i82596.c revision 1.23 1 /* $NetBSD: i82596.c,v 1.23 2009/05/09 20:42:09 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 2003 Jochen Kunz.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Jochen Kunz may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOCHEN KUNZ
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips.
34 *
35 * It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586
36 * ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to
37 * i82586 compatibility mode.
38 *
39 * Documentation about these chips can be found at
40 *
41 * http://developer.intel.com/design/network/datashts/290218.htm
42 * http://developer.intel.com/design/network/datashts/290219.htm
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.23 2009/05/09 20:42:09 tsutsui Exp $");
47
48 /* autoconfig and device stuff */
49 #include <sys/param.h>
50 #include <sys/device.h>
51 #include <sys/conf.h>
52 #include "locators.h"
53 #include "ioconf.h"
54
55 /* bus_space / bus_dma etc. */
56 #include <sys/bus.h>
57 #include <sys/intr.h>
58
59 /* general system data and functions */
60 #include <sys/systm.h>
61 #include <sys/ioctl.h>
62
63 /* tsleep / sleep / wakeup */
64 #include <sys/proc.h>
65 /* hz for above */
66 #include <sys/kernel.h>
67
68 /* network stuff */
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_ether.h>
73 #include <sys/socket.h>
74 #include <sys/mbuf.h>
75
76 #include "bpfilter.h"
77 #if NBPFILTER > 0
78 #include <net/bpf.h>
79 #endif
80
81 #include <dev/ic/i82596reg.h>
82 #include <dev/ic/i82596var.h>
83
84 /* Supported chip variants */
85 const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" };
86
87 /* media change and status callback */
88 static int iee_mediachange(struct ifnet *);
89 static void iee_mediastatus(struct ifnet *, struct ifmediareq *);
90
91 /* interface routines to upper protocols */
92 static void iee_start(struct ifnet *); /* initiate output */
93 static int iee_ioctl(struct ifnet *, u_long, void *); /* ioctl routine */
94 static int iee_init(struct ifnet *); /* init routine */
95 static void iee_stop(struct ifnet *, int); /* stop routine */
96 static void iee_watchdog(struct ifnet *); /* timer routine */
97
98 /* internal helper functions */
99 static void iee_cb_setup(struct iee_softc *, uint32_t);
100
101 /*
102 * Things a MD frontend has to provide:
103 *
104 * The functions via function pointers in the softc:
105 * int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd);
106 * int (*sc_iee_reset)(struct iee_softc *sc);
107 * void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *);
108 * int (*sc_mediachange)(struct ifnet *);
109 *
110 * sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter
111 * to the SCP cmd word and issuing a Channel Attention.
112 * sc_iee_reset(): initiate a reset, supply the address of the SCP to the
113 * chip, wait for the chip to initialize and ACK interrupts that
114 * this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
115 * This functions must carefully bus_dmamap_sync() all data they have touched!
116 *
117 * sc_mediastatus() and sc_mediachange() are just MD hooks to the according
118 * MI functions. The MD frontend may set this pointers to NULL when they
119 * are not needed.
120 *
121 * sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA.
122 * This is for printing out the correct chip type at attach time only. The
123 * MI backend doesn't distinguish different chip types when programming
124 * the chip.
125 *
126 * IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware
127 * and set on big endian hardware, when endianess conversion is not done
128 * by the bus attachment but done by i82596 chip itself.
129 * Usually you need to set IEE_NEED_SWAP on big endian machines
130 * where the hardware (the LE/~BE pin) is configured as BE mode.
131 *
132 * If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word)
133 * entities can be written in big endian. But Rev A chip doesn't support
134 * 32 bit (dword) entities with big endian byte ordering, so we have to
135 * treat all 32 bit (dword) entities as two 16 bit big endian entities.
136 * Rev B and C chips support big endian byte ordering for 32 bit entities,
137 * and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte.
138 *
139 * With the IEE_SYSBUS_BE feature, all 32 bit address ponters are
140 * treated as true 32 bit entities but the SCB absolute address and
141 * statistical counters are still treated as two 16 bit big endian entities,
142 * so we have to always swap high and low words for these entities.
143 * IEE_SWAP32() should be used for the SCB address and statistical counters,
144 * and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem.
145 *
146 * IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature
147 * is disabled even on big endian machines for the old Rev A chip in backend.
148 *
149 * sc->sc_cl_align must be set to 1 or to the cache line size. When set to
150 * 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1
151 * it forces alignment of the data structures in the shared memory to a multiple
152 * of sc->sc_cl_align. This is needed on archs like hp700 that have non DMA
153 * I/O coherent caches and are unable to map the shared memory uncachable.
154 * (At least pre PA7100LC CPUs are unable to map memory uncachable.)
