=
1025 FXP_IPCB_IP_CHECKSUM_ENABLE;
1026 }
1027 /*
1028 * TCP/UDP checksum offloading.
1029 */
1030 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1031 ipcb->ipcb_ip_schedule |=
1032 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1033 }
1034
1035 /*
1036 * request VLAN tag insertion if needed.
1037 */
1038 if (sc->sc_ethercom.ec_nvlans != 0) {
1039 struct m_tag *vtag;
1040
1041 vtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL);
1042 if (vtag) {
1043 ipcb->ipcb_vlan_id =
1044 htobe16(*(u_int *)(vtag + 1));
1045 ipcb->ipcb_ip_activation_high |=
1046 FXP_IPCB_INSERTVLAN_ENABLE;
1047 }
1048 }
1049 } else {
1050 KASSERT((csum_flags &
1051 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1052 }
1053
1054 FXP_CDTXSYNC(sc, nexttx,
1055 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1056
1057 /* Advance the tx pointer. */
1058 sc->sc_txpending++;
1059 sc->sc_txlast = nexttx;
1060
1061 #if NBPFILTER > 0
1062 /*
1063 * Pass packet to bpf if there is a listener.
1064 */
1065 if (ifp->if_bpf)
1066 bpf_mtap(ifp->if_bpf, m0);
1067 #endif
1068 }
1069
1070 if (sc->sc_txpending == FXP_NTXCB) {
1071 /* No more slots; notify upper layer. */
1072 ifp->if_flags |= IFF_OACTIVE;
1073 }
1074
1075 if (sc->sc_txpending != opending) {
1076 /*
1077 * We enqueued packets. If the transmitter was idle,
1078 * reset the txdirty pointer.
1079 */
1080 if (opending == 0)
1081 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1082
1083 /*
1084 * Cause the chip to interrupt and suspend command
1085 * processing once the last packet we've enqueued
1086 * has been transmitted.
1087 */
1088 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1089 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1090 FXP_CDTXSYNC(sc, sc->sc_txlast,
1091 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1092
1093 /*
1094 * The entire packet chain is set up. Clear the suspend bit
1095 * on the command prior to the first packet we set up.
1096 */
1097 FXP_CDTXSYNC(sc, lasttx,
1098 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1099 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1100 htole16(~FXP_CB_COMMAND_S);
1101 FXP_CDTXSYNC(sc, lasttx,
1102 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1103
1104 /*
1105 * Issue a Resume command in case the chip was suspended.
1106 */
1107 fxp_scb_wait(sc);
1108 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1109
1110 /* Set a watchdog timer in case the chip flakes out. */
1111 ifp->if_timer = 5;
1112 }
1113 }
1114
1115 /*
1116 * Process interface interrupts.
1117 */
1118 int
1119 fxp_intr(void *arg)
1120 {
1121 struct fxp_softc *sc = arg;
1122 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1123 bus_dmamap_t rxmap;
1124 int claimed = 0;
1125 u_int8_t statack;
1126
1127 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || sc->sc_enabled == 0)
1128 return (0);
1129 /*
1130 * If the interface isn't running, don't try to
1131 * service the interrupt.. just ack it and bail.
1132 */
1133 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1134 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1135 if (statack) {
1136 claimed = 1;
1137 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1138 }
1139 return (claimed);
1140 }
1141
1142 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1143 claimed = 1;
1144
1145 /*
1146 * First ACK all the interrupts in this pass.
1147 */
1148 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1149
1150 /*
1151 * Process receiver interrupts. If a no-resource (RNR)
1152 * condition exists, get whatever packets we can and
1153 * re-start the receiver.
1154 */
1155 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1156 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1157 fxp_rxintr(sc);
1158 }
1159
1160 if (statack & FXP_SCB_STATACK_RNR) {
1161 fxp_scb_wait(sc);
1162 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1163 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1164 fxp_scb_wait(sc);
1165 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1166 rxmap->dm_segs[0].ds_addr +
1167 RFA_ALIGNMENT_FUDGE);
1168 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1169 }
1170
1171 /*
1172 * Free any finished transmit mbuf chains.
1173 */
1174 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1175 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1176 fxp_txintr(sc);
1177
1178 /*
1179 * Try to get more packets going.
1180 */
1181 fxp_start(ifp);
1182
1183 if (sc->sc_txpending == 0) {
1184 /*
1185 * If we want a re-init, do that now.
1186 */
1187 if (sc->sc_flags & FXPF_WANTINIT)
1188 (void) fxp_init(ifp);
1189 }
1190 }
1191 }
1192
1193 #if NRND > 0
1194 if (claimed)
1195 rnd_add_uint32(&sc->rnd_source, statack);
1196 #endif
1197 return (claimed);
1198 }
1199
1200 /*
1201 * Handle transmit completion interrupts.
