Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.93
      1 /*	$NetBSD: i82557.c,v 1.93 2005/10/12 19:26:10 abs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice unmodified, this list of conditions, and the following
     50  *    disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
     68  */
     69 
     70 /*
     71  * Device driver for the Intel i82557 fast Ethernet controller,
     72  * and its successors, the i82558 and i82559.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.93 2005/10/12 19:26:10 abs Exp $");
     77 
     78 #include "bpfilter.h"
     79 #include "rnd.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/callout.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/malloc.h>
     86 #include <sys/kernel.h>
     87 #include <sys/socket.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/errno.h>
     90 #include <sys/device.h>
     91 #include <sys/syslog.h>
     92 
     93 #include <machine/endian.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 #if NRND > 0
     98 #include <sys/rnd.h>
     99 #endif
    100 
    101 #include <net/if.h>
    102 #include <net/if_dl.h>
    103 #include <net/if_media.h>
    104 #include <net/if_ether.h>
    105 
    106 #if NBPFILTER > 0
    107 #include <net/bpf.h>
    108 #endif
    109 
    110 #include <machine/bus.h>
    111 #include <machine/intr.h>
    112 
    113 #include <dev/mii/miivar.h>
    114 
    115 #include <dev/ic/i82557reg.h>
    116 #include <dev/ic/i82557var.h>
    117 
    118 #include <dev/microcode/i8255x/rcvbundl.h>
    119 
    120 /*
    121  * NOTE!  On the Alpha, we have an alignment constraint.  The
    122  * card DMAs the packet immediately following the RFA.  However,
    123  * the first thing in the packet is a 14-byte Ethernet header.
    124  * This means that the packet is misaligned.  To compensate,
    125  * we actually offset the RFA 2 bytes into the cluster.  This
    126  * alignes the packet after the Ethernet header at a 32-bit
    127  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    128  */
    129 #define	RFA_ALIGNMENT_FUDGE	2
    130 
    131 /*
    132  * The configuration byte map has several undefined fields which
    133  * must be one or must be zero.  Set up a template for these bits
    134  * only (assuming an i82557 chip), leaving the actual configuration
    135  * for fxp_init().
    136  *
    137  * See the definition of struct fxp_cb_config for the bit definitions.
    138  */
    139 const u_int8_t fxp_cb_config_template[] = {
    140 	0x0, 0x0,		/* cb_status */
    141 	0x0, 0x0,		/* cb_command */
    142 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
    143 	0x0,	/*  0 */
    144 	0x0,	/*  1 */
    145 	0x0,	/*  2 */
    146 	0x0,	/*  3 */
    147 	0x0,	/*  4 */
    148 	0x0,	/*  5 */
    149 	0x32,	/*  6 */
    150 	0x0,	/*  7 */
    151 	0x0,	/*  8 */
    152 	0x0,	/*  9 */
    153 	0x6,	/* 10 */
    154 	0x0,	/* 11 */
    155 	0x0,	/* 12 */
    156 	0x0,	/* 13 */
    157 	0xf2,	/* 14 */
    158 	0x48,	/* 15 */
    159 	0x0,	/* 16 */
    160 	0x40,	/* 17 */
    161 	0xf0,	/* 18 */
    162 	0x0,	/* 19 */
    163 	0x3f,	/* 20 */
    164 	0x5,	/* 21 */
    165 	0x0,	/* 22 */
    166 	0x0,	/* 23 */
    167 	0x0,	/* 24 */
    168 	0x0,	/* 25 */
    169 	0x0,	/* 26 */
    170 	0x0,	/* 27 */
    171 	0x0,	/* 28 */
    172 	0x0,	/* 29 */
    173 	0x0,	/* 30 */
    174 	0x0,	/* 31 */
    175 };
    176 
    177 void	fxp_mii_initmedia(struct fxp_softc *);
    178 int	fxp_mii_mediachange(struct ifnet *);
    179 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
    180 
    181 void	fxp_80c24_initmedia(struct fxp_softc *);
    182 int	fxp_80c24_mediachange(struct ifnet *);
    183 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
    184 
    185 void	fxp_start(struct ifnet *);
    186 int	fxp_ioctl(struct ifnet *, u_long, caddr_t);
    187 void	fxp_watchdog(struct ifnet *);
    188 int	fxp_init(struct ifnet *);
    189 void	fxp_stop(struct ifnet *, int);
    190 
    191 void	fxp_txintr(struct fxp_softc *);
    192 void	fxp_rxintr(struct fxp_softc *);
    193 
    194 int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
    195 
    196 void	fxp_rxdrain(struct fxp_softc *);
    197 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
    198 int	fxp_mdi_read(struct device *, int, int);
    199 void	fxp_statchg(struct device *);
    200 void	fxp_mdi_write(struct device *, int, int, int);
    201 void	fxp_autosize_eeprom(struct fxp_softc*);
    202 void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
    203 void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
    204 void	fxp_eeprom_update_cksum(struct fxp_softc *);
    205 void	fxp_get_info(struct fxp_softc *, u_int8_t *);
    206 void	fxp_tick(void *);
    207 void	fxp_mc_setup(struct fxp_softc *);
    208 void	fxp_load_ucode(struct fxp_softc *);
    209 
    210 void	fxp_shutdown(void *);
    211 void	fxp_power(int, void *);
    212 
    213 int	fxp_copy_small = 0;
    214 
    215 /*
    216  * Variables for interrupt mitigating microcode.
    217  */
    218 int	fxp_int_delay = 1000;		/* usec */
    219 int	fxp_bundle_max = 6;		/* packets */
    220 
    221 struct fxp_phytype {
    222 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    223 	void	(*fp_init)(struct fxp_softc *);
    224 } fxp_phytype_table[] = {
    225 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    226 	{ -1,				fxp_mii_initmedia },
    227 };
    228 
    229 /*
    230  * Set initial transmit threshold at 64 (512 bytes). This is
    231  * increased by 64 (512 bytes) at a time, to maximum of 192
    232  * (1536 bytes), if an underrun occurs.
    233  */
    234 static int tx_threshold = 64;
    235 
    236 /*
    237  * Wait for the previous command to be accepted (but not necessarily
    238  * completed).
    239  */
    240 static __inline void
    241 fxp_scb_wait(struct fxp_softc *sc)
    242 {
    243 	int i = 10000;
    244 
    245 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    246 		delay(2);
    247 	if (i == 0)
    248 		log(LOG_WARNING,
    249 		    "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    250 }
    251 
    252 /*
    253  * Submit a command to the i82557.
    254  */
    255 static __inline void
    256 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
    257 {
    258 
    259 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
    260 }
    261 
    262 /*
    263  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    264  */
    265 void
    266 fxp_attach(struct fxp_softc *sc)
    267 {
    268 	u_int8_t enaddr[ETHER_ADDR_LEN];
    269 	struct ifnet *ifp;
    270 	bus_dma_segment_t seg;
    271 	int rseg, i, error;
    272 	struct fxp_phytype *fp;
    273 
    274 	callout_init(&sc->sc_callout);
    275 
    276 	/*
    277 	 * Enable some good stuff on i82558 and later.
    278 	 */
    279 	if (sc->sc_rev >= FXP_REV_82558_A4) {
    280 		/* Enable the extended TxCB. */
    281 		sc->sc_flags |= FXPF_EXT_TXCB;
    282 	}
    283 
    284         /*
    285 	 * Enable use of extended RFDs and TCBs for 82550
    286 	 * and later chips. Note: we need extended TXCB support
    287 	 * too, but that's already enabled by the code above.
    288 	 * Be careful to do this only on the right devices.
    289 	 */
    290 	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
    291 		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
    292 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
    293 	} else {
    294 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
    295 	}
    296 
    297 	sc->sc_rfa_size =
    298 	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
    299 
    300 	/*
    301 	 * Allocate the control data structures, and create and load the
    302 	 * DMA map for it.
    303 	 */
    304 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    305 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    306 	    0)) != 0) {
    307 		aprint_error(
    308 		    "%s: unable to allocate control data, error = %d\n",
    309 		    sc->sc_dev.dv_xname, error);
    310 		goto fail_0;
    311 	}
    312 
    313 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    314 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
    315 	    BUS_DMA_COHERENT)) != 0) {
    316 		aprint_error("%s: unable to map control data, error = %d\n",
    317 		    sc->sc_dev.dv_xname, error);
    318 		goto fail_1;
    319 	}
    320 	sc->sc_cdseg = seg;
    321 	sc->sc_cdnseg = rseg;
    322 
    323 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
    324 
    325 	if ((error = bus_dmamap_create(sc->sc_dmat,
    326 	    sizeof(struct fxp_control_data), 1,
    327 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    328 		aprint_error("%s: unable to create control data DMA map, "
    329 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    330 		goto fail_2;
    331 	}
    332 
    333 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    334 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    335 	    0)) != 0) {
    336 		aprint_error(
    337 		    "%s: can't load control data DMA map, error = %d\n",
    338 		    sc->sc_dev.dv_xname, error);
    339 		goto fail_3;
    340 	}
    341 
    342 	/*
    343 	 * Create the transmit buffer DMA maps.
    344 	 */
    345 	for (i = 0; i < FXP_NTXCB; i++) {
    346 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    347 		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
    348 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    349 			aprint_error("%s: unable to create tx DMA map %d, "
    350 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    351 			goto fail_4;
    352 		}
    353 	}
    354 
    355 	/*
    356 	 * Create the receive buffer DMA maps.