155 *
156 * sc->sc_cl_align MUST BE INITIALIZED BEFORE THE FOLLOWING MACROS ARE USED:
157 * SC_* IEE_*_SZ IEE_*_OFF IEE_SHMEM_MAX (shell style glob(3) pattern)
158 *
159 * The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus
160 * to allocate and setup shared DMA memory in MI iee_attach().
161 * All communication with the chip is done via this shared memory.
162 * This memory is mapped with BUS_DMA_COHERENT so it will be uncached
163 * if possible for archs with non DMA I/O coherent caches.
164 * The base of the memory needs to be aligned to an even address
165 * if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1.
166 *
167 * An interrupt with iee_intr() as handler must be established.
168 *
169 * Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address,
170 * int *media, int nmedia, int defmedia); when everything is set up. First
171 * parameter is a pointer to the MI softc, ether_address is an array that
172 * contains the ethernet address. media is an array of the media types
173 * provided by the hardware. The members of this array are supplied to
174 * ifmedia_add() in sequence. nmedia is the count of elements in media.
175 * defmedia is the default media that is set via ifmedia_set().
176 * nmedia and defmedia are ignored when media == NULL.
177 *
178 * The MD backend may call iee_detach() to detach the device.
179 *
180 * See sys/arch/hp700/gsc/if_iee_gsc.c for an example.
181 */
182
183
184 /*
185 * How frame reception is done:
186 * Each Receive Frame Descriptor has one associated Receive Buffer Descriptor.
187 * Each RBD points to the data area of an mbuf cluster. The RFDs are linked
188 * together in a circular list. sc->sc_rx_done is the count of RFDs in the
189 * list already processed / the number of the RFD that has to be checked for
190 * a new frame first at the next RX interrupt. Upon successful reception of
191 * a frame the mbuf cluster is handled to upper protocol layers, a new mbuf
192 * cluster is allocated and the RFD / RBD are reinitialized accordingly.
193 *
194 * When a RFD list overrun occurred the whole RFD and RBD lists are reinitialized
195 * and frame reception is started again.
196 */
197 int
198 iee_intr(void *intarg)
199 {
200 struct iee_softc *sc = intarg;
201 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
202 struct iee_rfd *rfd;
203 struct iee_rbd *rbd;
204 bus_dmamap_t rx_map;
205 struct mbuf *rx_mbuf;
206 struct mbuf *new_mbuf;
207 int scb_status;
208 int scb_cmd;
209 int n, col;
210
211 if ((ifp->if_flags & IFF_RUNNING) == 0) {
212 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
213 return 1;
214 }
215 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, IEE_SHMEM_MAX,
216 BUS_DMASYNC_POSTREAD);
217 scb_status = SC_SCB->scb_status;
218 scb_cmd = SC_SCB->scb_cmd;
219 rfd = SC_RFD(sc->sc_rx_done);
220 while ((rfd->rfd_status & IEE_RFD_C) != 0) {
221 /* At least one packet was received. */
222 rbd = SC_RBD(sc->sc_rx_done);
223 rx_map = sc->sc_rx_map[sc->sc_rx_done];
224 rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done];
225 SC_RBD((sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size
226 &= ~IEE_RBD_EL;
227 if ((rfd->rfd_status & IEE_RFD_OK) == 0
228 || (rbd->rbd_count & IEE_RBD_EOF) == 0
229 || (rbd->rbd_count & IEE_RBD_F) == 0){
230 /* Receive error, skip frame and reuse buffer. */
231 rfd->rfd_status = 0;
232 rbd->rbd_count = 0;
233 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
234 printf("%s: iee_intr: receive error %d, rfd_status="
235 "0x%.4x, rfd_count=0x%.4x\n",
236 device_xname(sc->sc_dev),
237 ++sc->sc_rx_err, rfd->rfd_status, rbd->rbd_count);
238 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
239 continue;
240 }
241 rfd->rfd_status = 0;
242 bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_mbuf->m_ext.ext_size,
243 BUS_DMASYNC_POSTREAD);
244 rx_mbuf->m_pkthdr.len = rx_mbuf->m_len =
245 rbd->rbd_count & IEE_RBD_COUNT;
