i82586.c revision 1.4 1 /* $NetBSD: i82586.c,v 1.4 1997/07/28 22:35:49 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1997 Paul Kranenburg.
5 * Copyright (c) 1993, 1994, 1995 Charles Hannum.
6 * Copyright (c) 1992, 1993, University of Vermont and State
7 * Agricultural College.
8 * Copyright (c) 1992, 1993, Garrett A. Wollman.
9 *
10 * Portions:
11 * Copyright (c) 1994, 1995, Rafal K. Boni
12 * Copyright (c) 1990, 1991, William F. Jolitz
13 * Copyright (c) 1990, The Regents of the University of California
14 *
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by Charles Hannum, by the
28 * University of Vermont and State Agricultural College and Garrett A.
29 * Wollman, by William F. Jolitz, and by the University of California,
30 * Berkeley, Lawrence Berkeley Laboratory, and its contributors.
31 * 4. Neither the names of the Universities nor the names of the authors
32 * may be used to endorse or promote products derived from this software
33 * without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR AUTHORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 */
47
48 /*
49 * Intel 82586 Ethernet chip
50 * Register, bit, and structure definitions.
51 *
52 * Original StarLAN driver written by Garrett Wollman with reference to the
53 * Clarkson Packet Driver code for this chip written by Russ Nelson and others.
54 *
55 * BPF support code taken from hpdev/if_le.c, supplied with tcpdump.
56 *
57 * 3C507 support is loosely based on code donated to NetBSD by Rafal Boni.
58 *
59 * Majorly cleaned up and 3C507 code merged by Charles Hannum.
60 *
61 * Converted to SUN ie driver by Charles D. Cranor,
62 * October 1994, January 1995.
63 * This sun version based on i386 version 1.30.
64 */
65
66 /*
67 * The i82586 is a very painful chip, found in sun3's, sun-4/100's
68 * sun-4/200's, and VME based suns. The byte order is all wrong for a
69 * SUN, making life difficult. Programming this chip is mostly the same,
70 * but certain details differ from system to system. This driver is
71 * written so that different "ie" interfaces can be controled by the same
72 * driver.
73 */
74
75 /*
76 Mode of operation:
77
78 We run the 82586 in a standard Ethernet mode. We keep NFRAMES
79 received frame descriptors around for the receiver to use, and
80 NRXBUF associated receive buffer descriptors, both in a circular
81 list. Whenever a frame is received, we rotate both lists as
82 necessary. (The 586 treats both lists as a simple queue.) We also
83 keep a transmit command around so that packets can be sent off
84 quickly.
85
86 We configure the adapter in AL-LOC = 1 mode, which means that the
87 Ethernet/802.3 MAC header is placed at the beginning of the receive
88 buffer rather than being split off into various fields in the RFD.
89 This also means that we must include this header in the transmit
90 buffer as well.
91
92 By convention, all transmit commands, and only transmit commands,
93 shall have the I (IE_CMD_INTR) bit set in the command. This way,
94 when an interrupt arrives at ieintr(), it is immediately possible
95 to tell what precisely caused it. ANY OTHER command-sending
96 routines should run at splnet(), and should post an acknowledgement
97 to every interrupt they generate.
98
99 */
100
101 #include "bpfilter.h"
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/mbuf.h>
106 #include <sys/buf.h>
107 #include <sys/protosw.h>
108 #include <sys/socket.h>
109 #include <sys/ioctl.h>
110 #include <sys/errno.h>
111 #include <sys/syslog.h>
112 #include <sys/device.h>
113
114 #include <net/if.h>
115 #include <net/if_types.h>
116 #include <net/if_dl.h>
117 #include <net/if_ether.h>
118
119 #if NBPFILTER > 0
120 #include <net/bpf.h>
121 #include <net/bpfdesc.h>
122 #endif
123
124 #ifdef INET
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/in_var.h>
128 #include <netinet/ip.h>
129 #include <netinet/if_inarp.h>
130 #endif
131
132 #ifdef NS
133 #include <netns/ns.h>
134 #include <netns/ns_if.h>
135 #endif
136
137 #include <dev/ic/i82586reg.h>
138 #include <dev/ic/i82586var.h>
139
140 void iewatchdog __P((struct ifnet *));
141 int ieinit __P((struct ie_softc *));
142 int ieioctl __P((struct ifnet *, u_long, caddr_t));
143 void iestart __P((struct ifnet *));
144 void iereset __P((struct ie_softc *));
145 static void ie_readframe __P((struct ie_softc *, int));
146 static void ie_drop_packet_buffer __P((struct ie_softc *));
147 int ie_setupram __P((struct ie_softc *));
148 static int command_and_wait __P((struct ie_softc *, int,
149 void volatile *, int));
150 /*static*/ void ierint __P((struct ie_softc *));
151 /*static*/ void ietint __P((struct ie_softc *));
152 static struct mbuf *ieget __P((struct ie_softc *,
153 struct ether_header *, int *));
154 static void setup_bufs __P((struct ie_softc *));
155 static int mc_setup __P((struct ie_softc *, void *));
156 static void mc_reset __P((struct ie_softc *));
157 static __inline int ether_equal __P((u_char *, u_char *));
158 static __inline void ie_ack __P((struct ie_softc *, u_int));
159 static __inline void ie_setup_config __P((volatile struct ie_config_cmd *,
160 int, int));
161 static __inline int check_eh __P((struct ie_softc *, struct ether_header *,
162 int *));
163 static __inline int ie_buflen __P((struct ie_softc *, int));
164 static __inline int ie_packet_len __P((struct ie_softc *));
165 static __inline void iexmit __P((struct ie_softc *));
166
167 static void run_tdr __P((struct ie_softc *, struct ie_tdr_cmd *));
168 static void iestop __P((struct ie_softc *));
169
170 #ifdef IEDEBUG
171 void print_rbd __P((volatile struct ie_recv_buf_desc *));
172
173 int in_ierint = 0;
174 int in_ietint = 0;
175 #endif
176
177 struct cfdriver ie_cd = {
178 NULL, "ie", DV_IFNET
179 };
180
181 /*
182 * Address generation macros:
183 * MK_24 = KVA -> 24 bit address in native byte order
184 * MK_16 = KVA -> 16 bit address in INTEL byte order
185 * ST_24 = store a 24 bit address in native byte order to INTEL byte order
186 */
187 #define MK_24(base, ptr) ((caddr_t)((u_long)ptr - (u_long)base))
188
189 #if BYTE_ORDER == BIG_ENDIAN
190 #define XSWAP(y) ( ((y) >> 8) | ((y) << 8) )
191 #define SWAP(x) ({u_short _z=(x); (u_short)XSWAP(_z);})
192
193 #define MK_16(base, ptr) SWAP((u_short)( ((u_long)(ptr)) - ((u_long)(base)) ))
194 #define ST_24(to, from) { \
195 u_long fval = (u_long)(from); \
196 u_char *t = (u_char *)&(to), *f = (u_char *)&fval; \
197 t[0] = f[3]; t[1] = f[2]; t[2] = f[1]; /*t[3] = f[0] ;*/ \
198 }
199 #else
200 #define SWAP(x) x
201 #define MK_16(base, ptr) ((u_short)(u_long)MK_24(base, ptr))
202 #define ST_24(to, from) {to = (from);}
203 #endif
204
205 /*
206 * Here are a few useful functions. We could have done these as macros, but
207 * since we have the inline facility, it makes sense to use that instead.