1202 */
1203 void
1204 fxp_txintr(struct fxp_softc *sc)
1205 {
1206 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207 struct fxp_txdesc *txd;
1208 struct fxp_txsoft *txs;
1209 int i;
1210 u_int16_t txstat;
1211
1212 ifp->if_flags &= ~IFF_OACTIVE;
1213 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1214 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1215 txd = FXP_CDTX(sc, i);
1216 txs = FXP_DSTX(sc, i);
1217
1218 FXP_CDTXSYNC(sc, i,
1219 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1220
1221 txstat = le16toh(txd->txd_txcb.cb_status);
1222
1223 if ((txstat & FXP_CB_STATUS_C) == 0)
1224 break;
1225
1226 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1227 0, txs->txs_dmamap->dm_mapsize,
1228 BUS_DMASYNC_POSTWRITE);
1229 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1230 m_freem(txs->txs_mbuf);
1231 txs->txs_mbuf = NULL;
1232 }
1233
1234 /* Update the dirty transmit buffer pointer. */
1235 sc->sc_txdirty = i;
1236
1237 /*
1238 * Cancel the watchdog timer if there are no pending
1239 * transmissions.
1240 */
1241 if (sc->sc_txpending == 0)
1242 ifp->if_timer = 0;
1243 }
1244
1245 /*
1246 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1247 */
1248
1249 int
1250 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1251 {
1252 u_int16_t rxparsestat;
1253 u_int16_t csum_stat;
1254 u_int32_t csum_data;
1255 int csum_flags;
1256
1257 /*
1258 * check VLAN tag stripping.
1259 */
1260
1261 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1262 struct m_tag *vtag;
1263
1264 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1265 if (vtag == NULL)
1266 return ENOMEM;
1267 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1268 m_tag_prepend(m, vtag);
1269 }
1270
1271 /*
1272 * check H/W Checksumming.
1273 */
1274
1275 csum_stat = le16toh(rfa->cksum_stat);
1276 rxparsestat = le16toh(rfa->rx_parse_stat);
1277 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1278 return 0;
1279
1280 csum_flags = 0;
1281 csum_data = 0;
1282
1283 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1284 csum_flags = M_CSUM_IPv4;
1285 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1286 csum_flags |= M_CSUM_IPv4_BAD;
1287 }
1288
1289 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1290 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1291 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1292 csum_flags |= M_CSUM_TCP_UDP_BAD;
1293 }
1294
1295 m->m_pkthdr.csum_flags = csum_flags;
1296 m->m_pkthdr.csum_data = csum_data;
1297
1298 return 0;
1299 }
1300
1301 /*
1302 * Handle receive interrupts.
1303 */
1304 void
1305 fxp_rxintr(struct fxp_softc *sc)
1306 {
1307 struct ethercom *ec = &sc->sc_ethercom;
1308 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1309 struct mbuf *m, *m0;
1310 bus_dmamap_t rxmap;
1311 struct fxp_rfa *rfa;
1312 u_int16_t len, rxstat;
1313
1314 for (;;) {
1315 m = sc->sc_rxq.ifq_head;
1316 rfa = FXP_MTORFA(m);
1317 rxmap = M_GETCTX(m, bus_dmamap_t);
1318
1319 FXP_RFASYNC(sc, m,
1320 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1321
1322 rxstat = le16toh(rfa->rfa_status);
1323
1324 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1325 /*
1326 * We have processed all of the
1327 * receive buffers.
1328 */
1329 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1330 return;
1331 }
1332
1333 IF_DEQUEUE(&sc->sc_rxq, m);
1334
1335 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1336
1337 len = le16toh(rfa->actual_size) &
1338 (m->m_ext.ext_size - 1);
1339
1340 if (len < sizeof(struct ether_header)) {
1341 /*
1342 * Runt packet; drop it now.
1343 */
1344 FXP_INIT_RFABUF(sc, m);
1345 continue;
1346 }
1347
1348 /*
1349 * If support for 802.1Q VLAN sized frames is
1350 * enabled, we need to do some additional error
1351 * checking (as we are saving bad frames, in
1352 * order to receive the larger ones).
1353 */
1354 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1355 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1356 FXP_RFA_STATUS_RNR|
1357 FXP_RFA_STATUS_ALIGN|
1358 FXP_RFA_STATUS_CRC)) != 0) {
1359 FXP_INIT_RFABUF(sc, m);
1360 continue;
1361 }
1362
1363 /* Do checksum checking. */
1364 m->m_pkthdr.csum_flags = 0;
1365 if (sc->sc_flags & FXPF_EXT_RFA)
1366 if (fxp_rx_hwcksum(m, rfa))
1367 goto dropit;
1368
1369 /*
1370 * If the packet is small enough to fit in a
1371 * single header mbuf, allocate one and copy
1372 * the data into it. This greatly reduces
1373 * memory consumption when we receive lots
1374 * of small packets.
1375 *
1376 * Otherwise, we add a new buffer to the receive
1377 * chain. If this fails, we drop the packet and
1378 * recycle the old buffer.
1379 */
1380 if (fxp_copy_small != 0 && len <= MHLEN) {
1381 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1382 if (m0 == NULL)
1383 goto dropit;
1384 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1385 memcpy(mtod(m0, caddr_t),
1386 mtod(m, caddr_t), len);
1387 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1388 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1389 FXP_INIT_RFABUF(sc, m);
1390 m = m0;
1391 } else {
1392 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1393 dropit:
1394 ifp->if_ierrors++;
1395 FXP_INIT_RFABUF(sc, m);
1396 continue;
1397 }
1398 }
1399
1400 m->m_pkthdr.rcvif = ifp;
1401 m->m_pkthdr.len = m->m_len = len;
1402
1403 #if NBPFILTER > 0
1404 /*
1405 * Pass this up to any BPF listeners, but only
1406 * pass it up the stack it its for us.