246 rx_mbuf->m_pkthdr.rcvif = ifp;
247 MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
248 if (new_mbuf == NULL) {
249 printf("%s: iee_intr: can't allocate mbuf\n",
250 device_xname(sc->sc_dev));
251 break;
252 }
253 MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner);
254 MCLGET(new_mbuf, M_DONTWAIT);
255 if ((new_mbuf->m_flags & M_EXT) == 0) {
256 printf("%s: iee_intr: can't alloc mbuf cluster\n",
257 device_xname(sc->sc_dev));
258 m_freem(new_mbuf);
259 break;
260 }
261 bus_dmamap_unload(sc->sc_dmat, rx_map);
262 if (bus_dmamap_load(sc->sc_dmat, rx_map,
263 new_mbuf->m_ext.ext_buf, new_mbuf->m_ext.ext_size,
264 NULL, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0)
265 panic("%s: iee_intr: can't load RX DMA map\n",
266 device_xname(sc->sc_dev));
267 bus_dmamap_sync(sc->sc_dmat, rx_map, 0,
268 new_mbuf->m_ext.ext_size, BUS_DMASYNC_PREREAD);
269 #if NBPFILTER > 0
270 if (ifp->if_bpf != 0)
271 bpf_mtap(ifp->if_bpf, rx_mbuf);
272 #endif /* NBPFILTER > 0 */
273 (*ifp->if_input)(ifp, rx_mbuf);
274 ifp->if_ipackets++;
275 sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf;
276 rbd->rbd_count = 0;
277 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
278 rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr);
279 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
280 rfd = SC_RFD(sc->sc_rx_done);
281 }
282 if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1
283 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2
284 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) {
285 /* Receive Overrun, reinit receive ring buffer. */
286 for (n = 0 ; n < IEE_NRFD ; n++) {
287 SC_RFD(n)->rfd_cmd = IEE_RFD_SF;
288 SC_RFD(n)->rfd_link_addr =
289 IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_RFD_OFF
290 + IEE_RFD_SZ * ((n + 1) % IEE_NRFD)));
291 SC_RBD(n)->rbd_next_rbd =
292 IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_RBD_OFF
293 + IEE_RBD_SZ * ((n + 1) % IEE_NRFD)));
294 SC_RBD(n)->rbd_size = IEE_RBD_EL |
295 sc->sc_rx_map[n]->dm_segs[0].ds_len;
296 SC_RBD(n)->rbd_rb_addr =
297 IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr);
298 }
299 SC_RFD(0)->rfd_rbd_addr =
300 IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_RBD_OFF));
301 sc->sc_rx_done = 0;
302 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, IEE_RFD_OFF,
303 IEE_RFD_LIST_SZ + IEE_RBD_LIST_SZ, BUS_DMASYNC_PREWRITE);
304 (sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST);
305 printf("%s: iee_intr: receive ring buffer overrun\n",
306 device_xname(sc->sc_dev));
307 }
308
309 if (sc->sc_next_cb != 0
310 && (SC_CB(sc->sc_next_cb - 1)->cb_status & IEE_CB_C) != 0) {
311 /* CMD list finished */
312 ifp->if_timer = 0;
313 if (sc->sc_next_tbd != 0) {
314 /* A TX CMD list finished, cleanup */
315 for (n = 0 ; n < sc->sc_next_cb ; n++) {
316 m_freem(sc->sc_tx_mbuf[n]);
317 sc->sc_tx_mbuf[n] = NULL;
318 bus_dmamap_unload(sc->sc_dmat,sc->sc_tx_map[n]);
319 if ((SC_CB(n)->cb_status & IEE_CB_COL) != 0 &&
320 (SC_CB(n)->cb_status & IEE_CB_MAXCOL) == 0)
321 col = 16;
322 else
323 col = SC_CB(n)->cb_status
324 & IEE_CB_MAXCOL;
325 sc->sc_tx_col += col;
326 if ((SC_CB(n)->cb_status & IEE_CB_OK) != 0) {
327 ifp->if_opackets++;
328 ifp->if_collisions += col;
329 }
330 }
331 sc->sc_next_tbd = 0;
332 ifp->if_flags &= ~IFF_OACTIVE;
333 }
334 for (n = 0 ; n < sc->sc_next_cb ; n++) {
335 /* Check if a CMD failed, but ignore TX errors. */
336 if ((SC_CB(n)->cb_cmd & IEE_CB_CMD) != IEE_CB_CMD_TR
337 && ((SC_CB(n)->cb_status & IEE_CB_OK) == 0))
338 printf("%s: iee_intr: scb_status=0x%x "
339 "scb_cmd=0x%x failed command %d: "
340 "cb_status[%d]=0x%.4x cb_cmd[%d]=0x%.4x\n",
341 device_xname(sc->sc_dev),
342 scb_status, scb_cmd,
343 ++sc->sc_cmd_err, n, SC_CB(n)->cb_status,
344 n, SC_CB(n)->cb_cmd);
345 }
346 sc->sc_next_cb = 0;
347 if ((sc->sc_flags & IEE_WANT_MCAST) != 0) {
348 iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S | IEE_CB_EL
