i82557.c revision 1.93 1 /* $NetBSD: i82557.c,v 1.93 2005/10/12 19:26:10 abs Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.93 2005/10/12 19:26:10 abs Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/syslog.h>
92
93 #include <machine/endian.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #if NRND > 0
98 #include <sys/rnd.h>
99 #endif
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <machine/bus.h>
111 #include <machine/intr.h>
112
113 #include <dev/mii/miivar.h>
114
115 #include <dev/ic/i82557reg.h>
116 #include <dev/ic/i82557var.h>
117
118 #include <dev/microcode/i8255x/rcvbundl.h>
119
120 /*
121 * NOTE! On the Alpha, we have an alignment constraint. The
122 * card DMAs the packet immediately following the RFA. However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned. To compensate,
125 * we actually offset the RFA 2 bytes into the cluster. This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary. HOWEVER! This means that the RFA is misaligned!
128 */
129 #define RFA_ALIGNMENT_FUDGE 2
130
131 /*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero. Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139 const u_int8_t fxp_cb_config_template[] = {
140 0x0, 0x0, /* cb_status */
141 0x0, 0x0, /* cb_command */
142 0x0, 0x0, 0x0, 0x0, /* link_addr */
143 0x0, /* 0 */
144 0x0, /* 1 */
145 0x0, /* 2 */
146 0x0, /* 3 */
147 0x0, /* 4 */
148 0x0, /* 5 */
149 0x32, /* 6 */
150 0x0, /* 7 */
151 0x0, /* 8 */
152 0x0, /* 9 */
153 0x6, /* 10 */
154 0x0, /* 11 */
155 0x0, /* 12 */
156 0x0, /* 13 */
157 0xf2, /* 14 */
158 0x48, /* 15 */
159 0x0, /* 16 */
160 0x40, /* 17 */
161 0xf0, /* 18 */
162 0x0, /* 19 */
163 0x3f, /* 20 */
164 0x5, /* 21 */
165 0x0, /* 22 */
166 0x0, /* 23 */
167 0x0, /* 24 */
168 0x0, /* 25 */
169 0x0, /* 26 */
170 0x0, /* 27 */
171 0x0, /* 28 */
172 0x0, /* 29 */
173 0x0, /* 30 */
174 0x0, /* 31 */
175 };
176
177 void fxp_mii_initmedia(struct fxp_softc *);
178 int fxp_mii_mediachange(struct ifnet *);
179 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
180
181 void fxp_80c24_initmedia(struct fxp_softc *);
182 int fxp_80c24_mediachange(struct ifnet *);
183 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
184
185 void fxp_start(struct ifnet *);
186 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
187 void fxp_watchdog(struct ifnet *);
188 int fxp_init(struct ifnet *);
189 void fxp_stop(struct ifnet *, int);
190
191 void fxp_txintr(struct fxp_softc *);
192 void fxp_rxintr(struct fxp_softc *);
193
194 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
195
196 void fxp_rxdrain(struct fxp_softc *);
197 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
198 int fxp_mdi_read(struct device *, int, int);
199 void fxp_statchg(struct device *);
200 void fxp_mdi_write(struct device *, int, int, int);
201 void fxp_autosize_eeprom(struct fxp_softc*);
202 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204 void fxp_eeprom_update_cksum(struct fxp_softc *);
205 void fxp_get_info(struct fxp_softc *, u_int8_t *);
206 void fxp_tick(void *);
207 void fxp_mc_setup(struct fxp_softc *);
208 void fxp_load_ucode(struct fxp_softc *);
209
210 void fxp_shutdown(void *);
211 void fxp_power(int, void *);
212
213 int fxp_copy_small = 0;
214
215 /*
216 * Variables for interrupt mitigating microcode.
217 */
218 int fxp_int_delay = 1000; /* usec */
219 int fxp_bundle_max = 6; /* packets */
220
221 struct fxp_phytype {
222 int fp_phy; /* type of PHY, -1 for MII at the end. */
223 void (*fp_init)(struct fxp_softc *);
224 } fxp_phytype_table[] = {
225 { FXP_PHY_80C24, fxp_80c24_initmedia },
226 { -1, fxp_mii_initmedia },
227 };
228
229 /*
230 * Set initial transmit threshold at 64 (512 bytes). This is
231 * increased by 64 (512 bytes) at a time, to maximum of 192
232 * (1536 bytes), if an underrun occurs.
233 */
234 static int tx_threshold = 64;
235
236 /*
237 * Wait for the previous command to be accepted (but not necessarily
238 * completed).
239 */
240 static __inline void
241 fxp_scb_wait(struct fxp_softc *sc)
242 {
243 int i = 10000;
244
245 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
246 delay(2);
247 if (i == 0)
248 log(LOG_WARNING,
249 "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
250 }
251
252 /*
253 * Submit a command to the i82557.
254 */
255 static __inline void
256 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
257 {
258
259 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
260 }
261
262 /*
263 * Finish attaching an i82557 interface. Called by bus-specific front-end.
264 */
265 void
266 fxp_attach(struct fxp_softc *sc)
267 {
268 u_int8_t enaddr[ETHER_ADDR_LEN];
269 struct ifnet *ifp;
270 bus_dma_segment_t seg;
271 int rseg, i, error;
272 struct fxp_phytype *fp;
273
274 callout_init(&sc->sc_callout);
275
276 /*
277 * Enable some good stuff on i82558 and later.
278 */
279 if (sc->sc_rev >= FXP_REV_82558_A4) {
280 /* Enable the extended TxCB. */
281 sc->sc_flags |= FXPF_EXT_TXCB;
282 }
283
284 /*
285 * Enable use of extended RFDs and TCBs for 82550
286 * and later chips. Note: we need extended TXCB support
287 * too, but that's already enabled by the code above.
288 * Be careful to do this only on the right devices.
289 */
290 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
291 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
292 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
293 } else {
294 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
295 }
296
297 sc->sc_rfa_size =
298 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
299
300 /*
301 * Allocate the control data structures, and create and load the
302 * DMA map for it.
303 */
304 if ((error = bus_dmamem_alloc(sc->sc_dmat,
305 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
306 0)) != 0) {
307 aprint_error(
308 "%s: unable to allocate control data, error = %d\n",
309 sc->sc_dev.dv_xname, error);
310 goto fail_0;
311 }
312
313 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
314 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
315 BUS_DMA_COHERENT)) != 0) {
316 aprint_error("%s: unable to map control data, error = %d\n",
317 sc->sc_dev.dv_xname, error);
318 goto fail_1;
319 }
320 sc->sc_cdseg = seg;
321 sc->sc_cdnseg = rseg;
322
323 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
324
325 if ((error = bus_dmamap_create(sc->sc_dmat,
326 sizeof(struct fxp_control_data), 1,
327 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
328 aprint_error("%s: unable to create control data DMA map, "
329 "error = %d\n", sc->sc_dev.dv_xname, error);
330 goto fail_2;
331 }
332
333 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
334 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
335 0)) != 0) {
336 aprint_error(
337 "%s: can't load control data DMA map, error = %d\n",
338 sc->sc_dev.dv_xname, error);
339 goto fail_3;
340 }
341
342 /*
343 * Create the transmit buffer DMA maps.
344 */
345 for (i = 0; i < FXP_NTXCB; i++) {
346 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
348 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
349 aprint_error("%s: unable to create tx DMA map %d, "
350 "error = %d\n", sc->sc_dev.dv_xname, i, error);
351 goto fail_4;
352 }
353 }
354
355 /*
356 * Create the receive buffer DMA maps.
357 */
358 for (i = 0; i < FXP_NRFABUFS; i++) {
359 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
360 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
361 aprint_error("%s: unable to create rx DMA map %d, "
362 "error = %d\n", sc->sc_dev.dv_xname, i, error);
363 goto fail_5;
364 }
365 }
366
367 /* Initialize MAC address and media structures. */
368 fxp_get_info(sc, enaddr);
369
370 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
371 ether_sprintf(enaddr));
372
373 ifp = &sc->sc_ethercom.ec_if;
374
375 /*
376 * Get info about our media interface, and initialize it. Note
377 * the table terminates itself with a phy of -1, indicating
378 * that we're using MII.
