i82596.c revision 1.37 1 /* $NetBSD: i82596.c,v 1.37 2017/07/29 01:45:22 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2003 Jochen Kunz.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Jochen Kunz may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOCHEN KUNZ
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips.
34 *
35 * It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586
36 * ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to
37 * i82586 compatibility mode.
38 *
39 * Documentation about these chips can be found at
40 *
41 * http://developer.intel.com/design/network/datashts/290218.htm
42 * http://developer.intel.com/design/network/datashts/290219.htm
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.37 2017/07/29 01:45:22 riastradh Exp $");
47
48 /* autoconfig and device stuff */
49 #include <sys/param.h>
50 #include <sys/device.h>
51 #include <sys/conf.h>
52 #include "locators.h"
53 #include "ioconf.h"
54
55 /* bus_space / bus_dma etc. */
56 #include <sys/bus.h>
57 #include <sys/intr.h>
58
59 /* general system data and functions */
60 #include <sys/systm.h>
61 #include <sys/ioctl.h>
62
63 /* tsleep / sleep / wakeup */
64 #include <sys/proc.h>
65 /* hz for above */
66 #include <sys/kernel.h>
67
68 /* network stuff */
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_ether.h>
73 #include <sys/socket.h>
74 #include <sys/mbuf.h>
75
76 #include <net/bpf.h>
77
78 #include <dev/ic/i82596reg.h>
79 #include <dev/ic/i82596var.h>
80
81 /* Supported chip variants */
82 const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" };
83
84 /* media change and status callback */
85 static int iee_mediachange(struct ifnet *);
86 static void iee_mediastatus(struct ifnet *, struct ifmediareq *);
87
88 /* interface routines to upper protocols */
89 static void iee_start(struct ifnet *); /* initiate output */
90 static int iee_ioctl(struct ifnet *, u_long, void *); /* ioctl routine */
91 static int iee_init(struct ifnet *); /* init routine */
92 static void iee_stop(struct ifnet *, int); /* stop routine */
93 static void iee_watchdog(struct ifnet *); /* timer routine */
94
95 /* internal helper functions */
96 static void iee_cb_setup(struct iee_softc *, uint32_t);
97
98 /*
99 * Things a MD frontend has to provide:
100 *
101 * The functions via function pointers in the softc:
102 * int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd);
103 * int (*sc_iee_reset)(struct iee_softc *sc);
104 * void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *);
105 * int (*sc_mediachange)(struct ifnet *);
106 *
107 * sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter
108 * to the SCP cmd word and issuing a Channel Attention.
109 * sc_iee_reset(): initiate a reset, supply the address of the SCP to the
110 * chip, wait for the chip to initialize and ACK interrupts that
111 * this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
112 * This functions must carefully bus_dmamap_sync() all data they have touched!
113 *
114 * sc_mediastatus() and sc_mediachange() are just MD hooks to the according
115 * MI functions. The MD frontend may set this pointers to NULL when they
116 * are not needed.
117 *
118 * sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA.
119 * This is for printing out the correct chip type at attach time only. The
120 * MI backend doesn't distinguish different chip types when programming
121 * the chip.
122 *
123 * IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware
124 * and set on big endian hardware, when endianess conversion is not done
125 * by the bus attachment but done by i82596 chip itself.
126 * Usually you need to set IEE_NEED_SWAP on big endian machines
127 * where the hardware (the LE/~BE pin) is configured as BE mode.
128 *
129 * If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word)
130 * entities can be written in big endian. But Rev A chip doesn't support
131 * 32 bit (dword) entities with big endian byte ordering, so we have to
132 * treat all 32 bit (dword) entities as two 16 bit big endian entities.
133 * Rev B and C chips support big endian byte ordering for 32 bit entities,
134 * and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte.
135 *
136 * With the IEE_SYSBUS_BE feature, all 32 bit address ponters are
137 * treated as true 32 bit entities but the SCB absolute address and
138 * statistical counters are still treated as two 16 bit big endian entities,
139 * so we have to always swap high and low words for these entities.
140 * IEE_SWAP32() should be used for the SCB address and statistical counters,
141 * and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem.
142 *
143 * IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature
144 * is disabled even on big endian machines for the old Rev A chip in backend.
145 *
146 * sc->sc_cl_align must be set to 1 or to the cache line size. When set to
147 * 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1
148 * it forces alignment of the data structures in the shared memory to a multiple
149 * of sc->sc_cl_align. This is needed on some hppa machines that have non DMA
150 * I/O coherent caches and are unable to map the shared memory uncachable.
151 * (At least pre PA7100LC CPUs are unable to map memory uncachable.)
152 *
153 * The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus
154 * to allocate and setup shared DMA memory in MI iee_attach().
155 * All communication with the chip is done via this shared memory.
156 * This memory is mapped with BUS_DMA_COHERENT so it will be uncached
157 * if possible for archs with non DMA I/O coherent caches.
158 * The base of the memory needs to be aligned to an even address
159 * if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1.
160 * Each descriptor offsets are calculated in iee_attach() to handle this.
161 *
162 * An interrupt with iee_intr() as handler must be established.