    357 	 */
    358 	for (i = 0; i < FXP_NRFABUFS; i++) {
    359 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    360 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    361 			aprint_error("%s: unable to create rx DMA map %d, "
    362 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    363 			goto fail_5;
    364 		}
    365 	}
    366 
    367 	/* Initialize MAC address and media structures. */
    368 	fxp_get_info(sc, enaddr);
    369 
    370 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    371 	    ether_sprintf(enaddr));
    372 
    373 	ifp = &sc->sc_ethercom.ec_if;
    374 
    375 	/*
    376 	 * Get info about our media interface, and initialize it.  Note
    377 	 * the table terminates itself with a phy of -1, indicating
    378 	 * that we're using MII.
    379 	 */
    380 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    381 		if (fp->fp_phy == sc->phy_primary_device)
    382 			break;
    383 	(*fp->fp_init)(sc);
    384 
    385 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    386 	ifp->if_softc = sc;
    387 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    388 	ifp->if_ioctl = fxp_ioctl;
    389 	ifp->if_start = fxp_start;
    390 	ifp->if_watchdog = fxp_watchdog;
    391 	ifp->if_init = fxp_init;
    392 	ifp->if_stop = fxp_stop;
    393 	IFQ_SET_READY(&ifp->if_snd);
    394 
    395 	if (sc->sc_flags & FXPF_IPCB) {
    396 		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
    397 		/*
    398 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
    399 		 * at least, on i82550 rev.12.
    400 		 * specifically, it doesn't calculate ipv4 checksum correctly
    401 		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
    402 		 * FreeBSD driver has related comments.
    403 		 */
    404 		ifp->if_capabilities =
    405 		    IFCAP_CSUM_IPv4_Rx |
    406 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    407 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    408 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    409 	}
    410 
    411 	/*
    412 	 * We can support 802.1Q VLAN-sized frames.
    413 	 */
    414 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    415 
    416 	/*
    417 	 * Attach the interface.
    418 	 */
    419 	if_attach(ifp);
    420 	ether_ifattach(ifp, enaddr);
    421 #if NRND > 0
    422 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    423 	    RND_TYPE_NET, 0);
    424 #endif
    425 
    426 #ifdef FXP_EVENT_COUNTERS
    427 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    428 	    NULL, sc->sc_dev.dv_xname, "txstall");
    429 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    430 	    NULL, sc->sc_dev.dv_xname, "txintr");
    431 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    432 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    433 	if (sc->sc_rev >= FXP_REV_82558_A4) {
    434 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
    435 		    NULL, sc->sc_dev.dv_xname, "txpause");
    436 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
    437 		    NULL, sc->sc_dev.dv_xname, "rxpause");
    438 	}
    439 #endif /* FXP_EVENT_COUNTERS */
    440 
    441 	/*
    442 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    443 	 * doing do could allow DMA to corrupt kernel memory during the
    444 	 * reboot before the driver initializes.
    445 	 */
    446 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    447 	if (sc->sc_sdhook == NULL)
    448 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    449 		    sc->sc_dev.dv_xname);
    450 	/*
    451   	 * Add suspend hook, for similar reasons..
    452 	 */
    453 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
    454 	if (sc->sc_powerhook == NULL)
    455 		aprint_error("%s: WARNING: unable to establish power hook\n",
    456 		    sc->sc_dev.dv_xname);
    457 
    458 	/* The attach is successful. */
    459 	sc->sc_flags |= FXPF_ATTACHED;
    460 
    461 	return;
    462 
    463 	/*
    464 	 * Free any resources we've allocated during the failed attach
    465 	 * attempt.  Do this in reverse order and fall though.
    466 	 */
    467  fail_5:
    468 	for (i = 0; i < FXP_NRFABUFS; i++) {
    469 		if (sc->sc_rxmaps[i] != NULL)
    470 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    471 	}
    472  fail_4:
    473 	for (i = 0; i < FXP_NTXCB; i++) {
    474 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    475 			bus_dmamap_destroy(sc->sc_dmat,
    476 			    FXP_DSTX(sc, i)->txs_dmamap);
    477 	}
    478 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    479  fail_3:
    480 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    481  fail_2:
    482 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    483 	    sizeof(struct fxp_control_data));
    484  fail_1:
    485 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    486  fail_0:
    487 	return;
    488 }
    489 
    490 void
    491 fxp_mii_initmedia(struct fxp_softc *sc)
    492 {
    493 	int flags;
    494 
    495 	sc->sc_flags |= FXPF_MII;
    496 
    497 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    498 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    499 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    500 	sc->sc_mii.mii_statchg = fxp_statchg;
    501 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
    502 	    fxp_mii_mediastatus);
    503 
    504 	flags = MIIF_NOISOLATE;
    505 	if (sc->sc_rev >= FXP_REV_82558_A4)
    506 		flags |= MIIF_DOPAUSE;
    507 	/*
    508 	 * The i82557 wedges if all of its PHYs are isolated!
    509 	 */
    510 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    511 	    MII_OFFSET_ANY, flags);
    512 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    513 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    514 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    515 	} else
    516 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    517 }
    518 
    519 void
    520 fxp_80c24_initmedia(struct fxp_softc *sc)
    521 {
    522 
    523 	/*
    524 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    525 	 * doesn't have a programming interface of any sort.  The
    526 	 * media is sensed automatically based on how the link partner
    527 	 * is configured.  This is, in essence, manual configuration.
    528 	 */
    529 	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    530 	    sc->sc_dev.dv_xname);
    531 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    532 	    fxp_80c24_mediastatus);
    533 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    534 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    535 }
    536 
    537 /*
    538  * Device shutdown routine. Called at system shutdown after sync. The
    539  * main purpose of this routine is to shut off receiver DMA so that
    540  * kernel memory doesn't get clobbered during warmboot.
    541  */
    542 void
    543 fxp_shutdown(void *arg)
    544 {
    545 	struct fxp_softc *sc = arg;
    546 
    547 	/*
    548 	 * Since the system's going to halt shortly, don't bother
    549 	 * freeing mbufs.
    550 	 */
    551 	fxp_stop(&sc->sc_ethercom.ec_if, 0);
    552 }
    553 /*
    554  * Power handler routine. Called when the system is transitioning
    555  * into/out of power save modes.  As with fxp_shutdown, the main
    556  * purpose of this routine is to shut off receiver DMA so it doesn't
    557  * clobber kernel memory at the wrong time.
    558  */
    559 void
    560 fxp_power(int why, void *arg)
    561 {
    562 	struct fxp_softc *sc = arg;
    563 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    564 	int s;
    565 
    566 	s = splnet();
    567 	switch (why) {
    568 	case PWR_SUSPEND:
    569 	case PWR_STANDBY:
    570 		fxp_stop(ifp, 0);
    571 		break;
    572 	case PWR_RESUME:
    573 		if (ifp->if_flags & IFF_UP)
    574 			fxp_init(ifp);
    575 		break;
    576 	case PWR_SOFTSUSPEND:
    577 	case PWR_SOFTSTANDBY:
    578 	case PWR_SOFTRESUME:
    579 		break;
    580 	}
    581 	splx(s);
    582 }
    583 
    584 /*
    585  * Initialize the interface media.
    586  */
    587 void
    588 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
    589 {
    590 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
    591 
    592 	/*
    593 	 * Reset to a stable state.
    594 	 */
    595 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    596 	DELAY(100);
    597 
    598 	sc->sc_eeprom_size = 0;
    599 	fxp_autosize_eeprom(sc);
    600 	if (sc->sc_eeprom_size == 0) {
    601 		aprint_error("%s: failed to detect EEPROM size\n",
    602 		    sc->sc_dev.dv_xname);
    603 		sc->sc_eeprom_size = 6; /* XXX panic here? */
    604 	}
    605 #ifdef DEBUG
    606 	aprint_debug("%s: detected %d word EEPROM\n",
    607 	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
    608 #endif
    609 
    610 	/*
    611 	 * Get info about the primary PHY
    612 	 */
    613 	fxp_read_eeprom(sc, &data, 6, 1);
    614 	sc->phy_primary_device =
    615 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
    616 
    617 	/*
    618 	 * Read MAC address.
    619 	 */
    620 	fxp_read_eeprom(sc, myea, 0, 3);
    621 	enaddr[0] = myea[0] & 0xff;
    622 	enaddr[1] = myea[0] >> 8;
    623 	enaddr[2] = myea[1] & 0xff;
    624 	enaddr[3] = myea[1] >> 8;
    625 	enaddr[4] = myea[2] & 0xff;
    626 	enaddr[5] = myea[2] >> 8;
    627 
    628 	/*
    629 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
    630 	 * as some i82559 designs, have a defect where the chip can
    631 	 * cause a PCI protocol violation if it receives a CU_RESUME
    632 	 * command when it is entering the IDLE state.
    633 	 *
    634 	 * The work-around is to disable Dynamic Standby Mode, so that
    635 	 * the chip never deasserts #CLKRUN, and always remains in the
    636 	 * active state.
    637 	 *
    638 	 * Unfortunately, the only way to disable Dynamic Standby is
    639 	 * to frob an EEPROM setting and reboot (the EEPROM setting
    640 	 * is only consulted when the PCI bus comes out of reset).