208 */
209 static __inline void
210 ie_setup_config(cmd, promiscuous, manchester)
211 volatile struct ie_config_cmd *cmd;
212 int promiscuous, manchester;
213 {
214
215 cmd->ie_config_count = 0x0c;
216 cmd->ie_fifo = 8;
217 cmd->ie_save_bad = 0x40;
218 cmd->ie_addr_len = 0x2e;
219 cmd->ie_priority = 0;
220 cmd->ie_ifs = 0x60;
221 cmd->ie_slot_low = 0;
222 cmd->ie_slot_high = 0xf2;
223 cmd->ie_promisc = !!promiscuous | manchester << 2;
224 cmd->ie_crs_cdt = 0;
225 cmd->ie_min_len = 64;
226 cmd->ie_junk = 0xff;
227 }
228
229 static __inline void
230 ie_ack(sc, mask)
231 struct ie_softc *sc;
232 u_int mask; /* in native byte-order */
233 {
234 volatile struct ie_sys_ctl_block *scb = sc->scb;
235
236 command_and_wait(sc, SWAP(scb->ie_status) & mask, 0, 0);
237 }
238
239
240 /*
241 * Taken almost exactly from Bill's if_is.c, then modified beyond recognition.
242 */
243 void
244 ie_attach(sc, name, etheraddr)
245 struct ie_softc *sc;
246 char *name;
247 u_int8_t *etheraddr;
248 {
249 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
250
251 if (ie_setupram(sc) == 0) { /* XXX - ISA version? */
252 printf(": RAM CONFIG FAILED!\n");
253 /* XXX should reclaim resources? */
254 return;
255 }
256
257 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
258 ifp->if_softc = sc;
259 ifp->if_start = iestart;
260 ifp->if_ioctl = ieioctl;
261 ifp->if_watchdog = iewatchdog;
262 ifp->if_flags =
263 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
264
265 /* Attach the interface. */
266 if_attach(ifp);
267 ether_ifattach(ifp, etheraddr);
268
269 printf(" address %s, type %s\n", ether_sprintf(etheraddr), name);
270
271 #if NBPFILTER > 0
272 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
273 #endif
274 }
275
276
277 /*
278 * Device timeout/watchdog routine. Entered if the device neglects to generate
279 * an interrupt after a transmit has been started on it.
280 */
281 void
282 iewatchdog(ifp)
283 struct ifnet *ifp;
284 {
285 struct ie_softc *sc = ifp->if_softc;
286
287 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
288 ++ifp->if_oerrors;
289
290 iereset(sc);
291 }
292
293 /*
294 * What to do upon receipt of an interrupt.
295 */
296 int
297 ieintr(v)
298 void *v;
299 {
300 struct ie_softc *sc = v;
301 register u_short status;
302
303 status = SWAP(sc->scb->ie_status);
304
305 /*
306 * Implementation dependent interrupt handling.
307 */
308 if (sc->intrhook)
309 (*sc->intrhook)(sc);
310
311 loop:
312 /* Ack interrupts FIRST in case we receive more during the ISR. */
313 ie_ack(sc, IE_ST_WHENCE & status);
314
315 if (status & (IE_ST_FR | IE_ST_RNR)) {
316 #ifdef IEDEBUG
317 in_ierint++;
318 if (sc->sc_debug & IED_RINT)
319 printf("%s: rint\n", sc->sc_dev.dv_xname);
320 #endif
321 ierint(sc);
322 #ifdef IEDEBUG
323 in_ierint--;
324 #endif
325 }
326
327 if (status & IE_ST_CX) {
328 #ifdef IEDEBUG
329 in_ietint++;
330 if (sc->sc_debug & IED_TINT)
331 printf("%s: tint\n", sc->sc_dev.dv_xname);
332 #endif
333 ietint(sc);
334 #ifdef IEDEBUG
335 in_ietint--;
336 #endif
337 }
338
339 if (status & IE_ST_RNR) {
340 printf("%s: receiver not ready\n", sc->sc_dev.dv_xname);
341 sc->sc_ethercom.ec_if.if_ierrors++;
342 iereset(sc);
343 return (1);
344 }
345
346 #ifdef IEDEBUG
347 if ((status & IE_ST_CNA) && (sc->sc_debug & IED_CNA))
348 printf("%s: cna\n", sc->sc_dev.dv_xname);
349 #endif
350
351 status = SWAP(sc->scb->ie_status);
352 if (status & IE_ST_WHENCE)
353 goto loop;
354
355 return (1);
356 }
357
358 /*
359 * Process a received-frame interrupt.
360 */
361 void
362 ierint(sc)
363 struct ie_softc *sc;
364 {
365 volatile struct ie_sys_ctl_block *scb = sc->scb;
366 int i, status;
367 static int timesthru = 1024;
368
369 i = sc->rfhead;
370 for (;;) {
371 status = SWAP(sc->rframes[i]->ie_fd_status);
372
373 if ((status & IE_FD_COMPLETE) && (status & IE_FD_OK)) {
374 if (--timesthru == 0) {
375 sc->sc_ethercom.ec_if.if_ierrors +=
376 SWAP(scb->ie_err_crc) +
377 SWAP(scb->ie_err_align) +
378 SWAP(scb->ie_err_resource) +
379 SWAP(scb->ie_err_overrun);
380 scb->ie_err_crc = scb->ie_err_align =
381 scb->ie_err_resource = scb->ie_err_overrun =
382 SWAP(0);
383 timesthru = 1024;
384 }
385 ie_readframe(sc, i);
386 } else {
387 if ((status & IE_FD_RNR) != 0 &&
388 (SWAP(scb->ie_status) & IE_RU_READY) == 0) {
389 sc->rframes[0]->ie_fd_buf_desc =
390 MK_16(sc->sc_maddr, sc->rbuffs[0]);
391 scb->ie_recv_list =
392 MK_16(sc->sc_maddr, sc->rframes[0]);
393 command_and_wait(sc, IE_RU_START, 0, 0);
394 }
395 break;
396 }
397 i = (i + 1) % sc->nframes;
398 }
399 }
400
401 /*
402 * Process a command-complete interrupt. These are only generated by the
403 * transmission of frames. This routine is deceptively simple, since most of
404 * the real work is done by iestart().