349 | IEE_CB_I);
350 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
351 } else
352 /* Try to get deferred packets going. */
353 iee_start(ifp);
354 }
355 if (IEE_SWAP32(SC_SCB->scb_crc_err) != sc->sc_crc_err) {
356 sc->sc_crc_err = IEE_SWAP32(SC_SCB->scb_crc_err);
357 printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev),
358 sc->sc_crc_err);
359 }
360 if (IEE_SWAP32(SC_SCB->scb_align_err) != sc->sc_align_err) {
361 sc->sc_align_err = IEE_SWAP32(SC_SCB->scb_align_err);
362 printf("%s: iee_intr: align_err=%d\n", device_xname(sc->sc_dev),
363 sc->sc_align_err);
364 }
365 if (IEE_SWAP32(SC_SCB->scb_resource_err) != sc->sc_resource_err) {
366 sc->sc_resource_err = IEE_SWAP32(SC_SCB->scb_resource_err);
367 printf("%s: iee_intr: resource_err=%d\n",
368 device_xname(sc->sc_dev), sc->sc_resource_err);
369 }
370 if (IEE_SWAP32(SC_SCB->scb_overrun_err) != sc->sc_overrun_err) {
371 sc->sc_overrun_err = IEE_SWAP32(SC_SCB->scb_overrun_err);
372 printf("%s: iee_intr: overrun_err=%d\n",
373 device_xname(sc->sc_dev), sc->sc_overrun_err);
374 }
375 if (IEE_SWAP32(SC_SCB->scb_rcvcdt_err) != sc->sc_rcvcdt_err) {
376 sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB->scb_rcvcdt_err);
377 printf("%s: iee_intr: rcvcdt_err=%d\n",
378 device_xname(sc->sc_dev), sc->sc_rcvcdt_err);
379 }
380 if (IEE_SWAP32(SC_SCB->scb_short_fr_err) != sc->sc_short_fr_err) {
381 sc->sc_short_fr_err = IEE_SWAP32(SC_SCB->scb_short_fr_err);
382 printf("%s: iee_intr: short_fr_err=%d\n",
383 device_xname(sc->sc_dev), sc->sc_short_fr_err);
384 }
385 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, IEE_SHMEM_MAX,
386 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
387 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
388 return 1;
389 }
390
391
392
393 /*
394 * How Command Block List Processing is done.
395 *
396 * A running CBL is never manipulated. If there is a CBL already running,
397 * further CMDs are deferred until the current list is done. A new list is
398 * setup when the old one has finished.
399 * This eases programming. To manipulate a running CBL it is necessary to
400 * suspend the Command Unit to avoid race conditions. After a suspend
401 * is sent we have to wait for an interrupt that ACKs the suspend. Then
402 * we can manipulate the CBL and resume operation. I am not sure that this
403 * is more effective then the current, much simpler approach. => KISS
404 * See i82596CA data sheet page 26.
405 *
406 * A CBL is running or on the way to be set up when (sc->sc_next_cb != 0).
407 *
408 * A CBL may consist of TX CMDs, and _only_ TX CMDs.
409 * A TX CBL is running or on the way to be set up when
410 * ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)).
411 *
412 * A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_
413 * non-TX CMDs.
414 *
415 * This comes mostly through the way how an Ethernet driver works and
416 * because running CBLs are not manipulated when they are on the way. If
417 * if_start() is called there will be TX CMDs enqueued so we have a running
418 * CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa.
419 *
420 * The Multicast Setup Command is special. A MCS needs more space than
421 * a single CB has. Actual space requirement depends on the length of the
422 * multicast list. So we always defer MCS until other CBLs are finished,
423 * then we setup a CONF CMD in the first CB. The CONF CMD is needed to
424 * turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may
425 * use all the remaining space in the CBL and the Transmit Buffer Descriptor
426 * List. (Therefore CBL and TBDL must be continuous in physical and virtual
427 * memory. This is guaranteed through the definitions of the list offsets
428 * in i82596reg.h and because it is only a single DMA segment used for all
429 * lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with
430 * a multicast list length of 0, thus disabling the multicast filter.