163 *
164 * Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address,
165 * int *media, int nmedia, int defmedia); when everything is set up. First
166 * parameter is a pointer to the MI softc, ether_address is an array that
167 * contains the ethernet address. media is an array of the media types
168 * provided by the hardware. The members of this array are supplied to
169 * ifmedia_add() in sequence. nmedia is the count of elements in media.
170 * defmedia is the default media that is set via ifmedia_set().
171 * nmedia and defmedia are ignored when media == NULL.
172 *
173 * The MD backend may call iee_detach() to detach the device.
174 *
175 * See sys/arch/hppa/gsc/if_iee_gsc.c for an example.
176 */
177
178
179 /*
180 * How frame reception is done:
181 * Each Receive Frame Descriptor has one associated Receive Buffer Descriptor.
182 * Each RBD points to the data area of an mbuf cluster. The RFDs are linked
183 * together in a circular list. sc->sc_rx_done is the count of RFDs in the
184 * list already processed / the number of the RFD that has to be checked for
185 * a new frame first at the next RX interrupt. Upon successful reception of
186 * a frame the mbuf cluster is handled to upper protocol layers, a new mbuf
187 * cluster is allocated and the RFD / RBD are reinitialized accordingly.
188 *
189 * When a RFD list overrun occurred the whole RFD and RBD lists are
190 * reinitialized and frame reception is started again.
191 */
192 int
193 iee_intr(void *intarg)
194 {
195 struct iee_softc *sc = intarg;
196 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
197 struct iee_rfd *rfd;
198 struct iee_rbd *rbd;
199 bus_dmamap_t rx_map;
200 struct mbuf *rx_mbuf;
201 struct mbuf *new_mbuf;
202 int scb_status;
203 int scb_cmd;
204 int n, col;
205 uint16_t status, count, cmd;
206
207 if ((ifp->if_flags & IFF_RUNNING) == 0) {
208 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
209 return 1;
210 }
211 IEE_SCBSYNC(sc, BUS_DMASYNC_POSTREAD);
212 scb_status = SC_SCB(sc)->scb_status;
213 scb_cmd = SC_SCB(sc)->scb_cmd;
214 for (;;) {
215 rfd = SC_RFD(sc, sc->sc_rx_done);
216 IEE_RFDSYNC(sc, sc->sc_rx_done,
217 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
218 status = rfd->rfd_status;
219 if ((status & IEE_RFD_C) == 0) {
220 IEE_RFDSYNC(sc, sc->sc_rx_done, BUS_DMASYNC_PREREAD);
221 break;
222 }
223 rfd->rfd_status = 0;
224 IEE_RFDSYNC(sc, sc->sc_rx_done,
225 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
226
227 /* At least one packet was received. */
228 rx_map = sc->sc_rx_map[sc->sc_rx_done];
229 rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done];
230 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
231 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
232 SC_RBD(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size
233 &= ~IEE_RBD_EL;
234 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
235 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
236 rbd = SC_RBD(sc, sc->sc_rx_done);
237 IEE_RBDSYNC(sc, sc->sc_rx_done,
238 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
239 count = rbd->rbd_count;
240 if ((status & IEE_RFD_OK) == 0
241 || (count & IEE_RBD_EOF) == 0
242 || (count & IEE_RBD_F) == 0){
243 /* Receive error, skip frame and reuse buffer. */
244 rbd->rbd_count = 0;
245 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
246 IEE_RBDSYNC(sc, sc->sc_rx_done,
247 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
248 printf("%s: iee_intr: receive error %d, rfd_status="
249 "0x%.4x, rfd_count=0x%.4x\n",
250 device_xname(sc->sc_dev),
251 ++sc->sc_rx_err, status, count);
252 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
253 continue;
254 }
255 bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_map->dm_mapsize,
256 BUS_DMASYNC_POSTREAD);
257 rx_mbuf->m_pkthdr.len = rx_mbuf->m_len =
258 count & IEE_RBD_COUNT;
259 m_set_rcvif(rx_mbuf, ifp);
260 MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
261 if (new_mbuf == NULL) {
262 printf("%s: iee_intr: can't allocate mbuf\n",
263 device_xname(sc->sc_dev));
264 break;
265 }
266 MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner);
267 MCLGET(new_mbuf, M_DONTWAIT);
268 if ((new_mbuf->m_flags & M_EXT) == 0) {
269 printf("%s: iee_intr: can't alloc mbuf cluster\n",
270 device_xname(sc->sc_dev));
271 m_freem(new_mbuf);
272 break;
273 }
274 bus_dmamap_unload(sc->sc_dmat, rx_map);
275 new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES - 2;
276 new_mbuf->m_data += 2;
277 if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_map,
278 new_mbuf, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0)
279 panic("%s: iee_intr: can't load RX DMA map\n",
280 device_xname(sc->sc_dev));
281 bus_dmamap_sync(sc->sc_dmat, rx_map, 0,
282 rx_map->dm_mapsize, BUS_DMASYNC_PREREAD);
283 if_percpuq_enqueue(ifp->if_percpuq, rx_mbuf);
284 sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf;
285 rbd->rbd_count = 0;
286 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
287 rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr);
288 IEE_RBDSYNC(sc, sc->sc_rx_done,