405 */
406 void
407 ietint(sc)
408 struct ie_softc *sc;
409 {
410 int status;
411
412 sc->sc_ethercom.ec_if.if_timer = 0;
413 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
414
415 status = SWAP(sc->xmit_cmds[sc->xctail]->ie_xmit_status);
416
417 if ((status & IE_STAT_COMPL) == 0 || (status & IE_STAT_BUSY))
418 printf("ietint: command still busy!\n");
419
420 if (status & IE_STAT_OK) {
421 sc->sc_ethercom.ec_if.if_opackets++;
422 sc->sc_ethercom.ec_if.if_collisions += (status & IE_XS_MAXCOLL);
423 } else if (status & IE_STAT_ABORT) {
424 printf("%s: send aborted\n", sc->sc_dev.dv_xname);
425 sc->sc_ethercom.ec_if.if_oerrors++;
426 } else if (status & IE_XS_NOCARRIER) {
427 printf("%s: no carrier\n", sc->sc_dev.dv_xname);
428 sc->sc_ethercom.ec_if.if_oerrors++;
429 } else if (status & IE_XS_LOSTCTS) {
430 printf("%s: lost CTS\n", sc->sc_dev.dv_xname);
431 sc->sc_ethercom.ec_if.if_oerrors++;
432 } else if (status & IE_XS_UNDERRUN) {
433 printf("%s: DMA underrun\n", sc->sc_dev.dv_xname);
434 sc->sc_ethercom.ec_if.if_oerrors++;
435 } else if (status & IE_XS_EXCMAX) {
436 printf("%s: too many collisions\n", sc->sc_dev.dv_xname);
437 sc->sc_ethercom.ec_if.if_collisions += 16;
438 sc->sc_ethercom.ec_if.if_oerrors++;
439 }
440
441 /*
442 * If multicast addresses were added or deleted while transmitting,
443 * mc_reset() set the want_mcsetup flag indicating that we should do
444 * it.
445 */
446 if (sc->want_mcsetup) {
447 mc_setup(sc, (caddr_t)sc->xmit_cbuffs[sc->xctail]);
448 sc->want_mcsetup = 0;
449 }
450
451 /* Done with the buffer. */
452 sc->xmit_busy--;
453 sc->xctail = (sc->xctail + 1) % NTXBUF;
454
455 /* Start the next packet, if any, transmitting. */
456 if (sc->xmit_busy > 0)
457 iexmit(sc);
458
459 iestart(&sc->sc_ethercom.ec_if);
460 }
461
462 /*
463 * Compare two Ether/802 addresses for equality, inlined and unrolled for
464 * speed.
465 */
466 static __inline int
467 ether_equal(one, two)
468 u_char *one, *two;
469 {
470
471 if (one[5] != two[5] || one[4] != two[4] || one[3] != two[3] ||
472 one[2] != two[2] || one[1] != two[1] || one[0] != two[0])
473 return 0;
474 return 1;
475 }
476
477 /*
478 * Check for a valid address. to_bpf is filled in with one of the following:
479 * 0 -> BPF doesn't get this packet
480 * 1 -> BPF does get this packet
481 * 2 -> BPF does get this packet, but we don't
482 * Return value is true if the packet is for us, and false otherwise.
483 *
484 * This routine is a mess, but it's also critical that it be as fast
485 * as possible. It could be made cleaner if we can assume that the
486 * only client which will fiddle with IFF_PROMISC is BPF. This is
487 * probably a good assumption, but we do not make it here. (Yet.)
488 */
489 static __inline int
490 check_eh(sc, eh, to_bpf)
491 struct ie_softc *sc;
492 struct ether_header *eh;
493 int *to_bpf;
494 {
495 struct ifnet *ifp;
496 int i;
497
498 ifp = &sc->sc_ethercom.ec_if;
499
500 switch(sc->promisc) {
501 case IFF_ALLMULTI:
502 /*
503 * Receiving all multicasts, but no unicasts except those
504 * destined for us.
505 */
506 #if NBPFILTER > 0
507 /* BPF gets this packet if anybody cares */
508 *to_bpf = (ifp->if_bpf != 0);
509 #endif
510 if (eh->ether_dhost[0] & 1)
511 return 1;
512 if (ether_equal(eh->ether_dhost, LLADDR(ifp->if_sadl)))
513 return 1;
514 return 0;
515
516 case IFF_PROMISC:
517 /*
518 * Receiving all packets. These need to be passed on to BPF.
519 */
520 #if NBPFILTER > 0
521 *to_bpf = (ifp->if_bpf != 0);
522 #endif
523 /* If for us, accept and hand up to BPF */
524 if (ether_equal(eh->ether_dhost, LLADDR(ifp->if_sadl)))
525 return 1;
526
527 #if NBPFILTER > 0
528 if (*to_bpf)
529 *to_bpf = 2; /* we don't need to see it */
530 #endif
531
532 /*
533 * Not a multicast, so BPF wants to see it but we don't.
534 */
535 if ((eh->ether_dhost[0] & 1) == 0)
536 return 1;
537
538 /*
539 * If it's one of our multicast groups, accept it and pass it
540 * up.
541 */
542 for (i = 0; i < sc->mcast_count; i++) {
543 if (ether_equal(eh->ether_dhost,
544 (u_char *)&sc->mcast_addrs[i])) {
545 #if NBPFILTER > 0
546 if (*to_bpf)
547 *to_bpf = 1;
548 #endif
549 return 1;
550 }
551 }
552 return 1;
553
554 case IFF_ALLMULTI | IFF_PROMISC:
555 /*
556 * Acting as a multicast router, and BPF running at the same
557 * time. Whew! (Hope this is a fast machine...)
558 */
559 #if NBPFILTER > 0
560 *to_bpf = (ifp->if_bpf != 0);
561 #endif
562 /* We want to see multicasts. */
563 if (eh->ether_dhost[0] & 1)
564 return 1;
565
566 /* We want to see our own packets */
567 if (ether_equal(eh->ether_dhost, LLADDR(ifp->if_sadl)))
568 return 1;
569
570 /* Anything else goes to BPF but nothing else. */
571 #if NBPFILTER > 0
572 if (*to_bpf)
573 *to_bpf = 2;
574 #endif
575 return 1;
576
577 default:
578 /*
579 * Only accept unicast packets destined for us, or multicasts
580 * for groups that we belong to. For now, we assume that the
581 * '586 will only return packets that we asked it for. This
582 * isn't strictly true (it uses hashing for the multicast
583 * filter), but it will do in this case, and we want to get
584 * out of here as quickly as possible.
585 */
586 #if NBPFILTER > 0
587 *to_bpf = (ifp->if_bpf != 0);
588 #endif
589 return 1;
590 }
591 return 0;
592 }
593
594 /*
595 * We want to isolate the bits that have meaning... This assumes that
596 * IE_RBUF_SIZE is an even power of two. If somehow the act_len exceeds
597 * the size of the buffer, then we are screwed anyway.
598 */
599 static __inline int
600 ie_buflen(sc, head)
601 struct ie_softc *sc;
602 int head;
603 {
604
605 return (SWAP(sc->rbuffs[head]->ie_rbd_actual)
606 & (IE_RBUF_SIZE | (IE_RBUF_SIZE - 1)));
607 }
608
609
610 static __inline int
611 ie_packet_len(sc)
612 struct ie_softc *sc;
613 {
614 int i;
615 int head = sc->rbhead;
616 int acc = 0;
617 int oldhead = head;
618
619 do {
620 i = SWAP(sc->rbuffs[head]->ie_rbd_actual);
621 if ((i & IE_RBD_USED) == 0) {
622 #ifdef IEDEBUG
623 print_rbd(sc->rbuffs[head]);
624 #endif
625 log(LOG_ERR, "%s: receive descriptors out of sync at %d\n",
626 sc->sc_dev.dv_xname, sc->rbhead);
627 iereset(sc);
628 return -1;
629 }
630
631 i = (i & IE_RBD_LAST) != 0;
632
633 acc += ie_buflen(sc, head);
634 head = (head + 1) % sc->nrxbuf;
635 if (oldhead == head) {
636 printf("ie: packet len: looping: acc = %d (head=%d)\n",
637 acc, head);
638 iereset(sc);
639 return -1;
640 }
641 } while (!i);
642
643 return acc;
644 }
645
646 /*
647 * Setup all necessary artifacts for an XMIT command, and then pass the XMIT
648 * command to the chip to be executed. On the way, if we have a BPF listener
649 * also give him a copy.
