i82596.c revision 1.42 1 /* $NetBSD: i82596.c,v 1.42 2019/05/29 10:07:29 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2003 Jochen Kunz.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Jochen Kunz may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOCHEN KUNZ
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips.
34 *
35 * It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586
36 * ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to
37 * i82586 compatibility mode.
38 *
39 * Documentation about these chips can be found at
40 *
41 * http://developer.intel.com/design/network/datashts/290218.htm
42 * http://developer.intel.com/design/network/datashts/290219.htm
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.42 2019/05/29 10:07:29 msaitoh Exp $");
47
48 /* autoconfig and device stuff */
49 #include <sys/param.h>
50 #include <sys/device.h>
51 #include <sys/conf.h>
52 #include "locators.h"
53 #include "ioconf.h"
54
55 /* bus_space / bus_dma etc. */
56 #include <sys/bus.h>
57 #include <sys/intr.h>
58
59 /* general system data and functions */
60 #include <sys/systm.h>
61 #include <sys/ioctl.h>
62
63 /* tsleep / sleep / wakeup */
64 #include <sys/proc.h>
65 /* hz for above */
66 #include <sys/kernel.h>
67
68 /* network stuff */
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_ether.h>
73 #include <net/bpf.h>
74 #include <sys/socket.h>
75 #include <sys/mbuf.h>
76
77 #include <dev/ic/i82596reg.h>
78 #include <dev/ic/i82596var.h>
79
80 /* Supported chip variants */
81 const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" };
82
83 /* media change and status callback */
84 static int iee_mediachange(struct ifnet *);
85 static void iee_mediastatus(struct ifnet *, struct ifmediareq *);
86
87 /* interface routines to upper protocols */
88 static void iee_start(struct ifnet *); /* initiate output */
89 static int iee_ioctl(struct ifnet *, u_long, void *); /* ioctl routine */
90 static int iee_init(struct ifnet *); /* init routine */
91 static void iee_stop(struct ifnet *, int); /* stop routine */
92 static void iee_watchdog(struct ifnet *); /* timer routine */
93
94 /* internal helper functions */
95 static void iee_cb_setup(struct iee_softc *, uint32_t);
96
97 /*
98 * Things a MD frontend has to provide:
99 *
100 * The functions via function pointers in the softc:
101 * int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd);
102 * int (*sc_iee_reset)(struct iee_softc *sc);
103 * void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *);
104 * int (*sc_mediachange)(struct ifnet *);
105 *
106 * sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter
107 * to the SCP cmd word and issuing a Channel Attention.
108 * sc_iee_reset(): initiate a reset, supply the address of the SCP to the
109 * chip, wait for the chip to initialize and ACK interrupts that
110 * this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
111 * This functions must carefully bus_dmamap_sync() all data they have touched!
112 *
113 * sc_mediastatus() and sc_mediachange() are just MD hooks to the according
114 * MI functions. The MD frontend may set this pointers to NULL when they
115 * are not needed.
116 *
117 * sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA.
118 * This is for printing out the correct chip type at attach time only. The
119 * MI backend doesn't distinguish different chip types when programming
120 * the chip.
121 *
122 * IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware
123 * and set on big endian hardware, when endianess conversion is not done
124 * by the bus attachment but done by i82596 chip itself.
125 * Usually you need to set IEE_NEED_SWAP on big endian machines
126 * where the hardware (the LE/~BE pin) is configured as BE mode.
127 *
128 * If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word)
129 * entities can be written in big endian. But Rev A chip doesn't support
130 * 32 bit (dword) entities with big endian byte ordering, so we have to
131 * treat all 32 bit (dword) entities as two 16 bit big endian entities.
132 * Rev B and C chips support big endian byte ordering for 32 bit entities,
133 * and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte.
134 *
135 * With the IEE_SYSBUS_BE feature, all 32 bit address ponters are
136 * treated as true 32 bit entities but the SCB absolute address and
137 * statistical counters are still treated as two 16 bit big endian entities,
138 * so we have to always swap high and low words for these entities.