379 */
380 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
381 if (fp->fp_phy == sc->phy_primary_device)
382 break;
383 (*fp->fp_init)(sc);
384
385 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
386 ifp->if_softc = sc;
387 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
388 ifp->if_ioctl = fxp_ioctl;
389 ifp->if_start = fxp_start;
390 ifp->if_watchdog = fxp_watchdog;
391 ifp->if_init = fxp_init;
392 ifp->if_stop = fxp_stop;
393 IFQ_SET_READY(&ifp->if_snd);
394
395 if (sc->sc_flags & FXPF_IPCB) {
396 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
397 /*
398 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
399 * at least, on i82550 rev.12.
400 * specifically, it doesn't calculate ipv4 checksum correctly
401 * when sending 20 byte ipv4 header + 1 or 2 byte data.
402 * FreeBSD driver has related comments.
403 */
404 ifp->if_capabilities =
405 IFCAP_CSUM_IPv4_Rx |
406 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
407 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
408 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
409 }
410
411 /*
412 * We can support 802.1Q VLAN-sized frames.
413 */
414 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
415
416 /*
417 * Attach the interface.
418 */
419 if_attach(ifp);
420 ether_ifattach(ifp, enaddr);
421 #if NRND > 0
422 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
423 RND_TYPE_NET, 0);
424 #endif
425
426 #ifdef FXP_EVENT_COUNTERS
427 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
428 NULL, sc->sc_dev.dv_xname, "txstall");
429 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
430 NULL, sc->sc_dev.dv_xname, "txintr");
431 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
432 NULL, sc->sc_dev.dv_xname, "rxintr");
433 if (sc->sc_rev >= FXP_REV_82558_A4) {
434 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
435 NULL, sc->sc_dev.dv_xname, "txpause");
436 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
437 NULL, sc->sc_dev.dv_xname, "rxpause");
438 }
439 #endif /* FXP_EVENT_COUNTERS */
440
441 /*
442 * Add shutdown hook so that DMA is disabled prior to reboot. Not
443 * doing do could allow DMA to corrupt kernel memory during the
444 * reboot before the driver initializes.
445 */
446 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
447 if (sc->sc_sdhook == NULL)
448 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
449 sc->sc_dev.dv_xname);
450 /*
451 * Add suspend hook, for similar reasons..
452 */
453 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
454 if (sc->sc_powerhook == NULL)
455 aprint_error("%s: WARNING: unable to establish power hook\n",
456 sc->sc_dev.dv_xname);
457
458 /* The attach is successful. */
459 sc->sc_flags |= FXPF_ATTACHED;
460
461 return;
462
463 /*
464 * Free any resources we've allocated during the failed attach
465 * attempt. Do this in reverse order and fall though.
466 */
467 fail_5:
468 for (i = 0; i < FXP_NRFABUFS; i++) {
469 if (sc->sc_rxmaps[i] != NULL)
470 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
471 }
472 fail_4:
473 for (i = 0; i < FXP_NTXCB; i++) {
474 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
475 bus_dmamap_destroy(sc->sc_dmat,
476 FXP_DSTX(sc, i)->txs_dmamap);
477 }
478 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
479 fail_3:
480 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
481 fail_2:
482 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
483 sizeof(struct fxp_control_data));
484 fail_1:
485 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
486 fail_0:
487 return;
488 }
489
490 void
491 fxp_mii_initmedia(struct fxp_softc *sc)
492 {
493 int flags;
494
495 sc->sc_flags |= FXPF_MII;
496
497 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
498 sc->sc_mii.mii_readreg = fxp_mdi_read;
499 sc->sc_mii.mii_writereg = fxp_mdi_write;
500 sc->sc_mii.mii_statchg = fxp_statchg;
501 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
502 fxp_mii_mediastatus);
503
504 flags = MIIF_NOISOLATE;
505 if (sc->sc_rev >= FXP_REV_82558_A4)
506 flags |= MIIF_DOPAUSE;
507 /*
508 * The i82557 wedges if all of its PHYs are isolated!
509 */
510 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
511 MII_OFFSET_ANY, flags);
512 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
513 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
514 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
515 } else
516 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
517 }
518
519 void
520 fxp_80c24_initmedia(struct fxp_softc *sc)
521 {
522
523 /*
524 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
525 * doesn't have a programming interface of any sort. The
526 * media is sensed automatically based on how the link partner
527 * is configured. This is, in essence, manual configuration.
528 */
529 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
530 sc->sc_dev.dv_xname);
531 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
532 fxp_80c24_mediastatus);
533 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
534 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
535 }
536
537 /*
538 * Device shutdown routine. Called at system shutdown after sync. The
539 * main purpose of this routine is to shut off receiver DMA so that
540 * kernel memory doesn't get clobbered during warmboot.
541 */
542 void
543 fxp_shutdown(void *arg)
544 {
545 struct fxp_softc *sc = arg;
546
547 /*
548 * Since the system's going to halt shortly, don't bother
549 * freeing mbufs.
550 */
551 fxp_stop(&sc->sc_ethercom.ec_if, 0);
552 }
553 /*
554 * Power handler routine. Called when the system is transitioning
555 * into/out of power save modes. As with fxp_shutdown, the main
556 * purpose of this routine is to shut off receiver DMA so it doesn't
557 * clobber kernel memory at the wrong time.
558 */
559 void
560 fxp_power(int why, void *arg)
561 {
562 struct fxp_softc *sc = arg;
563 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
564 int s;
565
566 s = splnet();
567 switch (why) {
568 case PWR_SUSPEND:
569 case PWR_STANDBY:
570 fxp_stop(ifp, 0);
571 break;
572 case PWR_RESUME:
573 if (ifp->if_flags & IFF_UP)
574 fxp_init(ifp);
575 break;
576 case PWR_SOFTSUSPEND:
577 case PWR_SOFTSTANDBY:
578 case PWR_SOFTRESUME:
579 break;
580 }
581 splx(s);
582 }
583
584 /*
585 * Initialize the interface media.
586 */
587 void
588 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
589 {
590 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
591
592 /*
593 * Reset to a stable state.
594 */
595 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
596 DELAY(100);
597
598 sc->sc_eeprom_size = 0;
599 fxp_autosize_eeprom(sc);
600 if (sc->sc_eeprom_size == 0) {
601 aprint_error("%s: failed to detect EEPROM size\n",
602 sc->sc_dev.dv_xname);
603 sc->sc_eeprom_size = 6; /* XXX panic here? */
604 }
605 #ifdef DEBUG
606 aprint_debug("%s: detected %d word EEPROM\n",
607 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
608 #endif
609
610 /*
611 * Get info about the primary PHY
612 */
613 fxp_read_eeprom(sc, &data, 6, 1);
614 sc->phy_primary_device =
615 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
616
617 /*
618 * Read MAC address.
619 */
620 fxp_read_eeprom(sc, myea, 0, 3);
621 enaddr[0] = myea[0] & 0xff;
622 enaddr[1] = myea[0] >> 8;
623 enaddr[2] = myea[1] & 0xff;
624 enaddr[3] = myea[1] >> 8;
625 enaddr[4] = myea[2] & 0xff;
626 enaddr[5] = myea[2] >> 8;
627
628 /*
629 * Systems based on the ICH2/ICH2-M chip from Intel, as well
630 * as some i82559 designs, have a defect where the chip can
631 * cause a PCI protocol violation if it receives a CU_RESUME
632 * command when it is entering the IDLE state.
633 *
634 * The work-around is to disable Dynamic Standby Mode, so that
635 * the chip never deasserts #CLKRUN, and always remains in the
636 * active state.
637 *
638 * Unfortunately, the only way to disable Dynamic Standby is
639 * to frob an EEPROM setting and reboot (the EEPROM setting
640 * is only consulted when the PCI bus comes out of reset).
641 *
642 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
643 */
644 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
645 fxp_read_eeprom(sc, &data, 10, 1);
646 if (data & 0x02) { /* STB enable */
647 aprint_error("%s: WARNING: "
648 "Disabling dynamic standby mode in EEPROM "
649 "to work around a\n",
650 sc->sc_dev.dv_xname);
651 aprint_normal(
652 "%s: WARNING: hardware bug. You must reset "
653 "the system before using this\n",
654 sc->sc_dev.dv_xname);
655 aprint_normal("%s: WARNING: interface.\n",
656 sc->sc_dev.dv_xname);
657 data &= ~0x02;
658 fxp_write_eeprom(sc, &data, 10, 1);
659 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
660 sc->sc_dev.dv_xname, data);
661 fxp_eeprom_update_cksum(sc);
662 }
663 }
664
665 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
666 /* Due to false positives we make it conditional on setting link1 */
667 fxp_read_eeprom(sc, &data, 3, 1);
668 if ((data & 0x03) != 0x03) {
669 aprint_verbose("%s: May need receiver lock-up workaround\n",
670 sc->sc_dev.dv_xname);
671 }
672 }
673
674 static void
675 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
676 {
677 uint16_t reg;
678 int x;
679
680 for (x = 1 << (len - 1); x != 0; x >>= 1) {
681 DELAY(40);
682 if (data & x)
683 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
684 else
685 reg = FXP_EEPROM_EECS;
686 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
687 DELAY(40);
688 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
689 reg | FXP_EEPROM_EESK);
690 DELAY(40);
691 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
692 }
693 DELAY(40);
694 }
695
696 /*
697 * Figure out EEPROM size.