    641 	 *
    642 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
    643 	 */
    644 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
    645 		fxp_read_eeprom(sc, &data, 10, 1);
    646 		if (data & 0x02) {		/* STB enable */
    647 			aprint_error("%s: WARNING: "
    648 			    "Disabling dynamic standby mode in EEPROM "
    649 			    "to work around a\n",
    650 			    sc->sc_dev.dv_xname);
    651 			aprint_normal(
    652 			    "%s: WARNING: hardware bug.  You must reset "
    653 			    "the system before using this\n",
    654 			    sc->sc_dev.dv_xname);
    655 			aprint_normal("%s: WARNING: interface.\n",
    656 			    sc->sc_dev.dv_xname);
    657 			data &= ~0x02;
    658 			fxp_write_eeprom(sc, &data, 10, 1);
    659 			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
    660 			    sc->sc_dev.dv_xname, data);
    661 			fxp_eeprom_update_cksum(sc);
    662 		}
    663 	}
    664 
    665 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
    666 	/* Due to false positives we make it conditional on setting link1 */
    667 	fxp_read_eeprom(sc, &data, 3, 1);
    668 	if ((data & 0x03) != 0x03) {
    669 		aprint_verbose("%s: May need receiver lock-up workaround\n",
    670 		    sc->sc_dev.dv_xname);
    671 	}
    672 }
    673 
    674 static void
    675 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
    676 {
    677 	uint16_t reg;
    678 	int x;
    679 
    680 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
    681 		DELAY(40);
    682 		if (data & x)
    683 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    684 		else
    685 			reg = FXP_EEPROM_EECS;
    686 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    687 		DELAY(40);
    688 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    689 		    reg | FXP_EEPROM_EESK);
    690 		DELAY(40);
    691 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    692 	}
    693 	DELAY(40);
    694 }
    695 
    696 /*
    697  * Figure out EEPROM size.
    698  *
    699  * 559's can have either 64-word or 256-word EEPROMs, the 558
    700  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    701  * talks about the existence of 16 to 256 word EEPROMs.
    702  *
    703  * The only known sizes are 64 and 256, where the 256 version is used
    704  * by CardBus cards to store CIS information.
    705  *
    706  * The address is shifted in msb-to-lsb, and after the last
    707  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    708  * after which follows the actual data. We try to detect this zero, by
    709  * probing the data-out bit in the EEPROM control register just after
    710  * having shifted in a bit. If the bit is zero, we assume we've
    711  * shifted enough address bits. The data-out should be tri-state,
    712  * before this, which should translate to a logical one.
    713  *
    714  * Other ways to do this would be to try to read a register with known
    715  * contents with a varying number of address bits, but no such
    716  * register seem to be available. The high bits of register 10 are 01
    717  * on the 558 and 559, but apparently not on the 557.
    718  *
    719  * The Linux driver computes a checksum on the EEPROM data, but the
    720  * value of this checksum is not very well documented.
    721  */
    722 
    723 void
    724 fxp_autosize_eeprom(struct fxp_softc *sc)
    725 {
    726 	int x;
    727 
    728 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    729 	DELAY(40);
    730 
    731 	/* Shift in read opcode. */
    732 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    733 
    734 	/*
    735 	 * Shift in address, wait for the dummy zero following a correct
    736 	 * address shift.
    737 	 */
    738 	for (x = 1; x <= 8; x++) {
    739 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    740 		DELAY(40);
    741 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    742 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    743 		DELAY(40);
    744 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    745 		    FXP_EEPROM_EEDO) == 0)
    746 			break;
    747 		DELAY(40);
    748 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    749 		DELAY(40);
    750 	}
    751 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    752 	DELAY(40);
    753 	if (x != 6 && x != 8) {
    754 #ifdef DEBUG
    755 		printf("%s: strange EEPROM size (%d)\n",
    756 		    sc->sc_dev.dv_xname, 1 << x);
    757 #endif
    758 	} else
    759 		sc->sc_eeprom_size = x;
    760 }
    761 
    762 /*
    763  * Read from the serial EEPROM. Basically, you manually shift in
    764  * the read opcode (one bit at a time) and then shift in the address,
    765  * and then you shift out the data (all of this one bit at a time).
    766  * The word size is 16 bits, so you have to provide the address for
    767  * every 16 bits of data.
    768  */
    769 void
    770 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
    771 {
    772 	u_int16_t reg;
    773 	int i, x;
    774 
    775 	for (i = 0; i < words; i++) {
    776 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    777 
    778 		/* Shift in read opcode. */
    779 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    780 
    781 		/* Shift in address. */
    782 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    783 
    784 		reg = FXP_EEPROM_EECS;
    785 		data[i] = 0;
    786 
    787 		/* Shift out data. */
    788 		for (x = 16; x > 0; x--) {
    789 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    790 			    reg | FXP_EEPROM_EESK);
    791 			DELAY(40);
    792 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    793 			    FXP_EEPROM_EEDO)
    794 				data[i] |= (1 << (x - 1));
    795 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    796 			DELAY(40);
    797 		}
    798 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    799 		DELAY(40);
    800 	}
    801 }
    802 
    803 /*
    804  * Write data to the serial EEPROM.
    805  */
    806 void
    807 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
    808 {
    809 	int i, j;
    810 
    811 	for (i = 0; i < words; i++) {
    812 		/* Erase/write enable. */
    813 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    814 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    815 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
    816 		    sc->sc_eeprom_size);
    817 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    818 		DELAY(4);
    819 
    820 		/* Shift in write opcode, address, data. */
    821 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    822 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
    823 		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
    824 		fxp_eeprom_shiftin(sc, data[i], 16);
    825 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    826 		DELAY(4);
    827 
    828 		/* Wait for the EEPROM to finish up. */
    829 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    830 		DELAY(4);
    831 		for (j = 0; j < 1000; j++) {
    832 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    833 			    FXP_EEPROM_EEDO)
    834 				break;
    835 			DELAY(50);
    836 		}
    837 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    838 		DELAY(4);
    839 
    840 		/* Erase/write disable. */
    841 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    842 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    843 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
    844 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    845 		DELAY(4);
    846 	}
    847 }
    848 
    849 /*
    850  * Update the checksum of the EEPROM.
    851  */
    852 void
    853 fxp_eeprom_update_cksum(struct fxp_softc *sc)
    854 {
    855 	int i;
    856 	uint16_t data, cksum;
    857 
    858 	cksum = 0;
    859 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
    860 		fxp_read_eeprom(sc, &data, i, 1);
    861 		cksum += data;
    862 	}
    863 	i = (1 << sc->sc_eeprom_size) - 1;
    864 	cksum = 0xbaba - cksum;
    865 	fxp_read_eeprom(sc, &data, i, 1);
    866 	fxp_write_eeprom(sc, &cksum, i, 1);
    867 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
    868 	    sc->sc_dev.dv_xname, i, data, cksum);
    869 }
    870 
    871 /*
    872  * Start packet transmission on the interface.
    873  */
    874 void
    875 fxp_start(struct ifnet *ifp)
    876 {
    877 	struct fxp_softc *sc = ifp->if_softc;
    878 	struct mbuf *m0, *m;
    879 	struct fxp_txdesc *txd;
    880 	struct fxp_txsoft *txs;
    881 	bus_dmamap_t dmamap;
    882 	int error, lasttx, nexttx, opending, seg;
    883 
    884 	/*
    885 	 * If we want a re-init, bail out now.
    886 	 */
    887 	if (sc->sc_flags & FXPF_WANTINIT) {
    888 		ifp->if_flags |= IFF_OACTIVE;
    889 		return;
    890 	}
    891 
    892 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    893 		return;
    894 
    895 	/*
    896 	 * Remember the previous txpending and the current lasttx.
    897 	 */
    898 	opending = sc->sc_txpending;
    899 	lasttx = sc->sc_txlast;
    900 
    901 	/*
    902 	 * Loop through the send queue, setting up transmit descriptors
    903 	 * until we drain the queue, or use up all available transmit
    904 	 * descriptors.
    905 	 */
    906 	for (;;) {
    907 		struct fxp_tbd *tbdp;
    908 		int csum_flags;
    909 
    910 		/*
    911 		 * Grab a packet off the queue.
    912 		 */
    913 		IFQ_POLL(&ifp->if_snd, m0);
    914 		if (m0 == NULL)
    915 			break;
    916 		m = NULL;
    917 
    918 		if (sc->sc_txpending == FXP_NTXCB) {
    919 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
    920 			break;
    921 		}
    922 
    923 		/*
    924 		 * Get the next available transmit descriptor.
    925 		 */
    926 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    927 		txd = FXP_CDTX(sc, nexttx);
    928 		txs = FXP_DSTX(sc, nexttx);
    929 		dmamap = txs->txs_dmamap;
    930 
    931 		/*
    932 		 * Load the DMA map.  If this fails, the packet either
    933 		 * didn't fit in the allotted number of frags, or we were
    934 		 * short on resources.  In this case, we'll copy and try
    935 		 * again.
    936 		 */
    937 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    938 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    939 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    940 			if (m == NULL) {
    941 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
    942 				    sc->sc_dev.dv_xname);
    943 				break;
    944 			}
    945 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    946 			if (m0->m_pkthdr.len > MHLEN) {
    947 				MCLGET(m, M_DONTWAIT);
    948 				if ((m->m_flags & M_EXT) == 0) {
    949 					log(LOG_ERR,
    950 					    "%s: unable to allocate Tx "
    951 					    "cluster\n", sc->sc_dev.dv_xname);
    952 					m_freem(m);
    953 					break;
    954 				}
    955 			}
    956 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    957 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    958 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    959 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    960 			if (error) {
    961 				log(LOG_ERR, "%s: unable to load Tx buffer, "
    962 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    963 				break;
    964 			}
    965 		}
    966 
    967 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    968 		csum_flags = m0->m_pkthdr.csum_flags;
    969 		if (m != NULL) {
    970 			m_freem(m0);
    971 			m0 = m;
    972 		}
    973 
    974 		/* Initialize the fraglist. */
    975 		tbdp = txd->txd_tbd;
    976 		if (sc->sc_flags & FXPF_IPCB)
    977 			tbdp++;
    978 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    979 			tbdp[seg].tb_addr =
    980 			    htole32(dmamap->dm_segs[seg].ds_addr);
    981 			tbdp[seg].tb_size =
    982 			    htole32(dmamap->dm_segs[seg].ds_len);
    983 		}
    984 
    985 		/* Sync the DMA map. */
    986 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    987 		    BUS_DMASYNC_PREWRITE);
    988 
    989 		/*
    990 		 * Store a pointer to the packet so we can free it later.