650 */
651 static __inline void
652 iexmit(sc)
653 struct ie_softc *sc;
654 {
655
656 #ifdef IEDEBUG
657 if (sc->sc_debug & IED_XMIT)
658 printf("%s: xmit buffer %d\n", sc->sc_dev.dv_xname,
659 sc->xctail);
660 #endif
661
662 sc->xmit_buffs[sc->xctail]->ie_xmit_flags |= SWAP(IE_XMIT_LAST);
663 sc->xmit_buffs[sc->xctail]->ie_xmit_next = SWAP(0xffff);
664 ST_24(sc->xmit_buffs[sc->xctail]->ie_xmit_buf,
665 MK_24(sc->sc_iobase, sc->xmit_cbuffs[sc->xctail]));
666
667 sc->xmit_cmds[sc->xctail]->com.ie_cmd_link = SWAP(0xffff);
668 sc->xmit_cmds[sc->xctail]->com.ie_cmd_cmd =
669 SWAP(IE_CMD_XMIT | IE_CMD_INTR | IE_CMD_LAST);
670
671 sc->xmit_cmds[sc->xctail]->ie_xmit_status = SWAP(0);
672 sc->xmit_cmds[sc->xctail]->ie_xmit_desc =
673 MK_16(sc->sc_maddr, sc->xmit_buffs[sc->xctail]);
674
675 sc->scb->ie_command_list =
676 MK_16(sc->sc_maddr, sc->xmit_cmds[sc->xctail]);
677
678 command_and_wait(sc, IE_CU_START, 0, 0);
679
680 sc->sc_ethercom.ec_if.if_timer = 5;
681 }
682
683 /*
684 * Read data off the interface, and turn it into an mbuf chain.
685 *
686 * This code is DRAMATICALLY different from the previous version; this
687 * version tries to allocate the entire mbuf chain up front, given the
688 * length of the data available. This enables us to allocate mbuf
689 * clusters in many situations where before we would have had a long
690 * chain of partially-full mbufs. This should help to speed up the
691 * operation considerably. (Provided that it works, of course.)
692 */
693 struct mbuf *
694 ieget(sc, ehp, to_bpf)
695 struct ie_softc *sc;
696 struct ether_header *ehp;
697 int *to_bpf;
698 {
699 struct mbuf *top, **mp, *m;
700 int len, totlen, resid;
701 int thisrboff, thismboff;
702 int head;
703
704 totlen = ie_packet_len(sc);
705 if (totlen <= 0)
706 return 0;
707
708 head = sc->rbhead;
709
710 /*
711 * Snarf the Ethernet header.
712 */
713 bcopy((caddr_t)sc->cbuffs[head], (caddr_t)ehp, sizeof *ehp);
714
715 /*
716 * As quickly as possible, check if this packet is for us.
717 * If not, don't waste a single cycle copying the rest of the
718 * packet in.
719 * This is only a consideration when FILTER is defined; i.e., when
720 * we are either running BPF or doing multicasting.
721 */
722 if (!check_eh(sc, ehp, to_bpf)) {
723 /* just this case, it's not an error */
724 sc->sc_ethercom.ec_if.if_ierrors--;
725 return 0;
726 }
727
728 resid = totlen -= (thisrboff = sizeof *ehp);
729
730 MGETHDR(m, M_DONTWAIT, MT_DATA);
731 if (m == 0)
732 return 0;
733 m->m_pkthdr.rcvif = &sc->sc_ethercom.ec_if;
734 m->m_pkthdr.len = totlen;
735 len = MHLEN;
736 top = 0;
737 mp = ⊤
738
739 /*
740 * This loop goes through and allocates mbufs for all the data we will
741 * be copying in. It does not actually do the copying yet.
742 */
743 while (totlen > 0) {
744 if (top) {
745 MGET(m, M_DONTWAIT, MT_DATA);
746 if (m == 0) {
747 m_freem(top);
748 return 0;
749 }
750 len = MLEN;
751 }
752 if (totlen >= MINCLSIZE) {
753 MCLGET(m, M_DONTWAIT);
754 if ((m->m_flags & M_EXT) == 0) {
755 m_freem(top);
756 return 0;
757 }
758 len = MCLBYTES;
759 }
760 m->m_len = len = min(totlen, len);
761 totlen -= len;
762 *mp = m;
763 mp = &m->m_next;
764 }
765
766 m = top;
767 thismboff = 0;
768
769 /*
770 * Now we take the mbuf chain (hopefully only one mbuf most of the
771 * time) and stuff the data into it. There are no possible failures at
772 * or after this point.
773 */
774 while (resid > 0) {
775 int thisrblen = ie_buflen(sc, head) - thisrboff,
776 thismblen = m->m_len - thismboff;
777 len = min(thisrblen, thismblen);
778
779 bcopy((caddr_t)(sc->cbuffs[head] + thisrboff),
780 mtod(m, caddr_t) + thismboff, (u_int)len);
781 resid -= len;
782
783 if (len == thismblen) {
784 m = m->m_next;
785 thismboff = 0;
786 } else
787 thismboff += len;
788
789 if (len == thisrblen) {
790 head = (head + 1) % sc->nrxbuf;
791 thisrboff = 0;
792 } else
793 thisrboff += len;
794 }
795
796 /*
797 * Unless something changed strangely while we were doing the copy, we
798 * have now copied everything in from the shared memory.
799 * This means that we are done.
800 */
801 return top;
802 }
803
804 /*
805 * Read frame NUM from unit UNIT (pre-cached as IE).
806 *
807 * This routine reads the RFD at NUM, and copies in the buffers from the list
808 * of RBD, then rotates the RBD and RFD lists so that the receiver doesn't
809 * start complaining. Trailers are DROPPED---there's no point in wasting time
810 * on confusing code to deal with them. Hopefully, this machine will never ARP
811 * for trailers anyway.
812 */
813 static void
814 ie_readframe(sc, num)
815 struct ie_softc *sc;
816 int num; /* frame number to read */
817 {
818 int status;
819 struct mbuf *m = 0;
820 struct ether_header eh;
821 #if NBPFILTER > 0
822 int bpf_gets_it = 0;
823 #endif
824
825 status = SWAP(sc->rframes[num]->ie_fd_status);
826
827 /* Immediately advance the RFD list, since we have copied ours now. */
828 sc->rframes[num]->ie_fd_status = SWAP(0);
829 sc->rframes[num]->ie_fd_last |= SWAP(IE_FD_LAST);
830 sc->rframes[sc->rftail]->ie_fd_last &= ~SWAP(IE_FD_LAST);
831 sc->rftail = (sc->rftail + 1) % sc->nframes;
832 sc->rfhead = (sc->rfhead + 1) % sc->nframes;
833
834 if (status & IE_FD_OK) {
835 #if NBPFILTER > 0
836 m = ieget(sc, &eh, &bpf_gets_it);
837 #else
838 m = ieget(sc, &eh, 0);
839 #endif
840 ie_drop_packet_buffer(sc);
841 }
842 if (m == 0) {
843 sc->sc_ethercom.ec_if.if_ierrors++;
844 return;
845 }
846
847 #ifdef IEDEBUG
848 if (sc->sc_debug & IED_READFRAME)
849 printf("%s: frame from ether %s type %x\n", sc->sc_dev.dv_xname,
850 ether_sprintf(eh.ether_shost), (u_int)eh.ether_type);
851 #endif
852
853 #if NBPFILTER > 0
854 /*
855 * Check for a BPF filter; if so, hand it up.