698 *
699 * 559's can have either 64-word or 256-word EEPROMs, the 558
700 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
701 * talks about the existence of 16 to 256 word EEPROMs.
702 *
703 * The only known sizes are 64 and 256, where the 256 version is used
704 * by CardBus cards to store CIS information.
705 *
706 * The address is shifted in msb-to-lsb, and after the last
707 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
708 * after which follows the actual data. We try to detect this zero, by
709 * probing the data-out bit in the EEPROM control register just after
710 * having shifted in a bit. If the bit is zero, we assume we've
711 * shifted enough address bits. The data-out should be tri-state,
712 * before this, which should translate to a logical one.
713 *
714 * Other ways to do this would be to try to read a register with known
715 * contents with a varying number of address bits, but no such
716 * register seem to be available. The high bits of register 10 are 01
717 * on the 558 and 559, but apparently not on the 557.
718 *
719 * The Linux driver computes a checksum on the EEPROM data, but the
720 * value of this checksum is not very well documented.
721 */
722
723 void
724 fxp_autosize_eeprom(struct fxp_softc *sc)
725 {
726 int x;
727
728 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
729 DELAY(40);
730
731 /* Shift in read opcode. */
732 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
733
734 /*
735 * Shift in address, wait for the dummy zero following a correct
736 * address shift.
737 */
738 for (x = 1; x <= 8; x++) {
739 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
740 DELAY(40);
741 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
742 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
743 DELAY(40);
744 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
745 FXP_EEPROM_EEDO) == 0)
746 break;
747 DELAY(40);
748 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
749 DELAY(40);
750 }
751 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
752 DELAY(40);
753 if (x != 6 && x != 8) {
754 #ifdef DEBUG
755 printf("%s: strange EEPROM size (%d)\n",
756 sc->sc_dev.dv_xname, 1 << x);
757 #endif
758 } else
759 sc->sc_eeprom_size = x;
760 }
761
762 /*
763 * Read from the serial EEPROM. Basically, you manually shift in
764 * the read opcode (one bit at a time) and then shift in the address,
765 * and then you shift out the data (all of this one bit at a time).
766 * The word size is 16 bits, so you have to provide the address for
767 * every 16 bits of data.
768 */
769 void
770 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
771 {
772 u_int16_t reg;
773 int i, x;
774
775 for (i = 0; i < words; i++) {
776 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
777
778 /* Shift in read opcode. */
779 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
780
781 /* Shift in address. */
782 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
783
784 reg = FXP_EEPROM_EECS;
785 data[i] = 0;
786
787 /* Shift out data. */
788 for (x = 16; x > 0; x--) {
789 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
790 reg | FXP_EEPROM_EESK);
791 DELAY(40);
792 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
793 FXP_EEPROM_EEDO)
794 data[i] |= (1 << (x - 1));
795 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
796 DELAY(40);
797 }
798 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
799 DELAY(40);
800 }
801 }
802
803 /*
804 * Write data to the serial EEPROM.
805 */
806 void
807 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
808 {
809 int i, j;
810
811 for (i = 0; i < words; i++) {
812 /* Erase/write enable. */
813 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
814 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
815 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
816 sc->sc_eeprom_size);
817 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
818 DELAY(4);
819
820 /* Shift in write opcode, address, data. */
821 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
822 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
823 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
824 fxp_eeprom_shiftin(sc, data[i], 16);
825 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
826 DELAY(4);
827
828 /* Wait for the EEPROM to finish up. */
829 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
830 DELAY(4);
831 for (j = 0; j < 1000; j++) {
832 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
833 FXP_EEPROM_EEDO)
834 break;
835 DELAY(50);
836 }
837 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
838 DELAY(4);
839
840 /* Erase/write disable. */
841 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
842 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
843 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
844 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
845 DELAY(4);
846 }
847 }
848
849 /*
850 * Update the checksum of the EEPROM.
851 */
852 void
853 fxp_eeprom_update_cksum(struct fxp_softc *sc)
854 {
855 int i;
856 uint16_t data, cksum;
857
858 cksum = 0;
859 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
860 fxp_read_eeprom(sc, &data, i, 1);
861 cksum += data;
862 }
863 i = (1 << sc->sc_eeprom_size) - 1;
864 cksum = 0xbaba - cksum;
865 fxp_read_eeprom(sc, &data, i, 1);
866 fxp_write_eeprom(sc, &cksum, i, 1);
867 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
868 sc->sc_dev.dv_xname, i, data, cksum);
869 }
870
871 /*
872 * Start packet transmission on the interface.
873 */
874 void
875 fxp_start(struct ifnet *ifp)
876 {
877 struct fxp_softc *sc = ifp->if_softc;
878 struct mbuf *m0, *m;
879 struct fxp_txdesc *txd;
880 struct fxp_txsoft *txs;
881 bus_dmamap_t dmamap;
882 int error, lasttx, nexttx, opending, seg;
883
884 /*
885 * If we want a re-init, bail out now.
886 */
887 if (sc->sc_flags & FXPF_WANTINIT) {
888 ifp->if_flags |= IFF_OACTIVE;
889 return;
890 }
891
892 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
893 return;
894
895 /*
896 * Remember the previous txpending and the current lasttx.
897 */
898 opending = sc->sc_txpending;
899 lasttx = sc->sc_txlast;
900
901 /*
902 * Loop through the send queue, setting up transmit descriptors
903 * until we drain the queue, or use up all available transmit
904 * descriptors.
905 */
906 for (;;) {
907 struct fxp_tbd *tbdp;
908 int csum_flags;
909
910 /*
911 * Grab a packet off the queue.
912 */
913 IFQ_POLL(&ifp->if_snd, m0);
914 if (m0 == NULL)
915 break;
916 m = NULL;
917
918 if (sc->sc_txpending == FXP_NTXCB) {
919 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
920 break;
921 }
922
923 /*
924 * Get the next available transmit descriptor.
925 */
926 nexttx = FXP_NEXTTX(sc->sc_txlast);
927 txd = FXP_CDTX(sc, nexttx);
928 txs = FXP_DSTX(sc, nexttx);
929 dmamap = txs->txs_dmamap;
930
931 /*
932 * Load the DMA map. If this fails, the packet either
933 * didn't fit in the allotted number of frags, or we were
934 * short on resources. In this case, we'll copy and try
935 * again.
936 */
937 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
938 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
939 MGETHDR(m, M_DONTWAIT, MT_DATA);
940 if (m == NULL) {
941 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
942 sc->sc_dev.dv_xname);
943 break;
944 }
945 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
946 if (m0->m_pkthdr.len > MHLEN) {
947 MCLGET(m, M_DONTWAIT);
948 if ((m->m_flags & M_EXT) == 0) {
949 log(LOG_ERR,
950 "%s: unable to allocate Tx "
951 "cluster\n", sc->sc_dev.dv_xname);
952 m_freem(m);
953 break;
954 }
955 }
956 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
957 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
958 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
959 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
960 if (error) {
961 log(LOG_ERR, "%s: unable to load Tx buffer, "
962 "error = %d\n", sc->sc_dev.dv_xname, error);
963 break;
964 }
965 }
966
967 IFQ_DEQUEUE(&ifp->if_snd, m0);
968 csum_flags = m0->m_pkthdr.csum_flags;
969 if (m != NULL) {
970 m_freem(m0);
971 m0 = m;
972 }
973
974 /* Initialize the fraglist. */
975 tbdp = txd->txd_tbd;
976 if (sc->sc_flags & FXPF_IPCB)
977 tbdp++;
978 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
979 tbdp[seg].tb_addr =
980 htole32(dmamap->dm_segs[seg].ds_addr);
981 tbdp[seg].tb_size =
982 htole32(dmamap->dm_segs[seg].ds_len);
983 }
984
985 /* Sync the DMA map. */
986 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
987 BUS_DMASYNC_PREWRITE);
988
989 /*
990 * Store a pointer to the packet so we can free it later.