    991 		 */
    992 		txs->txs_mbuf = m0;
    993 
    994 		/*
    995 		 * Initialize the transmit descriptor.
    996 		 */
    997 		/* BIG_ENDIAN: no need to swap to store 0 */
    998 		txd->txd_txcb.cb_status = 0;
    999 		txd->txd_txcb.cb_command =
   1000 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
   1001 		txd->txd_txcb.tx_threshold = tx_threshold;
   1002 		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
   1003 
   1004 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
   1005 		if (sc->sc_flags & FXPF_IPCB) {
   1006 			struct fxp_ipcb *ipcb;
   1007 			/*
   1008 			 * Deal with TCP/IP checksum offload. Note that
   1009 			 * in order for TCP checksum offload to work,
   1010 			 * the pseudo header checksum must have already
   1011 			 * been computed and stored in the checksum field
   1012 			 * in the TCP header. The stack should have
   1013 			 * already done this for us.
   1014 			 */
   1015 			ipcb = &txd->txd_u.txdu_ipcb;
   1016 			memset(ipcb, 0, sizeof(*ipcb));
   1017 			/*
   1018 			 * always do hardware parsing.
   1019 			 */
   1020 			ipcb->ipcb_ip_activation_high =
   1021 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
   1022 			/*
   1023 			 * ip checksum offloading.
   1024 			 */
   1025 			if (csum_flags & M_CSUM_IPv4) {
   1026 				ipcb->ipcb_ip_schedule |=
   1027 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
   1028 			}
   1029 			/*
   1030 			 * TCP/UDP checksum offloading.
   1031 			 */
   1032 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
   1033 				ipcb->ipcb_ip_schedule |=
   1034 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
   1035 			}
   1036 
   1037 			/*
   1038 			 * request VLAN tag insertion if needed.
   1039 			 */
   1040 			if (sc->sc_ethercom.ec_nvlans != 0) {
   1041 				struct m_tag *vtag;
   1042 
   1043 				vtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL);
   1044 				if (vtag) {
   1045 					ipcb->ipcb_vlan_id =
   1046 					    htobe16(*(u_int *)(vtag + 1));
   1047 					ipcb->ipcb_ip_activation_high |=
   1048 					    FXP_IPCB_INSERTVLAN_ENABLE;
   1049 				}
   1050 			}
   1051 		} else {
   1052 			KASSERT((csum_flags &
   1053 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
   1054 		}
   1055 
   1056 		FXP_CDTXSYNC(sc, nexttx,
   1057 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1058 
   1059 		/* Advance the tx pointer. */
   1060 		sc->sc_txpending++;
   1061 		sc->sc_txlast = nexttx;
   1062 
   1063 #if NBPFILTER > 0
   1064 		/*
   1065 		 * Pass packet to bpf if there is a listener.
   1066 		 */
   1067 		if (ifp->if_bpf)
   1068 			bpf_mtap(ifp->if_bpf, m0);
   1069 #endif
   1070 	}
   1071 
   1072 	if (sc->sc_txpending == FXP_NTXCB) {
   1073 		/* No more slots; notify upper layer. */
   1074 		ifp->if_flags |= IFF_OACTIVE;
   1075 	}
   1076 
   1077 	if (sc->sc_txpending != opending) {
   1078 		/*
   1079 		 * We enqueued packets.  If the transmitter was idle,
   1080 		 * reset the txdirty pointer.
   1081 		 */
   1082 		if (opending == 0)
   1083 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
   1084 
   1085 		/*
   1086 		 * Cause the chip to interrupt and suspend command
   1087 		 * processing once the last packet we've enqueued
   1088 		 * has been transmitted.
   1089 		 */
   1090 		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
   1091 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
   1092 		FXP_CDTXSYNC(sc, sc->sc_txlast,
   1093 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1094 
   1095 		/*
   1096 		 * The entire packet chain is set up.  Clear the suspend bit
   1097 		 * on the command prior to the first packet we set up.
   1098 		 */
   1099 		FXP_CDTXSYNC(sc, lasttx,
   1100 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1101 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
   1102 		    htole16(~FXP_CB_COMMAND_S);
   1103 		FXP_CDTXSYNC(sc, lasttx,
   1104 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1105 
   1106 		/*
   1107 		 * Issue a Resume command in case the chip was suspended.
   1108 		 */
   1109 		fxp_scb_wait(sc);
   1110 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
   1111 
   1112 		/* Set a watchdog timer in case the chip flakes out. */
   1113 		ifp->if_timer = 5;
   1114 	}
   1115 }
   1116 
   1117 /*
   1118  * Process interface interrupts.
   1119  */
   1120 int
   1121 fxp_intr(void *arg)
   1122 {
   1123 	struct fxp_softc *sc = arg;
   1124 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1125 	bus_dmamap_t rxmap;
   1126 	int claimed = 0;
   1127 	u_int8_t statack;
   1128 
   1129 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || sc->sc_enabled == 0)
   1130 		return (0);
   1131 	/*
   1132 	 * If the interface isn't running, don't try to
   1133 	 * service the interrupt.. just ack it and bail.
   1134 	 */
   1135 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1136 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
   1137 		if (statack) {
   1138 			claimed = 1;
   1139 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1140 		}
   1141 		return (claimed);
   1142 	}
   1143 
   1144 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
   1145 		claimed = 1;
   1146 
   1147 		/*
   1148 		 * First ACK all the interrupts in this pass.
   1149 		 */
   1150 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1151 
   1152 		/*
   1153 		 * Process receiver interrupts. If a no-resource (RNR)
   1154 		 * condition exists, get whatever packets we can and
   1155 		 * re-start the receiver.
   1156 		 */
   1157 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
   1158 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1159 			fxp_rxintr(sc);
   1160 		}
   1161 
   1162 		if (statack & FXP_SCB_STATACK_RNR) {
   1163 			fxp_scb_wait(sc);
   1164 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
   1165 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1166 			fxp_scb_wait(sc);
   1167 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1168 			    rxmap->dm_segs[0].ds_addr +
   1169 			    RFA_ALIGNMENT_FUDGE);
   1170 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1171 		}
   1172 
   1173 		/*
   1174 		 * Free any finished transmit mbuf chains.
   1175 		 */
   1176 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1177 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
   1178 			fxp_txintr(sc);
   1179 
   1180 			/*
   1181 			 * Try to get more packets going.
   1182 			 */
   1183 			fxp_start(ifp);
   1184 
   1185 			if (sc->sc_txpending == 0) {
   1186 				/*
   1187 				 * If we want a re-init, do that now.
   1188 				 */
   1189 				if (sc->sc_flags & FXPF_WANTINIT)
   1190 					(void) fxp_init(ifp);
   1191 			}
   1192 		}
   1193 	}
   1194 
   1195 #if NRND > 0
   1196 	if (claimed)
   1197 		rnd_add_uint32(&sc->rnd_source, statack);
   1198 #endif
   1199 	return (claimed);
   1200 }
   1201 
   1202 /*
   1203  * Handle transmit completion interrupts.
   1204  */
   1205 void
   1206 fxp_txintr(struct fxp_softc *sc)
   1207 {
   1208 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1209 	struct fxp_txdesc *txd;
   1210 	struct fxp_txsoft *txs;
   1211 	int i;
   1212 	u_int16_t txstat;
   1213 
   1214 	ifp->if_flags &= ~IFF_OACTIVE;
   1215 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1216 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1217 		txd = FXP_CDTX(sc, i);
   1218 		txs = FXP_DSTX(sc, i);
   1219 
   1220 		FXP_CDTXSYNC(sc, i,
   1221 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1222 
   1223 		txstat = le16toh(txd->txd_txcb.cb_status);
   1224 
   1225 		if ((txstat & FXP_CB_STATUS_C) == 0)
   1226 			break;
   1227 
   1228 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1229 		    0, txs->txs_dmamap->dm_mapsize,
   1230 		    BUS_DMASYNC_POSTWRITE);
   1231 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1232 		m_freem(txs->txs_mbuf);
   1233 		txs->txs_mbuf = NULL;
   1234 	}
   1235 
   1236 	/* Update the dirty transmit buffer pointer. */
   1237 	sc->sc_txdirty = i;
   1238 
   1239 	/*
   1240 	 * Cancel the watchdog timer if there are no pending
   1241 	 * transmissions.
   1242 	 */
   1243 	if (sc->sc_txpending == 0)
   1244 		ifp->if_timer = 0;
   1245 }
   1246 
   1247 /*
   1248  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
   1249  */
   1250 
   1251 int
   1252 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
   1253 {
   1254 	u_int16_t rxparsestat;
   1255 	u_int16_t csum_stat;
   1256 	u_int32_t csum_data;
   1257 	int csum_flags;
   1258 
   1259 	/*
   1260 	 * check VLAN tag stripping.