856 * Note that we have to stick an extra mbuf up front, because bpf_mtap
857 * expects to have the ether header at the front.
858 * It doesn't matter that this results in an ill-formatted mbuf chain,
859 * since BPF just looks at the data. (It doesn't try to free the mbuf,
860 * tho' it will make a copy for tcpdump.)
861 */
862 if (bpf_gets_it) {
863 struct mbuf m0;
864 m0.m_len = sizeof eh;
865 m0.m_data = (caddr_t)&eh;
866 m0.m_next = m;
867
868 /* Pass it up. */
869 bpf_mtap(sc->sc_ethercom.ec_if.if_bpf, &m0);
870
871 /*
872 * A signal passed up from the filtering code indicating that
873 * the packet is intended for BPF but not for the protocol
874 * machinery. We can save a few cycles by not handing it off
875 * to them.
876 */
877 if (bpf_gets_it == 2) {
878 m_freem(m);
879 return;
880 }
881 }
882 #endif /* NBPFILTER > 0 */
883
884 /*
885 * In here there used to be code to check destination addresses upon
886 * receipt of a packet. We have deleted that code, and replaced it
887 * with code to check the address much earlier in the cycle, before
888 * copying the data in; this saves us valuable cycles when operating
889 * as a multicast router or when using BPF.
890 */
891
892 /*
893 * Finally pass this packet up to higher layers.
894 */
895 ether_input(&sc->sc_ethercom.ec_if, &eh, m);
896 sc->sc_ethercom.ec_if.if_ipackets++;
897 }
898
899 static void
900 ie_drop_packet_buffer(sc)
901 struct ie_softc *sc;
902 {
903 int i;
904
905 do {
906 i = SWAP(sc->rbuffs[sc->rbhead]->ie_rbd_actual);
907 if ((i & IE_RBD_USED) == 0) {
908 /*
909 * This means we are somehow out of sync. So, we
910 * reset the adapter.
911 */
912 #ifdef IEDEBUG
913 print_rbd(sc->rbuffs[sc->rbhead]);
914 #endif
915 log(LOG_ERR, "%s: receive descriptors out of sync at %d\n",
916 sc->sc_dev.dv_xname, sc->rbhead);
917 iereset(sc);
918 return;
919 }
920
921 i = (i & IE_RBD_LAST) != 0;
922
923 sc->rbuffs[sc->rbhead]->ie_rbd_length |= SWAP(IE_RBD_LAST);
924 sc->rbuffs[sc->rbhead]->ie_rbd_actual = SWAP(0);
925 sc->rbhead = (sc->rbhead + 1) % sc->nrxbuf;
926 sc->rbuffs[sc->rbtail]->ie_rbd_length &= ~SWAP(IE_RBD_LAST);
927 sc->rbtail = (sc->rbtail + 1) % sc->nrxbuf;
928 } while (!i);
929 }
930
931
932 /*
933 * Start transmission on an interface.
934 */
935 void
936 iestart(ifp)
937 struct ifnet *ifp;
938 {
939 struct ie_softc *sc = ifp->if_softc;
940 struct mbuf *m0, *m;
941 u_char *buffer;
942 u_short len;
943
944 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
945 return;
946
947 for (;;) {
948 if (sc->xmit_busy == NTXBUF) {
949 ifp->if_flags |= IFF_OACTIVE;
950 break;
951 }
952
953 IF_DEQUEUE(&ifp->if_snd, m0);
954 if (m0 == 0)
955 break;
956
957 /* We need to use m->m_pkthdr.len, so require the header */
958 if ((m0->m_flags & M_PKTHDR) == 0)
959 panic("iestart: no header mbuf");
960
961 #if NBPFILTER > 0
962 /* Tap off here if there is a BPF listener. */
963 if (ifp->if_bpf)
964 bpf_mtap(ifp->if_bpf, m0);
965 #endif
966
967 #ifdef IEDEBUG
968 if (sc->sc_debug & IED_ENQ)
969 printf("%s: fill buffer %d\n", sc->sc_dev.dv_xname,
970 sc->xchead);
971 #endif
972
973 if (m0->m_pkthdr.len > IE_TBUF_SIZE)
974 printf("%s: tbuf overflow\n", sc->sc_dev.dv_xname);
975
976 buffer = sc->xmit_cbuffs[sc->xchead];
977 for (m = m0; m != 0; m = m->m_next) {
978 bcopy(mtod(m, caddr_t), buffer, m->m_len);
979 buffer += m->m_len;
980 }
981
982 len = max(m0->m_pkthdr.len, ETHER_MIN_LEN);
983 m_freem(m0);
984
985 sc->xmit_buffs[sc->xchead]->ie_xmit_flags = SWAP(len);
986
987 /* Start the first packet transmitting. */
988 if (sc->xmit_busy == 0)
989 iexmit(sc);
990
991 sc->xchead = (sc->xchead + 1) % NTXBUF;
992 sc->xmit_busy++;
993 }
994 }
995
996 /*
997 * set up IE's ram space
998 */
999 int
1000 ie_setupram(sc)
1001 struct ie_softc *sc;
1002 {
1003 volatile struct ie_sys_conf_ptr *scp;
1004 volatile struct ie_int_sys_conf_ptr *iscp;
1005 volatile struct ie_sys_ctl_block *scb;
1006 int s;
1007
1008 s = splnet();
1009
1010 scp = sc->scp;
1011 (sc->memzero)((char *) scp, sizeof *scp);
1012
1013 iscp = sc->iscp;
1014 (sc->memzero)((char *) iscp, sizeof *iscp);
1015
1016 scb = sc->scb;
1017 (sc->memzero)((char *) scb, sizeof *scb);
1018
1019 scp->ie_bus_use = 0; /* 16-bit */
1020 ST_24(scp->ie_iscp_ptr, MK_24(sc->sc_iobase, iscp));
1021
1022 iscp->ie_busy = 1; /* ie_busy == char */
1023 iscp->ie_scb_offset = MK_16(sc->sc_maddr, scb);
1024 ST_24(iscp->ie_base, MK_24(sc->sc_iobase, sc->sc_maddr));
1025
1026 if (sc->hwreset)
1027 (sc->hwreset)(sc);
1028
1029 (sc->chan_attn) (sc);
1030
1031 delay(100); /* wait a while... */
1032
1033 if (iscp->ie_busy) {
1034 splx(s);
1035 return 0;
1036 }
1037 /*
1038 * Acknowledge any interrupts we may have caused...