431 * A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0)
432 */
433 void
434 iee_cb_setup(struct iee_softc *sc, uint32_t cmd)
435 {
436 struct iee_cb *cb = SC_CB(sc->sc_next_cb);
437 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
438 struct ether_multistep step;
439 struct ether_multi *enm;
440
441 memset(cb, 0, IEE_CB_SZ);
442 cb->cb_cmd = cmd;
443 switch(cmd & IEE_CB_CMD) {
444 case IEE_CB_CMD_NOP: /* NOP CMD */
445 break;
446 case IEE_CB_CMD_IAS: /* Individual Address Setup */
447 memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl),
448 ETHER_ADDR_LEN);
449 break;
450 case IEE_CB_CMD_CONF: /* Configure */
451 memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0]
452 & IEE_CF_0_CNT_M);
453 break;
454 case IEE_CB_CMD_MCS: /* Multicast Setup */
455 if (sc->sc_next_cb != 0) {
456 sc->sc_flags |= IEE_WANT_MCAST;
457 return;
458 }
459 sc->sc_flags &= ~IEE_WANT_MCAST;
460 if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) {
461 /* Need no multicast filter in promisc mode. */
462 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL
463 | IEE_CB_I);
464 return;
465 }
466 /* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */
467 cb = SC_CB(sc->sc_next_cb + 1);
468 cb->cb_cmd = cmd;
469 cb->cb_mcast.mc_size = 0;
470 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
471 while (enm != NULL) {
472 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
473 ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size
474 * ETHER_ADDR_LEN + 2 * IEE_CB_SZ
475 > IEE_CB_LIST_SZ + IEE_TBD_LIST_SZ) {
476 cb->cb_mcast.mc_size = 0;
477 break;
478 }
479 memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[
480 cb->cb_mcast.mc_size * ETHER_ADDR_LEN]),
481 enm->enm_addrlo, ETHER_ADDR_LEN);
482 ETHER_NEXT_MULTI(step, enm);
483 cb->cb_mcast.mc_size++;
484 }
485 if (cb->cb_mcast.mc_size == 0) {
486 /* Can't do exact mcast filtering, do ALLMULTI mode. */
487 ifp->if_flags |= IFF_ALLMULTI;
488 sc->sc_cf[11] &= ~IEE_CF_11_MCALL;
489 } else {
490 /* disable ALLMULTI and load mcast list */
491 ifp->if_flags &= ~IFF_ALLMULTI;
492 sc->sc_cf[11] |= IEE_CF_11_MCALL;
493 /* Mcast setup may need more then IEE_CB_SZ bytes. */
494 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
495 IEE_CB_OFF, IEE_CB_LIST_SZ + IEE_TBD_LIST_SZ,
496 BUS_DMASYNC_PREWRITE);
497 }
498 iee_cb_setup(sc, IEE_CB_CMD_CONF);
499 break;
500 case IEE_CB_CMD_TR: /* Transmit */
501 cb->cb_transmit.tx_tbd_addr =
502 IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_TBD_OFF
503 + IEE_TBD_SZ * sc->sc_next_tbd));
504 cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */
505 break;
506 case IEE_CB_CMD_TDR: /* Time Domain Reflectometry */
507 break;
508 case IEE_CB_CMD_DUMP: /* Dump */
509 break;
510 case IEE_CB_CMD_DIAG: /* Diagnose */
511 break;
512 default:
513 /* can't happen */
514 break;
515 }
516 cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_CB_OFF + IEE_CB_SZ *
517 (sc->sc_next_cb + 1)));
518 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, IEE_CB_OFF
519 + IEE_CB_SZ * sc->sc_next_cb, IEE_CB_SZ, BUS_DMASYNC_PREWRITE);
520 sc->sc_next_cb++;
521 ifp->if_timer = 5;
522 return;
523 }
524
525
526
527 void
528 iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia,
529 int defmedia)
530 {
531 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
532 int n;
533
534 KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align));
535
536 /* allocate memory for shared DMA descriptors */
537 if (bus_dmamem_alloc(sc->sc_dmat, IEE_SHMEM_MAX, PAGE_SIZE, 0,
538 &sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) {
539 aprint_error(": can't allocate %d bytes of DMA memory\n",
540 (int)IEE_SHMEM_MAX);
541 return;
542 }
543 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs,
544 IEE_SHMEM_MAX, (void **)&sc->sc_shmem_addr,
545 BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) {
546 aprint_error(": can't map DMA memory\n");
547 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
548 sc->sc_dma_rsegs);
549 return;
550 }
551 if (bus_dmamap_create(sc->sc_dmat, IEE_SHMEM_MAX, sc->sc_dma_rsegs,
552 IEE_SHMEM_MAX, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) {
553 aprint_error(": can't create DMA map\n");
554 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, IEE_SHMEM_MAX); bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
555 sc->sc_dma_rsegs);
556 return;
557 }
558 if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr,
559 IEE_SHMEM_MAX, NULL, BUS_DMA_NOWAIT) != 0) {
560 aprint_error(": can't load DMA map\n");
561 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
562 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, IEE_SHMEM_MAX); bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
563 sc->sc_dma_rsegs);
564 return;
565 }
566 memset(sc->sc_shmem_addr, 0, IEE_SHMEM_MAX);
567
568 /* Set pointer to Intermediate System Configuration Pointer. */
569 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
570 SC_SCP->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(IEE_ISCP_OFF));
571 SC_SCP->scp_sysbus = sc->sc_sysbus;
572 /* Set pointer to System Control Block. */
573 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
574 SC_ISCP->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(IEE_SCB_OFF));
575 /* Set pointer to Receive Frame Area. (physical address) */
576 SC_SCB->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_RFD_OFF));
577 /* Set pointer to Command Block. (physical address) */
578 SC_SCB->scb_cmd_blk_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_CB_OFF));
579
580 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, IEE_SHMEM_MAX,
581 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
582
583 ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus);
584 if (media != NULL) {
585 for (n = 0 ; n < nmedia ; n++)