139 * IEE_SWAP32() should be used for the SCB address and statistical counters,
140 * and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem.
141 *
142 * IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature
143 * is disabled even on big endian machines for the old Rev A chip in backend.
144 *
145 * sc->sc_cl_align must be set to 1 or to the cache line size. When set to
146 * 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1
147 * it forces alignment of the data structures in the shared memory to a multiple
148 * of sc->sc_cl_align. This is needed on some hppa machines that have non DMA
149 * I/O coherent caches and are unable to map the shared memory uncachable.
150 * (At least pre PA7100LC CPUs are unable to map memory uncachable.)
151 *
152 * The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus
153 * to allocate and setup shared DMA memory in MI iee_attach().
154 * All communication with the chip is done via this shared memory.
155 * This memory is mapped with BUS_DMA_COHERENT so it will be uncached
156 * if possible for archs with non DMA I/O coherent caches.
157 * The base of the memory needs to be aligned to an even address
158 * if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1.
159 * Each descriptor offsets are calculated in iee_attach() to handle this.
160 *
161 * An interrupt with iee_intr() as handler must be established.
162 *
163 * Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address,
164 * int *media, int nmedia, int defmedia); when everything is set up. First
165 * parameter is a pointer to the MI softc, ether_address is an array that
166 * contains the ethernet address. media is an array of the media types
167 * provided by the hardware. The members of this array are supplied to
168 * ifmedia_add() in sequence. nmedia is the count of elements in media.
169 * defmedia is the default media that is set via ifmedia_set().
170 * nmedia and defmedia are ignored when media == NULL.
171 *
172 * The MD backend may call iee_detach() to detach the device.
173 *
174 * See sys/arch/hppa/gsc/if_iee_gsc.c for an example.
175 */
176
177
178 /*
179 * How frame reception is done:
180 * Each Receive Frame Descriptor has one associated Receive Buffer Descriptor.
181 * Each RBD points to the data area of an mbuf cluster. The RFDs are linked
182 * together in a circular list. sc->sc_rx_done is the count of RFDs in the
183 * list already processed / the number of the RFD that has to be checked for
184 * a new frame first at the next RX interrupt. Upon successful reception of
185 * a frame the mbuf cluster is handled to upper protocol layers, a new mbuf
186 * cluster is allocated and the RFD / RBD are reinitialized accordingly.
187 *
188 * When a RFD list overrun occurred the whole RFD and RBD lists are
189 * reinitialized and frame reception is started again.
190 */
191 int
192 iee_intr(void *intarg)
193 {
194 struct iee_softc *sc = intarg;
195 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
196 struct iee_rfd *rfd;
197 struct iee_rbd *rbd;
198 bus_dmamap_t rx_map;
199 struct mbuf *rx_mbuf;
200 struct mbuf *new_mbuf;
201 int scb_status;
202 int scb_cmd;
203 int n, col;
204 uint16_t status, count, cmd;
205
206 if ((ifp->if_flags & IFF_RUNNING) == 0) {
207 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
208 return 1;
209 }
210 IEE_SCBSYNC(sc, BUS_DMASYNC_POSTREAD);
211 scb_status = SC_SCB(sc)->scb_status;
212 scb_cmd = SC_SCB(sc)->scb_cmd;
213 for (;;) {
214 rfd = SC_RFD(sc, sc->sc_rx_done);
215 IEE_RFDSYNC(sc, sc->sc_rx_done,
216 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
217 status = rfd->rfd_status;
218 if ((status & IEE_RFD_C) == 0) {
219 IEE_RFDSYNC(sc, sc->sc_rx_done, BUS_DMASYNC_PREREAD);
220 break;
221 }
222 rfd->rfd_status = 0;
223 IEE_RFDSYNC(sc, sc->sc_rx_done,
224 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