1039 */
1040 ie_ack(sc, IE_ST_WHENCE);
1041 splx(s);
1042
1043 return 1;
1044 }
1045
1046 void
1047 iereset(sc)
1048 struct ie_softc *sc;
1049 {
1050 int s = splnet();
1051
1052 printf("%s: reset\n", sc->sc_dev.dv_xname);
1053
1054 /* Clear OACTIVE in case we're called from watchdog (frozen xmit). */
1055 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1056
1057 /*
1058 * Stop i82586 dead in its tracks.
1059 */
1060 if (command_and_wait(sc, IE_RU_ABORT | IE_CU_ABORT, 0, 0))
1061 printf("%s: abort commands timed out\n", sc->sc_dev.dv_xname);
1062
1063 if (command_and_wait(sc, IE_RU_DISABLE | IE_CU_STOP, 0, 0))
1064 printf("%s: disable commands timed out\n", sc->sc_dev.dv_xname);
1065
1066
1067 #if notdef
1068 if (sc->hwreset)
1069 (sc->hwreset)(sc);
1070 #endif
1071 #ifdef notdef
1072 if (!check_ie_present(sc, sc->sc_maddr, sc->sc_msize))
1073 panic("ie disappeared!\n");
1074 #endif
1075
1076 ieinit(sc);
1077
1078 splx(s);
1079 }
1080
1081 /*
1082 * Send a command to the controller and wait for it to either complete
1083 * or be accepted, depending on the command. If the command pointer
1084 * is null, then pretend that the command is not an action command.
1085 * If the command pointer is not null, and the command is an action
1086 * command, wait for
1087 * ((volatile struct ie_cmd_common *)pcmd)->ie_cmd_status & MASK
1088 * to become true.
1089 */
1090 static int
1091 command_and_wait(sc, cmd, pcmd, mask)
1092 struct ie_softc *sc;
1093 int cmd; /* native byte-order */
1094 volatile void *pcmd;
1095 int mask; /* native byte-order */
1096 {
1097 volatile struct ie_cmd_common *cc = pcmd;
1098 volatile struct ie_sys_ctl_block *scb = sc->scb;
1099 int i;
1100
1101 scb->ie_command = (u_short)SWAP(cmd);
1102 (sc->chan_attn)(sc);
1103
1104 if (IE_ACTION_COMMAND(cmd) && pcmd) {
1105 /*
1106 * According to the packet driver, the minimum timeout should
1107 * be .369 seconds, which we round up to .4.
1108 */
1109
1110 /*
1111 * Now spin-lock waiting for status. This is not a very nice
1112 * thing to do, but I haven't figured out how, or indeed if, we
1113 * can put the process waiting for action to sleep. (We may
1114 * be getting called through some other timeout running in the
1115 * kernel.)
1116 */
1117 for (i = 0; i < 369000; i++) {
1118 delay(1);
1119 if ((SWAP(cc->ie_cmd_status) & mask))
1120 return (0);
1121 }
1122
1123 } else {
1124 /*
1125 * Otherwise, just wait for the command to be accepted.
1126 */
1127
1128 /* XXX spin lock; wait at most 0.1 seconds */
1129 for (i = 0; i < 100000; i++) {
1130 if (scb->ie_command)
1131 return (0);
1132 delay(1);
1133 }
1134 }
1135
1136 /* Timeout */
1137 return (1);
1138 }
1139
1140 /*
1141 * Run the time-domain reflectometer.
1142 */
1143 static void
1144 run_tdr(sc, cmd)
1145 struct ie_softc *sc;
1146 struct ie_tdr_cmd *cmd;
1147 {
1148 int result;
1149
1150 cmd->com.ie_cmd_status = SWAP(0);
1151 cmd->com.ie_cmd_cmd = SWAP(IE_CMD_TDR | IE_CMD_LAST);
1152 cmd->com.ie_cmd_link = SWAP(0xffff);
1153
1154 sc->scb->ie_command_list = MK_16(sc->sc_maddr, cmd);
1155 cmd->ie_tdr_time = SWAP(0);
1156
1157 if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL) ||
1158 (SWAP(cmd->com.ie_cmd_status) & IE_STAT_OK) == 0)
1159 result = 0x10000; /* XXX */
1160 else
1161 result = SWAP(cmd->ie_tdr_time);
1162
1163 ie_ack(sc, IE_ST_WHENCE);
1164
1165 if (result & IE_TDR_SUCCESS)
1166 return;
1167
1168 if (result & 0x10000)
1169 printf("%s: TDR command failed\n", sc->sc_dev.dv_xname);
1170 else if (result & IE_TDR_XCVR)
1171 printf("%s: transceiver problem\n", sc->sc_dev.dv_xname);
1172 else if (result & IE_TDR_OPEN)
1173 printf("%s: TDR detected an open %d clocks away\n",
1174 sc->sc_dev.dv_xname, result & IE_TDR_TIME);
1175 else if (result & IE_TDR_SHORT)
1176 printf("%s: TDR detected a short %d clocks away\n",
1177 sc->sc_dev.dv_xname, result & IE_TDR_TIME);
1178 else
1179 printf("%s: TDR returned unknown status %x\n",
1180 sc->sc_dev.dv_xname, result);
1181 }
1182
1183 #ifdef notdef
1184 /* ALIGN works on 8 byte boundaries.... but 4 byte boundaries are ok for sun */
1185 #define _ALLOC(p, n) (bzero(p, n), p += n, p - n)
1186 #define ALLOC(p, n) _ALLOC(p, ALIGN(n)) /* XXX convert to this? */
1187 #endif
1188
1189 /*
1190 * setup_bufs: set up the buffers
1191 *
1192 * we have a block of KVA at sc->buf_area which is of size sc->buf_area_sz.
1193 * this is to be used for the buffers. the chip indexs its control data
1194 * structures with 16 bit offsets, and it indexes actual buffers with
1195 * 24 bit addresses. so we should allocate control buffers first so that
1196 * we don't overflow the 16 bit offset field. The number of transmit
1197 * buffers is fixed at compile time.
1198 *
1199 * note: this function was written to be easy to understand, rather than
1200 * highly efficient (it isn't in the critical path).
1201 */
1202 static void
1203 setup_bufs(sc)
1204 struct ie_softc *sc;
1205 {
1206 caddr_t ptr = sc->buf_area; /* memory pool */
1207 int n, r;
1208
1209 /*
1210 * step 0: zero memory and figure out how many recv buffers and
1211 * frames we can have.