991 */
992 txs->txs_mbuf = m0;
993
994 /*
995 * Initialize the transmit descriptor.
996 */
997 /* BIG_ENDIAN: no need to swap to store 0 */
998 txd->txd_txcb.cb_status = 0;
999 txd->txd_txcb.cb_command =
1000 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
1001 txd->txd_txcb.tx_threshold = tx_threshold;
1002 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
1003
1004 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
1005 if (sc->sc_flags & FXPF_IPCB) {
1006 struct fxp_ipcb *ipcb;
1007 /*
1008 * Deal with TCP/IP checksum offload. Note that
1009 * in order for TCP checksum offload to work,
1010 * the pseudo header checksum must have already
1011 * been computed and stored in the checksum field
1012 * in the TCP header. The stack should have
1013 * already done this for us.
1014 */
1015 ipcb = &txd->txd_u.txdu_ipcb;
1016 memset(ipcb, 0, sizeof(*ipcb));
1017 /*
1018 * always do hardware parsing.
1019 */
1020 ipcb->ipcb_ip_activation_high =
1021 FXP_IPCB_HARDWAREPARSING_ENABLE;
1022 /*
1023 * ip checksum offloading.
1024 */
1025 if (csum_flags & M_CSUM_IPv4) {
1026 ipcb->ipcb_ip_schedule |=
1027 FXP_IPCB_IP_CHECKSUM_ENABLE;
1028 }
1029 /*
1030 * TCP/UDP checksum offloading.
1031 */
1032 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1033 ipcb->ipcb_ip_schedule |=
1034 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1035 }
1036
1037 /*
1038 * request VLAN tag insertion if needed.
1039 */
1040 if (sc->sc_ethercom.ec_nvlans != 0) {
1041 struct m_tag *vtag;
1042
1043 vtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL);
1044 if (vtag) {
1045 ipcb->ipcb_vlan_id =
1046 htobe16(*(u_int *)(vtag + 1));
1047 ipcb->ipcb_ip_activation_high |=
1048 FXP_IPCB_INSERTVLAN_ENABLE;
1049 }
1050 }
1051 } else {
1052 KASSERT((csum_flags &
1053 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1054 }
1055
1056 FXP_CDTXSYNC(sc, nexttx,
1057 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1058
1059 /* Advance the tx pointer. */
1060 sc->sc_txpending++;
1061 sc->sc_txlast = nexttx;
1062
1063 #if NBPFILTER > 0
1064 /*
1065 * Pass packet to bpf if there is a listener.
1066 */
1067 if (ifp->if_bpf)
1068 bpf_mtap(ifp->if_bpf, m0);
1069 #endif
1070 }
1071
1072 if (sc->sc_txpending == FXP_NTXCB) {
1073 /* No more slots; notify upper layer. */
1074 ifp->if_flags |= IFF_OACTIVE;
1075 }
1076
1077 if (sc->sc_txpending != opending) {
1078 /*
1079 * We enqueued packets. If the transmitter was idle,
1080 * reset the txdirty pointer.
1081 */
1082 if (opending == 0)
1083 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1084
1085 /*
1086 * Cause the chip to interrupt and suspend command
1087 * processing once the last packet we've enqueued
1088 * has been transmitted.
1089 */
1090 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1091 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1092 FXP_CDTXSYNC(sc, sc->sc_txlast,
1093 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1094
1095 /*
1096 * The entire packet chain is set up. Clear the suspend bit
1097 * on the command prior to the first packet we set up.
1098 */
1099 FXP_CDTXSYNC(sc, lasttx,
1100 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1101 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1102 htole16(~FXP_CB_COMMAND_S);
1103 FXP_CDTXSYNC(sc, lasttx,
1104 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1105
1106 /*
1107 * Issue a Resume command in case the chip was suspended.
1108 */
1109 fxp_scb_wait(sc);
1110 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1111
1112 /* Set a watchdog timer in case the chip flakes out. */
1113 ifp->if_timer = 5;
1114 }
1115 }
1116
1117 /*
1118 * Process interface interrupts.
1119 */
1120 int
1121 fxp_intr(void *arg)
1122 {
1123 struct fxp_softc *sc = arg;
1124 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1125 bus_dmamap_t rxmap;
1126 int claimed = 0;
1127 u_int8_t statack;
1128
1129 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || sc->sc_enabled == 0)
1130 return (0);
1131 /*
1132 * If the interface isn't running, don't try to
1133 * service the interrupt.. just ack it and bail.
1134 */
1135 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1136 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1137 if (statack) {
1138 claimed = 1;
1139 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1140 }
1141 return (claimed);
1142 }
1143
1144 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1145 claimed = 1;
1146
1147 /*
1148 * First ACK all the interrupts in this pass.
1149 */
1150 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1151
1152 /*
1153 * Process receiver interrupts. If a no-resource (RNR)
1154 * condition exists, get whatever packets we can and
1155 * re-start the receiver.
1156 */
1157 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1158 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1159 fxp_rxintr(sc);
1160 }
1161
1162 if (statack & FXP_SCB_STATACK_RNR) {
1163 fxp_scb_wait(sc);
1164 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1165 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1166 fxp_scb_wait(sc);
1167 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1168 rxmap->dm_segs[0].ds_addr +
1169 RFA_ALIGNMENT_FUDGE);
1170 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1171 }
1172
1173 /*
1174 * Free any finished transmit mbuf chains.
1175 */
1176 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1177 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1178 fxp_txintr(sc);
1179
1180 /*
1181 * Try to get more packets going.
1182 */
1183 fxp_start(ifp);
1184
1185 if (sc->sc_txpending == 0) {
1186 /*
1187 * If we want a re-init, do that now.
1188 */
1189 if (sc->sc_flags & FXPF_WANTINIT)
1190 (void) fxp_init(ifp);
1191 }
1192 }
1193 }
1194
1195 #if NRND > 0
1196 if (claimed)
1197 rnd_add_uint32(&sc->rnd_source, statack);
1198 #endif
1199 return (claimed);
1200 }
1201
1202 /*
1203 * Handle transmit completion interrupts.
1204 */
1205 void
1206 fxp_txintr(struct fxp_softc *sc)
1207 {
1208 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1209 struct fxp_txdesc *txd;
1210 struct fxp_txsoft *txs;
1211 int i;
1212 u_int16_t txstat;
1213
1214 ifp->if_flags &= ~IFF_OACTIVE;
1215 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1216 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1217 txd = FXP_CDTX(sc, i);
1218 txs = FXP_DSTX(sc, i);
1219
1220 FXP_CDTXSYNC(sc, i,
1221 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1222
1223 txstat = le16toh(txd->txd_txcb.cb_status);
1224
1225 if ((txstat & FXP_CB_STATUS_C) == 0)
1226 break;
1227
1228 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1229 0, txs->txs_dmamap->dm_mapsize,
1230 BUS_DMASYNC_POSTWRITE);
1231 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1232 m_freem(txs->txs_mbuf);
1233 txs->txs_mbuf = NULL;
1234 }
1235
1236 /* Update the dirty transmit buffer pointer. */
1237 sc->sc_txdirty = i;
1238
1239 /*
1240 * Cancel the watchdog timer if there are no pending
1241 * transmissions.
1242 */
1243 if (sc->sc_txpending == 0)
1244 ifp->if_timer = 0;
1245 }
1246
1247 /*
1248 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1249 */
1250
1251 int
1252 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1253 {
1254 u_int16_t rxparsestat;
1255 u_int16_t csum_stat;
1256 u_int32_t csum_data;
1257 int csum_flags;
1258
1259 /*
1260 * check VLAN tag stripping.
1261 */
1262
1263 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1264 struct m_tag *vtag;
1265
1266 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1267 if (vtag == NULL)
1268 return ENOMEM;
1269 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1270 m_tag_prepend(m, vtag);
1271 }
1272
1273 /*
1274 * check H/W Checksumming.