1407 */
1408 if (ifp->if_bpf)
1409 bpf_mtap(ifp->if_bpf, m);
1410 #endif
1411
1412 /* Pass it on. */
1413 (*ifp->if_input)(ifp, m);
1414 }
1415 }
1416
1417 /*
1418 * Update packet in/out/collision statistics. The i82557 doesn't
1419 * allow you to access these counters without doing a fairly
1420 * expensive DMA to get _all_ of the statistics it maintains, so
1421 * we do this operation here only once per second. The statistics
1422 * counters in the kernel are updated from the previous dump-stats
1423 * DMA and then a new dump-stats DMA is started. The on-chip
1424 * counters are zeroed when the DMA completes. If we can't start
1425 * the DMA immediately, we don't wait - we just prepare to read
1426 * them again next time.
1427 */
1428 void
1429 fxp_tick(void *arg)
1430 {
1431 struct fxp_softc *sc = arg;
1432 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1433 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1434 int s;
1435
1436 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1437 return;
1438
1439 s = splnet();
1440
1441 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1442
1443 ifp->if_opackets += le32toh(sp->tx_good);
1444 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1445 if (sp->rx_good) {
1446 ifp->if_ipackets += le32toh(sp->rx_good);
1447 sc->sc_rxidle = 0;
1448 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1449 sc->sc_rxidle++;
1450 }
1451 ifp->if_ierrors +=
1452 le32toh(sp->rx_crc_errors) +
1453 le32toh(sp->rx_alignment_errors) +
1454 le32toh(sp->rx_rnr_errors) +
1455 le32toh(sp->rx_overrun_errors);
1456 /*
1457 * If any transmit underruns occurred, bump up the transmit
1458 * threshold by another 512 bytes (64 * 8).
1459 */
1460 if (sp->tx_underruns) {
1461 ifp->if_oerrors += le32toh(sp->tx_underruns);
1462 if (tx_threshold < 192)
1463 tx_threshold += 64;
1464 }
1465 #ifdef FXP_EVENT_COUNTERS
1466 if (sc->sc_rev >= FXP_REV_82558_A4) {
1467 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1468 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1469 }
1470 #endif
1471
1472 /*
1473 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1474 * then assume the receiver has locked up and attempt to clear
1475 * the condition by reprogramming the multicast filter (actually,
1476 * resetting the interface). This is a work-around for a bug in
1477 * the 82557 where the receiver locks up if it gets certain types
1478 * of garbage in the synchronization bits prior to the packet header.
1479 * This bug is supposed to only occur in 10Mbps mode, but has been
1480 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1481 * speed transition).
1482 */
1483 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1484 (void) fxp_init(ifp);
1485 splx(s);
1486 return;
1487 }
1488 /*
1489 * If there is no pending command, start another stats
1490 * dump. Otherwise punt for now.
1491 */
1492 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1493 /*
1494 * Start another stats dump.
1495 */
1496 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1497 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1498 } else {
1499 /*
1500 * A previous command is still waiting to be accepted.
1501 * Just zero our copy of the stats and wait for the
1502 * next timer event to update them.
1503 */
1504 /* BIG_ENDIAN: no swap required to store 0 */
1505 sp->tx_good = 0;
1506 sp->tx_underruns = 0;
1507 sp->tx_total_collisions = 0;
1508
1509 sp->rx_good = 0;
1510 sp->rx_crc_errors = 0;
1511 sp->rx_alignment_errors = 0;
1512 sp->rx_rnr_errors = 0;
1513 sp->rx_overrun_errors = 0;
1514 if (sc->sc_rev >= FXP_REV_82558_A4) {
1515 sp->tx_pauseframes = 0;
1516 sp->rx_pauseframes = 0;
1517 }
1518 }
1519
1520 if (sc->sc_flags & FXPF_MII) {
1521 /* Tick the MII clock. */
1522 mii_tick(&sc->sc_mii);
1523 }
1524
1525 splx(s);
1526
1527 /*
1528 * Schedule another timeout one second from now.
1529 */
1530 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1531 }
1532
1533 /*
1534 * Drain the receive queue.
1535 */
1536 void
1537 fxp_rxdrain(struct fxp_softc *sc)
1538 {
1539 bus_dmamap_t rxmap;
1540 struct mbuf *m;
1541
1542 for (;;) {
1543 IF_DEQUEUE(&sc->sc_rxq, m);
1544 if (m == NULL)
1545 break;
1546 rxmap = M_GETCTX(m, bus_dmamap_t);
1547 bus_dmamap_unload(sc->sc_dmat, rxmap);
1548 FXP_RXMAP_PUT(sc, rxmap);
1549 m_freem(m);
1550 }
1551 }
1552
1553 /*
1554 * Stop the interface. Cancels the statistics updater and resets
1555 * the interface.
