i82596.c revision 1.25 1 /* $NetBSD: i82596.c,v 1.25 2009/05/10 04:26:19 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 2003 Jochen Kunz.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Jochen Kunz may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOCHEN KUNZ
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips.
34 *
35 * It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586
36 * ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to
37 * i82586 compatibility mode.
38 *
39 * Documentation about these chips can be found at
40 *
41 * http://developer.intel.com/design/network/datashts/290218.htm
42 * http://developer.intel.com/design/network/datashts/290219.htm
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.25 2009/05/10 04:26:19 tsutsui Exp $");
47
48 /* autoconfig and device stuff */
49 #include <sys/param.h>
50 #include <sys/device.h>
51 #include <sys/conf.h>
52 #include "locators.h"
53 #include "ioconf.h"
54
55 /* bus_space / bus_dma etc. */
56 #include <sys/bus.h>
57 #include <sys/intr.h>
58
59 /* general system data and functions */
60 #include <sys/systm.h>
61 #include <sys/ioctl.h>
62
63 /* tsleep / sleep / wakeup */
64 #include <sys/proc.h>
65 /* hz for above */
66 #include <sys/kernel.h>
67
68 /* network stuff */
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_ether.h>
73 #include <sys/socket.h>
74 #include <sys/mbuf.h>
75
76 #include "bpfilter.h"
77 #if NBPFILTER > 0
78 #include <net/bpf.h>
79 #endif
80
81 #include <dev/ic/i82596reg.h>
82 #include <dev/ic/i82596var.h>
83
84 /* Supported chip variants */
85 const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" };
86
87 /* media change and status callback */
88 static int iee_mediachange(struct ifnet *);
89 static void iee_mediastatus(struct ifnet *, struct ifmediareq *);
90
91 /* interface routines to upper protocols */
92 static void iee_start(struct ifnet *); /* initiate output */
93 static int iee_ioctl(struct ifnet *, u_long, void *); /* ioctl routine */
94 static int iee_init(struct ifnet *); /* init routine */
95 static void iee_stop(struct ifnet *, int); /* stop routine */
96 static void iee_watchdog(struct ifnet *); /* timer routine */
97
98 /* internal helper functions */
99 static void iee_cb_setup(struct iee_softc *, uint32_t);
100
101 /*
102 * Things a MD frontend has to provide:
103 *
104 * The functions via function pointers in the softc:
105 * int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd);
106 * int (*sc_iee_reset)(struct iee_softc *sc);
107 * void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *);
108 * int (*sc_mediachange)(struct ifnet *);
109 *
110 * sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter
111 * to the SCP cmd word and issuing a Channel Attention.
112 * sc_iee_reset(): initiate a reset, supply the address of the SCP to the
113 * chip, wait for the chip to initialize and ACK interrupts that
114 * this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
115 * This functions must carefully bus_dmamap_sync() all data they have touched!
116 *
117 * sc_mediastatus() and sc_mediachange() are just MD hooks to the according
118 * MI functions. The MD frontend may set this pointers to NULL when they
119 * are not needed.
120 *
121 * sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA.
122 * This is for printing out the correct chip type at attach time only. The
123 * MI backend doesn't distinguish different chip types when programming
124 * the chip.
125 *
126 * IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware
127 * and set on big endian hardware, when endianess conversion is not done
128 * by the bus attachment but done by i82596 chip itself.
129 * Usually you need to set IEE_NEED_SWAP on big endian machines
130 * where the hardware (the LE/~BE pin) is configured as BE mode.
131 *
132 * If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word)
133 * entities can be written in big endian. But Rev A chip doesn't support
134 * 32 bit (dword) entities with big endian byte ordering, so we have to
135 * treat all 32 bit (dword) entities as two 16 bit big endian entities.
136 * Rev B and C chips support big endian byte ordering for 32 bit entities,
137 * and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte.
138 *
139 * With the IEE_SYSBUS_BE feature, all 32 bit address ponters are
140 * treated as true 32 bit entities but the SCB absolute address and
141 * statistical counters are still treated as two 16 bit big endian entities,
142 * so we have to always swap high and low words for these entities.
143 * IEE_SWAP32() should be used for the SCB address and statistical counters,
144 * and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem.
145 *
146 * IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature
147 * is disabled even on big endian machines for the old Rev A chip in backend.
148 *
149 * sc->sc_cl_align must be set to 1 or to the cache line size. When set to
150 * 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1
151 * it forces alignment of the data structures in the shared memory to a multiple
152 * of sc->sc_cl_align. This is needed on archs like hp700 that have non DMA
153 * I/O coherent caches and are unable to map the shared memory uncachable.
154 * (At least pre PA7100LC CPUs are unable to map memory uncachable.)
155 *
156 * sc->sc_cl_align MUST BE INITIALIZED BEFORE THE FOLLOWING MACROS ARE USED:
157 * SC_* IEE_*_SZ IEE_*_OFF IEE_SHMEM_MAX (shell style glob(3) pattern)
158 *
159 * The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus
160 * to allocate and setup shared DMA memory in MI iee_attach().
161 * All communication with the chip is done via this shared memory.