289 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
290 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
291 }
292 if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1
293 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2
294 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) {
295 /* Receive Overrun, reinit receive ring buffer. */
296 for (n = 0 ; n < IEE_NRFD ; n++) {
297 rfd = SC_RFD(sc, n);
298 rbd = SC_RBD(sc, n);
299 rfd->rfd_cmd = IEE_RFD_SF;
300 rfd->rfd_link_addr =
301 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
302 + sc->sc_rfd_sz * ((n + 1) % IEE_NRFD)));
303 rbd->rbd_next_rbd =
304 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
305 + sc->sc_rbd_sz * ((n + 1) % IEE_NRFD)));
306 rbd->rbd_size = IEE_RBD_EL |
307 sc->sc_rx_map[n]->dm_segs[0].ds_len;
308 rbd->rbd_rb_addr =
309 IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr);
310 }
311 SC_RFD(sc, 0)->rfd_rbd_addr =
312 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
313 sc->sc_rx_done = 0;
314 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, sc->sc_rfd_off,
315 sc->sc_rfd_sz * IEE_NRFD + sc->sc_rbd_sz * IEE_NRFD,
316 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
317 (sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST);
318 printf("%s: iee_intr: receive ring buffer overrun\n",
319 device_xname(sc->sc_dev));
320 }
321
322 if (sc->sc_next_cb != 0) {
323 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
324 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
325 status = SC_CB(sc, sc->sc_next_cb - 1)->cb_status;
326 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
327 BUS_DMASYNC_PREREAD);
328 if ((status & IEE_CB_C) != 0) {
329 /* CMD list finished */
330 ifp->if_timer = 0;
331 if (sc->sc_next_tbd != 0) {
332 /* A TX CMD list finished, cleanup */
333 for (n = 0 ; n < sc->sc_next_cb ; n++) {
334 m_freem(sc->sc_tx_mbuf[n]);
335 sc->sc_tx_mbuf[n] = NULL;
336 bus_dmamap_unload(sc->sc_dmat,
337 sc->sc_tx_map[n]);
338 IEE_CBSYNC(sc, n,
339 BUS_DMASYNC_POSTREAD|
340 BUS_DMASYNC_POSTWRITE);
341 status = SC_CB(sc, n)->cb_status;
342 IEE_CBSYNC(sc, n,
343 BUS_DMASYNC_PREREAD);
344 if ((status & IEE_CB_COL) != 0 &&
345 (status & IEE_CB_MAXCOL) == 0)
346 col = 16;
347 else
348 col = status
349 & IEE_CB_MAXCOL;
350 sc->sc_tx_col += col;
351 if ((status & IEE_CB_OK) != 0) {
352 ifp->if_opackets++;
353 ifp->if_collisions += col;
354 }
355 }
356 sc->sc_next_tbd = 0;
357 ifp->if_flags &= ~IFF_OACTIVE;
358 }
359 for (n = 0 ; n < sc->sc_next_cb; n++) {
360 /*
361 * Check if a CMD failed, but ignore TX errors.
362 */
363 IEE_CBSYNC(sc, n,
364 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
365 cmd = SC_CB(sc, n)->cb_cmd;
366 status = SC_CB(sc, n)->cb_status;
367 IEE_CBSYNC(sc, n, BUS_DMASYNC_PREREAD);
368 if ((cmd & IEE_CB_CMD) != IEE_CB_CMD_TR &&
369 (status & IEE_CB_OK) == 0)
370 printf("%s: iee_intr: scb_status=0x%x "
371 "scb_cmd=0x%x failed command %d: "
372 "cb_status[%d]=0x%.4x "
373 "cb_cmd[%d]=0x%.4x\n",
374 device_xname(sc->sc_dev),
375 scb_status, scb_cmd,
376 ++sc->sc_cmd_err,
377 n, status, n, cmd);
378 }
379 sc->sc_next_cb = 0;
380 if ((sc->sc_flags & IEE_WANT_MCAST) != 0) {
381 iee_cb_setup(sc, IEE_CB_CMD_MCS |
382 IEE_CB_S | IEE_CB_EL | IEE_CB_I);
383 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
384 } else
385 /* Try to get deferred packets going. */
386 if_schedule_deferred_start(ifp);
387 }
388 }
389 if (IEE_SWAP32(SC_SCB(sc)->scb_crc_err) != sc->sc_crc_err) {
390 sc->sc_crc_err = IEE_SWAP32(SC_SCB(sc)->scb_crc_err);
391 printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev),
392 sc->sc_crc_err);
393 }
394 if (IEE_SWAP32(SC_SCB(sc)->scb_align_err) != sc->sc_align_err) {
395 sc->sc_align_err = IEE_SWAP32(SC_SCB(sc)->scb_align_err);
396 printf("%s: iee_intr: align_err=%d\n", device_xname(sc->sc_dev),
397 sc->sc_align_err);
398 }
399 if (IEE_SWAP32(SC_SCB(sc)->scb_resource_err) != sc->sc_resource_err) {
400 sc->sc_resource_err = IEE_SWAP32(SC_SCB(sc)->scb_resource_err);
401 printf("%s: iee_intr: resource_err=%d\n",
402 device_xname(sc->sc_dev), sc->sc_resource_err);
403 }
404 if (IEE_SWAP32(SC_SCB(sc)->scb_overrun_err) != sc->sc_overrun_err) {
405 sc->sc_overrun_err = IEE_SWAP32(SC_SCB(sc)->scb_overrun_err);
406 printf("%s: iee_intr: overrun_err=%d\n",
407 device_xname(sc->sc_dev), sc->sc_overrun_err);
408 }
409 if (IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err) != sc->sc_rcvcdt_err) {
410 sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err);
411 printf("%s: iee_intr: rcvcdt_err=%d\n",
412 device_xname(sc->sc_dev), sc->sc_rcvcdt_err);
413 }
414 if (IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err) != sc->sc_short_fr_err) {
415 sc->sc_short_fr_err = IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err);
416 printf("%s: iee_intr: short_fr_err=%d\n",
417 device_xname(sc->sc_dev), sc->sc_short_fr_err);
418 }
419 IEE_SCBSYNC(sc, BUS_DMASYNC_PREREAD);
420 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
421 return 1;
422 }
423
424
425
426 /*
427 * How Command Block List Processing is done.