1556 */
1557 void
1558 fxp_stop(struct ifnet *ifp, int disable)
1559 {
1560 struct fxp_softc *sc = ifp->if_softc;
1561 struct fxp_txsoft *txs;
1562 int i;
1563
1564 /*
1565 * Turn down interface (done early to avoid bad interactions
1566 * between panics, shutdown hooks, and the watchdog timer)
1567 */
1568 ifp->if_timer = 0;
1569 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1570
1571 /*
1572 * Cancel stats updater.
1573 */
1574 callout_stop(&sc->sc_callout);
1575 if (sc->sc_flags & FXPF_MII) {
1576 /* Down the MII. */
1577 mii_down(&sc->sc_mii);
1578 }
1579
1580 /*
1581 * Issue software reset. This unloads any microcode that
1582 * might already be loaded.
1583 */
1584 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1585 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1586 DELAY(50);
1587
1588 /*
1589 * Release any xmit buffers.
1590 */
1591 for (i = 0; i < FXP_NTXCB; i++) {
1592 txs = FXP_DSTX(sc, i);
1593 if (txs->txs_mbuf != NULL) {
1594 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1595 m_freem(txs->txs_mbuf);
1596 txs->txs_mbuf = NULL;
1597 }
1598 }
1599 sc->sc_txpending = 0;
1600
1601 if (disable) {
1602 fxp_rxdrain(sc);
1603 fxp_disable(sc);
1604 }
1605
1606 }
1607
1608 /*
1609 * Watchdog/transmission transmit timeout handler. Called when a
1610 * transmission is started on the interface, but no interrupt is
1611 * received before the timeout. This usually indicates that the
1612 * card has wedged for some reason.
1613 */
1614 void
1615 fxp_watchdog(struct ifnet *ifp)
1616 {
1617 struct fxp_softc *sc = ifp->if_softc;
1618
1619 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1620 ifp->if_oerrors++;
1621
1622 (void) fxp_init(ifp);
1623 }
1624
1625 /*
1626 * Initialize the interface. Must be called at splnet().
1627 */
1628 int
1629 fxp_init(struct ifnet *ifp)
1630 {
1631 struct fxp_softc *sc = ifp->if_softc;
1632 struct fxp_cb_config *cbp;
1633 struct fxp_cb_ias *cb_ias;
1634 struct fxp_txdesc *txd;
1635 bus_dmamap_t rxmap;
1636 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1637
1638 if ((error = fxp_enable(sc)) != 0)
1639 goto out;
1640
1641 /*
1642 * Cancel any pending I/O
1643 */
1644 fxp_stop(ifp, 0);
1645
1646 /*
1647 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1648 * flag, and this prevents the MII from detaching resulting in
1649 * a panic. The flags field should perhaps be split in runtime
1650 * flags and more static information. For now, just clear the
1651 * only other flag set.
1652 */
1653
1654 sc->sc_flags &= ~FXPF_WANTINIT;
1655
1656 /*
1657 * Initialize base of CBL and RFA memory. Loading with zero
1658 * sets it up for regular linear addressing.
1659 */
1660 fxp_scb_wait(sc);
1661 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1662 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1663
1664 fxp_scb_wait(sc);
1665 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1666
1667 /*
1668 * Initialize the multicast filter. Do this now, since we might
1669 * have to setup the config block differently.
1670 */
1671 fxp_mc_setup(sc);
1672
1673 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1674 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1675
1676 /*
1677 * In order to support receiving 802.1Q VLAN frames, we have to
1678 * enable "save bad frames", since they are 4 bytes larger than
1679 * the normal Ethernet maximum frame length. On i82558 and later,
1680 * we have a better mechanism for this.
1681 */
1682 save_bf = 0;
1683 lrxen = 0;
1684 vlan_drop = 0;
1685 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1686 if (sc->sc_rev < FXP_REV_82558_A4)
1687 save_bf = 1;
1688 else
1689 lrxen = 1;
1690 if (sc->sc_rev >= FXP_REV_82550)
1691 vlan_drop = 1;
1692 }
1693
1694 /*
1695 * Initialize base of dump-stats buffer.
1696 */
1697 fxp_scb_wait(sc);
1698 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1699 sc->sc_cddma + FXP_CDSTATSOFF);
1700 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1701 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1702
1703 cbp = &sc->sc_control_data->fcd_configcb;
1704 memset(cbp, 0, sizeof(struct fxp_cb_config));
1705
1706 /*
1707 * Load microcode for this controller.
1708 */
1709 fxp_load_ucode(sc);
1710
1711 /*
1712 * This copy is kind of disgusting, but there are a bunch of must be
1713 * zero and must be one bits in this structure and this is the easiest
1714 * way to initialize them all to proper values.