   1261 	 */
   1262 
   1263 	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
   1264 		struct m_tag *vtag;
   1265 
   1266 		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
   1267 		if (vtag == NULL)
   1268 			return ENOMEM;
   1269 		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
   1270 		m_tag_prepend(m, vtag);
   1271 	}
   1272 
   1273 	/*
   1274 	 * check H/W Checksumming.
   1275 	 */
   1276 
   1277 	csum_stat = le16toh(rfa->cksum_stat);
   1278 	rxparsestat = le16toh(rfa->rx_parse_stat);
   1279 	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
   1280 		return 0;
   1281 
   1282 	csum_flags = 0;
   1283 	csum_data = 0;
   1284 
   1285 	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
   1286 		csum_flags = M_CSUM_IPv4;
   1287 		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
   1288 			csum_flags |= M_CSUM_IPv4_BAD;
   1289 	}
   1290 
   1291 	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
   1292 		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
   1293 		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
   1294 			csum_flags |= M_CSUM_TCP_UDP_BAD;
   1295 	}
   1296 
   1297 	m->m_pkthdr.csum_flags = csum_flags;
   1298 	m->m_pkthdr.csum_data = csum_data;
   1299 
   1300 	return 0;
   1301 }
   1302 
   1303 /*
   1304  * Handle receive interrupts.
   1305  */
   1306 void
   1307 fxp_rxintr(struct fxp_softc *sc)
   1308 {
   1309 	struct ethercom *ec = &sc->sc_ethercom;
   1310 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1311 	struct mbuf *m, *m0;
   1312 	bus_dmamap_t rxmap;
   1313 	struct fxp_rfa *rfa;
   1314 	u_int16_t len, rxstat;
   1315 
   1316 	for (;;) {
   1317 		m = sc->sc_rxq.ifq_head;
   1318 		rfa = FXP_MTORFA(m);
   1319 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1320 
   1321 		FXP_RFASYNC(sc, m,
   1322 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1323 
   1324 		rxstat = le16toh(rfa->rfa_status);
   1325 
   1326 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
   1327 			/*
   1328 			 * We have processed all of the
   1329 			 * receive buffers.
   1330 			 */
   1331 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
   1332 			return;
   1333 		}
   1334 
   1335 		IF_DEQUEUE(&sc->sc_rxq, m);
   1336 
   1337 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
   1338 
   1339 		len = le16toh(rfa->actual_size) &
   1340 		    (m->m_ext.ext_size - 1);
   1341 
   1342 		if (len < sizeof(struct ether_header)) {
   1343 			/*
   1344 			 * Runt packet; drop it now.
   1345 			 */
   1346 			FXP_INIT_RFABUF(sc, m);
   1347 			continue;
   1348 		}
   1349 
   1350 		/*
   1351 		 * If support for 802.1Q VLAN sized frames is
   1352 		 * enabled, we need to do some additional error
   1353 		 * checking (as we are saving bad frames, in
   1354 		 * order to receive the larger ones).
   1355 		 */
   1356 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
   1357 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
   1358 			       FXP_RFA_STATUS_RNR|
   1359 			       FXP_RFA_STATUS_ALIGN|
   1360 			       FXP_RFA_STATUS_CRC)) != 0) {
   1361 			FXP_INIT_RFABUF(sc, m);
   1362 			continue;
   1363 		}
   1364 
   1365 		/* Do checksum checking. */
   1366 		m->m_pkthdr.csum_flags = 0;
   1367 		if (sc->sc_flags & FXPF_EXT_RFA)
   1368 			if (fxp_rx_hwcksum(m, rfa))
   1369 				goto dropit;
   1370 
   1371 		/*
   1372 		 * If the packet is small enough to fit in a
   1373 		 * single header mbuf, allocate one and copy
   1374 		 * the data into it.  This greatly reduces
   1375 		 * memory consumption when we receive lots
   1376 		 * of small packets.
   1377 		 *
   1378 		 * Otherwise, we add a new buffer to the receive
   1379 		 * chain.  If this fails, we drop the packet and
   1380 		 * recycle the old buffer.
   1381 		 */
   1382 		if (fxp_copy_small != 0 && len <= MHLEN) {
   1383 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
   1384 			if (m0 == NULL)
   1385 				goto dropit;
   1386 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
   1387 			memcpy(mtod(m0, caddr_t),
   1388 			    mtod(m, caddr_t), len);
   1389 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
   1390 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
   1391 			FXP_INIT_RFABUF(sc, m);
   1392 			m = m0;
   1393 		} else {
   1394 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
   1395  dropit:
   1396 				ifp->if_ierrors++;
   1397 				FXP_INIT_RFABUF(sc, m);
   1398 				continue;
   1399 			}
   1400 		}
   1401 
   1402 		m->m_pkthdr.rcvif = ifp;
   1403 		m->m_pkthdr.len = m->m_len = len;
   1404 
   1405 #if NBPFILTER > 0
   1406 		/*
   1407 		 * Pass this up to any BPF listeners, but only
   1408 		 * pass it up the stack it its for us.
   1409 		 */
   1410 		if (ifp->if_bpf)
   1411 			bpf_mtap(ifp->if_bpf, m);
   1412 #endif
   1413 
   1414 		/* Pass it on. */
   1415 		(*ifp->if_input)(ifp, m);
   1416 	}
   1417 }
   1418 
   1419 /*
   1420  * Update packet in/out/collision statistics. The i82557 doesn't
   1421  * allow you to access these counters without doing a fairly
   1422  * expensive DMA to get _all_ of the statistics it maintains, so
   1423  * we do this operation here only once per second. The statistics
   1424  * counters in the kernel are updated from the previous dump-stats
   1425  * DMA and then a new dump-stats DMA is started. The on-chip
   1426  * counters are zeroed when the DMA completes. If we can't start
   1427  * the DMA immediately, we don't wait - we just prepare to read
   1428  * them again next time.
   1429  */
   1430 void
   1431 fxp_tick(void *arg)
   1432 {
   1433 	struct fxp_softc *sc = arg;
   1434 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1435 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1436 	int s;
   1437 
   1438 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1439 		return;
   1440 
   1441 	s = splnet();
   1442 
   1443 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1444 
   1445 	ifp->if_opackets += le32toh(sp->tx_good);
   1446 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1447 	if (sp->rx_good) {
   1448 		ifp->if_ipackets += le32toh(sp->rx_good);
   1449 		sc->sc_rxidle = 0;
   1450 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
   1451 		sc->sc_rxidle++;
   1452 	}
   1453 	ifp->if_ierrors +=
   1454 	    le32toh(sp->rx_crc_errors) +
   1455 	    le32toh(sp->rx_alignment_errors) +
   1456 	    le32toh(sp->rx_rnr_errors) +
   1457 	    le32toh(sp->rx_overrun_errors);
   1458 	/*
   1459 	 * If any transmit underruns occurred, bump up the transmit
   1460 	 * threshold by another 512 bytes (64 * 8).
   1461 	 */
   1462 	if (sp->tx_underruns) {
   1463 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1464 		if (tx_threshold < 192)
   1465 			tx_threshold += 64;
   1466 	}
   1467 #ifdef FXP_EVENT_COUNTERS
   1468 	if (sc->sc_rev >= FXP_REV_82558_A4) {
   1469 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
   1470 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
   1471 	}
   1472 #endif
   1473 
   1474 	/*
   1475 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
   1476 	 * then assume the receiver has locked up and attempt to clear
   1477 	 * the condition by reprogramming the multicast filter (actually,
   1478 	 * resetting the interface). This is a work-around for a bug in
   1479 	 * the 82557 where the receiver locks up if it gets certain types
   1480 	 * of garbage in the synchronization bits prior to the packet header.
   1481 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1482 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1483 	 * speed transition).
   1484 	 */
   1485 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1486 		(void) fxp_init(ifp);
   1487 		splx(s);
   1488 		return;
   1489 	}
   1490 	/*
   1491 	 * If there is no pending command, start another stats
   1492 	 * dump. Otherwise punt for now.
   1493 	 */
   1494 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1495 		/*
   1496 		 * Start another stats dump.
   1497 		 */
   1498 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1499 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
   1500 	} else {
   1501 		/*
   1502 		 * A previous command is still waiting to be accepted.
   1503 		 * Just zero our copy of the stats and wait for the
   1504 		 * next timer event to update them.
   1505 		 */
   1506 		/* BIG_ENDIAN: no swap required to store 0 */
   1507 		sp->tx_good = 0;
   1508 		sp->tx_underruns = 0;
   1509 		sp->tx_total_collisions = 0;
   1510 
   1511 		sp->rx_good = 0;
   1512 		sp->rx_crc_errors = 0;
   1513 		sp->rx_alignment_errors = 0;
   1514 		sp->rx_rnr_errors = 0;
   1515 		sp->rx_overrun_errors = 0;
   1516 		if (sc->sc_rev >= FXP_REV_82558_A4) {
   1517 			sp->tx_pauseframes = 0;
   1518 			sp->rx_pauseframes = 0;
   1519 		}
   1520 	}
   1521 
   1522 	if (sc->sc_flags & FXPF_MII) {
   1523 		/* Tick the MII clock. */
   1524 		mii_tick(&sc->sc_mii);
   1525 	}
   1526 
   1527 	splx(s);
   1528 
   1529 	/*
   1530 	 * Schedule another timeout one second from now.
   1531 	 */
   1532 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1533 }
   1534 
   1535 /*
   1536  * Drain the receive queue.