162 * This memory is mapped with BUS_DMA_COHERENT so it will be uncached
163 * if possible for archs with non DMA I/O coherent caches.
164 * The base of the memory needs to be aligned to an even address
165 * if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1.
166 *
167 * An interrupt with iee_intr() as handler must be established.
168 *
169 * Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address,
170 * int *media, int nmedia, int defmedia); when everything is set up. First
171 * parameter is a pointer to the MI softc, ether_address is an array that
172 * contains the ethernet address. media is an array of the media types
173 * provided by the hardware. The members of this array are supplied to
174 * ifmedia_add() in sequence. nmedia is the count of elements in media.
175 * defmedia is the default media that is set via ifmedia_set().
176 * nmedia and defmedia are ignored when media == NULL.
177 *
178 * The MD backend may call iee_detach() to detach the device.
179 *
180 * See sys/arch/hp700/gsc/if_iee_gsc.c for an example.
181 */
182
183
184 /*
185 * How frame reception is done:
186 * Each Receive Frame Descriptor has one associated Receive Buffer Descriptor.
187 * Each RBD points to the data area of an mbuf cluster. The RFDs are linked
188 * together in a circular list. sc->sc_rx_done is the count of RFDs in the
189 * list already processed / the number of the RFD that has to be checked for
190 * a new frame first at the next RX interrupt. Upon successful reception of
191 * a frame the mbuf cluster is handled to upper protocol layers, a new mbuf
192 * cluster is allocated and the RFD / RBD are reinitialized accordingly.
193 *
194 * When a RFD list overrun occurred the whole RFD and RBD lists are reinitialized
195 * and frame reception is started again.
196 */
197 int
198 iee_intr(void *intarg)
199 {
200 struct iee_softc *sc = intarg;
201 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
202 struct iee_rfd *rfd;
203 struct iee_rbd *rbd;
204 bus_dmamap_t rx_map;
205 struct mbuf *rx_mbuf;
206 struct mbuf *new_mbuf;
207 int scb_status;
208 int scb_cmd;
209 int n, col;
210 uint16_t status, count, cmd;
211
212 if ((ifp->if_flags & IFF_RUNNING) == 0) {
213 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
214 return 1;
215 }
216 IEE_SCBSYNC(sc, BUS_DMASYNC_POSTREAD);
217 scb_status = SC_SCB(sc)->scb_status;
218 scb_cmd = SC_SCB(sc)->scb_cmd;
219 for (;;) {
220 rfd = SC_RFD(sc, sc->sc_rx_done);
221 IEE_RFDSYNC(sc, sc->sc_rx_done,
222 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
223 status = rfd->rfd_status;
224 if ((status & IEE_RFD_C) == 0) {
225 IEE_RFDSYNC(sc, sc->sc_rx_done, BUS_DMASYNC_PREREAD);
226 break;
227 }
228 rfd->rfd_status = 0;
229 IEE_RFDSYNC(sc, sc->sc_rx_done,
230 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
231
232 /* At least one packet was received. */
233 rx_map = sc->sc_rx_map[sc->sc_rx_done];
234 rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done];
235 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
236 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
237 SC_RBD(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size
238 &= ~IEE_RBD_EL;
239 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
240 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
241 rbd = SC_RBD(sc, sc->sc_rx_done);
242 IEE_RBDSYNC(sc, sc->sc_rx_done,
243 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
244 count = rbd->rbd_count;
245 if ((status & IEE_RFD_OK) == 0
246 || (count & IEE_RBD_EOF) == 0
247 || (count & IEE_RBD_F) == 0){
248 /* Receive error, skip frame and reuse buffer. */
249 rbd->rbd_count = 0;
250 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
251 IEE_RBDSYNC(sc, sc->sc_rx_done,
252 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
253 printf("%s: iee_intr: receive error %d, rfd_status="
254 "0x%.4x, rfd_count=0x%.4x\n",
255 device_xname(sc->sc_dev),
256 ++sc->sc_rx_err, status, count);
257 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
258 continue;
259 }
260 bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_mbuf->m_ext.ext_size,
261 BUS_DMASYNC_POSTREAD);
262 rx_mbuf->m_pkthdr.len = rx_mbuf->m_len =
263 count & IEE_RBD_COUNT;
264 rx_mbuf->m_pkthdr.rcvif = ifp;
265 MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
266 if (new_mbuf == NULL) {
267 printf("%s: iee_intr: can't allocate mbuf\n",
268 device_xname(sc->sc_dev));
269 break;
270 }
271 MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner);
272 MCLGET(new_mbuf, M_DONTWAIT);
273 if ((new_mbuf->m_flags & M_EXT) == 0) {
274 printf("%s: iee_intr: can't alloc mbuf cluster\n",
