i82596.c revision 1.29 1 /* $NetBSD: i82596.c,v 1.29 2010/04/05 07:19:35 joerg Exp $ */
2
3 /*
4 * Copyright (c) 2003 Jochen Kunz.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Jochen Kunz may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOCHEN KUNZ
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips.
34 *
35 * It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586
36 * ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to
37 * i82586 compatibility mode.
38 *
39 * Documentation about these chips can be found at
40 *
41 * http://developer.intel.com/design/network/datashts/290218.htm
42 * http://developer.intel.com/design/network/datashts/290219.htm
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.29 2010/04/05 07:19:35 joerg Exp $");
47
48 /* autoconfig and device stuff */
49 #include <sys/param.h>
50 #include <sys/device.h>
51 #include <sys/conf.h>
52 #include "locators.h"
53 #include "ioconf.h"
54
55 /* bus_space / bus_dma etc. */
56 #include <sys/bus.h>
57 #include <sys/intr.h>
58
59 /* general system data and functions */
60 #include <sys/systm.h>
61 #include <sys/ioctl.h>
62
63 /* tsleep / sleep / wakeup */
64 #include <sys/proc.h>
65 /* hz for above */
66 #include <sys/kernel.h>
67
68 /* network stuff */
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_ether.h>
73 #include <sys/socket.h>
74 #include <sys/mbuf.h>
75
76 #include <net/bpf.h>
77
78 #include <dev/ic/i82596reg.h>
79 #include <dev/ic/i82596var.h>
80
81 /* Supported chip variants */
82 const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" };
83
84 /* media change and status callback */
85 static int iee_mediachange(struct ifnet *);
86 static void iee_mediastatus(struct ifnet *, struct ifmediareq *);
87
88 /* interface routines to upper protocols */
89 static void iee_start(struct ifnet *); /* initiate output */
90 static int iee_ioctl(struct ifnet *, u_long, void *); /* ioctl routine */
91 static int iee_init(struct ifnet *); /* init routine */
92 static void iee_stop(struct ifnet *, int); /* stop routine */
93 static void iee_watchdog(struct ifnet *); /* timer routine */
94
95 /* internal helper functions */
96 static void iee_cb_setup(struct iee_softc *, uint32_t);
97
98 /*
99 * Things a MD frontend has to provide:
100 *
101 * The functions via function pointers in the softc:
102 * int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd);
103 * int (*sc_iee_reset)(struct iee_softc *sc);
104 * void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *);
105 * int (*sc_mediachange)(struct ifnet *);
106 *
107 * sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter
108 * to the SCP cmd word and issuing a Channel Attention.
109 * sc_iee_reset(): initiate a reset, supply the address of the SCP to the
110 * chip, wait for the chip to initialize and ACK interrupts that
111 * this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
112 * This functions must carefully bus_dmamap_sync() all data they have touched!
113 *
114 * sc_mediastatus() and sc_mediachange() are just MD hooks to the according
115 * MI functions. The MD frontend may set this pointers to NULL when they
116 * are not needed.
117 *
118 * sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA.
119 * This is for printing out the correct chip type at attach time only. The
120 * MI backend doesn't distinguish different chip types when programming
121 * the chip.
122 *
123 * IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware
124 * and set on big endian hardware, when endianess conversion is not done
125 * by the bus attachment but done by i82596 chip itself.
126 * Usually you need to set IEE_NEED_SWAP on big endian machines
127 * where the hardware (the LE/~BE pin) is configured as BE mode.
128 *
129 * If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word)
130 * entities can be written in big endian. But Rev A chip doesn't support
131 * 32 bit (dword) entities with big endian byte ordering, so we have to
132 * treat all 32 bit (dword) entities as two 16 bit big endian entities.
133 * Rev B and C chips support big endian byte ordering for 32 bit entities,
134 * and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte.
135 *
136 * With the IEE_SYSBUS_BE feature, all 32 bit address ponters are
137 * treated as true 32 bit entities but the SCB absolute address and
138 * statistical counters are still treated as two 16 bit big endian entities,
139 * so we have to always swap high and low words for these entities.
140 * IEE_SWAP32() should be used for the SCB address and statistical counters,
141 * and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem.
142 *
143 * IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature
144 * is disabled even on big endian machines for the old Rev A chip in backend.
145 *
146 * sc->sc_cl_align must be set to 1 or to the cache line size. When set to
147 * 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1
148 * it forces alignment of the data structures in the shared memory to a multiple
149 * of sc->sc_cl_align. This is needed on archs like hp700 that have non DMA
150 * I/O coherent caches and are unable to map the shared memory uncachable.
151 * (At least pre PA7100LC CPUs are unable to map memory uncachable.)
152 *
153 * The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus
154 * to allocate and setup shared DMA memory in MI iee_attach().
155 * All communication with the chip is done via this shared memory.
156 * This memory is mapped with BUS_DMA_COHERENT so it will be uncached
157 * if possible for archs with non DMA I/O coherent caches.
158 * The base of the memory needs to be aligned to an even address
159 * if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1.
160 * Each descriptor offsets are calculated in iee_attach() to handle this.