586 ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL);
587 ifmedia_set(&sc->sc_ifmedia, defmedia);
588 } else {
589 ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL);
590 ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE);
591 }
592
593 ifp->if_softc = sc;
594 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
595 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
596 ifp->if_start = iee_start; /* initiate output routine */
597 ifp->if_ioctl = iee_ioctl; /* ioctl routine */
598 ifp->if_init = iee_init; /* init routine */
599 ifp->if_stop = iee_stop; /* stop routine */
600 ifp->if_watchdog = iee_watchdog; /* timer routine */
601 IFQ_SET_READY(&ifp->if_snd);
602 /* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */
603 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
604
605 if_attach(ifp);
606 ether_ifattach(ifp, eth_addr);
607
608 aprint_normal(": Intel 82596%s address %s\n",
609 i82596_typenames[sc->sc_type], ether_sprintf(eth_addr));
610
611 for (n = 0 ; n < IEE_NCB ; n++)
612 sc->sc_tx_map[n] = NULL;
613 for (n = 0 ; n < IEE_NRFD ; n++) {
614 sc->sc_rx_mbuf[n] = NULL;
615 sc->sc_rx_map[n] = NULL;
616 }
617 sc->sc_tx_timeout = 0;
618 sc->sc_setup_timeout = 0;
619 (sc->sc_iee_reset)(sc);
620 }
621
622
623
624 void
625 iee_detach(struct iee_softc *sc, int flags)
626 {
627 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
628
629 if ((ifp->if_flags & IFF_RUNNING) != 0)
630 iee_stop(ifp, 1);
631 ether_ifdetach(ifp);
632 if_detach(ifp);
633 bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map);
634 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
635 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, IEE_SHMEM_MAX);
636 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs);
637 }
638
639
640
641 /* media change and status callback */
642 int
643 iee_mediachange(struct ifnet *ifp)
644 {
645 struct iee_softc *sc = ifp->if_softc;
646
647 if (sc->sc_mediachange != NULL)
648 return (sc->sc_mediachange)(ifp);
649 return 0;
650 }
651
652
653
654 void
655 iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq)
656 {
657 struct iee_softc *sc = ifp->if_softc;
658
659 if (sc->sc_mediastatus != NULL)
660 (sc->sc_mediastatus)(ifp, ifmreq);
661 }
662
663
664
665 /* initiate output routine */
666 void
667 iee_start(struct ifnet *ifp)
668 {
669 struct iee_softc *sc = ifp->if_softc;
670 struct mbuf *m = NULL;
671 int t;
672 int n;
673
674 if (sc->sc_next_cb != 0)
675 /* There is already a CMD running. Defer packet enqueuing. */
676 return;
677 for (t = 0 ; t < IEE_NCB ; t++) {
678 IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]);
679 if (sc->sc_tx_mbuf[t] == NULL)
680 break;
681 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
682 sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
683 /*
684 * The packet needs more TBD then we support.
685 * Copy the packet into a mbuf cluster to get it out.
686 */
687 printf("%s: iee_start: failed to load DMA map\n",
688 device_xname(sc->sc_dev));
689 MGETHDR(m, M_DONTWAIT, MT_DATA);
690 if (m == NULL) {
691 printf("%s: iee_start: can't allocate mbuf\n",
692 device_xname(sc->sc_dev));
693 m_freem(sc->sc_tx_mbuf[t]);
694 t--;
695 continue;
696 }
697 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
698 MCLGET(m, M_DONTWAIT);
699 if ((m->m_flags & M_EXT) == 0) {
700 printf("%s: iee_start: can't allocate mbuf "
701 "cluster\n", device_xname(sc->sc_dev));
702 m_freem(sc->sc_tx_mbuf[t]);
703 m_freem(m);
704 t--;
705 continue;
706 }
707 m_copydata(sc->sc_tx_mbuf[t], 0,
708 sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *));
709 m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
710 m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
711 m_freem(sc->sc_tx_mbuf[t]);
712 sc->sc_tx_mbuf[t] = m;
713 if(bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
714 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
715 printf("%s: iee_start: can't load TX DMA map\n",
716 device_xname(sc->sc_dev));
717 m_freem(sc->sc_tx_mbuf[t]);
718 t--;
719 continue;
720 }
721 }
722 for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) {
723 SC_TBD(sc->sc_next_tbd + n)->tbd_tb_addr =
724 IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr);
725 SC_TBD(sc->sc_next_tbd + n)->tbd_size =
726 sc->sc_tx_map[t]->dm_segs[n].ds_len;
727 SC_TBD(sc->sc_next_tbd + n)->tbd_link_addr =
728 IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_TBD_OFF + IEE_TBD_SZ
729 * (sc->sc_next_tbd + n + 1)));
730 }
731 SC_TBD(sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL;
732 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0,
733 sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE);
734 IFQ_POLL(&ifp->if_snd, m);
735 if (m == NULL)
736 iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL
737 | IEE_CB_I);
738 else
739 iee_cb_setup(sc, IEE_CB_CMD_TR);
740 sc->sc_next_tbd += n;
741 #if NBPFILTER > 0
742 /* Pass packet to bpf if someone listens. */
743 if (ifp->if_bpf)
744 bpf_mtap(ifp->if_bpf, sc->sc_tx_mbuf[t]);
745 #endif
746 }
747 if (t == 0)
748 /* No packets got set up for TX. */
749 return;
750 if (t == IEE_NCB)
751 ifp->if_flags |= IFF_OACTIVE;
752 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, IEE_CB_SZ,
753 IEE_CB_LIST_SZ + IEE_TBD_LIST_SZ, BUS_DMASYNC_PREWRITE);
754 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
755 }
756
757
758
759 /* ioctl routine */
760 int
761 iee_ioctl(struct ifnet *ifp, u_long cmd, void *data)
762 {
763 struct iee_softc *sc = ifp->if_softc;
764 int s;
765 int err;
766
767 s = splnet();
768 switch (cmd) {
769 case SIOCSIFMEDIA:
770 case SIOCGIFMEDIA:
771 err = ifmedia_ioctl(ifp, (struct ifreq *) data,
772 &sc->sc_ifmedia, cmd);
773 break;
774
775 default:
776 err = ether_ioctl(ifp, cmd, data);
777 if (err == ENETRESET) {
778 /*
779 * Multicast list as changed; set the hardware filter
780 * accordingly.