275 device_xname(sc->sc_dev));
276 m_freem(new_mbuf);
277 break;
278 }
279 bus_dmamap_unload(sc->sc_dmat, rx_map);
280 new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES - 2;
281 new_mbuf->m_data += 2;
282 if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_map,
283 new_mbuf, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0)
284 panic("%s: iee_intr: can't load RX DMA map\n",
285 device_xname(sc->sc_dev));
286 bus_dmamap_sync(sc->sc_dmat, rx_map, 0,
287 rx_map->dm_mapsize, BUS_DMASYNC_PREREAD);
288 #if NBPFILTER > 0
289 if (ifp->if_bpf != 0)
290 bpf_mtap(ifp->if_bpf, rx_mbuf);
291 #endif /* NBPFILTER > 0 */
292 (*ifp->if_input)(ifp, rx_mbuf);
293 ifp->if_ipackets++;
294 sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf;
295 rbd->rbd_count = 0;
296 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
297 rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr);
298 IEE_RBDSYNC(sc, sc->sc_rx_done,
299 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
300 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
301 }
302 if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1
303 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2
304 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) {
305 /* Receive Overrun, reinit receive ring buffer. */
306 for (n = 0 ; n < IEE_NRFD ; n++) {
307 rfd = SC_RFD(sc, n);
308 rbd = SC_RBD(sc, n);
309 rfd->rfd_cmd = IEE_RFD_SF;
310 rfd->rfd_link_addr =
311 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
312 + sc->sc_rfd_sz * ((n + 1) % IEE_NRFD)));
313 rbd->rbd_next_rbd =
314 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
315 + sc->sc_rbd_sz * ((n + 1) % IEE_NRFD)));
316 rbd->rbd_size = IEE_RBD_EL |
317 sc->sc_rx_map[n]->dm_segs[0].ds_len;
318 rbd->rbd_rb_addr =
319 IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr);
320 }
321 SC_RFD(sc, 0)->rfd_rbd_addr =
322 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
323 sc->sc_rx_done = 0;
324 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, sc->sc_rfd_off,
325 sc->sc_rfd_sz * IEE_NRFD + sc->sc_rbd_sz * IEE_NRFD,
326 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
327 (sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST);
328 printf("%s: iee_intr: receive ring buffer overrun\n",
329 device_xname(sc->sc_dev));
330 }
331
332 if (sc->sc_next_cb != 0) {
333 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
334 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
335 status = SC_CB(sc, sc->sc_next_cb - 1)->cb_status;
336 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
337 BUS_DMASYNC_PREREAD);
338 if ((status & IEE_CB_C) != 0) {
339 /* CMD list finished */
340 ifp->if_timer = 0;
341 if (sc->sc_next_tbd != 0) {
342 /* A TX CMD list finished, cleanup */
343 for (n = 0 ; n < sc->sc_next_cb ; n++) {
344 m_freem(sc->sc_tx_mbuf[n]);
345 sc->sc_tx_mbuf[n] = NULL;
346 bus_dmamap_unload(sc->sc_dmat,
347 sc->sc_tx_map[n]);
348 IEE_CBSYNC(sc, n,
349 BUS_DMASYNC_POSTREAD|
350 BUS_DMASYNC_POSTWRITE);
351 status = SC_CB(sc, n)->cb_status;
352 IEE_CBSYNC(sc, n,
353 BUS_DMASYNC_PREREAD);
354 if ((status & IEE_CB_COL) != 0 &&
355 (status & IEE_CB_MAXCOL) == 0)
356 col = 16;
357 else
358 col = status
359 & IEE_CB_MAXCOL;
360 sc->sc_tx_col += col;
361 if ((status & IEE_CB_OK) != 0) {
362 ifp->if_opackets++;
363 ifp->if_collisions += col;
364 }
365 }
366 sc->sc_next_tbd = 0;
367 ifp->if_flags &= ~IFF_OACTIVE;
368 }
369 for (n = 0 ; n < sc->sc_next_cb; n++) {
370 /*
371 * Check if a CMD failed, but ignore TX errors.
372 */
373 IEE_CBSYNC(sc, n,
374 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
375 cmd = SC_CB(sc, n)->cb_cmd;
376 status = SC_CB(sc, n)->cb_status;
377 IEE_CBSYNC(sc, n, BUS_DMASYNC_PREREAD);
378 if ((cmd & IEE_CB_CMD) != IEE_CB_CMD_TR &&
379 (status & IEE_CB_OK) == 0)
380 printf("%s: iee_intr: scb_status=0x%x "
381 "scb_cmd=0x%x failed command %d: "
382 "cb_status[%d]=0x%.4x "
383 "cb_cmd[%d]=0x%.4x\n",
384 device_xname(sc->sc_dev),
385 scb_status, scb_cmd,
386 ++sc->sc_cmd_err,
387 n, status, n, cmd);
388 }
389 sc->sc_next_cb = 0;
390 if ((sc->sc_flags & IEE_WANT_MCAST) != 0) {
391 iee_cb_setup(sc, IEE_CB_CMD_MCS |
392 IEE_CB_S | IEE_CB_EL | IEE_CB_I);
393 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
394 } else
395 /* Try to get deferred packets going. */
396 iee_start(ifp);
397 }
398 }
399 if (IEE_SWAP32(SC_SCB(sc)->scb_crc_err) != sc->sc_crc_err) {
400 sc->sc_crc_err = IEE_SWAP32(SC_SCB(sc)->scb_crc_err);
401 printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev),
402 sc->sc_crc_err);
403 }
404 if (IEE_SWAP32(SC_SCB(sc)->scb_align_err) != sc->sc_align_err) {