225
226 /* At least one packet was received. */
227 rx_map = sc->sc_rx_map[sc->sc_rx_done];
228 rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done];
229 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
230 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
231 SC_RBD(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size
232 &= ~IEE_RBD_EL;
233 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
234 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
235 rbd = SC_RBD(sc, sc->sc_rx_done);
236 IEE_RBDSYNC(sc, sc->sc_rx_done,
237 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
238 count = rbd->rbd_count;
239 if ((status & IEE_RFD_OK) == 0
240 || (count & IEE_RBD_EOF) == 0
241 || (count & IEE_RBD_F) == 0){
242 /* Receive error, skip frame and reuse buffer. */
243 rbd->rbd_count = 0;
244 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
245 IEE_RBDSYNC(sc, sc->sc_rx_done,
246 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
247 printf("%s: iee_intr: receive error %d, rfd_status="
248 "0x%.4x, rfd_count=0x%.4x\n",
249 device_xname(sc->sc_dev),
250 ++sc->sc_rx_err, status, count);
251 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
252 continue;
253 }
254 bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_map->dm_mapsize,
255 BUS_DMASYNC_POSTREAD);
256 rx_mbuf->m_pkthdr.len = rx_mbuf->m_len =
257 count & IEE_RBD_COUNT;
258 m_set_rcvif(rx_mbuf, ifp);
259 MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
260 if (new_mbuf == NULL) {
261 printf("%s: iee_intr: can't allocate mbuf\n",
262 device_xname(sc->sc_dev));
263 break;
264 }
265 MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner);
266 MCLGET(new_mbuf, M_DONTWAIT);
267 if ((new_mbuf->m_flags & M_EXT) == 0) {
268 printf("%s: iee_intr: can't alloc mbuf cluster\n",
269 device_xname(sc->sc_dev));
270 m_freem(new_mbuf);
271 break;
272 }
273 bus_dmamap_unload(sc->sc_dmat, rx_map);
274 new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES - 2;
275 new_mbuf->m_data += 2;
276 if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_map,
277 new_mbuf, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0)
278 panic("%s: iee_intr: can't load RX DMA map\n",
279 device_xname(sc->sc_dev));
280 bus_dmamap_sync(sc->sc_dmat, rx_map, 0,
281 rx_map->dm_mapsize, BUS_DMASYNC_PREREAD);
282 if_percpuq_enqueue(ifp->if_percpuq, rx_mbuf);
283 sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf;
284 rbd->rbd_count = 0;
285 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
286 rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr);
287 IEE_RBDSYNC(sc, sc->sc_rx_done,
288 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
289 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
290 }
291 if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1
292 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2
293 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) {
294 /* Receive Overrun, reinit receive ring buffer. */
295 for (n = 0 ; n < IEE_NRFD ; n++) {
296 rfd = SC_RFD(sc, n);
297 rbd = SC_RBD(sc, n);
298 rfd->rfd_cmd = IEE_RFD_SF;
299 rfd->rfd_link_addr =
300 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
301 + sc->sc_rfd_sz * ((n + 1) % IEE_NRFD)));
302 rbd->rbd_next_rbd =
303 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
304 + sc->sc_rbd_sz * ((n + 1) % IEE_NRFD)));
305 rbd->rbd_size = IEE_RBD_EL |
306 sc->sc_rx_map[n]->dm_segs[0].ds_len;
307 rbd->rbd_rb_addr =
308 IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr);
309 }
310 SC_RFD(sc, 0)->rfd_rbd_addr =
311 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
312 sc->sc_rx_done = 0;
313 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, sc->sc_rfd_off,
314 sc->sc_rfd_sz * IEE_NRFD + sc->sc_rbd_sz * IEE_NRFD,
315 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