781 */
782 if (ifp->if_flags & IFF_RUNNING) {
783 iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S |
784 IEE_CB_EL | IEE_CB_I);
785 if ((sc->sc_flags & IEE_WANT_MCAST) == 0)
786 (*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
787 }
788 err = 0;
789 }
790 break;
791 }
792 splx(s);
793 return err;
794 }
795
796
797
798 /* init routine */
799 int
800 iee_init(struct ifnet *ifp)
801 {
802 struct iee_softc *sc = ifp->if_softc;
803 int r;
804 int t;
805 int n;
806 int err;
807
808 sc->sc_next_cb = 0;
809 sc->sc_next_tbd = 0;
810 sc->sc_flags &= ~IEE_WANT_MCAST;
811 sc->sc_rx_done = 0;
812 SC_SCB->scb_crc_err = 0;
813 SC_SCB->scb_align_err = 0;
814 SC_SCB->scb_resource_err = 0;
815 SC_SCB->scb_overrun_err = 0;
816 SC_SCB->scb_rcvcdt_err = 0;
817 SC_SCB->scb_short_fr_err = 0;
818 sc->sc_crc_err = 0;
819 sc->sc_align_err = 0;
820 sc->sc_resource_err = 0;
821 sc->sc_overrun_err = 0;
822 sc->sc_rcvcdt_err = 0;
823 sc->sc_short_fr_err = 0;
824 sc->sc_tx_col = 0;
825 sc->sc_rx_err = 0;
826 sc->sc_cmd_err = 0;
827 /* Create Transmit DMA maps. */
828 for (t = 0 ; t < IEE_NCB ; t++) {
829 if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat,
830 MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT,
831 &sc->sc_tx_map[t]) != 0) {
832 printf("%s: iee_init: can't create TX DMA map\n",
833 device_xname(sc->sc_dev));
834 for (n = 0 ; n < t ; n++)
835 bus_dmamap_destroy(sc->sc_dmat,
836 sc->sc_tx_map[n]);
837 return ENOBUFS;
838 }
839 }
840 /* Initialize Receive Frame and Receive Buffer Descriptors */
841 err = 0;
842 memset(SC_RFD(0), 0, IEE_RFD_LIST_SZ);
843 memset(SC_RBD(0), 0, IEE_RBD_LIST_SZ);
844 for (r = 0 ; r < IEE_NRFD ; r++) {
845 SC_RFD(r)->rfd_cmd = IEE_RFD_SF;
846 SC_RFD(r)->rfd_link_addr =
847 IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_RFD_OFF
848 + IEE_RFD_SZ * ((r + 1) % IEE_NRFD)));
849
850 SC_RBD(r)->rbd_next_rbd =
851 IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_RBD_OFF
852 + IEE_RBD_SZ * ((r + 1) % IEE_NRFD)));
853 if (sc->sc_rx_mbuf[r] == NULL) {
854 MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA);
855 if (sc->sc_rx_mbuf[r] == NULL) {
856 printf("%s: iee_init: can't allocate mbuf\n",
857 device_xname(sc->sc_dev));
858 err = 1;
859 break;
860 }
861 MCLAIM(sc->sc_rx_mbuf[r],&sc->sc_ethercom.ec_rx_mowner);
862 MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT);
863 if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) {
864 printf("%s: iee_init: can't allocate mbuf"
865 " cluster\n", device_xname(sc->sc_dev));
866 m_freem(sc->sc_rx_mbuf[r]);
867 err = 1;
868 break;
869 }
870 }
871 if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat,
872 MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT,
873 &sc->sc_rx_map[r]) != 0) {
874 printf("%s: iee_init: can't create RX "
875 "DMA map\n", device_xname(sc->sc_dev));
876 m_freem(sc->sc_rx_mbuf[r]);
877 err = 1;
878 break;
879 }
880 if (bus_dmamap_load(sc->sc_dmat, sc->sc_rx_map[r],
881 sc->sc_rx_mbuf[r]->m_ext.ext_buf,
882 sc->sc_rx_mbuf[r]->m_ext.ext_size, NULL,
883 BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) {
884 printf("%s: iee_init: can't load RX DMA map\n",
885 device_xname(sc->sc_dev));
886 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]);
887 m_freem(sc->sc_rx_mbuf[r]);
888 err = 1;
889 break;
890 }
891 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0,
892 sc->sc_rx_mbuf[r]->m_ext.ext_size, BUS_DMASYNC_PREREAD);