161 *
162 * An interrupt with iee_intr() as handler must be established.
163 *
164 * Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address,
165 * int *media, int nmedia, int defmedia); when everything is set up. First
166 * parameter is a pointer to the MI softc, ether_address is an array that
167 * contains the ethernet address. media is an array of the media types
168 * provided by the hardware. The members of this array are supplied to
169 * ifmedia_add() in sequence. nmedia is the count of elements in media.
170 * defmedia is the default media that is set via ifmedia_set().
171 * nmedia and defmedia are ignored when media == NULL.
172 *
173 * The MD backend may call iee_detach() to detach the device.
174 *
175 * See sys/arch/hp700/gsc/if_iee_gsc.c for an example.
176 */
177
178
179 /*
180 * How frame reception is done:
181 * Each Receive Frame Descriptor has one associated Receive Buffer Descriptor.
182 * Each RBD points to the data area of an mbuf cluster. The RFDs are linked
183 * together in a circular list. sc->sc_rx_done is the count of RFDs in the
184 * list already processed / the number of the RFD that has to be checked for
185 * a new frame first at the next RX interrupt. Upon successful reception of
186 * a frame the mbuf cluster is handled to upper protocol layers, a new mbuf
187 * cluster is allocated and the RFD / RBD are reinitialized accordingly.
188 *
189 * When a RFD list overrun occurred the whole RFD and RBD lists are
190 * reinitialized and frame reception is started again.
191 */
192 int
193 iee_intr(void *intarg)
194 {
195 struct iee_softc *sc = intarg;
196 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
197 struct iee_rfd *rfd;
198 struct iee_rbd *rbd;
199 bus_dmamap_t rx_map;
200 struct mbuf *rx_mbuf;
201 struct mbuf *new_mbuf;
202 int scb_status;
203 int scb_cmd;
204 int n, col;
205 uint16_t status, count, cmd;
206
207 if ((ifp->if_flags & IFF_RUNNING) == 0) {
208 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
209 return 1;
210 }
211 IEE_SCBSYNC(sc, BUS_DMASYNC_POSTREAD);
212 scb_status = SC_SCB(sc)->scb_status;
213 scb_cmd = SC_SCB(sc)->scb_cmd;
214 for (;;) {
215 rfd = SC_RFD(sc, sc->sc_rx_done);
216 IEE_RFDSYNC(sc, sc->sc_rx_done,
217 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
218 status = rfd->rfd_status;
219 if ((status & IEE_RFD_C) == 0) {
220 IEE_RFDSYNC(sc, sc->sc_rx_done, BUS_DMASYNC_PREREAD);
221 break;
222 }
223 rfd->rfd_status = 0;
224 IEE_RFDSYNC(sc, sc->sc_rx_done,
225 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
226
227 /* At least one packet was received. */
228 rx_map = sc->sc_rx_map[sc->sc_rx_done];
229 rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done];
230 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
231 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
232 SC_RBD(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size
233 &= ~IEE_RBD_EL;
234 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
235 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
236 rbd = SC_RBD(sc, sc->sc_rx_done);
237 IEE_RBDSYNC(sc, sc->sc_rx_done,
238 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
239 count = rbd->rbd_count;
240 if ((status & IEE_RFD_OK) == 0
241 || (count & IEE_RBD_EOF) == 0
242 || (count & IEE_RBD_F) == 0){
243 /* Receive error, skip frame and reuse buffer. */
244 rbd->rbd_count = 0;
245 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
246 IEE_RBDSYNC(sc, sc->sc_rx_done,
247 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
248 printf("%s: iee_intr: receive error %d, rfd_status="
249 "0x%.4x, rfd_count=0x%.4x\n",
250 device_xname(sc->sc_dev),
251 ++sc->sc_rx_err, status, count);
252 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
253 continue;
254 }
255 bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_map->dm_mapsize,
256 BUS_DMASYNC_POSTREAD);
257 rx_mbuf->m_pkthdr.len = rx_mbuf->m_len =
258 count & IEE_RBD_COUNT;
259 rx_mbuf->m_pkthdr.rcvif = ifp;
260 MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
261 if (new_mbuf == NULL) {
262 printf("%s: iee_intr: can't allocate mbuf\n",
263 device_xname(sc->sc_dev));
264 break;
265 }
266 MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner);
267 MCLGET(new_mbuf, M_DONTWAIT);
268 if ((new_mbuf->m_flags & M_EXT) == 0) {
269 printf("%s: iee_intr: can't alloc mbuf cluster\n",
270 device_xname(sc->sc_dev));
271 m_freem(new_mbuf);
272 break;
273 }
274 bus_dmamap_unload(sc->sc_dmat, rx_map);
275 new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES - 2;
276 new_mbuf->m_data += 2;
277 if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_map,
278 new_mbuf, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0)
279 panic("%s: iee_intr: can't load RX DMA map\n",
280 device_xname(sc->sc_dev));
281 bus_dmamap_sync(sc->sc_dmat, rx_map, 0,
282 rx_map->dm_mapsize, BUS_DMASYNC_PREREAD);
283 bpf_mtap(ifp, rx_mbuf);
284 (*ifp->if_input)(ifp, rx_mbuf);
285 ifp->if_ipackets++;
286 sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf;
287 rbd->rbd_count = 0;
288 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
289 rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr);