316 (sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST);
317 printf("%s: iee_intr: receive ring buffer overrun\n",
318 device_xname(sc->sc_dev));
319 }
320
321 if (sc->sc_next_cb != 0) {
322 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
323 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
324 status = SC_CB(sc, sc->sc_next_cb - 1)->cb_status;
325 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
326 BUS_DMASYNC_PREREAD);
327 if ((status & IEE_CB_C) != 0) {
328 /* CMD list finished */
329 ifp->if_timer = 0;
330 if (sc->sc_next_tbd != 0) {
331 /* A TX CMD list finished, cleanup */
332 for (n = 0 ; n < sc->sc_next_cb ; n++) {
333 m_freem(sc->sc_tx_mbuf[n]);
334 sc->sc_tx_mbuf[n] = NULL;
335 bus_dmamap_unload(sc->sc_dmat,
336 sc->sc_tx_map[n]);
337 IEE_CBSYNC(sc, n,
338 BUS_DMASYNC_POSTREAD |
339 BUS_DMASYNC_POSTWRITE);
340 status = SC_CB(sc, n)->cb_status;
341 IEE_CBSYNC(sc, n,
342 BUS_DMASYNC_PREREAD);
343 if ((status & IEE_CB_COL) != 0 &&
344 (status & IEE_CB_MAXCOL) == 0)
345 col = 16;
346 else
347 col = status
348 & IEE_CB_MAXCOL;
349 sc->sc_tx_col += col;
350 if ((status & IEE_CB_OK) != 0) {
351 ifp->if_opackets++;
352 ifp->if_collisions += col;
353 }
354 }
355 sc->sc_next_tbd = 0;
356 ifp->if_flags &= ~IFF_OACTIVE;
357 }
358 for (n = 0 ; n < sc->sc_next_cb; n++) {
359 /*
360 * Check if a CMD failed, but ignore TX errors.
361 */
362 IEE_CBSYNC(sc, n, BUS_DMASYNC_POSTREAD |
363 BUS_DMASYNC_POSTWRITE);
364 cmd = SC_CB(sc, n)->cb_cmd;
365 status = SC_CB(sc, n)->cb_status;
366 IEE_CBSYNC(sc, n, BUS_DMASYNC_PREREAD);
367 if ((cmd & IEE_CB_CMD) != IEE_CB_CMD_TR &&
368 (status & IEE_CB_OK) == 0)
369 printf("%s: iee_intr: scb_status=0x%x "
370 "scb_cmd=0x%x failed command %d: "
371 "cb_status[%d]=0x%.4x "
372 "cb_cmd[%d]=0x%.4x\n",
373 device_xname(sc->sc_dev),
374 scb_status, scb_cmd,
375 ++sc->sc_cmd_err,
376 n, status, n, cmd);
377 }
378 sc->sc_next_cb = 0;
379 if ((sc->sc_flags & IEE_WANT_MCAST) != 0) {
380 iee_cb_setup(sc, IEE_CB_CMD_MCS |
381 IEE_CB_S | IEE_CB_EL | IEE_CB_I);
382 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
383 } else
384 /* Try to get deferred packets going. */
385 if_schedule_deferred_start(ifp);
386 }
387 }
388 if (IEE_SWAP32(SC_SCB(sc)->scb_crc_err) != sc->sc_crc_err) {
389 sc->sc_crc_err = IEE_SWAP32(SC_SCB(sc)->scb_crc_err);
390 printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev),
391 sc->sc_crc_err);
392 }
393 if (IEE_SWAP32(SC_SCB(sc)->scb_align_err) != sc->sc_align_err) {
394 sc->sc_align_err = IEE_SWAP32(SC_SCB(sc)->scb_align_err);
395 printf("%s: iee_intr: align_err=%d\n",
396 device_xname(sc->sc_dev), sc->sc_align_err);
397 }
398 if (IEE_SWAP32(SC_SCB(sc)->scb_resource_err) != sc->sc_resource_err) {
399 sc->sc_resource_err = IEE_SWAP32(SC_SCB(sc)->scb_resource_err);
400 printf("%s: iee_intr: resource_err=%d\n",
401 device_xname(sc->sc_dev), sc->sc_resource_err);
402 }
403 if (IEE_SWAP32(SC_SCB(sc)->scb_overrun_err) != sc->sc_overrun_err) {
404 sc->sc_overrun_err = IEE_SWAP32(SC_SCB(sc)->scb_overrun_err);
405 printf("%s: iee_intr: overrun_err=%d\n",
406 device_xname(sc->sc_dev), sc->sc_overrun_err);
407 }
408 if (IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err) != sc->sc_rcvcdt_err) {
409 sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err);
410 printf("%s: iee_intr: rcvcdt_err=%d\n",
411 device_xname(sc->sc_dev), sc->sc_rcvcdt_err);
412 }
413 if (IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err) != sc->sc_short_fr_err) {
414 sc->sc_short_fr_err = IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err);
415 printf("%s: iee_intr: short_fr_err=%d\n",
416 device_xname(sc->sc_dev), sc->sc_short_fr_err);
417 }
418 IEE_SCBSYNC(sc, BUS_DMASYNC_PREREAD);
419 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
420 return 1;
421 }
422
423
424
425 /*
426 * How Command Block List Processing is done.