428 *
429 * A running CBL is never manipulated. If there is a CBL already running,
430 * further CMDs are deferred until the current list is done. A new list is
431 * setup when the old one has finished.
432 * This eases programming. To manipulate a running CBL it is necessary to
433 * suspend the Command Unit to avoid race conditions. After a suspend
434 * is sent we have to wait for an interrupt that ACKs the suspend. Then
435 * we can manipulate the CBL and resume operation. I am not sure that this
436 * is more effective than the current, much simpler approach. => KISS
437 * See i82596CA data sheet page 26.
438 *
439 * A CBL is running or on the way to be set up when (sc->sc_next_cb != 0).
440 *
441 * A CBL may consist of TX CMDs, and _only_ TX CMDs.
442 * A TX CBL is running or on the way to be set up when
443 * ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)).
444 *
445 * A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_
446 * non-TX CMDs.
447 *
448 * This comes mostly through the way how an Ethernet driver works and
449 * because running CBLs are not manipulated when they are on the way. If
450 * if_start() is called there will be TX CMDs enqueued so we have a running
451 * CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa.
452 *
453 * The Multicast Setup Command is special. A MCS needs more space than
454 * a single CB has. Actual space requirement depends on the length of the
455 * multicast list. So we always defer MCS until other CBLs are finished,
456 * then we setup a CONF CMD in the first CB. The CONF CMD is needed to
457 * turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may
458 * use all the remaining space in the CBL and the Transmit Buffer Descriptor
459 * List. (Therefore CBL and TBDL must be continuous in physical and virtual
460 * memory. This is guaranteed through the definitions of the list offsets
461 * in i82596reg.h and because it is only a single DMA segment used for all
462 * lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with
463 * a multicast list length of 0, thus disabling the multicast filter.
464 * A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0)
465 */
466 void
467 iee_cb_setup(struct iee_softc *sc, uint32_t cmd)
468 {
469 struct iee_cb *cb = SC_CB(sc, sc->sc_next_cb);
470 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
471 struct ether_multistep step;
472 struct ether_multi *enm;
473
474 memset(cb, 0, sc->sc_cb_sz);
475 cb->cb_cmd = cmd;
476 switch (cmd & IEE_CB_CMD) {
477 case IEE_CB_CMD_NOP: /* NOP CMD */
478 break;
479 case IEE_CB_CMD_IAS: /* Individual Address Setup */
480 memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl),
481 ETHER_ADDR_LEN);
482 break;
483 case IEE_CB_CMD_CONF: /* Configure */
484 memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0]
485 & IEE_CF_0_CNT_M);
486 break;
487 case IEE_CB_CMD_MCS: /* Multicast Setup */
488 if (sc->sc_next_cb != 0) {
489 sc->sc_flags |= IEE_WANT_MCAST;
490 return;
491 }
492 sc->sc_flags &= ~IEE_WANT_MCAST;
493 if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) {
494 /* Need no multicast filter in promisc mode. */
495 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL
496 | IEE_CB_I);
497 return;
498 }
499 /* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */
500 cb = SC_CB(sc, sc->sc_next_cb + 1);
501 cb->cb_cmd = cmd;
502 cb->cb_mcast.mc_size = 0;
503 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
504 while (enm != NULL) {
505 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
506 ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size
507 * ETHER_ADDR_LEN + 2 * sc->sc_cb_sz >
508 sc->sc_cb_sz * IEE_NCB +
509 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB) {
510 cb->cb_mcast.mc_size = 0;
511 break;
512 }
513 memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[
514 cb->cb_mcast.mc_size]),
515 enm->enm_addrlo, ETHER_ADDR_LEN);
516 ETHER_NEXT_MULTI(step, enm);
517 cb->cb_mcast.mc_size += ETHER_ADDR_LEN;
518 }
519 if (cb->cb_mcast.mc_size == 0) {
520 /* Can't do exact mcast filtering, do ALLMULTI mode. */
521 ifp->if_flags |= IFF_ALLMULTI;
522 sc->sc_cf[11] &= ~IEE_CF_11_MCALL;
523 } else {
524 /* disable ALLMULTI and load mcast list */
525 ifp->if_flags &= ~IFF_ALLMULTI;
526 sc->sc_cf[11] |= IEE_CF_11_MCALL;
527 /* Mcast setup may need more than sc->sc_cb_sz bytes. */
528 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