1212 */
1213 (sc->memzero)(ptr, sc->buf_area_sz);
1214 ptr = (sc->align)(ptr); /* set alignment and stick with it */
1215
1216 n = (int)(sc->align)((caddr_t) sizeof(struct ie_xmit_cmd)) +
1217 (int)(sc->align)((caddr_t) sizeof(struct ie_xmit_buf)) + IE_TBUF_SIZE;
1218 n *= NTXBUF; /* n = total size of xmit area */
1219
1220 n = sc->buf_area_sz - n;/* n = free space for recv stuff */
1221
1222 r = (int)(sc->align)((caddr_t) sizeof(struct ie_recv_frame_desc)) +
1223 (((int)(sc->align)((caddr_t) sizeof(struct ie_recv_buf_desc)) +
1224 IE_RBUF_SIZE) * B_PER_F);
1225
1226 /* r = size of one R frame */
1227
1228 sc->nframes = n / r;
1229 if (sc->nframes <= 0)
1230 panic("ie: bogus buffer calc\n");
1231 if (sc->nframes > MAXFRAMES)
1232 sc->nframes = MAXFRAMES;
1233
1234 sc->nrxbuf = sc->nframes * B_PER_F;
1235
1236 #ifdef IEDEBUG
1237 printf("IEDEBUG: %d frames %d bufs\n", sc->nframes, sc->nrxbuf);
1238 #endif
1239
1240 /*
1241 * step 1a: lay out and zero frame data structures for transmit and recv
1242 */
1243 for (n = 0; n < NTXBUF; n++) {
1244 sc->xmit_cmds[n] = (volatile struct ie_xmit_cmd *) ptr;
1245 ptr = (sc->align)(ptr + sizeof(struct ie_xmit_cmd));
1246 }
1247
1248 for (n = 0; n < sc->nframes; n++) {
1249 sc->rframes[n] = (volatile struct ie_recv_frame_desc *) ptr;
1250 ptr = (sc->align)(ptr + sizeof(struct ie_recv_frame_desc));
1251 }
1252
1253 /*
1254 * step 1b: link together the recv frames and set EOL on last one
1255 */
1256 for (n = 0; n < sc->nframes; n++) {
1257 sc->rframes[n]->ie_fd_next =
1258 MK_16(sc->sc_maddr, sc->rframes[(n + 1) % sc->nframes]);
1259 }
1260 sc->rframes[sc->nframes - 1]->ie_fd_last |= SWAP(IE_FD_LAST);
1261
1262 /*
1263 * step 2a: lay out and zero frame buffer structures for xmit and recv
1264 */
1265 for (n = 0; n < NTXBUF; n++) {
1266 sc->xmit_buffs[n] = (volatile struct ie_xmit_buf *) ptr;
1267 ptr = (sc->align)(ptr + sizeof(struct ie_xmit_buf));
1268 }
1269
1270 for (n = 0; n < sc->nrxbuf; n++) {
1271 sc->rbuffs[n] = (volatile struct ie_recv_buf_desc *) ptr;
1272 ptr = (sc->align)(ptr + sizeof(struct ie_recv_buf_desc));
1273 }
1274
1275 /*
1276 * step 2b: link together recv bufs and set EOL on last one
1277 */
1278 for (n = 0; n < sc->nrxbuf; n++) {
1279 sc->rbuffs[n]->ie_rbd_next =
1280 MK_16(sc->sc_maddr, sc->rbuffs[(n + 1) % sc->nrxbuf]);
1281 }
1282 sc->rbuffs[sc->nrxbuf - 1]->ie_rbd_length |= SWAP(IE_RBD_LAST);
1283
1284 /*
1285 * step 3: allocate the actual data buffers for xmit and recv
1286 * recv buffer gets linked into recv_buf_desc list here
1287 */
1288 for (n = 0; n < NTXBUF; n++) {
1289 sc->xmit_cbuffs[n] = (u_char *) ptr;
1290 ptr = (sc->align)(ptr + IE_TBUF_SIZE);
1291 }
1292
1293 /* Pointers to last packet sent and next available transmit buffer. */
1294 sc->xchead = sc->xctail = 0;
1295
1296 /* Clear transmit-busy flag and set number of free transmit buffers. */
1297 sc->xmit_busy = 0;
1298
1299 for (n = 0; n < sc->nrxbuf; n++) {
1300 sc->cbuffs[n] = (char *) ptr; /* XXX why char vs uchar? */
1301 sc->rbuffs[n]->ie_rbd_length = SWAP(IE_RBUF_SIZE);
1302 ST_24(sc->rbuffs[n]->ie_rbd_buffer, MK_24(sc->sc_iobase, ptr));
1303 ptr = (sc->align)(ptr + IE_RBUF_SIZE);
1304 }
1305
1306 /*
1307 * step 4: set the head and tail pointers on receive to keep track of
1308 * the order in which RFDs and RBDs are used. link in recv frames
1309 * and buffer into the scb.
1310 */
1311
1312 sc->rfhead = 0;
1313 sc->rftail = sc->nframes - 1;
1314 sc->rbhead = 0;
1315 sc->rbtail = sc->nrxbuf - 1;
1316
1317 sc->scb->ie_recv_list = MK_16(sc->sc_maddr, sc->rframes[0]);
1318 sc->rframes[0]->ie_fd_buf_desc = MK_16(sc->sc_maddr, sc->rbuffs[0]);
1319
1320 #ifdef IEDEBUG
1321 printf("IE_DEBUG: reserved %d bytes\n", ptr - sc->buf_area);
1322 #endif
1323 }
1324
1325 /*
1326 * Run the multicast setup command.
1327 * Called at splnet().
1328 */
1329 static int
1330 mc_setup(sc, ptr)
1331 struct ie_softc *sc;
1332 void *ptr;
1333 {
1334 volatile struct ie_mcast_cmd *cmd = ptr;
1335
1336 cmd->com.ie_cmd_status = SWAP(0);
1337 cmd->com.ie_cmd_cmd = SWAP(IE_CMD_MCAST | IE_CMD_LAST);
1338 cmd->com.ie_cmd_link = SWAP(0xffff);
1339
1340 (sc->memcopy)((caddr_t)sc->mcast_addrs, (caddr_t)cmd->ie_mcast_addrs,
1341 sc->mcast_count * sizeof *sc->mcast_addrs);
1342
1343 cmd->ie_mcast_bytes =
1344 SWAP(sc->mcast_count * ETHER_ADDR_LEN); /* grrr... */
1345
1346 sc->scb->ie_command_list = MK_16(sc->sc_maddr, cmd);
1347 if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL) ||
1348 (SWAP(cmd->com.ie_cmd_status) & IE_STAT_OK) == 0) {
1349 printf("%s: multicast address setup command failed\n",
1350 sc->sc_dev.dv_xname);
1351 return 0;
1352 }
1353 return 1;
1354 }
1355
1356 /*
1357 * This routine takes the environment generated by check_ie_present() and adds
1358 * to it all the other structures we need to operate the adapter. This
1359 * includes executing the CONFIGURE, IA-SETUP, and MC-SETUP commands, starting
1360 * the receiver unit, and clearing interrupts.
1361 *
1362 * THIS ROUTINE MUST BE CALLED AT splnet() OR HIGHER.
1363 */
1364 int
1365 ieinit(sc)
1366 struct ie_softc *sc;
1367 {
1368 volatile struct ie_sys_ctl_block *scb = sc->scb;
1369 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1370 void *ptr;
1371
1372 ptr = sc->buf_area;
1373
1374 /*
1375 * Send the configure command first.