405 sc->sc_align_err = IEE_SWAP32(SC_SCB(sc)->scb_align_err);
406 printf("%s: iee_intr: align_err=%d\n", device_xname(sc->sc_dev),
407 sc->sc_align_err);
408 }
409 if (IEE_SWAP32(SC_SCB(sc)->scb_resource_err) != sc->sc_resource_err) {
410 sc->sc_resource_err = IEE_SWAP32(SC_SCB(sc)->scb_resource_err);
411 printf("%s: iee_intr: resource_err=%d\n",
412 device_xname(sc->sc_dev), sc->sc_resource_err);
413 }
414 if (IEE_SWAP32(SC_SCB(sc)->scb_overrun_err) != sc->sc_overrun_err) {
415 sc->sc_overrun_err = IEE_SWAP32(SC_SCB(sc)->scb_overrun_err);
416 printf("%s: iee_intr: overrun_err=%d\n",
417 device_xname(sc->sc_dev), sc->sc_overrun_err);
418 }
419 if (IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err) != sc->sc_rcvcdt_err) {
420 sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err);
421 printf("%s: iee_intr: rcvcdt_err=%d\n",
422 device_xname(sc->sc_dev), sc->sc_rcvcdt_err);
423 }
424 if (IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err) != sc->sc_short_fr_err) {
425 sc->sc_short_fr_err = IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err);
426 printf("%s: iee_intr: short_fr_err=%d\n",
427 device_xname(sc->sc_dev), sc->sc_short_fr_err);
428 }
429 IEE_SCBSYNC(sc, BUS_DMASYNC_PREREAD);
430 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
431 return 1;
432 }
433
434
435
436 /*
437 * How Command Block List Processing is done.
438 *
439 * A running CBL is never manipulated. If there is a CBL already running,
440 * further CMDs are deferred until the current list is done. A new list is
441 * setup when the old one has finished.
442 * This eases programming. To manipulate a running CBL it is necessary to
443 * suspend the Command Unit to avoid race conditions. After a suspend
444 * is sent we have to wait for an interrupt that ACKs the suspend. Then
445 * we can manipulate the CBL and resume operation. I am not sure that this
446 * is more effective then the current, much simpler approach. => KISS
447 * See i82596CA data sheet page 26.
448 *
449 * A CBL is running or on the way to be set up when (sc->sc_next_cb != 0).
450 *
451 * A CBL may consist of TX CMDs, and _only_ TX CMDs.
452 * A TX CBL is running or on the way to be set up when
453 * ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)).
454 *
455 * A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_
456 * non-TX CMDs.
457 *
458 * This comes mostly through the way how an Ethernet driver works and
459 * because running CBLs are not manipulated when they are on the way. If
460 * if_start() is called there will be TX CMDs enqueued so we have a running
461 * CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa.
462 *
463 * The Multicast Setup Command is special. A MCS needs more space than
464 * a single CB has. Actual space requirement depends on the length of the
465 * multicast list. So we always defer MCS until other CBLs are finished,
466 * then we setup a CONF CMD in the first CB. The CONF CMD is needed to
467 * turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may
468 * use all the remaining space in the CBL and the Transmit Buffer Descriptor
469 * List. (Therefore CBL and TBDL must be continuous in physical and virtual
470 * memory. This is guaranteed through the definitions of the list offsets
471 * in i82596reg.h and because it is only a single DMA segment used for all
472 * lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with
473 * a multicast list length of 0, thus disabling the multicast filter.
474 * A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0)
475 */
476 void
477 iee_cb_setup(struct iee_softc *sc, uint32_t cmd)
478 {
479 struct iee_cb *cb = SC_CB(sc, sc->sc_next_cb);
480 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
481 struct ether_multistep step;
482 struct ether_multi *enm;
483
484 memset(cb, 0, sc->sc_cb_sz);
485 cb->cb_cmd = cmd;
486 switch (cmd & IEE_CB_CMD) {
487 case IEE_CB_CMD_NOP: /* NOP CMD */
488 break;
489 case IEE_CB_CMD_IAS: /* Individual Address Setup */
490 memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl),
491 ETHER_ADDR_LEN);
492 break;
493 case IEE_CB_CMD_CONF: /* Configure */
494 memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0]
495 & IEE_CF_0_CNT_M);
496 break;
497 case IEE_CB_CMD_MCS: /* Multicast Setup */
498 if (sc->sc_next_cb != 0) {
499 sc->sc_flags |= IEE_WANT_MCAST;
500 return;
501 }
502 sc->sc_flags &= ~IEE_WANT_MCAST;
503 if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) {
504 /* Need no multicast filter in promisc mode. */
505 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL
506 | IEE_CB_I);
507 return;
508 }