290 IEE_RBDSYNC(sc, sc->sc_rx_done,
291 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
292 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
293 }
294 if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1
295 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2
296 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) {
297 /* Receive Overrun, reinit receive ring buffer. */
298 for (n = 0 ; n < IEE_NRFD ; n++) {
299 rfd = SC_RFD(sc, n);
300 rbd = SC_RBD(sc, n);
301 rfd->rfd_cmd = IEE_RFD_SF;
302 rfd->rfd_link_addr =
303 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
304 + sc->sc_rfd_sz * ((n + 1) % IEE_NRFD)));
305 rbd->rbd_next_rbd =
306 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
307 + sc->sc_rbd_sz * ((n + 1) % IEE_NRFD)));
308 rbd->rbd_size = IEE_RBD_EL |
309 sc->sc_rx_map[n]->dm_segs[0].ds_len;
310 rbd->rbd_rb_addr =
311 IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr);
312 }
313 SC_RFD(sc, 0)->rfd_rbd_addr =
314 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
315 sc->sc_rx_done = 0;
316 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, sc->sc_rfd_off,
317 sc->sc_rfd_sz * IEE_NRFD + sc->sc_rbd_sz * IEE_NRFD,
318 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
319 (sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST);
320 printf("%s: iee_intr: receive ring buffer overrun\n",
321 device_xname(sc->sc_dev));
322 }
323
324 if (sc->sc_next_cb != 0) {
325 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
326 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
327 status = SC_CB(sc, sc->sc_next_cb - 1)->cb_status;
328 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
329 BUS_DMASYNC_PREREAD);
330 if ((status & IEE_CB_C) != 0) {
331 /* CMD list finished */
332 ifp->if_timer = 0;
333 if (sc->sc_next_tbd != 0) {
334 /* A TX CMD list finished, cleanup */
335 for (n = 0 ; n < sc->sc_next_cb ; n++) {
336 m_freem(sc->sc_tx_mbuf[n]);
337 sc->sc_tx_mbuf[n] = NULL;
338 bus_dmamap_unload(sc->sc_dmat,
339 sc->sc_tx_map[n]);
340 IEE_CBSYNC(sc, n,
341 BUS_DMASYNC_POSTREAD|
342 BUS_DMASYNC_POSTWRITE);
343 status = SC_CB(sc, n)->cb_status;
344 IEE_CBSYNC(sc, n,
345 BUS_DMASYNC_PREREAD);
346 if ((status & IEE_CB_COL) != 0 &&
347 (status & IEE_CB_MAXCOL) == 0)
348 col = 16;
349 else
350 col = status
351 & IEE_CB_MAXCOL;
352 sc->sc_tx_col += col;
353 if ((status & IEE_CB_OK) != 0) {
354 ifp->if_opackets++;
355 ifp->if_collisions += col;
356 }
357 }
358 sc->sc_next_tbd = 0;
359 ifp->if_flags &= ~IFF_OACTIVE;
360 }
361 for (n = 0 ; n < sc->sc_next_cb; n++) {
362 /*
363 * Check if a CMD failed, but ignore TX errors.
364 */
365 IEE_CBSYNC(sc, n,
366 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
367 cmd = SC_CB(sc, n)->cb_cmd;
368 status = SC_CB(sc, n)->cb_status;
369 IEE_CBSYNC(sc, n, BUS_DMASYNC_PREREAD);
370 if ((cmd & IEE_CB_CMD) != IEE_CB_CMD_TR &&
371 (status & IEE_CB_OK) == 0)
372 printf("%s: iee_intr: scb_status=0x%x "
373 "scb_cmd=0x%x failed command %d: "
374 "cb_status[%d]=0x%.4x "
375 "cb_cmd[%d]=0x%.4x\n",
376 device_xname(sc->sc_dev),
377 scb_status, scb_cmd,
378 ++sc->sc_cmd_err,
379 n, status, n, cmd);
380 }
381 sc->sc_next_cb = 0;
382 if ((sc->sc_flags & IEE_WANT_MCAST) != 0) {
383 iee_cb_setup(sc, IEE_CB_CMD_MCS |
384 IEE_CB_S | IEE_CB_EL | IEE_CB_I);
385 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
386 } else
387 /* Try to get deferred packets going. */
388 iee_start(ifp);
389 }
390 }
391 if (IEE_SWAP32(SC_SCB(sc)->scb_crc_err) != sc->sc_crc_err) {
392 sc->sc_crc_err = IEE_SWAP32(SC_SCB(sc)->scb_crc_err);
393 printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev),
394 sc->sc_crc_err);
395 }
396 if (IEE_SWAP32(SC_SCB(sc)->scb_align_err) != sc->sc_align_err) {
397 sc->sc_align_err = IEE_SWAP32(SC_SCB(sc)->scb_align_err);
398 printf("%s: iee_intr: align_err=%d\n", device_xname(sc->sc_dev),
399 sc->sc_align_err);
400 }
401 if (IEE_SWAP32(SC_SCB(sc)->scb_resource_err) != sc->sc_resource_err) {
402 sc->sc_resource_err = IEE_SWAP32(SC_SCB(sc)->scb_resource_err);
403 printf("%s: iee_intr: resource_err=%d\n",
404 device_xname(sc->sc_dev), sc->sc_resource_err);
405 }
406 if (IEE_SWAP32(SC_SCB(sc)->scb_overrun_err) != sc->sc_overrun_err) {
407 sc->sc_overrun_err = IEE_SWAP32(SC_SCB(sc)->scb_overrun_err);
408 printf("%s: iee_intr: overrun_err=%d\n",
409 device_xname(sc->sc_dev), sc->sc_overrun_err);
410 }
411 if (IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err) != sc->sc_rcvcdt_err) {
412 sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err);
413 printf("%s: iee_intr: rcvcdt_err=%d\n",
414 device_xname(sc->sc_dev), sc->sc_rcvcdt_err);
415 }
416 if (IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err) != sc->sc_short_fr_err) {
417 sc->sc_short_fr_err = IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err);
418 printf("%s: iee_intr: short_fr_err=%d\n",
419 device_xname(sc->sc_dev), sc->sc_short_fr_err);
420 }
421 IEE_SCBSYNC(sc, BUS_DMASYNC_PREREAD);
422 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
423 return 1;
424 }
425
426
427
428 /*
429 * How Command Block List Processing is done.