1275 */
1276
1277 csum_stat = le16toh(rfa->cksum_stat);
1278 rxparsestat = le16toh(rfa->rx_parse_stat);
1279 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1280 return 0;
1281
1282 csum_flags = 0;
1283 csum_data = 0;
1284
1285 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1286 csum_flags = M_CSUM_IPv4;
1287 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1288 csum_flags |= M_CSUM_IPv4_BAD;
1289 }
1290
1291 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1292 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1293 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1294 csum_flags |= M_CSUM_TCP_UDP_BAD;
1295 }
1296
1297 m->m_pkthdr.csum_flags = csum_flags;
1298 m->m_pkthdr.csum_data = csum_data;
1299
1300 return 0;
1301 }
1302
1303 /*
1304 * Handle receive interrupts.
1305 */
1306 void
1307 fxp_rxintr(struct fxp_softc *sc)
1308 {
1309 struct ethercom *ec = &sc->sc_ethercom;
1310 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1311 struct mbuf *m, *m0;
1312 bus_dmamap_t rxmap;
1313 struct fxp_rfa *rfa;
1314 u_int16_t len, rxstat;
1315
1316 for (;;) {
1317 m = sc->sc_rxq.ifq_head;
1318 rfa = FXP_MTORFA(m);
1319 rxmap = M_GETCTX(m, bus_dmamap_t);
1320
1321 FXP_RFASYNC(sc, m,
1322 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1323
1324 rxstat = le16toh(rfa->rfa_status);
1325
1326 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1327 /*
1328 * We have processed all of the
1329 * receive buffers.
1330 */
1331 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1332 return;
1333 }
1334
1335 IF_DEQUEUE(&sc->sc_rxq, m);
1336
1337 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1338
1339 len = le16toh(rfa->actual_size) &
1340 (m->m_ext.ext_size - 1);
1341
1342 if (len < sizeof(struct ether_header)) {
1343 /*
1344 * Runt packet; drop it now.
1345 */
1346 FXP_INIT_RFABUF(sc, m);
1347 continue;
1348 }
1349
1350 /*
1351 * If support for 802.1Q VLAN sized frames is
1352 * enabled, we need to do some additional error
1353 * checking (as we are saving bad frames, in
1354 * order to receive the larger ones).
1355 */
1356 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1357 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1358 FXP_RFA_STATUS_RNR|
1359 FXP_RFA_STATUS_ALIGN|
1360 FXP_RFA_STATUS_CRC)) != 0) {
1361 FXP_INIT_RFABUF(sc, m);
1362 continue;
1363 }
1364
1365 /* Do checksum checking. */
1366 m->m_pkthdr.csum_flags = 0;
1367 if (sc->sc_flags & FXPF_EXT_RFA)
1368 if (fxp_rx_hwcksum(m, rfa))
1369 goto dropit;
1370
1371 /*
1372 * If the packet is small enough to fit in a
1373 * single header mbuf, allocate one and copy
1374 * the data into it. This greatly reduces
1375 * memory consumption when we receive lots
1376 * of small packets.
1377 *
1378 * Otherwise, we add a new buffer to the receive
1379 * chain. If this fails, we drop the packet and
1380 * recycle the old buffer.
1381 */
1382 if (fxp_copy_small != 0 && len <= MHLEN) {
1383 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1384 if (m0 == NULL)
1385 goto dropit;
1386 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1387 memcpy(mtod(m0, caddr_t),
1388 mtod(m, caddr_t), len);
1389 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1390 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1391 FXP_INIT_RFABUF(sc, m);
1392 m = m0;
1393 } else {
1394 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1395 dropit:
1396 ifp->if_ierrors++;
1397 FXP_INIT_RFABUF(sc, m);
1398 continue;
1399 }
1400 }
1401
1402 m->m_pkthdr.rcvif = ifp;
1403 m->m_pkthdr.len = m->m_len = len;
1404
1405 #if NBPFILTER > 0
1406 /*
1407 * Pass this up to any BPF listeners, but only
1408 * pass it up the stack it its for us.
1409 */
1410 if (ifp->if_bpf)
1411 bpf_mtap(ifp->if_bpf, m);
1412 #endif
1413
1414 /* Pass it on. */
1415 (*ifp->if_input)(ifp, m);
1416 }
1417 }
1418
1419 /*
1420 * Update packet in/out/collision statistics. The i82557 doesn't
1421 * allow you to access these counters without doing a fairly
1422 * expensive DMA to get _all_ of the statistics it maintains, so
1423 * we do this operation here only once per second. The statistics
1424 * counters in the kernel are updated from the previous dump-stats
1425 * DMA and then a new dump-stats DMA is started. The on-chip
1426 * counters are zeroed when the DMA completes. If we can't start
1427 * the DMA immediately, we don't wait - we just prepare to read
1428 * them again next time.
1429 */
1430 void
1431 fxp_tick(void *arg)
1432 {
1433 struct fxp_softc *sc = arg;
1434 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1435 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1436 int s;
1437
1438 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1439 return;
1440
1441 s = splnet();
1442
1443 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1444
1445 ifp->if_opackets += le32toh(sp->tx_good);
1446 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1447 if (sp->rx_good) {
1448 ifp->if_ipackets += le32toh(sp->rx_good);
1449 sc->sc_rxidle = 0;
1450 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1451 sc->sc_rxidle++;
1452 }
1453 ifp->if_ierrors +=
1454 le32toh(sp->rx_crc_errors) +
1455 le32toh(sp->rx_alignment_errors) +
1456 le32toh(sp->rx_rnr_errors) +
1457 le32toh(sp->rx_overrun_errors);
1458 /*
1459 * If any transmit underruns occurred, bump up the transmit
1460 * threshold by another 512 bytes (64 * 8).
1461 */
1462 if (sp->tx_underruns) {
1463 ifp->if_oerrors += le32toh(sp->tx_underruns);
1464 if (tx_threshold < 192)
1465 tx_threshold += 64;
1466 }
1467 #ifdef FXP_EVENT_COUNTERS
1468 if (sc->sc_rev >= FXP_REV_82558_A4) {
1469 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1470 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1471 }
1472 #endif
1473
1474 /*
1475 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1476 * then assume the receiver has locked up and attempt to clear
1477 * the condition by reprogramming the multicast filter (actually,
1478 * resetting the interface). This is a work-around for a bug in
1479 * the 82557 where the receiver locks up if it gets certain types
1480 * of garbage in the synchronization bits prior to the packet header.
1481 * This bug is supposed to only occur in 10Mbps mode, but has been
1482 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1483 * speed transition).
1484 */
1485 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1486 (void) fxp_init(ifp);
1487 splx(s);
1488 return;
1489 }
1490 /*
1491 * If there is no pending command, start another stats
1492 * dump. Otherwise punt for now.
1493 */
1494 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1495 /*
1496 * Start another stats dump.
1497 */
1498 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1499 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1500 } else {
1501 /*
1502 * A previous command is still waiting to be accepted.
1503 * Just zero our copy of the stats and wait for the
1504 * next timer event to update them.
1505 */
1506 /* BIG_ENDIAN: no swap required to store 0 */
1507 sp->tx_good = 0;
1508 sp->tx_underruns = 0;
1509 sp->tx_total_collisions = 0;
1510
1511 sp->rx_good = 0;
1512 sp->rx_crc_errors = 0;
1513 sp->rx_alignment_errors = 0;
1514 sp->rx_rnr_errors = 0;
1515 sp->rx_overrun_errors = 0;
1516 if (sc->sc_rev >= FXP_REV_82558_A4) {
1517 sp->tx_pauseframes = 0;
1518 sp->rx_pauseframes = 0;
1519 }
1520 }
1521
1522 if (sc->sc_flags & FXPF_MII) {
1523 /* Tick the MII clock. */
1524 mii_tick(&sc->sc_mii);
1525 }
1526
1527 splx(s);
1528
1529 /*
1530 * Schedule another timeout one second from now.
1531 */
1532 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1533 }
1534
1535 /*
1536 * Drain the receive queue.
1537 */
1538 void
1539 fxp_rxdrain(struct fxp_softc *sc)
1540 {
1541 bus_dmamap_t rxmap;
1542 struct mbuf *m;
1543
1544 for (;;) {
1545 IF_DEQUEUE(&sc->sc_rxq, m);
1546 if (m == NULL)
1547 break;
1548 rxmap = M_GETCTX(m, bus_dmamap_t);
1549 bus_dmamap_unload(sc->sc_dmat, rxmap);
1550 FXP_RXMAP_PUT(sc, rxmap);
1551 m_freem(m);
1552 }
1553 }
1554
1555 /*
1556 * Stop the interface. Cancels the statistics updater and resets
1557 * the interface.