1715 */
1716 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1717
1718 /* BIG_ENDIAN: no need to swap to store 0 */
1719 cbp->cb_status = 0;
1720 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1721 FXP_CB_COMMAND_EL);
1722 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1723 cbp->link_addr = 0xffffffff; /* (no) next command */
1724 /* bytes in config block */
1725 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1726 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1727 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1728 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1729 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1730 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1731 cbp->type_enable = 0; /* actually reserved */
1732 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1733 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1734 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1735 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1736 cbp->dma_mbce = 0; /* (disable) dma max counters */
1737 cbp->late_scb = 0; /* (don't) defer SCB update */
1738 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1739 cbp->ci_int = 1; /* interrupt on CU idle */
1740 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1741 cbp->ext_stats_dis = 1; /* disable extended counters */
1742 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1743 cbp->save_bf = save_bf;/* save bad frames */
1744 cbp->disc_short_rx = !prm; /* discard short packets */
1745 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1746 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1747 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1748 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1749 /* interface mode */
1750 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1751 cbp->csma_dis = 0; /* (don't) disable link */
1752 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1753 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1754 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1755 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1756 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1757 cbp->nsai = 1; /* (don't) disable source addr insert */
1758 cbp->preamble_length = 2; /* (7 byte) preamble */
1759 cbp->loopback = 0; /* (don't) loopback */
1760 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1761 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1762 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1763 cbp->promiscuous = prm; /* promiscuous mode */
1764 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1765 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1766 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1767 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1768 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1769 cbp->stripping = !prm; /* truncate rx packet to byte count */
1770 cbp->padding = 1; /* (do) pad short tx packets */
1771 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1772 cbp->long_rx_en = lrxen; /* long packet receive enable */
1773 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1774 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1775 /* must set wake_en in PMCSR also */
1776 cbp->force_fdx = 0; /* (don't) force full duplex */
1777 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1778 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1779 cbp->mc_all = allm; /* accept all multicasts */
1780 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1781 cbp->vlan_drop_en = vlan_drop;
1782
1783 if (sc->sc_rev < FXP_REV_82558_A4) {
1784 /*
1785 * The i82557 has no hardware flow control, the values
1786 * here are the defaults for the chip.
1787 */
1788 cbp->fc_delay_lsb = 0;
1789 cbp->fc_delay_msb = 0x40;
1790 cbp->pri_fc_thresh = 3;
1791 cbp->tx_fc_dis = 0;
1792 cbp->rx_fc_restop = 0;
1793 cbp->rx_fc_restart = 0;
1794 cbp->fc_filter = 0;
1795 cbp->pri_fc_loc = 1;
1796 } else {
1797 cbp->fc_delay_lsb = 0x1f;
1798 cbp->fc_delay_msb = 0x01;
1799 cbp->pri_fc_thresh = 3;
1800 cbp->tx_fc_dis = 0; /* enable transmit FC */
1801 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1802 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1803 cbp->fc_filter = !prm; /* drop FC frames to host */
1804 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1805 cbp->ext_stats_dis = 0; /* enable extended stats */
1806 }
1807
1808 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1809
1810 /*
1811 * Start the config command/DMA.
1812 */
1813 fxp_scb_wait(sc);
1814 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1815 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1816 /* ...and wait for it to complete. */
1817 i = 1000;
1818 do {
1819 FXP_CDCONFIGSYNC(sc,
1820 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1821 DELAY(1);
1822 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1823 if (i == 0) {
1824 printf("%s at line %d: dmasync timeout\n",
1825 sc->sc_dev.dv_xname, __LINE__);
1826 return (ETIMEDOUT);
1827 }
1828
1829 /*
1830 * Initialize the station address.
1831 */
1832 cb_ias = &sc->sc_control_data->fcd_iascb;
1833 /* BIG_ENDIAN: no need to swap to store 0 */
1834 cb_ias->cb_status = 0;
1835 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1836 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1837 cb_ias->link_addr = 0xffffffff;
1838 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1839
1840 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1841
1842 /*
1843 * Start the IAS (Individual Address Setup) command/DMA.
1844 */
1845 fxp_scb_wait(sc);
1846 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1847 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1848 /* ...and wait for it to complete. */
1849 i = 1000;
1850 do {
1851 FXP_CDIASSYNC(sc,
1852 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1853 DELAY(1);
1854 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1855 if (i == 0) {
1856 printf("%s at line %d: dmasync timeout\n",
1857 sc->sc_dev.dv_xname, __LINE__);
1858 return (ETIMEDOUT);
1859 }
1860
1861 /*
1862 * Initialize the transmit descriptor ring. txlast is initialized
1863 * to the end of the list so that it will wrap around to the first
1864 * descriptor when the first packet is transmitted.
1865 */
1866 for (i = 0; i < FXP_NTXCB; i++) {
1867 txd = FXP_CDTX(sc, i);
1868 memset(txd, 0, sizeof(*txd));
1869 txd->txd_txcb.cb_command =
1870 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1871 txd->txd_txcb.link_addr =
1872 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1873 if (sc->sc_flags & FXPF_EXT_TXCB)
1874 txd->txd_txcb.tbd_array_addr =
1875 htole32(FXP_CDTBDADDR(sc, i) +
1876 (2 * sizeof(struct fxp_tbd)));
1877 else
1878 txd->txd_txcb.tbd_array_addr =
1879 htole32(FXP_CDTBDADDR(sc, i));
1880 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1881 }
1882 sc->sc_txpending = 0;
1883 sc->sc_txdirty = 0;
1884 sc->sc_txlast = FXP_NTXCB - 1;
1885
1886 /*
1887 * Initialize the receive buffer list.