529 sc->sc_cb_off,
530 sc->sc_cb_sz * IEE_NCB +
531 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB,
532 BUS_DMASYNC_PREWRITE);
533 }
534 iee_cb_setup(sc, IEE_CB_CMD_CONF);
535 break;
536 case IEE_CB_CMD_TR: /* Transmit */
537 cb->cb_transmit.tx_tbd_addr =
538 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off
539 + sc->sc_tbd_sz * sc->sc_next_tbd));
540 cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */
541 break;
542 case IEE_CB_CMD_TDR: /* Time Domain Reflectometry */
543 break;
544 case IEE_CB_CMD_DUMP: /* Dump */
545 break;
546 case IEE_CB_CMD_DIAG: /* Diagnose */
547 break;
548 default:
549 /* can't happen */
550 break;
551 }
552 cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off +
553 sc->sc_cb_sz * (sc->sc_next_cb + 1)));
554 IEE_CBSYNC(sc, sc->sc_next_cb,
555 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
556 sc->sc_next_cb++;
557 ifp->if_timer = 5;
558 }
559
560
561
562 void
563 iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia,
564 int defmedia)
565 {
566 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
567 int n;
568
569 KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align));
570
571 /*
572 * Calculate DMA descriptor offsets and sizes in shmem
573 * which should be cache line aligned.
574 */
575 sc->sc_scp_off = 0;
576 sc->sc_scp_sz = roundup2(sizeof(struct iee_scp), sc->sc_cl_align);
577 sc->sc_iscp_off = sc->sc_scp_sz;
578 sc->sc_iscp_sz = roundup2(sizeof(struct iee_iscp), sc->sc_cl_align);
579 sc->sc_scb_off = sc->sc_iscp_off + sc->sc_iscp_sz;
580 sc->sc_scb_sz = roundup2(sizeof(struct iee_scb), sc->sc_cl_align);
581 sc->sc_rfd_off = sc->sc_scb_off + sc->sc_scb_sz;
582 sc->sc_rfd_sz = roundup2(sizeof(struct iee_rfd), sc->sc_cl_align);
583 sc->sc_rbd_off = sc->sc_rfd_off + sc->sc_rfd_sz * IEE_NRFD;
584 sc->sc_rbd_sz = roundup2(sizeof(struct iee_rbd), sc->sc_cl_align);
585 sc->sc_cb_off = sc->sc_rbd_off + sc->sc_rbd_sz * IEE_NRFD;
586 sc->sc_cb_sz = roundup2(sizeof(struct iee_cb), sc->sc_cl_align);
587 sc->sc_tbd_off = sc->sc_cb_off + sc->sc_cb_sz * IEE_NCB;
588 sc->sc_tbd_sz = roundup2(sizeof(struct iee_tbd), sc->sc_cl_align);
589 sc->sc_shmem_sz = sc->sc_tbd_off + sc->sc_tbd_sz * IEE_NTBD * IEE_NCB;
590
591 /* allocate memory for shared DMA descriptors */
592 if (bus_dmamem_alloc(sc->sc_dmat, sc->sc_shmem_sz, PAGE_SIZE, 0,
593 &sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) {
594 aprint_error(": can't allocate %d bytes of DMA memory\n",
595 sc->sc_shmem_sz);
596 return;
597 }
598 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs,
599 sc->sc_shmem_sz, (void **)&sc->sc_shmem_addr,
600 BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) {
601 aprint_error(": can't map DMA memory\n");
602 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
603 sc->sc_dma_rsegs);
604 return;
605 }
606 if (bus_dmamap_create(sc->sc_dmat, sc->sc_shmem_sz, sc->sc_dma_rsegs,
607 sc->sc_shmem_sz, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) {
608 aprint_error(": can't create DMA map\n");
609 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
610 sc->sc_shmem_sz);
611 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
612 sc->sc_dma_rsegs);
613 return;
614 }
615 if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr,
616 sc->sc_shmem_sz, NULL, BUS_DMA_NOWAIT) != 0) {
617 aprint_error(": can't load DMA map\n");
618 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
619 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
620 sc->sc_shmem_sz);
621 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
622 sc->sc_dma_rsegs);
623 return;
624 }
625 memset(sc->sc_shmem_addr, 0, sc->sc_shmem_sz);
626
627 /* Set pointer to Intermediate System Configuration Pointer. */
628 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
629 SC_SCP(sc)->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_iscp_off));
630 SC_SCP(sc)->scp_sysbus = sc->sc_sysbus;
631 /* Set pointer to System Control Block. */
632 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
633 SC_ISCP(sc)->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_scb_off));
634 /* Set pointer to Receive Frame Area. (physical address) */
635 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
636 /* Set pointer to Command Block. (physical address) */
637 SC_SCB(sc)->scb_cmd_blk_addr =
638 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off));
639
640 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