   1537  */
   1538 void
   1539 fxp_rxdrain(struct fxp_softc *sc)
   1540 {
   1541 	bus_dmamap_t rxmap;
   1542 	struct mbuf *m;
   1543 
   1544 	for (;;) {
   1545 		IF_DEQUEUE(&sc->sc_rxq, m);
   1546 		if (m == NULL)
   1547 			break;
   1548 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1549 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1550 		FXP_RXMAP_PUT(sc, rxmap);
   1551 		m_freem(m);
   1552 	}
   1553 }
   1554 
   1555 /*
   1556  * Stop the interface. Cancels the statistics updater and resets
   1557  * the interface.
   1558  */
   1559 void
   1560 fxp_stop(struct ifnet *ifp, int disable)
   1561 {
   1562 	struct fxp_softc *sc = ifp->if_softc;
   1563 	struct fxp_txsoft *txs;
   1564 	int i;
   1565 
   1566 	/*
   1567 	 * Turn down interface (done early to avoid bad interactions
   1568 	 * between panics, shutdown hooks, and the watchdog timer)
   1569 	 */
   1570 	ifp->if_timer = 0;
   1571 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1572 
   1573 	/*
   1574 	 * Cancel stats updater.
   1575 	 */
   1576 	callout_stop(&sc->sc_callout);
   1577 	if (sc->sc_flags & FXPF_MII) {
   1578 		/* Down the MII. */
   1579 		mii_down(&sc->sc_mii);
   1580 	}
   1581 
   1582 	/*
   1583 	 * Issue software reset.  This unloads any microcode that
   1584 	 * might already be loaded.
   1585 	 */
   1586 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
   1587 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
   1588 	DELAY(50);
   1589 
   1590 	/*
   1591 	 * Release any xmit buffers.
   1592 	 */
   1593 	for (i = 0; i < FXP_NTXCB; i++) {
   1594 		txs = FXP_DSTX(sc, i);
   1595 		if (txs->txs_mbuf != NULL) {
   1596 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1597 			m_freem(txs->txs_mbuf);
   1598 			txs->txs_mbuf = NULL;
   1599 		}
   1600 	}
   1601 	sc->sc_txpending = 0;
   1602 
   1603 	if (disable) {
   1604 		fxp_rxdrain(sc);
   1605 		fxp_disable(sc);
   1606 	}
   1607 
   1608 }
   1609 
   1610 /*
   1611  * Watchdog/transmission transmit timeout handler. Called when a
   1612  * transmission is started on the interface, but no interrupt is
   1613  * received before the timeout. This usually indicates that the
   1614  * card has wedged for some reason.
   1615  */
   1616 void
   1617 fxp_watchdog(struct ifnet *ifp)
   1618 {
   1619 	struct fxp_softc *sc = ifp->if_softc;
   1620 
   1621 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1622 	ifp->if_oerrors++;
   1623 
   1624 	(void) fxp_init(ifp);
   1625 }
   1626 
   1627 /*
   1628  * Initialize the interface.  Must be called at splnet().
   1629  */
   1630 int
   1631 fxp_init(struct ifnet *ifp)
   1632 {
   1633 	struct fxp_softc *sc = ifp->if_softc;
   1634 	struct fxp_cb_config *cbp;
   1635 	struct fxp_cb_ias *cb_ias;
   1636 	struct fxp_txdesc *txd;
   1637 	bus_dmamap_t rxmap;
   1638 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
   1639 
   1640 	if ((error = fxp_enable(sc)) != 0)
   1641 		goto out;
   1642 
   1643 	/*
   1644 	 * Cancel any pending I/O
   1645 	 */
   1646 	fxp_stop(ifp, 0);
   1647 
   1648 	/*
   1649 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1650 	 * flag, and this prevents the MII from detaching resulting in
   1651 	 * a panic. The flags field should perhaps be split in runtime
   1652 	 * flags and more static information. For now, just clear the
   1653 	 * only other flag set.
   1654 	 */
   1655 
   1656 	sc->sc_flags &= ~FXPF_WANTINIT;
   1657 
   1658 	/*
   1659 	 * Initialize base of CBL and RFA memory. Loading with zero
   1660 	 * sets it up for regular linear addressing.
   1661 	 */
   1662 	fxp_scb_wait(sc);
   1663 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1664 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
   1665 
   1666 	fxp_scb_wait(sc);
   1667 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
   1668 
   1669 	/*
   1670 	 * Initialize the multicast filter.  Do this now, since we might
   1671 	 * have to setup the config block differently.
   1672 	 */
   1673 	fxp_mc_setup(sc);
   1674 
   1675 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1676 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1677 
   1678 	/*
   1679 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1680 	 * enable "save bad frames", since they are 4 bytes larger than
   1681 	 * the normal Ethernet maximum frame length.  On i82558 and later,
   1682 	 * we have a better mechanism for this.
   1683 	 */
   1684 	save_bf = 0;
   1685 	lrxen = 0;
   1686 	vlan_drop = 0;
   1687 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1688 		if (sc->sc_rev < FXP_REV_82558_A4)
   1689 			save_bf = 1;
   1690 		else
   1691 			lrxen = 1;
   1692 		if (sc->sc_rev >= FXP_REV_82550)
   1693 			vlan_drop = 1;
   1694 	}
   1695 
   1696 	/*
   1697 	 * Initialize base of dump-stats buffer.
   1698 	 */
   1699 	fxp_scb_wait(sc);
   1700 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1701 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1702 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1703 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1704 
   1705 	cbp = &sc->sc_control_data->fcd_configcb;
   1706 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1707 
   1708 	/*
   1709 	 * Load microcode for this controller.
   1710 	 */
   1711 	fxp_load_ucode(sc);
   1712 
   1713 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
   1714 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
   1715 	else
   1716 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
   1717 
   1718 	/*
   1719 	 * This copy is kind of disgusting, but there are a bunch of must be
   1720 	 * zero and must be one bits in this structure and this is the easiest
   1721 	 * way to initialize them all to proper values.
   1722 	 */
   1723 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1724 
   1725 	/* BIG_ENDIAN: no need to swap to store 0 */
   1726 	cbp->cb_status =	0;
   1727 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1728 				    FXP_CB_COMMAND_EL);
   1729 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1730 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1731 					/* bytes in config block */
   1732 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
   1733 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
   1734 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1735 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1736 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1737 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
   1738 	cbp->type_enable =	0;	/* actually reserved */
   1739 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
   1740 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
   1741 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1742 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1743 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
   1744 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1745 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
   1746 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1747 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
   1748 	cbp->ext_stats_dis =	1;	/* disable extended counters */
   1749 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
   1750 	cbp->save_bf =		save_bf;/* save bad frames */
   1751 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1752 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1753 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1754 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
   1755 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
   1756 					/* interface mode */
   1757 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
   1758 	cbp->csma_dis =		0;	/* (don't) disable link */
   1759 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
   1760 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
   1761 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
   1762 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
   1763 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
   1764 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1765 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1766 	cbp->loopback =		0;	/* (don't) loopback */
   1767 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1768 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1769 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1770 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1771 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1772 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
   1773 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
   1774 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
   1775 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
   1776 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1777 	cbp->padding =		1;	/* (do) pad short tx packets */
   1778 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1779 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
   1780 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
   1781 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
   1782 					/* must set wake_en in PMCSR also */
   1783 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1784 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1785 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1786 	cbp->mc_all =		allm;	/* accept all multicasts */
   1787 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1788 	cbp->vlan_drop_en =	vlan_drop;
   1789 
   1790 	if (sc->sc_rev < FXP_REV_82558_A4) {
   1791 		/*
   1792 		 * The i82557 has no hardware flow control, the values
   1793 		 * here are the defaults for the chip.
   1794 		 */
   1795 		cbp->fc_delay_lsb =	0;
   1796 		cbp->fc_delay_msb =	0x40;
   1797 		cbp->pri_fc_thresh =	3;
   1798 		cbp->tx_fc_dis =	0;
   1799 		cbp->rx_fc_restop =	0;
   1800 		cbp->rx_fc_restart =	0;
   1801 		cbp->fc_filter =	0;
   1802 		cbp->pri_fc_loc =	1;
   1803 	} else {
   1804 		cbp->fc_delay_lsb =	0x1f;
   1805 		cbp->fc_delay_msb =	0x01;
   1806 		cbp->pri_fc_thresh =	3;
   1807 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
   1808 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
   1809 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
   1810 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
   1811 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
   1812 		cbp->ext_stats_dis =	0;	/* enable extended stats */
   1813 	}
   1814 
   1815 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1816 
   1817 	/*
   1818 	 * Start the config command/DMA.
   1819 	 */
   1820 	fxp_scb_wait(sc);
   1821 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1822 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1823 	/* ...and wait for it to complete. */
   1824 	i = 1000;
   1825 	do {
   1826 		FXP_CDCONFIGSYNC(sc,
   1827 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1828 		DELAY(1);
   1829 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1830 	if (i == 0) {
   1831 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1832 		    sc->sc_dev.dv_xname, __LINE__);
   1833 		return (ETIMEDOUT);
   1834 	}
   1835 
   1836 	/*
   1837 	 * Initialize the station address.
   1838 	 */
   1839 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1840 	/* BIG_ENDIAN: no need to swap to store 0 */
   1841 	cb_ias->cb_status = 0;
   1842 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1843 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1844 	cb_ias->link_addr = 0xffffffff;
   1845 	memcpy(cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1846 
   1847 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1848 
   1849 	/*
   1850 	 * Start the IAS (Individual Address Setup) command/DMA.