1888 */
1889 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1890 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1891 rxmap = FXP_RXMAP_GET(sc);
1892 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1893 printf("%s: unable to allocate or map rx "
1894 "buffer %d, error = %d\n",
1895 sc->sc_dev.dv_xname,
1896 sc->sc_rxq.ifq_len, error);
1897 /*
1898 * XXX Should attempt to run with fewer receive
1899 * XXX buffers instead of just failing.
1900 */
1901 FXP_RXMAP_PUT(sc, rxmap);
1902 fxp_rxdrain(sc);
1903 goto out;
1904 }
1905 }
1906 sc->sc_rxidle = 0;
1907
1908 /*
1909 * Give the transmit ring to the chip. We do this by pointing
1910 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1911 * issuing a start command. It will execute the NOP and then
1912 * suspend, pointing at the first descriptor.
1913 */
1914 fxp_scb_wait(sc);
1915 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1916 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1917
1918 /*
1919 * Initialize receiver buffer area - RFA.
1920 */
1921 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1922 fxp_scb_wait(sc);
1923 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1924 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1925 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1926
1927 if (sc->sc_flags & FXPF_MII) {
1928 /*
1929 * Set current media.
1930 */
1931 mii_mediachg(&sc->sc_mii);
1932 }
1933
1934 /*
1935 * ...all done!
1936 */
1937 ifp->if_flags |= IFF_RUNNING;
1938 ifp->if_flags &= ~IFF_OACTIVE;
1939
1940 /*
1941 * Start the one second timer.
1942 */
1943 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1944
1945 /*
1946 * Attempt to start output on the interface.
1947 */
1948 fxp_start(ifp);
1949
1950 out:
1951 if (error) {
1952 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1953 ifp->if_timer = 0;
1954 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1955 }
1956 return (error);
1957 }
1958
1959 /*
1960 * Change media according to request.
1961 */
1962 int
1963 fxp_mii_mediachange(struct ifnet *ifp)
1964 {
1965 struct fxp_softc *sc = ifp->if_softc;
1966
1967 if (ifp->if_flags & IFF_UP)
1968 mii_mediachg(&sc->sc_mii);
1969 return (0);
1970 }
1971
1972 /*
1973 * Notify the world which media we're using.
1974 */
1975 void
1976 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1977 {
1978 struct fxp_softc *sc = ifp->if_softc;
1979
1980 if (sc->sc_enabled == 0) {
1981 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1982 ifmr->ifm_status = 0;
1983 return;
1984 }
1985
1986 mii_pollstat(&sc->sc_mii);
1987 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1988 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1989
1990 /*
1991 * XXX Flow control is always turned on if the chip supports
1992 * XXX it; we can't easily control it dynamically, since it
1993 * XXX requires sending a setup packet.
1994 */
1995 if (sc->sc_rev >= FXP_REV_82558_A4)
1996 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1997 }
1998
1999 int
2000 fxp_80c24_mediachange(struct ifnet *ifp)
2001 {
2002
2003 /* Nothing to do here. */
2004 return (0);
2005 }
2006
2007 void
2008 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2009 {
2010 struct fxp_softc *sc = ifp->if_softc;
2011
2012 /*
2013 * Media is currently-selected media. We cannot determine
2014 * the link status.
2015 */
2016 ifmr->ifm_status = 0;
2017 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2018 }
2019
2020 /*
2021 * Add a buffer to the end of the RFA buffer list.
2022 * Return 0 if successful, error code on failure.
2023 *
2024 * The RFA struct is stuck at the beginning of mbuf cluster and the
2025 * data pointer is fixed up to point just past it.
2026 */
2027 int
2028 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2029 {
2030 struct mbuf *m;
2031 int error;
2032
2033 MGETHDR(m, M_DONTWAIT, MT_DATA);
2034 if (m == NULL)
2035 return (ENOBUFS);
2036
2037 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2038 MCLGET(m, M_DONTWAIT);
2039 if ((m->m_flags & M_EXT) == 0) {
2040 m_freem(m);
2041 return (ENOBUFS);
2042 }
2043
2044 if (unload)
2045 bus_dmamap_unload(sc->sc_dmat, rxmap);
2046
2047 M_SETCTX(m, rxmap);
2048
2049 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2050 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2051 BUS_DMA_READ|BUS_DMA_NOWAIT);
2052 if (error) {
2053 printf("%s: can't load rx DMA map %d, error = %d\n",
2054 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2055 panic("fxp_add_rfabuf"); /* XXX */
2056 }
2057
2058 FXP_INIT_RFABUF(sc, m);
2059
2060 return (0);
2061 }
2062
2063 int
2064 fxp_mdi_read(struct device *self, int phy, int reg)
2065 {
2066 struct fxp_softc *sc = (struct fxp_softc *)self;
2067 int count = 10000;
2068 int value;
2069
2070 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2071 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2072
2073 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2074 0x10000000) == 0 && count--)
2075 DELAY(10);
2076
2077 if (count <= 0)
2078 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2079
2080 return (value & 0xffff);
2081 }
2082
2083 void
2084 fxp_statchg(struct device *self)
2085 {
2086
2087 /* Nothing to do. */
2088 }
2089
2090 void
2091 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2092 {
2093 struct fxp_softc *sc = (struct fxp_softc *)self;
2094 int count = 10000;
2095
2096 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2097 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2098 (value & 0xffff));
2099
2100 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2101 count--)
2102 DELAY(10);
2103
2104 if (count <= 0)
2105 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2106 }
2107
2108 int
2109 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2110 {
2111 struct fxp_softc *sc = ifp->if_softc;
2112 struct ifreq *ifr = (struct ifreq *)data;
2113 int s, error;
2114
2115 s = splnet();
2116
2117 switch (cmd) {
2118 case SIOCSIFMEDIA:
2119 case SIOCGIFMEDIA:
2120 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2121 break;
2122
2123 default:
2124 error = ether_ioctl(ifp, cmd, data);
2125 if (error == ENETRESET) {
2126 if (sc->sc_enabled) {
2127 /*
2128 * Multicast list has changed; set the
2129 * hardware filter accordingly.