1558 */
1559 void
1560 fxp_stop(struct ifnet *ifp, int disable)
1561 {
1562 struct fxp_softc *sc = ifp->if_softc;
1563 struct fxp_txsoft *txs;
1564 int i;
1565
1566 /*
1567 * Turn down interface (done early to avoid bad interactions
1568 * between panics, shutdown hooks, and the watchdog timer)
1569 */
1570 ifp->if_timer = 0;
1571 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1572
1573 /*
1574 * Cancel stats updater.
1575 */
1576 callout_stop(&sc->sc_callout);
1577 if (sc->sc_flags & FXPF_MII) {
1578 /* Down the MII. */
1579 mii_down(&sc->sc_mii);
1580 }
1581
1582 /*
1583 * Issue software reset. This unloads any microcode that
1584 * might already be loaded.
1585 */
1586 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1587 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1588 DELAY(50);
1589
1590 /*
1591 * Release any xmit buffers.
1592 */
1593 for (i = 0; i < FXP_NTXCB; i++) {
1594 txs = FXP_DSTX(sc, i);
1595 if (txs->txs_mbuf != NULL) {
1596 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1597 m_freem(txs->txs_mbuf);
1598 txs->txs_mbuf = NULL;
1599 }
1600 }
1601 sc->sc_txpending = 0;
1602
1603 if (disable) {
1604 fxp_rxdrain(sc);
1605 fxp_disable(sc);
1606 }
1607
1608 }
1609
1610 /*
1611 * Watchdog/transmission transmit timeout handler. Called when a
1612 * transmission is started on the interface, but no interrupt is
1613 * received before the timeout. This usually indicates that the
1614 * card has wedged for some reason.
1615 */
1616 void
1617 fxp_watchdog(struct ifnet *ifp)
1618 {
1619 struct fxp_softc *sc = ifp->if_softc;
1620
1621 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1622 ifp->if_oerrors++;
1623
1624 (void) fxp_init(ifp);
1625 }
1626
1627 /*
1628 * Initialize the interface. Must be called at splnet().
1629 */
1630 int
1631 fxp_init(struct ifnet *ifp)
1632 {
1633 struct fxp_softc *sc = ifp->if_softc;
1634 struct fxp_cb_config *cbp;
1635 struct fxp_cb_ias *cb_ias;
1636 struct fxp_txdesc *txd;
1637 bus_dmamap_t rxmap;
1638 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1639
1640 if ((error = fxp_enable(sc)) != 0)
1641 goto out;
1642
1643 /*
1644 * Cancel any pending I/O
1645 */
1646 fxp_stop(ifp, 0);
1647
1648 /*
1649 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1650 * flag, and this prevents the MII from detaching resulting in
1651 * a panic. The flags field should perhaps be split in runtime
1652 * flags and more static information. For now, just clear the
1653 * only other flag set.
1654 */
1655
1656 sc->sc_flags &= ~FXPF_WANTINIT;
1657
1658 /*
1659 * Initialize base of CBL and RFA memory. Loading with zero
1660 * sets it up for regular linear addressing.
1661 */
1662 fxp_scb_wait(sc);
1663 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1664 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1665
1666 fxp_scb_wait(sc);
1667 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1668
1669 /*
1670 * Initialize the multicast filter. Do this now, since we might
1671 * have to setup the config block differently.
1672 */
1673 fxp_mc_setup(sc);
1674
1675 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1676 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1677
1678 /*
1679 * In order to support receiving 802.1Q VLAN frames, we have to
1680 * enable "save bad frames", since they are 4 bytes larger than
1681 * the normal Ethernet maximum frame length. On i82558 and later,
1682 * we have a better mechanism for this.
1683 */
1684 save_bf = 0;
1685 lrxen = 0;
1686 vlan_drop = 0;
1687 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1688 if (sc->sc_rev < FXP_REV_82558_A4)
1689 save_bf = 1;
1690 else
1691 lrxen = 1;
1692 if (sc->sc_rev >= FXP_REV_82550)
1693 vlan_drop = 1;
1694 }
1695
1696 /*
1697 * Initialize base of dump-stats buffer.
1698 */
1699 fxp_scb_wait(sc);
1700 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1701 sc->sc_cddma + FXP_CDSTATSOFF);
1702 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1703 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1704
1705 cbp = &sc->sc_control_data->fcd_configcb;
1706 memset(cbp, 0, sizeof(struct fxp_cb_config));
1707
1708 /*
1709 * Load microcode for this controller.
1710 */
1711 fxp_load_ucode(sc);
1712
1713 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1714 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1715 else
1716 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1717
1718 /*
1719 * This copy is kind of disgusting, but there are a bunch of must be
1720 * zero and must be one bits in this structure and this is the easiest
1721 * way to initialize them all to proper values.
1722 */
1723 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1724
1725 /* BIG_ENDIAN: no need to swap to store 0 */
1726 cbp->cb_status = 0;
1727 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1728 FXP_CB_COMMAND_EL);
1729 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1730 cbp->link_addr = 0xffffffff; /* (no) next command */
1731 /* bytes in config block */
1732 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1733 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1734 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1735 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1736 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1737 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1738 cbp->type_enable = 0; /* actually reserved */
1739 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1740 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1741 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1742 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1743 cbp->dma_mbce = 0; /* (disable) dma max counters */
1744 cbp->late_scb = 0; /* (don't) defer SCB update */
1745 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1746 cbp->ci_int = 1; /* interrupt on CU idle */
1747 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1748 cbp->ext_stats_dis = 1; /* disable extended counters */
1749 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1750 cbp->save_bf = save_bf;/* save bad frames */
1751 cbp->disc_short_rx = !prm; /* discard short packets */
1752 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1753 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1754 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1755 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1756 /* interface mode */
1757 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1758 cbp->csma_dis = 0; /* (don't) disable link */
1759 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1760 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1761 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1762 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1763 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1764 cbp->nsai = 1; /* (don't) disable source addr insert */
1765 cbp->preamble_length = 2; /* (7 byte) preamble */
1766 cbp->loopback = 0; /* (don't) loopback */
1767 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1768 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1769 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1770 cbp->promiscuous = prm; /* promiscuous mode */
1771 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1772 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1773 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1774 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1775 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1776 cbp->stripping = !prm; /* truncate rx packet to byte count */
1777 cbp->padding = 1; /* (do) pad short tx packets */
1778 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1779 cbp->long_rx_en = lrxen; /* long packet receive enable */
1780 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1781 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1782 /* must set wake_en in PMCSR also */
1783 cbp->force_fdx = 0; /* (don't) force full duplex */
1784 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1785 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1786 cbp->mc_all = allm; /* accept all multicasts */
1787 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1788 cbp->vlan_drop_en = vlan_drop;
1789
1790 if (sc->sc_rev < FXP_REV_82558_A4) {
1791 /*
1792 * The i82557 has no hardware flow control, the values
1793 * here are the defaults for the chip.
1794 */
1795 cbp->fc_delay_lsb = 0;
1796 cbp->fc_delay_msb = 0x40;
1797 cbp->pri_fc_thresh = 3;
1798 cbp->tx_fc_dis = 0;
1799 cbp->rx_fc_restop = 0;
1800 cbp->rx_fc_restart = 0;
1801 cbp->fc_filter = 0;
1802 cbp->pri_fc_loc = 1;
1803 } else {
1804 cbp->fc_delay_lsb = 0x1f;
1805 cbp->fc_delay_msb = 0x01;
1806 cbp->pri_fc_thresh = 3;
1807 cbp->tx_fc_dis = 0; /* enable transmit FC */
1808 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1809 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1810 cbp->fc_filter = !prm; /* drop FC frames to host */
1811 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1812 cbp->ext_stats_dis = 0; /* enable extended stats */
1813 }
1814
1815 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1816
1817 /*
1818 * Start the config command/DMA.
1819 */
1820 fxp_scb_wait(sc);
1821 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1822 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1823 /* ...and wait for it to complete. */
1824 i = 1000;
1825 do {
1826 FXP_CDCONFIGSYNC(sc,
1827 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1828 DELAY(1);
1829 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1830 if (i == 0) {
1831 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1832 sc->sc_dev.dv_xname, __LINE__);
1833 return (ETIMEDOUT);
1834 }
1835
1836 /*
1837 * Initialize the station address.
1838 */
1839 cb_ias = &sc->sc_control_data->fcd_iascb;
1840 /* BIG_ENDIAN: no need to swap to store 0 */
1841 cb_ias->cb_status = 0;
1842 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1843 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1844 cb_ias->link_addr = 0xffffffff;
1845 memcpy(cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1846
1847 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1848
1849 /*
1850 * Start the IAS (Individual Address Setup) command/DMA.