641 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
642
643 ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus);
644 if (media != NULL) {
645 for (n = 0 ; n < nmedia ; n++)
646 ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL);
647 ifmedia_set(&sc->sc_ifmedia, defmedia);
648 } else {
649 ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL);
650 ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE);
651 }
652
653 ifp->if_softc = sc;
654 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
655 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
656 ifp->if_start = iee_start; /* initiate output routine */
657 ifp->if_ioctl = iee_ioctl; /* ioctl routine */
658 ifp->if_init = iee_init; /* init routine */
659 ifp->if_stop = iee_stop; /* stop routine */
660 ifp->if_watchdog = iee_watchdog; /* timer routine */
661 IFQ_SET_READY(&ifp->if_snd);
662 /* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */
663 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
664
665 if_attach(ifp);
666 if_deferred_start_init(ifp, NULL);
667 ether_ifattach(ifp, eth_addr);
668
669 aprint_normal(": Intel 82596%s address %s\n",
670 i82596_typenames[sc->sc_type], ether_sprintf(eth_addr));
671
672 for (n = 0 ; n < IEE_NCB ; n++)
673 sc->sc_tx_map[n] = NULL;
674 for (n = 0 ; n < IEE_NRFD ; n++) {
675 sc->sc_rx_mbuf[n] = NULL;
676 sc->sc_rx_map[n] = NULL;
677 }
678 sc->sc_tx_timeout = 0;
679 sc->sc_setup_timeout = 0;
680 (sc->sc_iee_reset)(sc);
681 }
682
683
684
685 void
686 iee_detach(struct iee_softc *sc, int flags)
687 {
688 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
689
690 if ((ifp->if_flags & IFF_RUNNING) != 0)
691 iee_stop(ifp, 1);
692 ether_ifdetach(ifp);
693 if_detach(ifp);
694 bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map);
695 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
696 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, sc->sc_shmem_sz);
697 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs);
698 }
699
700
701
702 /* media change and status callback */
703 int
704 iee_mediachange(struct ifnet *ifp)
705 {
706 struct iee_softc *sc = ifp->if_softc;
707
708 if (sc->sc_mediachange != NULL)
709 return (sc->sc_mediachange)(ifp);
710 return 0;
711 }
712
713
714
715 void
716 iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq)
717 {
718 struct iee_softc *sc = ifp->if_softc;
719
720 if (sc->sc_mediastatus != NULL)
721 (sc->sc_mediastatus)(ifp, ifmreq);
722 }
723
724
725
726 /* initiate output routine */
727 void
728 iee_start(struct ifnet *ifp)
729 {
730 struct iee_softc *sc = ifp->if_softc;
731 struct mbuf *m = NULL;
732 struct iee_tbd *tbd;
733 int t;
734 int n;
735
736 if (sc->sc_next_cb != 0)
737 /* There is already a CMD running. Defer packet enqueuing. */
738 return;
739 for (t = 0 ; t < IEE_NCB ; t++) {
740 IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]);
741 if (sc->sc_tx_mbuf[t] == NULL)
742 break;
743 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
744 sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
745 /*
746 * The packet needs more TBD than we support.
747 * Copy the packet into a mbuf cluster to get it out.
748 */
749 printf("%s: iee_start: failed to load DMA map\n",
750 device_xname(sc->sc_dev));
751 MGETHDR(m, M_DONTWAIT, MT_DATA);
752 if (m == NULL) {
753 printf("%s: iee_start: can't allocate mbuf\n",
754 device_xname(sc->sc_dev));
755 m_freem(sc->sc_tx_mbuf[t]);
756 sc->sc_tx_mbuf[t] = NULL;
757 t--;
758 continue;
759 }
760 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
761 MCLGET(m, M_DONTWAIT);
762 if ((m->m_flags & M_EXT) == 0) {
763 printf("%s: iee_start: can't allocate mbuf "
764 "cluster\n", device_xname(sc->sc_dev));
765 m_freem(sc->sc_tx_mbuf[t]);
766 sc->sc_tx_mbuf[t] = NULL;
767 m_freem(m);
768 t--;
769 continue;
770 }
771 m_copydata(sc->sc_tx_mbuf[t], 0,
772 sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *));
773 m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
774 m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
775 m_freem(sc->sc_tx_mbuf[t]);
776 sc->sc_tx_mbuf[t] = m;
777 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
778 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
779 printf("%s: iee_start: can't load TX DMA map\n",
780 device_xname(sc->sc_dev));
781 m_freem(sc->sc_tx_mbuf[t]);
782 sc->sc_tx_mbuf[t] = NULL;
783 t--;
784 continue;
785 }
786 }