509 /* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */
510 cb = SC_CB(sc, sc->sc_next_cb + 1);
511 cb->cb_cmd = cmd;
512 cb->cb_mcast.mc_size = 0;
513 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
514 while (enm != NULL) {
515 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
516 ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size
517 * ETHER_ADDR_LEN + 2 * sc->sc_cb_sz >
518 sc->sc_cb_sz * IEE_NCB +
519 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB) {
520 cb->cb_mcast.mc_size = 0;
521 break;
522 }
523 memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[
524 cb->cb_mcast.mc_size * ETHER_ADDR_LEN]),
525 enm->enm_addrlo, ETHER_ADDR_LEN);
526 ETHER_NEXT_MULTI(step, enm);
527 cb->cb_mcast.mc_size++;
528 }
529 if (cb->cb_mcast.mc_size == 0) {
530 /* Can't do exact mcast filtering, do ALLMULTI mode. */
531 ifp->if_flags |= IFF_ALLMULTI;
532 sc->sc_cf[11] &= ~IEE_CF_11_MCALL;
533 } else {
534 /* disable ALLMULTI and load mcast list */
535 ifp->if_flags &= ~IFF_ALLMULTI;
536 sc->sc_cf[11] |= IEE_CF_11_MCALL;
537 /* Mcast setup may need more then sc->sc_cb_sz bytes. */
538 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
539 sc->sc_cb_off,
540 sc->sc_cb_sz * IEE_NCB +
541 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB,
542 BUS_DMASYNC_PREWRITE);
543 }
544 iee_cb_setup(sc, IEE_CB_CMD_CONF);
545 break;
546 case IEE_CB_CMD_TR: /* Transmit */
547 cb->cb_transmit.tx_tbd_addr =
548 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off
549 + sc->sc_tbd_sz * sc->sc_next_tbd));
550 cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */
551 break;
552 case IEE_CB_CMD_TDR: /* Time Domain Reflectometry */
553 break;
554 case IEE_CB_CMD_DUMP: /* Dump */
555 break;
556 case IEE_CB_CMD_DIAG: /* Diagnose */
557 break;
558 default:
559 /* can't happen */
560 break;
561 }
562 cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off +
563 sc->sc_cb_sz * (sc->sc_next_cb + 1)));
564 IEE_CBSYNC(sc, sc->sc_next_cb,
565 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
566 sc->sc_next_cb++;
567 ifp->if_timer = 5;
568 }
569
570
571
572 void
573 iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia,
574 int defmedia)
575 {
576 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
577 int n;
578
579 KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align));
580
581 sc->sc_scp_off = 0;
582 sc->sc_scp_sz = roundup2(sizeof(struct iee_scp), sc->sc_cl_align);
583 sc->sc_iscp_off = sc->sc_scp_sz;
584 sc->sc_iscp_sz = roundup2(sizeof(struct iee_iscp), sc->sc_cl_align);
585 sc->sc_scb_off = sc->sc_iscp_off + sc->sc_iscp_sz;
586 sc->sc_scb_sz = roundup2(sizeof(struct iee_scb), sc->sc_cl_align);
587 sc->sc_rfd_off = sc->sc_scb_off + sc->sc_scb_sz;
588 sc->sc_rfd_sz = roundup2(sizeof(struct iee_rfd), sc->sc_cl_align);
589 sc->sc_rbd_off = sc->sc_rfd_off + sc->sc_rfd_sz * IEE_NRFD;
590 sc->sc_rbd_sz = roundup2(sizeof(struct iee_rbd), sc->sc_cl_align);
591 sc->sc_cb_off = sc->sc_rbd_off + sc->sc_rbd_sz * IEE_NRFD;
592 sc->sc_cb_sz = roundup2(sizeof(struct iee_cb), sc->sc_cl_align);
593 sc->sc_tbd_off = sc->sc_cb_off + sc->sc_cb_sz * IEE_NCB;
594 sc->sc_tbd_sz = roundup2(sizeof(struct iee_tbd), sc->sc_cl_align);
595 sc->sc_shmem_sz = sc->sc_tbd_off + sc->sc_tbd_sz * IEE_NTBD * IEE_NCB;
596
597 /* allocate memory for shared DMA descriptors */
598 if (bus_dmamem_alloc(sc->sc_dmat, sc->sc_shmem_sz, PAGE_SIZE, 0,
599 &sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) {
600 aprint_error(": can't allocate %d bytes of DMA memory\n",
601 sc->sc_shmem_sz);
602 return;
603 }
604 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs,
605 sc->sc_shmem_sz, (void **)&sc->sc_shmem_addr,
606 BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) {
607 aprint_error(": can't map DMA memory\n");
608 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
609 sc->sc_dma_rsegs);
610 return;
611 }
612 if (bus_dmamap_create(sc->sc_dmat, sc->sc_shmem_sz, sc->sc_dma_rsegs,
613 sc->sc_shmem_sz, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) {
614 aprint_error(": can't create DMA map\n");
615 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
616 sc->sc_shmem_sz);
617 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
618 sc->sc_dma_rsegs);
619 return;
620 }
621 if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr,
622 sc->sc_shmem_sz, NULL, BUS_DMA_NOWAIT) != 0) {
623 aprint_error(": can't load DMA map\n");
624 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
625 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
626 sc->sc_shmem_sz);
627 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
628 sc->sc_dma_rsegs);
629 return;
630 }