   1851 	 */
   1852 	fxp_scb_wait(sc);
   1853 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1854 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1855 	/* ...and wait for it to complete. */
   1856 	i = 1000;
   1857 	do {
   1858 		FXP_CDIASSYNC(sc,
   1859 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1860 		DELAY(1);
   1861 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1862 	if (i == 0) {
   1863 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1864 		    sc->sc_dev.dv_xname, __LINE__);
   1865 		return (ETIMEDOUT);
   1866 	}
   1867 
   1868 	/*
   1869 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1870 	 * to the end of the list so that it will wrap around to the first
   1871 	 * descriptor when the first packet is transmitted.
   1872 	 */
   1873 	for (i = 0; i < FXP_NTXCB; i++) {
   1874 		txd = FXP_CDTX(sc, i);
   1875 		memset(txd, 0, sizeof(*txd));
   1876 		txd->txd_txcb.cb_command =
   1877 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1878 		txd->txd_txcb.link_addr =
   1879 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1880 		if (sc->sc_flags & FXPF_EXT_TXCB)
   1881 			txd->txd_txcb.tbd_array_addr =
   1882 			    htole32(FXP_CDTBDADDR(sc, i) +
   1883 				    (2 * sizeof(struct fxp_tbd)));
   1884 		else
   1885 			txd->txd_txcb.tbd_array_addr =
   1886 			    htole32(FXP_CDTBDADDR(sc, i));
   1887 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1888 	}
   1889 	sc->sc_txpending = 0;
   1890 	sc->sc_txdirty = 0;
   1891 	sc->sc_txlast = FXP_NTXCB - 1;
   1892 
   1893 	/*
   1894 	 * Initialize the receive buffer list.
   1895 	 */
   1896 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1897 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1898 		rxmap = FXP_RXMAP_GET(sc);
   1899 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1900 			log(LOG_ERR, "%s: unable to allocate or map rx "
   1901 			    "buffer %d, error = %d\n",
   1902 			    sc->sc_dev.dv_xname,
   1903 			    sc->sc_rxq.ifq_len, error);
   1904 			/*
   1905 			 * XXX Should attempt to run with fewer receive
   1906 			 * XXX buffers instead of just failing.
   1907 			 */
   1908 			FXP_RXMAP_PUT(sc, rxmap);
   1909 			fxp_rxdrain(sc);
   1910 			goto out;
   1911 		}
   1912 	}
   1913 	sc->sc_rxidle = 0;
   1914 
   1915 	/*
   1916 	 * Give the transmit ring to the chip.  We do this by pointing
   1917 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1918 	 * issuing a start command.  It will execute the NOP and then
   1919 	 * suspend, pointing at the first descriptor.
   1920 	 */
   1921 	fxp_scb_wait(sc);
   1922 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1923 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1924 
   1925 	/*
   1926 	 * Initialize receiver buffer area - RFA.
   1927 	 */
   1928 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1929 	fxp_scb_wait(sc);
   1930 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1931 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1932 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1933 
   1934 	if (sc->sc_flags & FXPF_MII) {
   1935 		/*
   1936 		 * Set current media.
   1937 		 */
   1938 		mii_mediachg(&sc->sc_mii);
   1939 	}
   1940 
   1941 	/*
   1942 	 * ...all done!
   1943 	 */
   1944 	ifp->if_flags |= IFF_RUNNING;
   1945 	ifp->if_flags &= ~IFF_OACTIVE;
   1946 
   1947 	/*
   1948 	 * Start the one second timer.
   1949 	 */
   1950 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1951 
   1952 	/*
   1953 	 * Attempt to start output on the interface.
   1954 	 */
   1955 	fxp_start(ifp);
   1956 
   1957  out:
   1958 	if (error) {
   1959 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1960 		ifp->if_timer = 0;
   1961 		log(LOG_ERR, "%s: interface not running\n",
   1962 		    sc->sc_dev.dv_xname);
   1963 	}
   1964 	return (error);
   1965 }
   1966 
   1967 /*
   1968  * Change media according to request.
   1969  */
   1970 int
   1971 fxp_mii_mediachange(struct ifnet *ifp)
   1972 {
   1973 	struct fxp_softc *sc = ifp->if_softc;
   1974 
   1975 	if (ifp->if_flags & IFF_UP)
   1976 		mii_mediachg(&sc->sc_mii);
   1977 	return (0);
   1978 }
   1979 
   1980 /*
   1981  * Notify the world which media we're using.
   1982  */
   1983 void
   1984 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1985 {
   1986 	struct fxp_softc *sc = ifp->if_softc;
   1987 
   1988 	if (sc->sc_enabled == 0) {
   1989 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1990 		ifmr->ifm_status = 0;
   1991 		return;
   1992 	}
   1993 
   1994 	mii_pollstat(&sc->sc_mii);
   1995 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1996 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1997 
   1998 	/*
   1999 	 * XXX Flow control is always turned on if the chip supports
   2000 	 * XXX it; we can't easily control it dynamically, since it
   2001 	 * XXX requires sending a setup packet.
   2002 	 */
   2003 	if (sc->sc_rev >= FXP_REV_82558_A4)
   2004 		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
   2005 }
   2006 
   2007 int
   2008 fxp_80c24_mediachange(struct ifnet *ifp)
   2009 {
   2010 
   2011 	/* Nothing to do here. */
   2012 	return (0);
   2013 }
   2014 
   2015 void
   2016 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2017 {
   2018 	struct fxp_softc *sc = ifp->if_softc;
   2019 
   2020 	/*
   2021 	 * Media is currently-selected media.  We cannot determine
   2022 	 * the link status.
   2023 	 */
   2024 	ifmr->ifm_status = 0;
   2025 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   2026 }
   2027 
   2028 /*
   2029  * Add a buffer to the end of the RFA buffer list.
   2030  * Return 0 if successful, error code on failure.
   2031  *
   2032  * The RFA struct is stuck at the beginning of mbuf cluster and the
   2033  * data pointer is fixed up to point just past it.
   2034  */
   2035 int
   2036 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
   2037 {
   2038 	struct mbuf *m;
   2039 	int error;
   2040 
   2041 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2042 	if (m == NULL)
   2043 		return (ENOBUFS);
   2044 
   2045 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2046 	MCLGET(m, M_DONTWAIT);
   2047 	if ((m->m_flags & M_EXT) == 0) {
   2048 		m_freem(m);
   2049 		return (ENOBUFS);
   2050 	}
   2051 
   2052 	if (unload)
   2053 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   2054 
   2055 	M_SETCTX(m, rxmap);
   2056 
   2057 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2058 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
   2059 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2060 	if (error) {
   2061 		/* XXX XXX XXX */
   2062 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2063 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   2064 		panic("fxp_add_rfabuf");
   2065 	}
   2066 
   2067 	FXP_INIT_RFABUF(sc, m);
   2068 
   2069 	return (0);
   2070 }
   2071 
   2072 int
   2073 fxp_mdi_read(struct device *self, int phy, int reg)
   2074 {
   2075 	struct fxp_softc *sc = (struct fxp_softc *)self;
   2076 	int count = 10000;
   2077 	int value;
   2078 
   2079 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2080 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   2081 
   2082 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
   2083 	    0x10000000) == 0 && count--)
   2084 		DELAY(10);
   2085 
   2086 	if (count <= 0)
   2087 		log(LOG_WARNING,
   2088 		    "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   2089 
   2090 	return (value & 0xffff);
   2091 }
   2092 
   2093 void
   2094 fxp_statchg(struct device *self)
   2095 {
   2096 
   2097 	/* Nothing to do. */
   2098 }
   2099 
   2100 void
   2101 fxp_mdi_write(struct device *self, int phy, int reg, int value)
   2102 {
   2103 	struct fxp_softc *sc = (struct fxp_softc *)self;
   2104 	int count = 10000;
   2105 
   2106 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2107 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   2108 	    (value & 0xffff));
   2109 
   2110 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   2111 	    count--)
   2112 		DELAY(10);
   2113 
   2114 	if (count <= 0)
   2115 		log(LOG_WARNING,
   2116 		    "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   2117 }
   2118 
   2119 int
   2120 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   2121 {
   2122 	struct fxp_softc *sc = ifp->if_softc;
   2123 	struct ifreq *ifr = (struct ifreq *)data;
   2124 	int s, error;
   2125 
   2126 	s = splnet();
   2127 
   2128 	switch (cmd) {
   2129 	case SIOCSIFMEDIA:
   2130 	case SIOCGIFMEDIA:
   2131 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2132 		break;
   2133 
   2134 	default:
   2135 		error = ether_ioctl(ifp, cmd, data);
   2136 		if (error == ENETRESET) {
   2137 			if (ifp->if_flags & IFF_RUNNING) {
   2138 				/*
   2139 				 * Multicast list has changed; set the
   2140 				 * hardware filter accordingly.
   2141 				 */
   2142 				if (sc->sc_txpending) {
   2143 					sc->sc_flags |= FXPF_WANTINIT;
   2144 					error = 0;
   2145 				} else
   2146 					error = fxp_init(ifp);
   2147 			} else
   2148 				error = 0;
   2149 		}
   2150 		break;
   2151 	}
   2152 
   2153 	/* Try to get more packets going. */
   2154 	if (sc->sc_enabled)
   2155 		fxp_start(ifp);
   2156 
   2157 	splx(s);
   2158 	return (error);
   2159 }
   2160 
   2161 /*
   2162  * Program the multicast filter.
   2163  *
   2164  * This function must be called at splnet().