1376 */
1377 {
1378 volatile struct ie_config_cmd *cmd = ptr;
1379
1380 scb->ie_command_list = MK_16(sc->sc_maddr, cmd);
1381 cmd->com.ie_cmd_status = SWAP(0);
1382 cmd->com.ie_cmd_cmd = SWAP(IE_CMD_CONFIG | IE_CMD_LAST);
1383 cmd->com.ie_cmd_link = SWAP(0xffff);
1384
1385 ie_setup_config(cmd, sc->promisc, 0);
1386
1387 if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL) ||
1388 (SWAP(cmd->com.ie_cmd_status) & IE_STAT_OK) == 0) {
1389 printf("%s: configure command failed\n",
1390 sc->sc_dev.dv_xname);
1391 return 0;
1392 }
1393 }
1394
1395 /*
1396 * Now send the Individual Address Setup command.
1397 */
1398 {
1399 volatile struct ie_iasetup_cmd *cmd = ptr;
1400
1401 scb->ie_command_list = MK_16(sc->sc_maddr, cmd);
1402 cmd->com.ie_cmd_status = SWAP(0);
1403 cmd->com.ie_cmd_cmd = SWAP(IE_CMD_IASETUP | IE_CMD_LAST);
1404 cmd->com.ie_cmd_link = SWAP(0xffff);
1405
1406 (sc->memcopy)(LLADDR(ifp->if_sadl),
1407 (caddr_t)&cmd->ie_address, sizeof cmd->ie_address);
1408
1409 if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL) ||
1410 (SWAP(cmd->com.ie_cmd_status) & IE_STAT_OK) == 0) {
1411 printf("%s: individual address setup command failed\n",
1412 sc->sc_dev.dv_xname);
1413 return 0;
1414 }
1415 }
1416
1417 /*
1418 * Now run the time-domain reflectometer.
1419 */
1420 run_tdr(sc, ptr);
1421
1422 /*
1423 * Acknowledge any interrupts we have generated thus far.
1424 */
1425 ie_ack(sc, IE_ST_WHENCE);
1426
1427 /*
1428 * Set up the transmit and recv buffers.
1429 */
1430 setup_bufs(sc);
1431
1432 ifp->if_flags |= IFF_RUNNING;
1433 ifp->if_flags &= ~IFF_OACTIVE;
1434
1435 sc->scb->ie_recv_list = MK_16(sc->sc_maddr, sc->rframes[0]);
1436 command_and_wait(sc, IE_RU_START, 0, 0);
1437
1438 ie_ack(sc, IE_ST_WHENCE);
1439
1440 if (sc->hwinit)
1441 (sc->hwinit)(sc);
1442
1443 return 0;
1444 }
1445
1446 static void
1447 iestop(sc)
1448 struct ie_softc *sc;
1449 {
1450
1451 command_and_wait(sc, IE_RU_DISABLE, 0, 0);
1452 }
1453
1454 int
1455 ieioctl(ifp, cmd, data)
1456 register struct ifnet *ifp;
1457 u_long cmd;
1458 caddr_t data;
1459 {
1460 struct ie_softc *sc = ifp->if_softc;
1461 struct ifaddr *ifa = (struct ifaddr *)data;
1462 struct ifreq *ifr = (struct ifreq *)data;
1463 int s, error = 0;
1464
1465 s = splnet();
1466
1467 switch(cmd) {
1468
1469 case SIOCSIFADDR:
1470 ifp->if_flags |= IFF_UP;
1471
1472 switch(ifa->ifa_addr->sa_family) {
1473 #ifdef INET
1474 case AF_INET:
1475 ieinit(sc);
1476 arp_ifinit(ifp, ifa);
1477 break;
1478 #endif
1479 #ifdef NS
1480 /* XXX - This code is probably wrong. */
1481 case AF_NS:
1482 {
1483 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1484
1485 if (ns_nullhost(*ina))
1486 ina->x_host =
1487 *(union ns_host *)LLADDR(ifp->if_sadl);
1488 else
1489 bcopy(ina->x_host.c_host,
1490 LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1491 /* Set new address. */
1492 ieinit(sc);
1493 break;
1494 }
1495 #endif /* NS */
1496 default:
1497 ieinit(sc);
1498 break;
1499 }
1500 break;
1501
1502 case SIOCSIFFLAGS:
1503 sc->promisc = ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
1504 if ((ifp->if_flags & IFF_UP) == 0 &&
1505 (ifp->if_flags & IFF_RUNNING) != 0) {
1506 /*
1507 * If interface is marked down and it is running, then
1508 * stop it.
1509 */
1510 iestop(sc);
1511 ifp->if_flags &= ~IFF_RUNNING;
1512 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1513 (ifp->if_flags & IFF_RUNNING) == 0) {
1514 /*
1515 * If interface is marked up and it is stopped, then
1516 * start it.
1517 */
1518 ieinit(sc);
1519 } else {
1520 /*
1521 * Reset the interface to pick up changes in any other
1522 * flags that affect hardware registers.
1523 */
1524 iestop(sc);
1525 ieinit(sc);
1526 }
1527 #ifdef IEDEBUG
1528 if (ifp->if_flags & IFF_DEBUG)
1529 sc->sc_debug = IED_ALL;
1530 else
1531 sc->sc_debug = 0;
1532 #endif
1533 break;
1534
1535 case SIOCADDMULTI:
1536 case SIOCDELMULTI:
1537 error = (cmd == SIOCADDMULTI) ?
1538 ether_addmulti(ifr, &sc->sc_ethercom):
1539 ether_delmulti(ifr, &sc->sc_ethercom);
1540
1541 if (error == ENETRESET) {
1542 /*
1543 * Multicast list has changed; set the hardware filter
1544 * accordingly.
1545 */
1546 mc_reset(sc);
1547 error = 0;
1548 }
1549 break;
1550
1551 default:
1552 error = EINVAL;
1553 }
1554 splx(s);
1555 return error;
1556 }
1557
1558 static void
1559 mc_reset(sc)
1560 struct ie_softc *sc;
1561 {
1562 struct ether_multi *enm;
1563 struct ether_multistep step;
1564
1565 /*
1566 * Step through the list of addresses.
1567 */
1568 sc->mcast_count = 0;
1569 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1570 while (enm) {
1571 if (sc->mcast_count >= MAXMCAST ||
1572 bcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
1573 sc->sc_ethercom.ec_if.if_flags |= IFF_ALLMULTI;
1574 ieioctl(&sc->sc_ethercom.ec_if, SIOCSIFFLAGS, (void *)0);
1575 goto setflag;
1576 }
1577
1578 bcopy(enm->enm_addrlo, &sc->mcast_addrs[sc->mcast_count], 6);
1579 sc->mcast_count++;
1580 ETHER_NEXT_MULTI(step, enm);
1581 }
1582 setflag:
1583 sc->want_mcsetup = 1;
1584 }
1585
1586 #ifdef IEDEBUG
1587 void
1588 print_rbd(rbd)
1589 volatile struct ie_recv_buf_desc *rbd;
1590 {
1591 u_long bufval;
1592
1593 bcopy((char *)&rbd->ie_rbd_buffer, &bufval, 4); /*XXX*/
1594
1595 printf("RBD at %08lx:\nactual %04x, next %04x, buffer %lx\n"
1596 "length %04x, mbz %04x\n", (u_long)rbd,
1597 SWAP(rbd->ie_rbd_actual),
1598 SWAP(rbd->ie_rbd_next),
1599 bufval,
1600 SWAP(rbd->ie_rbd_length),
1601 rbd->mbz);
1602 }
1603 #endif
1604