2130 */
2131 if (sc->sc_txpending) {
2132 sc->sc_flags |= FXPF_WANTINIT;
2133 error = 0;
2134 } else
2135 error = fxp_init(ifp);
2136 } else
2137 error = 0;
2138 }
2139 break;
2140 }
2141
2142 /* Try to get more packets going. */
2143 if (sc->sc_enabled)
2144 fxp_start(ifp);
2145
2146 splx(s);
2147 return (error);
2148 }
2149
2150 /*
2151 * Program the multicast filter.
2152 *
2153 * This function must be called at splnet().
2154 */
2155 void
2156 fxp_mc_setup(struct fxp_softc *sc)
2157 {
2158 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2159 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2160 struct ethercom *ec = &sc->sc_ethercom;
2161 struct ether_multi *enm;
2162 struct ether_multistep step;
2163 int count, nmcasts;
2164
2165 #ifdef DIAGNOSTIC
2166 if (sc->sc_txpending)
2167 panic("fxp_mc_setup: pending transmissions");
2168 #endif
2169
2170 ifp->if_flags &= ~IFF_ALLMULTI;
2171
2172 /*
2173 * Initialize multicast setup descriptor.
2174 */
2175 nmcasts = 0;
2176 ETHER_FIRST_MULTI(step, ec, enm);
2177 while (enm != NULL) {
2178 /*
2179 * Check for too many multicast addresses or if we're
2180 * listening to a range. Either way, we simply have
2181 * to accept all multicasts.
2182 */
2183 if (nmcasts >= MAXMCADDR ||
2184 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2185 ETHER_ADDR_LEN) != 0) {
2186 /*
2187 * Callers of this function must do the
2188 * right thing with this. If we're called
2189 * from outside fxp_init(), the caller must
2190 * detect if the state if IFF_ALLMULTI changes.
2191 * If it does, the caller must then call
2192 * fxp_init(), since allmulti is handled by
2193 * the config block.
2194 */
2195 ifp->if_flags |= IFF_ALLMULTI;
2196 return;
2197 }
2198 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2199 ETHER_ADDR_LEN);
2200 nmcasts++;
2201 ETHER_NEXT_MULTI(step, enm);
2202 }
2203
2204 /* BIG_ENDIAN: no need to swap to store 0 */
2205 mcsp->cb_status = 0;
2206 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2207 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2208 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2209
2210 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2211
2212 /*
2213 * Wait until the command unit is not active. This should never
2214 * happen since nothing is queued, but make sure anyway.
2215 */
2216 count = 100;
2217 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2218 FXP_SCB_CUS_ACTIVE && --count)
2219 DELAY(1);
2220 if (count == 0) {
2221 printf("%s at line %d: command queue timeout\n",
2222 sc->sc_dev.dv_xname, __LINE__);
2223 return;
2224 }
2225
2226 /*
2227 * Start the multicast setup command/DMA.
2228 */
2229 fxp_scb_wait(sc);
2230 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2231 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2232
2233 /* ...and wait for it to complete. */
2234 count = 1000;
2235 do {
2236 FXP_CDMCSSYNC(sc,
2237 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2238 DELAY(1);
2239 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2240 if (count == 0) {
2241 printf("%s at line %d: dmasync timeout\n",
2242 sc->sc_dev.dv_xname, __LINE__);
2243 return;
2244 }
2245 }
2246
2247 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2248 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2249 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2250 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2251 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2252 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2253
2254 #define UCODE(x) x, sizeof(x)
2255
2256 static const struct ucode {
2257 int32_t revision;
2258 const uint32_t *ucode;
2259 size_t length;
2260 uint16_t int_delay_offset;
2261 uint16_t bundle_max_offset;
2262 } ucode_table[] = {
2263 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2264 D101_CPUSAVER_DWORD, 0 },
2265
2266 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2267 D101_CPUSAVER_DWORD, 0 },
2268
2269 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2270 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2271
2272 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2273 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2274
2275 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2276 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2277
2278 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2279 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2280
2281 { 0, NULL, 0, 0, 0 }
2282 };
2283
2284 void
2285 fxp_load_ucode(struct fxp_softc *sc)
2286 {
2287 const struct ucode *uc;
2288 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2289 int count;
2290
2291 if (sc->sc_flags & FXPF_UCODE_LOADED)
2292 return;
2293
2294 /*
2295 * Only load the uCode if the user has requested that
2296 * we do so.