1851 */
1852 fxp_scb_wait(sc);
1853 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1854 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1855 /* ...and wait for it to complete. */
1856 i = 1000;
1857 do {
1858 FXP_CDIASSYNC(sc,
1859 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1860 DELAY(1);
1861 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1862 if (i == 0) {
1863 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1864 sc->sc_dev.dv_xname, __LINE__);
1865 return (ETIMEDOUT);
1866 }
1867
1868 /*
1869 * Initialize the transmit descriptor ring. txlast is initialized
1870 * to the end of the list so that it will wrap around to the first
1871 * descriptor when the first packet is transmitted.
1872 */
1873 for (i = 0; i < FXP_NTXCB; i++) {
1874 txd = FXP_CDTX(sc, i);
1875 memset(txd, 0, sizeof(*txd));
1876 txd->txd_txcb.cb_command =
1877 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1878 txd->txd_txcb.link_addr =
1879 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1880 if (sc->sc_flags & FXPF_EXT_TXCB)
1881 txd->txd_txcb.tbd_array_addr =
1882 htole32(FXP_CDTBDADDR(sc, i) +
1883 (2 * sizeof(struct fxp_tbd)));
1884 else
1885 txd->txd_txcb.tbd_array_addr =
1886 htole32(FXP_CDTBDADDR(sc, i));
1887 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1888 }
1889 sc->sc_txpending = 0;
1890 sc->sc_txdirty = 0;
1891 sc->sc_txlast = FXP_NTXCB - 1;
1892
1893 /*
1894 * Initialize the receive buffer list.
1895 */
1896 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1897 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1898 rxmap = FXP_RXMAP_GET(sc);
1899 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1900 log(LOG_ERR, "%s: unable to allocate or map rx "
1901 "buffer %d, error = %d\n",
1902 sc->sc_dev.dv_xname,
1903 sc->sc_rxq.ifq_len, error);
1904 /*
1905 * XXX Should attempt to run with fewer receive
1906 * XXX buffers instead of just failing.
1907 */
1908 FXP_RXMAP_PUT(sc, rxmap);
1909 fxp_rxdrain(sc);
1910 goto out;
1911 }
1912 }
1913 sc->sc_rxidle = 0;
1914
1915 /*
1916 * Give the transmit ring to the chip. We do this by pointing
1917 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1918 * issuing a start command. It will execute the NOP and then
1919 * suspend, pointing at the first descriptor.
1920 */
1921 fxp_scb_wait(sc);
1922 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1923 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1924
1925 /*
1926 * Initialize receiver buffer area - RFA.
1927 */
1928 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1929 fxp_scb_wait(sc);
1930 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1931 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1932 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1933
1934 if (sc->sc_flags & FXPF_MII) {
1935 /*
1936 * Set current media.
1937 */
1938 mii_mediachg(&sc->sc_mii);
1939 }
1940
1941 /*
1942 * ...all done!
1943 */
1944 ifp->if_flags |= IFF_RUNNING;
1945 ifp->if_flags &= ~IFF_OACTIVE;
1946
1947 /*
1948 * Start the one second timer.
1949 */
1950 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1951
1952 /*
1953 * Attempt to start output on the interface.
1954 */
1955 fxp_start(ifp);
1956
1957 out:
1958 if (error) {
1959 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1960 ifp->if_timer = 0;
1961 log(LOG_ERR, "%s: interface not running\n",
1962 sc->sc_dev.dv_xname);
1963 }
1964 return (error);
1965 }
1966
1967 /*
1968 * Change media according to request.
1969 */
1970 int
1971 fxp_mii_mediachange(struct ifnet *ifp)
1972 {
1973 struct fxp_softc *sc = ifp->if_softc;
1974
1975 if (ifp->if_flags & IFF_UP)
1976 mii_mediachg(&sc->sc_mii);
1977 return (0);
1978 }
1979
1980 /*
1981 * Notify the world which media we're using.
1982 */
1983 void
1984 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1985 {
1986 struct fxp_softc *sc = ifp->if_softc;
1987
1988 if (sc->sc_enabled == 0) {
1989 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1990 ifmr->ifm_status = 0;
1991 return;
1992 }
1993
1994 mii_pollstat(&sc->sc_mii);
1995 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1996 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1997
1998 /*
1999 * XXX Flow control is always turned on if the chip supports
2000 * XXX it; we can't easily control it dynamically, since it
2001 * XXX requires sending a setup packet.
2002 */
2003 if (sc->sc_rev >= FXP_REV_82558_A4)
2004 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
2005 }
2006
2007 int
2008 fxp_80c24_mediachange(struct ifnet *ifp)
2009 {
2010
2011 /* Nothing to do here. */
2012 return (0);
2013 }
2014
2015 void
2016 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2017 {
2018 struct fxp_softc *sc = ifp->if_softc;
2019
2020 /*
2021 * Media is currently-selected media. We cannot determine
2022 * the link status.
2023 */
2024 ifmr->ifm_status = 0;
2025 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2026 }
2027
2028 /*
2029 * Add a buffer to the end of the RFA buffer list.
2030 * Return 0 if successful, error code on failure.
2031 *
2032 * The RFA struct is stuck at the beginning of mbuf cluster and the
2033 * data pointer is fixed up to point just past it.
2034 */
2035 int
2036 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2037 {
2038 struct mbuf *m;
2039 int error;
2040
2041 MGETHDR(m, M_DONTWAIT, MT_DATA);
2042 if (m == NULL)
2043 return (ENOBUFS);
2044
2045 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2046 MCLGET(m, M_DONTWAIT);
2047 if ((m->m_flags & M_EXT) == 0) {
2048 m_freem(m);
2049 return (ENOBUFS);
2050 }
2051
2052 if (unload)
2053 bus_dmamap_unload(sc->sc_dmat, rxmap);
2054
2055 M_SETCTX(m, rxmap);
2056
2057 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2058 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2059 BUS_DMA_READ|BUS_DMA_NOWAIT);
2060 if (error) {
2061 /* XXX XXX XXX */
2062 printf("%s: can't load rx DMA map %d, error = %d\n",
2063 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2064 panic("fxp_add_rfabuf");
2065 }
2066
2067 FXP_INIT_RFABUF(sc, m);
2068
2069 return (0);
2070 }
2071
2072 int
2073 fxp_mdi_read(struct device *self, int phy, int reg)
2074 {
2075 struct fxp_softc *sc = (struct fxp_softc *)self;
2076 int count = 10000;
2077 int value;
2078
2079 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2080 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2081
2082 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2083 0x10000000) == 0 && count--)
2084 DELAY(10);
2085
2086 if (count <= 0)
2087 log(LOG_WARNING,
2088 "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2089
2090 return (value & 0xffff);
2091 }
2092
2093 void
2094 fxp_statchg(struct device *self)
2095 {
2096
2097 /* Nothing to do. */
2098 }
2099
2100 void
2101 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2102 {
2103 struct fxp_softc *sc = (struct fxp_softc *)self;
2104 int count = 10000;
2105
2106 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2107 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2108 (value & 0xffff));
2109
2110 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2111 count--)
2112 DELAY(10);
2113
2114 if (count <= 0)
2115 log(LOG_WARNING,
2116 "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2117 }
2118
2119 int
2120 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2121 {
2122 struct fxp_softc *sc = ifp->if_softc;
2123 struct ifreq *ifr = (struct ifreq *)data;
2124 int s, error;
2125
2126 s = splnet();
2127
2128 switch (cmd) {
2129 case SIOCSIFMEDIA:
2130 case SIOCGIFMEDIA:
2131 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2132 break;
2133
2134 default:
2135 error = ether_ioctl(ifp, cmd, data);
2136 if (error == ENETRESET) {
2137 if (ifp->if_flags & IFF_RUNNING) {
2138 /*
2139 * Multicast list has changed; set the
2140 * hardware filter accordingly.
2141 */
2142 if (sc->sc_txpending) {
2143 sc->sc_flags |= FXPF_WANTINIT;
2144 error = 0;
2145 } else
2146 error = fxp_init(ifp);
2147 } else
2148 error = 0;
2149 }
2150 break;
2151 }
2152
2153 /* Try to get more packets going. */
2154 if (sc->sc_enabled)
2155 fxp_start(ifp);
2156
2157 splx(s);
2158 return (error);
2159 }
2160
2161 /*
2162 * Program the multicast filter.