430 *
431 * A running CBL is never manipulated. If there is a CBL already running,
432 * further CMDs are deferred until the current list is done. A new list is
433 * setup when the old one has finished.
434 * This eases programming. To manipulate a running CBL it is necessary to
435 * suspend the Command Unit to avoid race conditions. After a suspend
436 * is sent we have to wait for an interrupt that ACKs the suspend. Then
437 * we can manipulate the CBL and resume operation. I am not sure that this
438 * is more effective then the current, much simpler approach. => KISS
439 * See i82596CA data sheet page 26.
440 *
441 * A CBL is running or on the way to be set up when (sc->sc_next_cb != 0).
442 *
443 * A CBL may consist of TX CMDs, and _only_ TX CMDs.
444 * A TX CBL is running or on the way to be set up when
445 * ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)).
446 *
447 * A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_
448 * non-TX CMDs.
449 *
450 * This comes mostly through the way how an Ethernet driver works and
451 * because running CBLs are not manipulated when they are on the way. If
452 * if_start() is called there will be TX CMDs enqueued so we have a running
453 * CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa.
454 *
455 * The Multicast Setup Command is special. A MCS needs more space than
456 * a single CB has. Actual space requirement depends on the length of the
457 * multicast list. So we always defer MCS until other CBLs are finished,
458 * then we setup a CONF CMD in the first CB. The CONF CMD is needed to
459 * turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may
460 * use all the remaining space in the CBL and the Transmit Buffer Descriptor
461 * List. (Therefore CBL and TBDL must be continuous in physical and virtual
462 * memory. This is guaranteed through the definitions of the list offsets
463 * in i82596reg.h and because it is only a single DMA segment used for all
464 * lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with
465 * a multicast list length of 0, thus disabling the multicast filter.
466 * A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0)
467 */
468 void
469 iee_cb_setup(struct iee_softc *sc, uint32_t cmd)
470 {
471 struct iee_cb *cb = SC_CB(sc, sc->sc_next_cb);
472 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
473 struct ether_multistep step;
474 struct ether_multi *enm;
475
476 memset(cb, 0, sc->sc_cb_sz);
477 cb->cb_cmd = cmd;
478 switch (cmd & IEE_CB_CMD) {
479 case IEE_CB_CMD_NOP: /* NOP CMD */
480 break;
481 case IEE_CB_CMD_IAS: /* Individual Address Setup */
482 memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl),
483 ETHER_ADDR_LEN);
484 break;
485 case IEE_CB_CMD_CONF: /* Configure */
486 memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0]
487 & IEE_CF_0_CNT_M);
488 break;
489 case IEE_CB_CMD_MCS: /* Multicast Setup */
490 if (sc->sc_next_cb != 0) {
491 sc->sc_flags |= IEE_WANT_MCAST;
492 return;
493 }
494 sc->sc_flags &= ~IEE_WANT_MCAST;
495 if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) {
496 /* Need no multicast filter in promisc mode. */
497 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL
498 | IEE_CB_I);
499 return;
500 }
501 /* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */
502 cb = SC_CB(sc, sc->sc_next_cb + 1);
503 cb->cb_cmd = cmd;
504 cb->cb_mcast.mc_size = 0;
505 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
506 while (enm != NULL) {
507 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
508 ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size
509 * ETHER_ADDR_LEN + 2 * sc->sc_cb_sz >
510 sc->sc_cb_sz * IEE_NCB +
511 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB) {
512 cb->cb_mcast.mc_size = 0;
513 break;
514 }
515 memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[
516 cb->cb_mcast.mc_size * ETHER_ADDR_LEN]),
517 enm->enm_addrlo, ETHER_ADDR_LEN);
518 ETHER_NEXT_MULTI(step, enm);
519 cb->cb_mcast.mc_size++;
520 }
521 if (cb->cb_mcast.mc_size == 0) {
522 /* Can't do exact mcast filtering, do ALLMULTI mode. */
523 ifp->if_flags |= IFF_ALLMULTI;
524 sc->sc_cf[11] &= ~IEE_CF_11_MCALL;
525 } else {
526 /* disable ALLMULTI and load mcast list */
527 ifp->if_flags &= ~IFF_ALLMULTI;
528 sc->sc_cf[11] |= IEE_CF_11_MCALL;
529 /* Mcast setup may need more then sc->sc_cb_sz bytes. */