631 memset(sc->sc_shmem_addr, 0, sc->sc_shmem_sz);
632
633 /* Set pointer to Intermediate System Configuration Pointer. */
634 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
635 SC_SCP(sc)->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_iscp_off));
636 SC_SCP(sc)->scp_sysbus = sc->sc_sysbus;
637 /* Set pointer to System Control Block. */
638 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
639 SC_ISCP(sc)->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_scb_off));
640 /* Set pointer to Receive Frame Area. (physical address) */
641 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
642 /* Set pointer to Command Block. (physical address) */
643 SC_SCB(sc)->scb_cmd_blk_addr =
644 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off));
645
646 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
647 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
648
649 ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus);
650 if (media != NULL) {
651 for (n = 0 ; n < nmedia ; n++)
652 ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL);
653 ifmedia_set(&sc->sc_ifmedia, defmedia);
654 } else {
655 ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL);
656 ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE);
657 }
658
659 ifp->if_softc = sc;
660 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
661 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662 ifp->if_start = iee_start; /* initiate output routine */
663 ifp->if_ioctl = iee_ioctl; /* ioctl routine */
664 ifp->if_init = iee_init; /* init routine */
665 ifp->if_stop = iee_stop; /* stop routine */
666 ifp->if_watchdog = iee_watchdog; /* timer routine */
667 IFQ_SET_READY(&ifp->if_snd);
668 /* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */
669 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
670
671 if_attach(ifp);
672 ether_ifattach(ifp, eth_addr);
673
674 aprint_normal(": Intel 82596%s address %s\n",
675 i82596_typenames[sc->sc_type], ether_sprintf(eth_addr));
676
677 for (n = 0 ; n < IEE_NCB ; n++)
678 sc->sc_tx_map[n] = NULL;
679 for (n = 0 ; n < IEE_NRFD ; n++) {
680 sc->sc_rx_mbuf[n] = NULL;
681 sc->sc_rx_map[n] = NULL;
682 }
683 sc->sc_tx_timeout = 0;
684 sc->sc_setup_timeout = 0;
685 (sc->sc_iee_reset)(sc);
686 }
687
688
689
690 void
691 iee_detach(struct iee_softc *sc, int flags)
692 {
693 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
694
695 if ((ifp->if_flags & IFF_RUNNING) != 0)
696 iee_stop(ifp, 1);
697 ether_ifdetach(ifp);
698 if_detach(ifp);
699 bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map);
700 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
701 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, sc->sc_shmem_sz);
702 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs);
703 }
704
705
706
707 /* media change and status callback */
708 int
709 iee_mediachange(struct ifnet *ifp)
710 {
711 struct iee_softc *sc = ifp->if_softc;
712
713 if (sc->sc_mediachange != NULL)
714 return (sc->sc_mediachange)(ifp);
715 return 0;
716 }
717
718
719
720 void
721 iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq)
722 {
723 struct iee_softc *sc = ifp->if_softc;
724
725 if (sc->sc_mediastatus != NULL)
726 (sc->sc_mediastatus)(ifp, ifmreq);
727 }
728
729
730
731 /* initiate output routine */
732 void
733 iee_start(struct ifnet *ifp)
734 {
735 struct iee_softc *sc = ifp->if_softc;
736 struct mbuf *m = NULL;
737 struct iee_tbd *tbd;
738 int t;
739 int n;
740
741 if (sc->sc_next_cb != 0)
742 /* There is already a CMD running. Defer packet enqueuing. */
743 return;
744 for (t = 0 ; t < IEE_NCB ; t++) {
745 IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]);
746 if (sc->sc_tx_mbuf[t] == NULL)
747 break;
748 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
749 sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
750 /*
751 * The packet needs more TBD then we support.
752 * Copy the packet into a mbuf cluster to get it out.
753 */
754 printf("%s: iee_start: failed to load DMA map\n",
755 device_xname(sc->sc_dev));
756 MGETHDR(m, M_DONTWAIT, MT_DATA);
757 if (m == NULL) {
758 printf("%s: iee_start: can't allocate mbuf\n",
759 device_xname(sc->sc_dev));
760 m_freem(sc->sc_tx_mbuf[t]);
761 t--;
762 continue;
763 }
764 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
765 MCLGET(m, M_DONTWAIT);
766 if ((m->m_flags & M_EXT) == 0) {
767 printf("%s: iee_start: can't allocate mbuf "
768 "cluster\n", device_xname(sc->sc_dev));
769 m_freem(sc->sc_tx_mbuf[t]);
770 m_freem(m);
771 t--;
772 continue;
773 }
774 m_copydata(sc->sc_tx_mbuf[t], 0,
775 sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *));