787 for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) {
788 tbd = SC_TBD(sc, sc->sc_next_tbd + n);
789 tbd->tbd_tb_addr =
790 IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr);
791 tbd->tbd_size =
792 sc->sc_tx_map[t]->dm_segs[n].ds_len;
793 tbd->tbd_link_addr =
794 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off +
795 sc->sc_tbd_sz * (sc->sc_next_tbd + n + 1)));
796 }
797 SC_TBD(sc, sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL;
798 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
799 sc->sc_tbd_off + sc->sc_next_tbd * sc->sc_tbd_sz,
800 sc->sc_tbd_sz * sc->sc_tx_map[t]->dm_nsegs,
801 BUS_DMASYNC_PREWRITE);
802 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0,
803 sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE);
804 IFQ_POLL(&ifp->if_snd, m);
805 if (m == NULL)
806 iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL
807 | IEE_CB_I);
808 else
809 iee_cb_setup(sc, IEE_CB_CMD_TR);
810 sc->sc_next_tbd += n;
811 /* Pass packet to bpf if someone listens. */
812 bpf_mtap(ifp, sc->sc_tx_mbuf[t]);
813 }
814 if (t == 0)
815 /* No packets got set up for TX. */
816 return;
817 if (t == IEE_NCB)
818 ifp->if_flags |= IFF_OACTIVE;
819 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
820 }
821
822
823
824 /* ioctl routine */
825 int
826 iee_ioctl(struct ifnet *ifp, u_long cmd, void *data)
827 {
828 struct iee_softc *sc = ifp->if_softc;
829 int s;
830 int err;
831
832 s = splnet();
833 switch (cmd) {
834 case SIOCSIFMEDIA:
835 case SIOCGIFMEDIA:
836 err = ifmedia_ioctl(ifp, (struct ifreq *) data,
837 &sc->sc_ifmedia, cmd);
838 break;
839
840 default:
841 err = ether_ioctl(ifp, cmd, data);
842 if (err == ENETRESET) {
843 /*
844 * Multicast list as changed; set the hardware filter
845 * accordingly.
846 */
847 if (ifp->if_flags & IFF_RUNNING) {
848 iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S |
849 IEE_CB_EL | IEE_CB_I);
850 if ((sc->sc_flags & IEE_WANT_MCAST) == 0)
851 (*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
852 }
853 err = 0;
854 }
855 break;
856 }
857 splx(s);
858 return err;
859 }
860
861
862
863 /* init routine */
864 int
865 iee_init(struct ifnet *ifp)
866 {
867 struct iee_softc *sc = ifp->if_softc;
868 int r;
869 int t;
870 int n;
871 int err;
872
873 sc->sc_next_cb = 0;
874 sc->sc_next_tbd = 0;
875 sc->sc_flags &= ~IEE_WANT_MCAST;
876 sc->sc_rx_done = 0;
877 SC_SCB(sc)->scb_crc_err = 0;
878 SC_SCB(sc)->scb_align_err = 0;
879 SC_SCB(sc)->scb_resource_err = 0;
880 SC_SCB(sc)->scb_overrun_err = 0;
881 SC_SCB(sc)->scb_rcvcdt_err = 0;
882 SC_SCB(sc)->scb_short_fr_err = 0;
883 sc->sc_crc_err = 0;
884 sc->sc_align_err = 0;
885 sc->sc_resource_err = 0;
886 sc->sc_overrun_err = 0;
887 sc->sc_rcvcdt_err = 0;
888 sc->sc_short_fr_err = 0;
889 sc->sc_tx_col = 0;
890 sc->sc_rx_err = 0;
891 sc->sc_cmd_err = 0;
892 /* Create Transmit DMA maps. */
893 for (t = 0 ; t < IEE_NCB ; t++) {
894 if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat,
895 MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT,
896 &sc->sc_tx_map[t]) != 0) {
897 printf("%s: iee_init: can't create TX DMA map\n",
898 device_xname(sc->sc_dev));
899 for (n = 0 ; n < t ; n++)
900 bus_dmamap_destroy(sc->sc_dmat,
901 sc->sc_tx_map[n]);
902 return ENOBUFS;
903 }
904 }
905 /* Initialize Receive Frame and Receive Buffer Descriptors */
906 err = 0;
907 memset(SC_RFD(sc, 0), 0, sc->sc_rfd_sz * IEE_NRFD);
908 memset(SC_RBD(sc, 0), 0, sc->sc_rbd_sz * IEE_NRFD);
909 for (r = 0 ; r < IEE_NRFD ; r++) {
910 SC_RFD(sc, r)->rfd_cmd = IEE_RFD_SF;
911 SC_RFD(sc, r)->rfd_link_addr =
912 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
913 + sc->sc_rfd_sz * ((r + 1) % IEE_NRFD)));
914
915 SC_RBD(sc, r)->rbd_next_rbd =
916 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
917 + sc->sc_rbd_sz * ((r + 1) % IEE_NRFD)));
918 if (sc->sc_rx_mbuf[r] == NULL) {
919 MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA);
920 if (sc->sc_rx_mbuf[r] == NULL) {
921 printf("%s: iee_init: can't allocate mbuf\n",
922 device_xname(sc->sc_dev));
923 err = 1;
924 break;
925 }
926 MCLAIM(sc->sc_rx_mbuf[r],&sc->sc_ethercom.ec_rx_mowner);
927 MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT);
928 if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) {
929 printf("%s: iee_init: can't allocate mbuf"
930 " cluster\n", device_xname(sc->sc_dev));
931 m_freem(sc->sc_rx_mbuf[r]);
932 sc->sc_rx_mbuf[r] = NULL;