530 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
531 sc->sc_cb_off,
532 sc->sc_cb_sz * IEE_NCB +
533 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB,
534 BUS_DMASYNC_PREWRITE);
535 }
536 iee_cb_setup(sc, IEE_CB_CMD_CONF);
537 break;
538 case IEE_CB_CMD_TR: /* Transmit */
539 cb->cb_transmit.tx_tbd_addr =
540 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off
541 + sc->sc_tbd_sz * sc->sc_next_tbd));
542 cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */
543 break;
544 case IEE_CB_CMD_TDR: /* Time Domain Reflectometry */
545 break;
546 case IEE_CB_CMD_DUMP: /* Dump */
547 break;
548 case IEE_CB_CMD_DIAG: /* Diagnose */
549 break;
550 default:
551 /* can't happen */
552 break;
553 }
554 cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off +
555 sc->sc_cb_sz * (sc->sc_next_cb + 1)));
556 IEE_CBSYNC(sc, sc->sc_next_cb,
557 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
558 sc->sc_next_cb++;
559 ifp->if_timer = 5;
560 }
561
562
563
564 void
565 iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia,
566 int defmedia)
567 {
568 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
569 int n;
570
571 KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align));
572
573 /*
574 * Calculate DMA descriptor offsets and sizes in shmem
575 * which should be cache line aligned.
576 */
577 sc->sc_scp_off = 0;
578 sc->sc_scp_sz = roundup2(sizeof(struct iee_scp), sc->sc_cl_align);
579 sc->sc_iscp_off = sc->sc_scp_sz;
580 sc->sc_iscp_sz = roundup2(sizeof(struct iee_iscp), sc->sc_cl_align);
581 sc->sc_scb_off = sc->sc_iscp_off + sc->sc_iscp_sz;
582 sc->sc_scb_sz = roundup2(sizeof(struct iee_scb), sc->sc_cl_align);
583 sc->sc_rfd_off = sc->sc_scb_off + sc->sc_scb_sz;
584 sc->sc_rfd_sz = roundup2(sizeof(struct iee_rfd), sc->sc_cl_align);
585 sc->sc_rbd_off = sc->sc_rfd_off + sc->sc_rfd_sz * IEE_NRFD;
586 sc->sc_rbd_sz = roundup2(sizeof(struct iee_rbd), sc->sc_cl_align);
587 sc->sc_cb_off = sc->sc_rbd_off + sc->sc_rbd_sz * IEE_NRFD;
588 sc->sc_cb_sz = roundup2(sizeof(struct iee_cb), sc->sc_cl_align);
589 sc->sc_tbd_off = sc->sc_cb_off + sc->sc_cb_sz * IEE_NCB;
590 sc->sc_tbd_sz = roundup2(sizeof(struct iee_tbd), sc->sc_cl_align);
591 sc->sc_shmem_sz = sc->sc_tbd_off + sc->sc_tbd_sz * IEE_NTBD * IEE_NCB;
592
593 /* allocate memory for shared DMA descriptors */
594 if (bus_dmamem_alloc(sc->sc_dmat, sc->sc_shmem_sz, PAGE_SIZE, 0,
595 &sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) {
596 aprint_error(": can't allocate %d bytes of DMA memory\n",
597 sc->sc_shmem_sz);
598 return;
599 }
600 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs,
601 sc->sc_shmem_sz, (void **)&sc->sc_shmem_addr,
602 BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) {
603 aprint_error(": can't map DMA memory\n");
604 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
605 sc->sc_dma_rsegs);
606 return;
607 }
608 if (bus_dmamap_create(sc->sc_dmat, sc->sc_shmem_sz, sc->sc_dma_rsegs,
609 sc->sc_shmem_sz, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) {
610 aprint_error(": can't create DMA map\n");
611 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
612 sc->sc_shmem_sz);
613 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
614 sc->sc_dma_rsegs);
615 return;
616 }
617 if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr,
618 sc->sc_shmem_sz, NULL, BUS_DMA_NOWAIT) != 0) {
619 aprint_error(": can't load DMA map\n");
620 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
621 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
622 sc->sc_shmem_sz);
623 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
624 sc->sc_dma_rsegs);
625 return;
626 }
627 memset(sc->sc_shmem_addr, 0, sc->sc_shmem_sz);
628
629 /* Set pointer to Intermediate System Configuration Pointer. */
630 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
631 SC_SCP(sc)->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_iscp_off));
632 SC_SCP(sc)->scp_sysbus = sc->sc_sysbus;
633 /* Set pointer to System Control Block. */
634 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
635 SC_ISCP(sc)->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_scb_off));
636 /* Set pointer to Receive Frame Area. (physical address) */
637 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
638 /* Set pointer to Command Block. (physical address) */
639 SC_SCB(sc)->scb_cmd_blk_addr =