776 m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
777 m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
778 m_freem(sc->sc_tx_mbuf[t]);
779 sc->sc_tx_mbuf[t] = m;
780 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
781 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
782 printf("%s: iee_start: can't load TX DMA map\n",
783 device_xname(sc->sc_dev));
784 m_freem(sc->sc_tx_mbuf[t]);
785 t--;
786 continue;
787 }
788 }
789 for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) {
790 tbd = SC_TBD(sc, sc->sc_next_tbd + n);
791 tbd->tbd_tb_addr =
792 IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr);
793 tbd->tbd_size =
794 sc->sc_tx_map[t]->dm_segs[n].ds_len;
795 tbd->tbd_link_addr =
796 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off +
797 sc->sc_tbd_sz * (sc->sc_next_tbd + n + 1)));
798 }
799 SC_TBD(sc, sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL;
800 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
801 sc->sc_tbd_off + sc->sc_next_tbd * sc->sc_tbd_sz,
802 sc->sc_tbd_sz * sc->sc_tx_map[t]->dm_nsegs,
803 BUS_DMASYNC_PREWRITE);
804 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0,
805 sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE);
806 IFQ_POLL(&ifp->if_snd, m);
807 if (m == NULL)
808 iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL
809 | IEE_CB_I);
810 else
811 iee_cb_setup(sc, IEE_CB_CMD_TR);
812 sc->sc_next_tbd += n;
813 #if NBPFILTER > 0
814 /* Pass packet to bpf if someone listens. */
815 if (ifp->if_bpf)
816 bpf_mtap(ifp->if_bpf, sc->sc_tx_mbuf[t]);
817 #endif
818 }
819 if (t == 0)
820 /* No packets got set up for TX. */
821 return;
822 if (t == IEE_NCB)
823 ifp->if_flags |= IFF_OACTIVE;
824 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
825 }
826
827
828
829 /* ioctl routine */
830 int
831 iee_ioctl(struct ifnet *ifp, u_long cmd, void *data)
832 {
833 struct iee_softc *sc = ifp->if_softc;
834 int s;
835 int err;
836
837 s = splnet();
838 switch (cmd) {
839 case SIOCSIFMEDIA:
840 case SIOCGIFMEDIA:
841 err = ifmedia_ioctl(ifp, (struct ifreq *) data,
842 &sc->sc_ifmedia, cmd);
843 break;
844
845 default:
846 err = ether_ioctl(ifp, cmd, data);
847 if (err == ENETRESET) {
848 /*
849 * Multicast list as changed; set the hardware filter
850 * accordingly.
851 */
852 if (ifp->if_flags & IFF_RUNNING) {
853 iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S |
854 IEE_CB_EL | IEE_CB_I);
855 if ((sc->sc_flags & IEE_WANT_MCAST) == 0)
856 (*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
857 }
858 err = 0;
859 }
860 break;
861 }
862 splx(s);
863 return err;
864 }
865
866
867
868 /* init routine */
869 int
870 iee_init(struct ifnet *ifp)
871 {
872 struct iee_softc *sc = ifp->if_softc;
873 int r;
874 int t;
875 int n;
876 int err;
877
878 sc->sc_next_cb = 0;
879 sc->sc_next_tbd = 0;
880 sc->sc_flags &= ~IEE_WANT_MCAST;
881 sc->sc_rx_done = 0;
882 SC_SCB(sc)->scb_crc_err = 0;
883 SC_SCB(sc)->scb_align_err = 0;
884 SC_SCB(sc)->scb_resource_err = 0;
885 SC_SCB(sc)->scb_overrun_err = 0;
886 SC_SCB(sc)->scb_rcvcdt_err = 0;
887 SC_SCB(sc)->scb_short_fr_err = 0;
888 sc->sc_crc_err = 0;
889 sc->sc_align_err = 0;
890 sc->sc_resource_err = 0;
891 sc->sc_overrun_err = 0;
892 sc->sc_rcvcdt_err = 0;
893 sc->sc_short_fr_err = 0;
894 sc->sc_tx_col = 0;
895 sc->sc_rx_err = 0;
896 sc->sc_cmd_err = 0;
897 /* Create Transmit DMA maps. */
898 for (t = 0 ; t < IEE_NCB ; t++) {
899 if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat,
900 MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT,
901 &sc->sc_tx_map[t]) != 0) {
902 printf("%s: iee_init: can't create TX DMA map\n",
903 device_xname(sc->sc_dev));
904 for (n = 0 ; n < t ; n++)
905 bus_dmamap_destroy(sc->sc_dmat,
906 sc->sc_tx_map[n]);
907 return ENOBUFS;
908 }
909 }
910 /* Initialize Receive Frame and Receive Buffer Descriptors */
911 err = 0;
912 memset(SC_RFD(sc, 0), 0, sc->sc_rfd_sz * IEE_NRFD);
913 memset(SC_RBD(sc, 0), 0, sc->sc_rbd_sz * IEE_NRFD);
914 for (r = 0 ; r < IEE_NRFD ; r++) {
915 SC_RFD(sc, r)->rfd_cmd = IEE_RFD_SF;
916 SC_RFD(sc, r)->rfd_link_addr =
917 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
918 + sc->sc_rfd_sz * ((r + 1) % IEE_NRFD)));
919
920 SC_RBD(sc, r)->rbd_next_rbd =
921 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
922 + sc->sc_rbd_sz * ((r + 1) % IEE_NRFD)));
923 if (sc->sc_rx_mbuf[r] == NULL) {
924 MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA);
925 if (sc->sc_rx_mbuf[r] == NULL) {
926 printf("%s: iee_init: can't allocate mbuf\n",
927 device_xname(sc->sc_dev));
928 err = 1;
929 break;
930 }
931 MCLAIM(sc->sc_rx_mbuf[r],&sc->sc_ethercom.ec_rx_mowner);