   2165  */
   2166 void
   2167 fxp_mc_setup(struct fxp_softc *sc)
   2168 {
   2169 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   2170 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2171 	struct ethercom *ec = &sc->sc_ethercom;
   2172 	struct ether_multi *enm;
   2173 	struct ether_multistep step;
   2174 	int count, nmcasts;
   2175 
   2176 #ifdef DIAGNOSTIC
   2177 	if (sc->sc_txpending)
   2178 		panic("fxp_mc_setup: pending transmissions");
   2179 #endif
   2180 
   2181 	ifp->if_flags &= ~IFF_ALLMULTI;
   2182 
   2183 	/*
   2184 	 * Initialize multicast setup descriptor.
   2185 	 */
   2186 	nmcasts = 0;
   2187 	ETHER_FIRST_MULTI(step, ec, enm);
   2188 	while (enm != NULL) {
   2189 		/*
   2190 		 * Check for too many multicast addresses or if we're
   2191 		 * listening to a range.  Either way, we simply have
   2192 		 * to accept all multicasts.
   2193 		 */
   2194 		if (nmcasts >= MAXMCADDR ||
   2195 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2196 		    ETHER_ADDR_LEN) != 0) {
   2197 			/*
   2198 			 * Callers of this function must do the
   2199 			 * right thing with this.  If we're called
   2200 			 * from outside fxp_init(), the caller must
   2201 			 * detect if the state if IFF_ALLMULTI changes.
   2202 			 * If it does, the caller must then call
   2203 			 * fxp_init(), since allmulti is handled by
   2204 			 * the config block.
   2205 			 */
   2206 			ifp->if_flags |= IFF_ALLMULTI;
   2207 			return;
   2208 		}
   2209 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   2210 		    ETHER_ADDR_LEN);
   2211 		nmcasts++;
   2212 		ETHER_NEXT_MULTI(step, enm);
   2213 	}
   2214 
   2215 	/* BIG_ENDIAN: no need to swap to store 0 */
   2216 	mcsp->cb_status = 0;
   2217 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   2218 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   2219 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   2220 
   2221 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2222 
   2223 	/*
   2224 	 * Wait until the command unit is not active.  This should never
   2225 	 * happen since nothing is queued, but make sure anyway.
   2226 	 */
   2227 	count = 100;
   2228 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   2229 	    FXP_SCB_CUS_ACTIVE && --count)
   2230 		DELAY(1);
   2231 	if (count == 0) {
   2232 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
   2233 		    sc->sc_dev.dv_xname, __LINE__);
   2234 		return;
   2235 	}
   2236 
   2237 	/*
   2238 	 * Start the multicast setup command/DMA.
   2239 	 */
   2240 	fxp_scb_wait(sc);
   2241 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   2242 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2243 
   2244 	/* ...and wait for it to complete. */
   2245 	count = 1000;
   2246 	do {
   2247 		FXP_CDMCSSYNC(sc,
   2248 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2249 		DELAY(1);
   2250 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   2251 	if (count == 0) {
   2252 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   2253 		    sc->sc_dev.dv_xname, __LINE__);
   2254 		return;
   2255 	}
   2256 }
   2257 
   2258 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
   2259 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
   2260 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
   2261 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
   2262 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
   2263 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
   2264 
   2265 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
   2266 
   2267 static const struct ucode {
   2268 	int32_t		revision;
   2269 	const uint32_t	*ucode;
   2270 	size_t		length;
   2271 	uint16_t	int_delay_offset;
   2272 	uint16_t	bundle_max_offset;
   2273 } ucode_table[] = {
   2274 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
   2275 	  D101_CPUSAVER_DWORD, 0 },
   2276 
   2277 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
   2278 	  D101_CPUSAVER_DWORD, 0 },
   2279 
   2280 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
   2281 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
   2282 
   2283 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
   2284 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
   2285 
   2286 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
   2287 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
   2288 
   2289 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
   2290 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
   2291 
   2292 	{ 0, NULL, 0, 0, 0 }
   2293 };
   2294 
   2295 void
   2296 fxp_load_ucode(struct fxp_softc *sc)
   2297 {
   2298 	const struct ucode *uc;
   2299 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
   2300 	int count, i;
   2301 
   2302 	if (sc->sc_flags & FXPF_UCODE_LOADED)
   2303 		return;
   2304 
   2305 	/*
   2306 	 * Only load the uCode if the user has requested that
   2307 	 * we do so.
   2308 	 */
   2309 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
   2310 		sc->sc_int_delay = 0;
   2311 		sc->sc_bundle_max = 0;
   2312 		return;
   2313 	}
   2314 
   2315 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
   2316 		if (sc->sc_rev == uc->revision)
   2317 			break;
   2318 	}
   2319 	if (uc->ucode == NULL)
   2320 		return;
   2321 
   2322 	/* BIG ENDIAN: no need to swap to store 0 */
   2323 	cbp->cb_status = 0;
   2324 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
   2325 	cbp->link_addr = 0xffffffff;		/* (no) next command */
   2326 	for (i = 0; i < uc->length; i++)
   2327 		cbp->ucode[i] = htole32(uc->ucode[i]);
   2328 
   2329 	if (uc->int_delay_offset)
   2330 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
   2331 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
   2332 
   2333 	if (uc->bundle_max_offset)
   2334 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
   2335 		    htole16(fxp_bundle_max);
   2336 
   2337 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2338 
   2339 	/*
   2340 	 * Download the uCode to the chip.
   2341 	 */
   2342 	fxp_scb_wait(sc);
   2343 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
   2344 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2345 
   2346 	/* ...and wait for it to complete. */
   2347 	count = 10000;
   2348 	do {
   2349 		FXP_CDUCODESYNC(sc,
   2350 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2351 		DELAY(2);
   2352 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   2353 	if (count == 0) {
   2354 		sc->sc_int_delay = 0;
   2355 		sc->sc_bundle_max = 0;
   2356 		log(LOG_WARNING, "%s: timeout loading microcode\n",
   2357 		    sc->sc_dev.dv_xname);
   2358 		return;
   2359 	}
   2360 
   2361 	if (sc->sc_int_delay != fxp_int_delay ||
   2362 	    sc->sc_bundle_max != fxp_bundle_max) {
   2363 		sc->sc_int_delay = fxp_int_delay;
   2364 		sc->sc_bundle_max = fxp_bundle_max;
   2365 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
   2366 		    "max bundle: %d\n", sc->sc_dev.dv_xname,
   2367 		    sc->sc_int_delay,
   2368 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
   2369 	}
   2370 
   2371 	sc->sc_flags |= FXPF_UCODE_LOADED;
   2372 }
   2373 
   2374 int
   2375 fxp_enable(struct fxp_softc *sc)
   2376 {
   2377 
   2378 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   2379 		if ((*sc->sc_enable)(sc) != 0) {
   2380 			log(LOG_ERR, "%s: device enable failed\n",
   2381 			    sc->sc_dev.dv_xname);
   2382 			return (EIO);
   2383 		}
   2384 	}
   2385 
   2386 	sc->sc_enabled = 1;
   2387 	return (0);
   2388 }
   2389 
   2390 void
   2391 fxp_disable(struct fxp_softc *sc)
   2392 {
   2393 
   2394 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   2395 		(*sc->sc_disable)(sc);
   2396 		sc->sc_enabled = 0;
   2397 	}
   2398 }
   2399 
   2400 /*
   2401  * fxp_activate:
   2402  *
   2403  *	Handle device activation/deactivation requests.
   2404  */
   2405 int
   2406 fxp_activate(struct device *self, enum devact act)
   2407 {
   2408 	struct fxp_softc *sc = (void *) self;
   2409 	int s, error = 0;
   2410 
   2411 	s = splnet();
   2412 	switch (act) {
   2413 	case DVACT_ACTIVATE:
   2414 		error = EOPNOTSUPP;
   2415 		break;
   2416 
   2417 	case DVACT_DEACTIVATE:
   2418 		if (sc->sc_flags & FXPF_MII)
   2419 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   2420 			    MII_OFFSET_ANY);
   2421 		if_deactivate(&sc->sc_ethercom.ec_if);
   2422 		break;
   2423 	}
   2424 	splx(s);
   2425 
   2426 	return (error);
   2427 }
   2428 
   2429 /*
   2430  * fxp_detach:
   2431  *
   2432  *	Detach an i82557 interface.
   2433  */
   2434 int
   2435 fxp_detach(struct fxp_softc *sc)
   2436 {
   2437 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2438 	int i;
   2439 
   2440 	/* Succeed now if there's no work to do. */
   2441 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2442 		return (0);
   2443 
   2444 	/* Unhook our tick handler. */
   2445 	callout_stop(&sc->sc_callout);
   2446 
   2447 	if (sc->sc_flags & FXPF_MII) {
   2448 		/* Detach all PHYs */
   2449 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2450 	}
   2451 
   2452 	/* Delete all remaining media. */
   2453 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2454 
   2455 #if NRND > 0
   2456 	rnd_detach_source(&sc->rnd_source);
   2457 #endif
   2458 	ether_ifdetach(ifp);
   2459 	if_detach(ifp);
   2460 
   2461 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2462 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2463 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2464 	}
   2465 
   2466 	for (i = 0; i < FXP_NTXCB; i++) {
   2467 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2468 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2469 	}
   2470 
   2471 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2472 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2473 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2474 	    sizeof(struct fxp_control_data));
   2475 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2476 
   2477 	shutdownhook_disestablish(sc->sc_sdhook);
   2478 	powerhook_disestablish(sc->sc_powerhook);
   2479 
   2480 	return (0);
   2481 }
   2482