2163 *
2164 * This function must be called at splnet().
2165 */
2166 void
2167 fxp_mc_setup(struct fxp_softc *sc)
2168 {
2169 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2170 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2171 struct ethercom *ec = &sc->sc_ethercom;
2172 struct ether_multi *enm;
2173 struct ether_multistep step;
2174 int count, nmcasts;
2175
2176 #ifdef DIAGNOSTIC
2177 if (sc->sc_txpending)
2178 panic("fxp_mc_setup: pending transmissions");
2179 #endif
2180
2181 ifp->if_flags &= ~IFF_ALLMULTI;
2182
2183 /*
2184 * Initialize multicast setup descriptor.
2185 */
2186 nmcasts = 0;
2187 ETHER_FIRST_MULTI(step, ec, enm);
2188 while (enm != NULL) {
2189 /*
2190 * Check for too many multicast addresses or if we're
2191 * listening to a range. Either way, we simply have
2192 * to accept all multicasts.
2193 */
2194 if (nmcasts >= MAXMCADDR ||
2195 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2196 ETHER_ADDR_LEN) != 0) {
2197 /*
2198 * Callers of this function must do the
2199 * right thing with this. If we're called
2200 * from outside fxp_init(), the caller must
2201 * detect if the state if IFF_ALLMULTI changes.
2202 * If it does, the caller must then call
2203 * fxp_init(), since allmulti is handled by
2204 * the config block.
2205 */
2206 ifp->if_flags |= IFF_ALLMULTI;
2207 return;
2208 }
2209 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2210 ETHER_ADDR_LEN);
2211 nmcasts++;
2212 ETHER_NEXT_MULTI(step, enm);
2213 }
2214
2215 /* BIG_ENDIAN: no need to swap to store 0 */
2216 mcsp->cb_status = 0;
2217 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2218 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2219 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2220
2221 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2222
2223 /*
2224 * Wait until the command unit is not active. This should never
2225 * happen since nothing is queued, but make sure anyway.
2226 */
2227 count = 100;
2228 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2229 FXP_SCB_CUS_ACTIVE && --count)
2230 DELAY(1);
2231 if (count == 0) {
2232 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2233 sc->sc_dev.dv_xname, __LINE__);
2234 return;
2235 }
2236
2237 /*
2238 * Start the multicast setup command/DMA.
2239 */
2240 fxp_scb_wait(sc);
2241 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2242 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2243
2244 /* ...and wait for it to complete. */
2245 count = 1000;
2246 do {
2247 FXP_CDMCSSYNC(sc,
2248 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2249 DELAY(1);
2250 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2251 if (count == 0) {
2252 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2253 sc->sc_dev.dv_xname, __LINE__);
2254 return;
2255 }
2256 }
2257
2258 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2259 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2260 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2261 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2262 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2263 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2264
2265 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2266
2267 static const struct ucode {
2268 int32_t revision;
2269 const uint32_t *ucode;
2270 size_t length;
2271 uint16_t int_delay_offset;
2272 uint16_t bundle_max_offset;
2273 } ucode_table[] = {
2274 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2275 D101_CPUSAVER_DWORD, 0 },
2276
2277 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2278 D101_CPUSAVER_DWORD, 0 },
2279
2280 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2281 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2282
2283 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2284 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2285
2286 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2287 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2288
2289 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2290 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2291
2292 { 0, NULL, 0, 0, 0 }
2293 };
2294
2295 void
2296 fxp_load_ucode(struct fxp_softc *sc)
2297 {
2298 const struct ucode *uc;
2299 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2300 int count, i;
2301
2302 if (sc->sc_flags & FXPF_UCODE_LOADED)
2303 return;
2304
2305 /*
2306 * Only load the uCode if the user has requested that
2307 * we do so.
2308 */
2309 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2310 sc->sc_int_delay = 0;
2311 sc->sc_bundle_max = 0;
2312 return;
2313 }
2314
2315 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2316 if (sc->sc_rev == uc->revision)
2317 break;
2318 }
2319 if (uc->ucode == NULL)
2320 return;
2321
2322 /* BIG ENDIAN: no need to swap to store 0 */
2323 cbp->cb_status = 0;
2324 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2325 cbp->link_addr = 0xffffffff; /* (no) next command */
2326 for (i = 0; i < uc->length; i++)
2327 cbp->ucode[i] = htole32(uc->ucode[i]);
2328
2329 if (uc->int_delay_offset)
2330 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2331 htole16(fxp_int_delay + (fxp_int_delay / 2));
2332
2333 if (uc->bundle_max_offset)
2334 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2335 htole16(fxp_bundle_max);
2336
2337 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2338
2339 /*
2340 * Download the uCode to the chip.
2341 */
2342 fxp_scb_wait(sc);
2343 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2344 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2345
2346 /* ...and wait for it to complete. */
2347 count = 10000;
2348 do {
2349 FXP_CDUCODESYNC(sc,
2350 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2351 DELAY(2);
2352 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2353 if (count == 0) {
2354 sc->sc_int_delay = 0;
2355 sc->sc_bundle_max = 0;
2356 log(LOG_WARNING, "%s: timeout loading microcode\n",
2357 sc->sc_dev.dv_xname);
2358 return;
2359 }
2360
2361 if (sc->sc_int_delay != fxp_int_delay ||
2362 sc->sc_bundle_max != fxp_bundle_max) {
2363 sc->sc_int_delay = fxp_int_delay;
2364 sc->sc_bundle_max = fxp_bundle_max;
2365 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2366 "max bundle: %d\n", sc->sc_dev.dv_xname,
2367 sc->sc_int_delay,
2368 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2369 }
2370
2371 sc->sc_flags |= FXPF_UCODE_LOADED;
2372 }
2373
2374 int
2375 fxp_enable(struct fxp_softc *sc)
2376 {
2377
2378 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2379 if ((*sc->sc_enable)(sc) != 0) {
2380 log(LOG_ERR, "%s: device enable failed\n",
2381 sc->sc_dev.dv_xname);
2382 return (EIO);
2383 }
2384 }
2385
2386 sc->sc_enabled = 1;
2387 return (0);
2388 }
2389
2390 void
2391 fxp_disable(struct fxp_softc *sc)
2392 {
2393
2394 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2395 (*sc->sc_disable)(sc);
2396 sc->sc_enabled = 0;
2397 }
2398 }
2399
2400 /*
2401 * fxp_activate:
2402 *
2403 * Handle device activation/deactivation requests.
2404 */
2405 int
2406 fxp_activate(struct device *self, enum devact act)
2407 {
2408 struct fxp_softc *sc = (void *) self;
2409 int s, error = 0;
2410
2411 s = splnet();
2412 switch (act) {
2413 case DVACT_ACTIVATE:
2414 error = EOPNOTSUPP;
2415 break;
2416
2417 case DVACT_DEACTIVATE:
2418 if (sc->sc_flags & FXPF_MII)
2419 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2420 MII_OFFSET_ANY);
2421 if_deactivate(&sc->sc_ethercom.ec_if);
2422 break;
2423 }
2424 splx(s);
2425
2426 return (error);
2427 }
2428
2429 /*
2430 * fxp_detach:
2431 *
2432 * Detach an i82557 interface.
2433 */
2434 int
2435 fxp_detach(struct fxp_softc *sc)
2436 {
2437 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2438 int i;
2439
2440 /* Succeed now if there's no work to do. */
2441 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2442 return (0);
2443
2444 /* Unhook our tick handler. */
2445 callout_stop(&sc->sc_callout);
2446
2447 if (sc->sc_flags & FXPF_MII) {
2448 /* Detach all PHYs */
2449 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2450 }
2451
2452 /* Delete all remaining media. */
2453 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2454
2455 #if NRND > 0
2456 rnd_detach_source(&sc->rnd_source);
2457 #endif
2458 ether_ifdetach(ifp);
2459 if_detach(ifp);
2460
2461 for (i = 0; i < FXP_NRFABUFS; i++) {
2462 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2463 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2464 }
2465
2466 for (i = 0; i < FXP_NTXCB; i++) {
2467 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2468 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2469 }
2470
2471 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2472 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2473 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2474 sizeof(struct fxp_control_data));
2475 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2476
2477 shutdownhook_disestablish(sc->sc_sdhook);
2478 powerhook_disestablish(sc->sc_powerhook);
2479
2480 return (0);
2481 }
2482