932 MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT);
933 if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) {
934 printf("%s: iee_init: can't allocate mbuf"
935 " cluster\n", device_xname(sc->sc_dev));
936 m_freem(sc->sc_rx_mbuf[r]);
937 err = 1;
938 break;
939 }
940 sc->sc_rx_mbuf[r]->m_len =
941 sc->sc_rx_mbuf[r]->m_pkthdr.len = MCLBYTES - 2;
942 sc->sc_rx_mbuf[r]->m_data += 2;
943 }
944 if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat,
945 MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT,
946 &sc->sc_rx_map[r]) != 0) {
947 printf("%s: iee_init: can't create RX "
948 "DMA map\n", device_xname(sc->sc_dev));
949 m_freem(sc->sc_rx_mbuf[r]);
950 err = 1;
951 break;
952 }
953 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_map[r],
954 sc->sc_rx_mbuf[r], BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) {
955 printf("%s: iee_init: can't load RX DMA map\n",
956 device_xname(sc->sc_dev));
957 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]);
958 m_freem(sc->sc_rx_mbuf[r]);
959 err = 1;
960 break;
961 }
962 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0,
963 sc->sc_rx_map[r]->dm_mapsize, BUS_DMASYNC_PREREAD);
964 SC_RBD(sc, r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len;
965 SC_RBD(sc, r)->rbd_rb_addr =
966 IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr);
967 }
968 SC_RFD(sc, 0)->rfd_rbd_addr =
969 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
970 if (err != 0) {
971 for (n = 0 ; n < r; n++) {
972 m_freem(sc->sc_rx_mbuf[n]);
973 sc->sc_rx_mbuf[n] = NULL;
974 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
975 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
976 sc->sc_rx_map[n] = NULL;
977 }
978 for (n = 0 ; n < t ; n++) {
979 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
980 sc->sc_tx_map[n] = NULL;
981 }
982 return ENOBUFS;
983 }
984
985 (sc->sc_iee_reset)(sc);
986 iee_cb_setup(sc, IEE_CB_CMD_IAS);
987 sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF;
988 sc->sc_cf[1] = IEE_CF_1_DEF;
989 sc->sc_cf[2] = IEE_CF_2_DEF;
990 sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI
991 | IEE_CF_3_PREAMLEN_DEF;
992 sc->sc_cf[4] = IEE_CF_4_DEF;
993 sc->sc_cf[5] = IEE_CF_5_DEF;
994 sc->sc_cf[6] = IEE_CF_6_DEF;
995 sc->sc_cf[7] = IEE_CF_7_DEF;
996 sc->sc_cf[8] = IEE_CF_8_DEF;
997 sc->sc_cf[9] = IEE_CF_9_DEF;
998 sc->sc_cf[10] = IEE_CF_10_DEF;
999 sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD;
1000 sc->sc_cf[12] = IEE_CF_12_DEF;
1001 sc->sc_cf[13] = IEE_CF_13_DEF;
1002 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL);
1003 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
1004 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
1005 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1006 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST);
1007 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1008 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
1009
1010 /* Mark the interface as running and ready to RX/TX packets. */
1011 ifp->if_flags |= IFF_RUNNING;
1012 ifp->if_flags &= ~IFF_OACTIVE;
1013 return 0;
1014 }
1015
1016
1017
1018 /* stop routine */
1019 void
1020 iee_stop(struct ifnet *ifp, int disable)
1021 {
1022 struct iee_softc *sc = ifp->if_softc;
1023 int n;
1024
1025 ifp->if_flags &= ~IFF_RUNNING;
1026 ifp->if_flags |= IFF_OACTIVE;
1027 ifp->if_timer = 0;
1028 /* Reset the chip to get it quiet. */
1029 (sc->sc_iee_reset)(ifp->if_softc);
1030 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1031 (sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK);
1032 /* Release any dynamically allocated resources. */
1033 for (n = 0 ; n < IEE_NCB ; n++) {
1034 if (sc->sc_tx_map[n] != NULL)
1035 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
1036 sc->sc_tx_map[n] = NULL;
1037 }
1038 for (n = 0 ; n < IEE_NRFD ; n++) {
1039 if (sc->sc_rx_mbuf[n] != NULL)
1040 m_freem(sc->sc_rx_mbuf[n]);
1041 sc->sc_rx_mbuf[n] = NULL;
1042 if (sc->sc_rx_map[n] != NULL) {
1043 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
1044 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
1045 }
1046 sc->sc_rx_map[n] = NULL;
1047 }
1048 }
1049
1050
1051
1052 /* timer routine */
1053 void
1054 iee_watchdog(struct ifnet *ifp)
1055 {
1056 struct iee_softc *sc = ifp->if_softc;
1057
1058 (sc->sc_iee_reset)(sc);
1059 if (sc->sc_next_tbd != 0)
1060 printf("%s: iee_watchdog: transmit timeout %d\n",
1061 device_xname(sc->sc_dev), ++sc->sc_tx_timeout);
1062 else
1063 printf("%s: iee_watchdog: setup timeout %d\n",
1064 device_xname(sc->sc_dev), ++sc->sc_setup_timeout);
1065 iee_init(ifp);
1066 }
1067