893 SC_RBD(r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len;
894 SC_RBD(r)->rbd_rb_addr =
895 IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr);
896 }
897 SC_RFD(0)->rfd_rbd_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_RBD_OFF));
898 if (err != 0) {
899 for (n = 0 ; n < r; n++) {
900 m_freem(sc->sc_rx_mbuf[n]);
901 sc->sc_rx_mbuf[n] = NULL;
902 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
903 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
904 sc->sc_rx_map[n] = NULL;
905 }
906 for (n = 0 ; n < t ; n++) {
907 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
908 sc->sc_tx_map[n] = NULL;
909 }
910 return ENOBUFS;
911 }
912
913 (sc->sc_iee_reset)(sc);
914 iee_cb_setup(sc, IEE_CB_CMD_IAS);
915 sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF;
916 sc->sc_cf[1] = IEE_CF_1_DEF;
917 sc->sc_cf[2] = IEE_CF_2_DEF;
918 sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI
919 | IEE_CF_3_PREAMLEN_DEF;
920 sc->sc_cf[4] = IEE_CF_4_DEF;
921 sc->sc_cf[5] = IEE_CF_5_DEF;
922 sc->sc_cf[6] = IEE_CF_6_DEF;
923 sc->sc_cf[7] = IEE_CF_7_DEF;
924 sc->sc_cf[8] = IEE_CF_8_DEF;
925 sc->sc_cf[9] = IEE_CF_9_DEF;
926 sc->sc_cf[10] = IEE_CF_10_DEF;
927 sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD;
928 sc->sc_cf[12] = IEE_CF_12_DEF;
929 sc->sc_cf[13] = IEE_CF_13_DEF;
930 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL);
931 SC_SCB->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(IEE_RFD_OFF));
932 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, IEE_SHMEM_MAX,
933 BUS_DMASYNC_PREWRITE);
934 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST);
935 /* Issue a Channel Attention to ACK interrupts we may have caused. */
936 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
937
938 /* Mark the interface as running and ready to RX/TX packets. */
939 ifp->if_flags |= IFF_RUNNING;
940 ifp->if_flags &= ~IFF_OACTIVE;
941 return 0;
942 }
943
944
945
946 /* stop routine */
947 void
948 iee_stop(struct ifnet *ifp, int disable)
949 {
950 struct iee_softc *sc = ifp->if_softc;
951 int n;
952
953 ifp->if_flags &= ~IFF_RUNNING;
954 ifp->if_flags |= IFF_OACTIVE;
955 ifp->if_timer = 0;
956 /* Reset the chip to get it quiet. */
957 (sc->sc_iee_reset)(ifp->if_softc);
958 /* Issue a Channel Attention to ACK interrupts we may have caused. */
959 (sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK);
960 /* Release any dynamically allocated resources. */
961 for (n = 0 ; n < IEE_NCB ; n++) {
962 if (sc->sc_tx_map[n] != NULL)
963 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
964 sc->sc_tx_map[n] = NULL;
965 }
966 for (n = 0 ; n < IEE_NRFD ; n++) {
967 if (sc->sc_rx_mbuf[n] != NULL)
968 m_freem(sc->sc_rx_mbuf[n]);
969 sc->sc_rx_mbuf[n] = NULL;
970 if (sc->sc_rx_map[n] != NULL) {
971 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
972 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
973 }
974 sc->sc_rx_map[n] = NULL;
975 }
976 }
977
978
979
980 /* timer routine */
981 void
982 iee_watchdog(struct ifnet *ifp)
983 {
984 struct iee_softc *sc = ifp->if_softc;
985
986 (sc->sc_iee_reset)(sc);
987 if (sc->sc_next_tbd != 0)
988 printf("%s: iee_watchdog: transmit timeout %d\n",
989 device_xname(sc->sc_dev), ++sc->sc_tx_timeout);
990 else
991 printf("%s: iee_watchdog: setup timeout %d\n",
992 device_xname(sc->sc_dev), ++sc->sc_setup_timeout);
993 iee_init(ifp);
994 }
995