933 err = 1;
934 break;
935 }
936 sc->sc_rx_mbuf[r]->m_len =
937 sc->sc_rx_mbuf[r]->m_pkthdr.len = MCLBYTES - 2;
938 sc->sc_rx_mbuf[r]->m_data += 2;
939 }
940 if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat,
941 MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT,
942 &sc->sc_rx_map[r]) != 0) {
943 printf("%s: iee_init: can't create RX "
944 "DMA map\n", device_xname(sc->sc_dev));
945 m_freem(sc->sc_rx_mbuf[r]);
946 sc->sc_rx_mbuf[r] = NULL;
947 err = 1;
948 break;
949 }
950 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_map[r],
951 sc->sc_rx_mbuf[r], BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) {
952 printf("%s: iee_init: can't load RX DMA map\n",
953 device_xname(sc->sc_dev));
954 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]);
955 m_freem(sc->sc_rx_mbuf[r]);
956 sc->sc_rx_mbuf[r] = NULL;
957 err = 1;
958 break;
959 }
960 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0,
961 sc->sc_rx_map[r]->dm_mapsize, BUS_DMASYNC_PREREAD);
962 SC_RBD(sc, r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len;
963 SC_RBD(sc, r)->rbd_rb_addr =
964 IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr);
965 }
966 SC_RFD(sc, 0)->rfd_rbd_addr =
967 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
968 if (err != 0) {
969 for (n = 0 ; n < r; n++) {
970 m_freem(sc->sc_rx_mbuf[n]);
971 sc->sc_rx_mbuf[n] = NULL;
972 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
973 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
974 sc->sc_rx_map[n] = NULL;
975 }
976 for (n = 0 ; n < t ; n++) {
977 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
978 sc->sc_tx_map[n] = NULL;
979 }
980 return ENOBUFS;
981 }
982
983 (sc->sc_iee_reset)(sc);
984 iee_cb_setup(sc, IEE_CB_CMD_IAS);
985 sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF;
986 sc->sc_cf[1] = IEE_CF_1_DEF;
987 sc->sc_cf[2] = IEE_CF_2_DEF;
988 sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI
989 | IEE_CF_3_PREAMLEN_DEF;
990 sc->sc_cf[4] = IEE_CF_4_DEF;
991 sc->sc_cf[5] = IEE_CF_5_DEF;
992 sc->sc_cf[6] = IEE_CF_6_DEF;
993 sc->sc_cf[7] = IEE_CF_7_DEF;
994 sc->sc_cf[8] = IEE_CF_8_DEF;
995 sc->sc_cf[9] = IEE_CF_9_DEF;
996 sc->sc_cf[10] = IEE_CF_10_DEF;
997 sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD;
998 sc->sc_cf[12] = IEE_CF_12_DEF;
999 sc->sc_cf[13] = IEE_CF_13_DEF;
1000 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL);
1001 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
1002 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
1003 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1004 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST);
1005 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1006 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
1007
1008 /* Mark the interface as running and ready to RX/TX packets. */
1009 ifp->if_flags |= IFF_RUNNING;
1010 ifp->if_flags &= ~IFF_OACTIVE;
1011 return 0;
1012 }
1013
1014
1015
1016 /* stop routine */
1017 void
1018 iee_stop(struct ifnet *ifp, int disable)
1019 {
1020 struct iee_softc *sc = ifp->if_softc;
1021 int n;
1022
1023 ifp->if_flags &= ~IFF_RUNNING;
1024 ifp->if_flags |= IFF_OACTIVE;
1025 ifp->if_timer = 0;
1026 /* Reset the chip to get it quiet. */
1027 (sc->sc_iee_reset)(ifp->if_softc);
1028 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1029 (sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK);
1030 /* Release any dynamically allocated resources. */
1031 for (n = 0 ; n < IEE_NCB ; n++) {
1032 if (sc->sc_tx_map[n] != NULL)
1033 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
1034 sc->sc_tx_map[n] = NULL;
1035 }
1036 for (n = 0 ; n < IEE_NRFD ; n++) {
1037 if (sc->sc_rx_mbuf[n] != NULL)
1038 m_freem(sc->sc_rx_mbuf[n]);
1039 sc->sc_rx_mbuf[n] = NULL;
1040 if (sc->sc_rx_map[n] != NULL) {
1041 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
1042 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
1043 }
1044 sc->sc_rx_map[n] = NULL;
1045 }
1046 }
1047
1048
1049
1050 /* timer routine */
1051 void
1052 iee_watchdog(struct ifnet *ifp)
1053 {
1054 struct iee_softc *sc = ifp->if_softc;
1055
1056 (sc->sc_iee_reset)(sc);
1057 if (sc->sc_next_tbd != 0)
1058 printf("%s: iee_watchdog: transmit timeout %d\n",
1059 device_xname(sc->sc_dev), ++sc->sc_tx_timeout);
1060 else
1061 printf("%s: iee_watchdog: setup timeout %d\n",
1062 device_xname(sc->sc_dev), ++sc->sc_setup_timeout);
1063 iee_init(ifp);
1064 }
1065