640 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off));
641
642 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
643 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
644
645 ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus);
646 if (media != NULL) {
647 for (n = 0 ; n < nmedia ; n++)
648 ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL);
649 ifmedia_set(&sc->sc_ifmedia, defmedia);
650 } else {
651 ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL);
652 ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE);
653 }
654
655 ifp->if_softc = sc;
656 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
657 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
658 ifp->if_start = iee_start; /* initiate output routine */
659 ifp->if_ioctl = iee_ioctl; /* ioctl routine */
660 ifp->if_init = iee_init; /* init routine */
661 ifp->if_stop = iee_stop; /* stop routine */
662 ifp->if_watchdog = iee_watchdog; /* timer routine */
663 IFQ_SET_READY(&ifp->if_snd);
664 /* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */
665 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
666
667 if_attach(ifp);
668 ether_ifattach(ifp, eth_addr);
669
670 aprint_normal(": Intel 82596%s address %s\n",
671 i82596_typenames[sc->sc_type], ether_sprintf(eth_addr));
672
673 for (n = 0 ; n < IEE_NCB ; n++)
674 sc->sc_tx_map[n] = NULL;
675 for (n = 0 ; n < IEE_NRFD ; n++) {
676 sc->sc_rx_mbuf[n] = NULL;
677 sc->sc_rx_map[n] = NULL;
678 }
679 sc->sc_tx_timeout = 0;
680 sc->sc_setup_timeout = 0;
681 (sc->sc_iee_reset)(sc);
682 }
683
684
685
686 void
687 iee_detach(struct iee_softc *sc, int flags)
688 {
689 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
690
691 if ((ifp->if_flags & IFF_RUNNING) != 0)
692 iee_stop(ifp, 1);
693 ether_ifdetach(ifp);
694 if_detach(ifp);
695 bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map);
696 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
697 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, sc->sc_shmem_sz);
698 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs);
699 }
700
701
702
703 /* media change and status callback */
704 int
705 iee_mediachange(struct ifnet *ifp)
706 {
707 struct iee_softc *sc = ifp->if_softc;
708
709 if (sc->sc_mediachange != NULL)
710 return (sc->sc_mediachange)(ifp);
711 return 0;
712 }
713
714
715
716 void
717 iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq)
718 {
719 struct iee_softc *sc = ifp->if_softc;
720
721 if (sc->sc_mediastatus != NULL)
722 (sc->sc_mediastatus)(ifp, ifmreq);
723 }
724
725
726
727 /* initiate output routine */
728 void
729 iee_start(struct ifnet *ifp)
730 {
731 struct iee_softc *sc = ifp->if_softc;
732 struct mbuf *m = NULL;
733 struct iee_tbd *tbd;
734 int t;
735 int n;
736
737 if (sc->sc_next_cb != 0)
738 /* There is already a CMD running. Defer packet enqueuing. */
739 return;
740 for (t = 0 ; t < IEE_NCB ; t++) {
741 IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]);
742 if (sc->sc_tx_mbuf[t] == NULL)
743 break;
744 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
745 sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
746 /*
747 * The packet needs more TBD then we support.
748 * Copy the packet into a mbuf cluster to get it out.
749 */
750 printf("%s: iee_start: failed to load DMA map\n",
751 device_xname(sc->sc_dev));
752 MGETHDR(m, M_DONTWAIT, MT_DATA);
753 if (m == NULL) {
754 printf("%s: iee_start: can't allocate mbuf\n",
755 device_xname(sc->sc_dev));
756 m_freem(sc->sc_tx_mbuf[t]);
757 t--;
758 continue;
759 }
760 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
761 MCLGET(m, M_DONTWAIT);
762 if ((m->m_flags & M_EXT) == 0) {
763 printf("%s: iee_start: can't allocate mbuf "
764 "cluster\n", device_xname(sc->sc_dev));
765 m_freem(sc->sc_tx_mbuf[t]);
766 m_freem(m);
767 t--;
768 continue;
769 }
770 m_copydata(sc->sc_tx_mbuf[t], 0,
771 sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *));
772 m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
773 m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
774 m_freem(sc->sc_tx_mbuf[t]);
775 sc->sc_tx_mbuf[t] = m;
776 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
777 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
778 printf("%s: iee_start: can't load TX DMA map\n",
779 device_xname(sc->sc_dev));
780 m_freem(sc->sc_tx_mbuf[t]);
781 t--;
782 continue;
783 }
784 }