2297 */
2298 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2299 sc->sc_int_delay = 0;
2300 sc->sc_bundle_max = 0;
2301 return;
2302 }
2303
2304 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2305 if (sc->sc_rev == uc->revision)
2306 break;
2307 }
2308 if (uc->ucode == NULL)
2309 return;
2310
2311 /* BIG ENDIAN: no need to swap to store 0 */
2312 cbp->cb_status = 0;
2313 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2314 cbp->link_addr = 0xffffffff; /* (no) next command */
2315 memcpy((void *) cbp->ucode, uc->ucode, uc->length);
2316
2317 if (uc->int_delay_offset)
2318 *(uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2319 htole16(fxp_int_delay + (fxp_int_delay / 2));
2320
2321 if (uc->bundle_max_offset)
2322 *(uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2323 htole16(fxp_bundle_max);
2324
2325 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2326
2327 /*
2328 * Download the uCode to the chip.
2329 */
2330 fxp_scb_wait(sc);
2331 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2332 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2333
2334 /* ...and wait for it to complete. */
2335 count = 10000;
2336 do {
2337 FXP_CDUCODESYNC(sc,
2338 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2339 DELAY(2);
2340 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2341 if (count == 0) {
2342 sc->sc_int_delay = 0;
2343 sc->sc_bundle_max = 0;
2344 printf("%s: timeout loading microcode\n",
2345 sc->sc_dev.dv_xname);
2346 return;
2347 }
2348
2349 if (sc->sc_int_delay != fxp_int_delay ||
2350 sc->sc_bundle_max != fxp_bundle_max) {
2351 sc->sc_int_delay = fxp_int_delay;
2352 sc->sc_bundle_max = fxp_bundle_max;
2353 printf("%s: Microcode loaded: int delay: %d usec, "
2354 "max bundle: %d\n", sc->sc_dev.dv_xname,
2355 sc->sc_int_delay,
2356 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2357 }
2358
2359 sc->sc_flags |= FXPF_UCODE_LOADED;
2360 }
2361
2362 int
2363 fxp_enable(struct fxp_softc *sc)
2364 {
2365
2366 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2367 if ((*sc->sc_enable)(sc) != 0) {
2368 printf("%s: device enable failed\n",
2369 sc->sc_dev.dv_xname);
2370 return (EIO);
2371 }
2372 }
2373
2374 sc->sc_enabled = 1;
2375 return (0);
2376 }
2377
2378 void
2379 fxp_disable(struct fxp_softc *sc)
2380 {
2381
2382 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2383 (*sc->sc_disable)(sc);
2384 sc->sc_enabled = 0;
2385 }
2386 }
2387
2388 /*
2389 * fxp_activate:
2390 *
2391 * Handle device activation/deactivation requests.
2392 */
2393 int
2394 fxp_activate(struct device *self, enum devact act)
2395 {
2396 struct fxp_softc *sc = (void *) self;
2397 int s, error = 0;
2398
2399 s = splnet();
2400 switch (act) {
2401 case DVACT_ACTIVATE:
2402 error = EOPNOTSUPP;
2403 break;
2404
2405 case DVACT_DEACTIVATE:
2406 if (sc->sc_flags & FXPF_MII)
2407 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2408 MII_OFFSET_ANY);
2409 if_deactivate(&sc->sc_ethercom.ec_if);
2410 break;
2411 }
2412 splx(s);
2413
2414 return (error);
2415 }
2416
2417 /*
2418 * fxp_detach:
2419 *
2420 * Detach an i82557 interface.
2421 */
2422 int
2423 fxp_detach(struct fxp_softc *sc)
2424 {
2425 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2426 int i;
2427
2428 /* Succeed now if there's no work to do. */
2429 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2430 return (0);
2431
2432 /* Unhook our tick handler. */
2433 callout_stop(&sc->sc_callout);
2434
2435 if (sc->sc_flags & FXPF_MII) {
2436 /* Detach all PHYs */
2437 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2438 }
2439
2440 /* Delete all remaining media. */
2441 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2442
2443 #if NRND > 0
2444 rnd_detach_source(&sc->rnd_source);
2445 #endif
2446 ether_ifdetach(ifp);
2447 if_detach(ifp);
2448
2449 for (i = 0; i < FXP_NRFABUFS; i++) {
2450 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2451 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2452 }
2453
2454 for (i = 0; i < FXP_NTXCB; i++) {
2455 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2456 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2457 }
2458
2459 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2460 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2461 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2462 sizeof(struct fxp_control_data));
2463 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2464
2465 shutdownhook_disestablish(sc->sc_sdhook);
2466 powerhook_disestablish(sc->sc_powerhook);
2467
2468 return (0);
2469 }
2470