785 for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) {
786 tbd = SC_TBD(sc, sc->sc_next_tbd + n);
787 tbd->tbd_tb_addr =
788 IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr);
789 tbd->tbd_size =
790 sc->sc_tx_map[t]->dm_segs[n].ds_len;
791 tbd->tbd_link_addr =
792 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off +
793 sc->sc_tbd_sz * (sc->sc_next_tbd + n + 1)));
794 }
795 SC_TBD(sc, sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL;
796 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
797 sc->sc_tbd_off + sc->sc_next_tbd * sc->sc_tbd_sz,
798 sc->sc_tbd_sz * sc->sc_tx_map[t]->dm_nsegs,
799 BUS_DMASYNC_PREWRITE);
800 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0,
801 sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE);
802 IFQ_POLL(&ifp->if_snd, m);
803 if (m == NULL)
804 iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL
805 | IEE_CB_I);
806 else
807 iee_cb_setup(sc, IEE_CB_CMD_TR);
808 sc->sc_next_tbd += n;
809 /* Pass packet to bpf if someone listens. */
810 bpf_mtap(ifp, sc->sc_tx_mbuf[t]);
811 }
812 if (t == 0)
813 /* No packets got set up for TX. */
814 return;
815 if (t == IEE_NCB)
816 ifp->if_flags |= IFF_OACTIVE;
817 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
818 }
819
820
821
822 /* ioctl routine */
823 int
824 iee_ioctl(struct ifnet *ifp, u_long cmd, void *data)
825 {
826 struct iee_softc *sc = ifp->if_softc;
827 int s;
828 int err;
829
830 s = splnet();
831 switch (cmd) {
832 case SIOCSIFMEDIA:
833 case SIOCGIFMEDIA:
834 err = ifmedia_ioctl(ifp, (struct ifreq *) data,
835 &sc->sc_ifmedia, cmd);
836 break;
837
838 default:
839 err = ether_ioctl(ifp, cmd, data);
840 if (err == ENETRESET) {
841 /*
842 * Multicast list as changed; set the hardware filter
843 * accordingly.
844 */
845 if (ifp->if_flags & IFF_RUNNING) {
846 iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S |
847 IEE_CB_EL | IEE_CB_I);
848 if ((sc->sc_flags & IEE_WANT_MCAST) == 0)
849 (*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
850 }
851 err = 0;
852 }
853 break;
854 }
855 splx(s);
856 return err;
857 }
858
859
860
861 /* init routine */
862 int
863 iee_init(struct ifnet *ifp)
864 {
865 struct iee_softc *sc = ifp->if_softc;
866 int r;
867 int t;
868 int n;
869 int err;
870
871 sc->sc_next_cb = 0;
872 sc->sc_next_tbd = 0;
873 sc->sc_flags &= ~IEE_WANT_MCAST;
874 sc->sc_rx_done = 0;
875 SC_SCB(sc)->scb_crc_err = 0;
876 SC_SCB(sc)->scb_align_err = 0;
877 SC_SCB(sc)->scb_resource_err = 0;
878 SC_SCB(sc)->scb_overrun_err = 0;
879 SC_SCB(sc)->scb_rcvcdt_err = 0;
880 SC_SCB(sc)->scb_short_fr_err = 0;
881 sc->sc_crc_err = 0;
882 sc->sc_align_err = 0;
883 sc->sc_resource_err = 0;
884 sc->sc_overrun_err = 0;
885 sc->sc_rcvcdt_err = 0;
886 sc->sc_short_fr_err = 0;
887 sc->sc_tx_col = 0;
888 sc->sc_rx_err = 0;
889 sc->sc_cmd_err = 0;
890 /* Create Transmit DMA maps. */
891 for (t = 0 ; t < IEE_NCB ; t++) {
892 if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat,
893 MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT,
894 &sc->sc_tx_map[t]) != 0) {
895 printf("%s: iee_init: can't create TX DMA map\n",
896 device_xname(sc->sc_dev));
897 for (n = 0 ; n < t ; n++)
898 bus_dmamap_destroy(sc->sc_dmat,
899 sc->sc_tx_map[n]);
900 return ENOBUFS;
901 }
902 }
903 /* Initialize Receive Frame and Receive Buffer Descriptors */
904 err = 0;
905 memset(SC_RFD(sc, 0), 0, sc->sc_rfd_sz * IEE_NRFD);
906 memset(SC_RBD(sc, 0), 0, sc->sc_rbd_sz * IEE_NRFD);
907 for (r = 0 ; r < IEE_NRFD ; r++) {
908 SC_RFD(sc, r)->rfd_cmd = IEE_RFD_SF;
909 SC_RFD(sc, r)->rfd_link_addr =
910 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
911 + sc->sc_rfd_sz * ((r + 1) % IEE_NRFD)));
912
913 SC_RBD(sc, r)->rbd_next_rbd =
914 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
915 + sc->sc_rbd_sz * ((r + 1) % IEE_NRFD)));
916 if (sc->sc_rx_mbuf[r] == NULL) {
917 MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA);
918 if (sc->sc_rx_mbuf[r] == NULL) {
919 printf("%s: iee_init: can't allocate mbuf\n",
920 device_xname(sc->sc_dev));
921 err = 1;
922 break;
923 }
924 MCLAIM(sc->sc_rx_mbuf[r],&sc->sc_ethercom.ec_rx_mowner);
925 MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT);
926 if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) {
927 printf("%s: iee_init: can't allocate mbuf"
928 " cluster\n", device_xname(sc->sc_dev));
929 m_freem(sc->sc_rx_mbuf[r]);
930 err = 1;
931 break;
932 }
933 sc->sc_rx_mbuf[r]->m_len =
934 sc->sc_rx_mbuf[r]->m_pkthdr.len = MCLBYTES - 2;
935 sc->sc_rx_mbuf[r]->m_data += 2;
936 }
937 if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat,
938 MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT,
939 &sc->sc_rx_map[r]) != 0) {
940 printf("%s: iee_init: can't create RX "
941 "DMA map\n", device_xname(sc->sc_dev));
942 m_freem(sc->sc_rx_mbuf[r]);
943 err = 1;
944 break;
945 }
946 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_map[r],
947 sc->sc_rx_mbuf[r], BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) {
948 printf("%s: iee_init: can't load RX DMA map\n",
949 device_xname(sc->sc_dev));
950 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]);
951 m_freem(sc->sc_rx_mbuf[r]);
952 err = 1;
953 break;
954 }
955 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0,
956 sc->sc_rx_map[r]->dm_mapsize, BUS_DMASYNC_PREREAD);
957 SC_RBD(sc, r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len;
958 SC_RBD(sc, r)->rbd_rb_addr =
959 IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr);
960 }
961 SC_RFD(sc, 0)->rfd_rbd_addr =
962 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
963 if (err != 0) {
964 for (n = 0 ; n < r; n++) {
965 m_freem(sc->sc_rx_mbuf[n]);
966 sc->sc_rx_mbuf[n] = NULL;
967 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
968 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
969 sc->sc_rx_map[n] = NULL;
970 }
971 for (n = 0 ; n < t ; n++) {
972 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
973 sc->sc_tx_map[n] = NULL;
974 }
975 return ENOBUFS;
976 }
977
978 (sc->sc_iee_reset)(sc);
979 iee_cb_setup(sc, IEE_CB_CMD_IAS);
980 sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF;
981 sc->sc_cf[1] = IEE_CF_1_DEF;
982 sc->sc_cf[2] = IEE_CF_2_DEF;
983 sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI
984 | IEE_CF_3_PREAMLEN_DEF;
985 sc->sc_cf[4] = IEE_CF_4_DEF;
986 sc->sc_cf[5] = IEE_CF_5_DEF;
987 sc->sc_cf[6] = IEE_CF_6_DEF;
988 sc->sc_cf[7] = IEE_CF_7_DEF;
989 sc->sc_cf[8] = IEE_CF_8_DEF;
990 sc->sc_cf[9] = IEE_CF_9_DEF;
991 sc->sc_cf[10] = IEE_CF_10_DEF;
992 sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD;
993 sc->sc_cf[12] = IEE_CF_12_DEF;
994 sc->sc_cf[13] = IEE_CF_13_DEF;
995 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL);
996 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
997 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
998 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
999 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST);
1000 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1001 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
1002
1003 /* Mark the interface as running and ready to RX/TX packets. */
1004 ifp->if_flags |= IFF_RUNNING;
1005 ifp->if_flags &= ~IFF_OACTIVE;
1006 return 0;
1007 }
1008
1009
1010
1011 /* stop routine */
1012 void
1013 iee_stop(struct ifnet *ifp, int disable)
1014 {
1015 struct iee_softc *sc = ifp->if_softc;
1016 int n;
1017
1018 ifp->if_flags &= ~IFF_RUNNING;
1019 ifp->if_flags |= IFF_OACTIVE;
1020 ifp->if_timer = 0;
1021 /* Reset the chip to get it quiet. */
1022 (sc->sc_iee_reset)(ifp->if_softc);
1023 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1024 (sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK);
1025 /* Release any dynamically allocated resources. */
1026 for (n = 0 ; n < IEE_NCB ; n++) {
1027 if (sc->sc_tx_map[n] != NULL)
1028 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
1029 sc->sc_tx_map[n] = NULL;
1030 }
1031 for (n = 0 ; n < IEE_NRFD ; n++) {
1032 if (sc->sc_rx_mbuf[n] != NULL)
1033 m_freem(sc->sc_rx_mbuf[n]);
1034 sc->sc_rx_mbuf[n] = NULL;
1035 if (sc->sc_rx_map[n] != NULL) {
1036 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
1037 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
1038 }
1039 sc->sc_rx_map[n] = NULL;
1040 }
1041 }
1042
1043
1044
1045 /* timer routine */
1046 void
1047 iee_watchdog(struct ifnet *ifp)
1048 {
1049 struct iee_softc *sc = ifp->if_softc;
1050
1051 (sc->sc_iee_reset)(sc);
1052 if (sc->sc_next_tbd != 0)
1053 printf("%s: iee_watchdog: transmit timeout %d\n",
1054 device_xname(sc->sc_dev), ++sc->sc_tx_timeout);
1055 else
1056 printf("%s: iee_watchdog: setup timeout %d\n",
1057 device_xname(sc->sc_dev), ++sc->sc_setup_timeout);
1058 iee_init(ifp);
1059 }
1060