427 *
428 * A running CBL is never manipulated. If there is a CBL already running,
429 * further CMDs are deferred until the current list is done. A new list is
430 * setup when the old one has finished.
431 * This eases programming. To manipulate a running CBL it is necessary to
432 * suspend the Command Unit to avoid race conditions. After a suspend
433 * is sent we have to wait for an interrupt that ACKs the suspend. Then
434 * we can manipulate the CBL and resume operation. I am not sure that this
435 * is more effective than the current, much simpler approach. => KISS
436 * See i82596CA data sheet page 26.
437 *
438 * A CBL is running or on the way to be set up when (sc->sc_next_cb != 0).
439 *
440 * A CBL may consist of TX CMDs, and _only_ TX CMDs.
441 * A TX CBL is running or on the way to be set up when
442 * ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)).
443 *
444 * A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_
445 * non-TX CMDs.
446 *
447 * This comes mostly through the way how an Ethernet driver works and
448 * because running CBLs are not manipulated when they are on the way. If
449 * if_start() is called there will be TX CMDs enqueued so we have a running
450 * CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa.
451 *
452 * The Multicast Setup Command is special. A MCS needs more space than
453 * a single CB has. Actual space requirement depends on the length of the
454 * multicast list. So we always defer MCS until other CBLs are finished,
455 * then we setup a CONF CMD in the first CB. The CONF CMD is needed to
456 * turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may
457 * use all the remaining space in the CBL and the Transmit Buffer Descriptor
458 * List. (Therefore CBL and TBDL must be continuous in physical and virtual
459 * memory. This is guaranteed through the definitions of the list offsets
460 * in i82596reg.h and because it is only a single DMA segment used for all
461 * lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with
462 * a multicast list length of 0, thus disabling the multicast filter.
463 * A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0)
464 */
465 void
466 iee_cb_setup(struct iee_softc *sc, uint32_t cmd)
467 {
468 struct iee_cb *cb = SC_CB(sc, sc->sc_next_cb);
469 struct ethercom *ec = &sc->sc_ethercom;
470 struct ifnet *ifp = &ec->ec_if;
471 struct ether_multistep step;
472 struct ether_multi *enm;
473
474 memset(cb, 0, sc->sc_cb_sz);
475 cb->cb_cmd = cmd;
476 switch (cmd & IEE_CB_CMD) {
477 case IEE_CB_CMD_NOP: /* NOP CMD */
478 break;
479 case IEE_CB_CMD_IAS: /* Individual Address Setup */
480 memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl),
481 ETHER_ADDR_LEN);
482 break;
483 case IEE_CB_CMD_CONF: /* Configure */
484 memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0]
485 & IEE_CF_0_CNT_M);
486 break;
487 case IEE_CB_CMD_MCS: /* Multicast Setup */
488 if (sc->sc_next_cb != 0) {
489 sc->sc_flags |= IEE_WANT_MCAST;
490 return;
491 }
492 sc->sc_flags &= ~IEE_WANT_MCAST;
493 if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) {
494 /* Need no multicast filter in promisc mode. */
495 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL
496 | IEE_CB_I);
497 return;
498 }
499 /* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */
500 cb = SC_CB(sc, sc->sc_next_cb + 1);
501 cb->cb_cmd = cmd;
502 cb->cb_mcast.mc_size = 0;
503 ETHER_LOCK(ec);
504 ETHER_FIRST_MULTI(step, ec, enm);
505 while (enm != NULL) {
506 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
507 ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size
508 * ETHER_ADDR_LEN + 2 * sc->sc_cb_sz >
509 sc->sc_cb_sz * IEE_NCB +
510 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB) {
511 cb->cb_mcast.mc_size = 0;
512 break;
513 }
514 memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[
515 cb->cb_mcast.mc_size]),
516 enm->enm_addrlo, ETHER_ADDR_LEN);
517 ETHER_NEXT_MULTI(step, enm);
518 cb->cb_mcast.mc_size += ETHER_ADDR_LEN;
519 }
520 ETHER_UNLOCK(ec);
521 if (cb->cb_mcast.mc_size == 0) {
522 /* Can't do exact mcast filtering, do ALLMULTI mode. */
523 ifp->if_flags |= IFF_ALLMULTI;
524 sc->sc_cf[11] &= ~IEE_CF_11_MCALL;
525 } else {
526 /* disable ALLMULTI and load mcast list */
527 ifp->if_flags &= ~IFF_ALLMULTI;
528 sc->sc_cf[11] |= IEE_CF_11_MCALL;
529 /* Mcast setup may need more than sc->sc_cb_sz bytes. */
530 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
531 sc->sc_cb_off,
532 sc->sc_cb_sz * IEE_NCB +
533 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB,
534 BUS_DMASYNC_PREWRITE);
535 }
536 iee_cb_setup(sc, IEE_CB_CMD_CONF);
537 break;
538 case IEE_CB_CMD_TR: /* Transmit */
539 cb->cb_transmit.tx_tbd_addr =
540 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off
541 + sc->sc_tbd_sz * sc->sc_next_tbd));
542 cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */
543 break;
544 case IEE_CB_CMD_TDR: /* Time Domain Reflectometry */
545 break;
546 case IEE_CB_CMD_DUMP: /* Dump */
547 break;
548 case IEE_CB_CMD_DIAG: /* Diagnose */
549 break;
550 default:
551 /* can't happen */
552 break;
553 }
554 cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off +
555 sc->sc_cb_sz * (sc->sc_next_cb + 1)));
556 IEE_CBSYNC(sc, sc->sc_next_cb,
557 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
558 sc->sc_next_cb++;
559 ifp->if_timer = 5;
560 }
561
562
563
564 void
565 iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia,
566 int defmedia)
567 {
568 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
569 int n;
570
571 KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align));
572
573 /*
574 * Calculate DMA descriptor offsets and sizes in shmem
575 * which should be cache line aligned.
576 */
577 sc->sc_scp_off = 0;
578 sc->sc_scp_sz = roundup2(sizeof(struct iee_scp), sc->sc_cl_align);
579 sc->sc_iscp_off = sc->sc_scp_sz;
580 sc->sc_iscp_sz = roundup2(sizeof(struct iee_iscp), sc->sc_cl_align);
581 sc->sc_scb_off = sc->sc_iscp_off + sc->sc_iscp_sz;
582 sc->sc_scb_sz = roundup2(sizeof(struct iee_scb), sc->sc_cl_align);
583 sc->sc_rfd_off = sc->sc_scb_off + sc->sc_scb_sz;
584 sc->sc_rfd_sz = roundup2(sizeof(struct iee_rfd), sc->sc_cl_align);
585 sc->sc_rbd_off = sc->sc_rfd_off + sc->sc_rfd_sz * IEE_NRFD;
586 sc->sc_rbd_sz = roundup2(sizeof(struct iee_rbd), sc->sc_cl_align);
587 sc->sc_cb_off = sc->sc_rbd_off + sc->sc_rbd_sz * IEE_NRFD;
588 sc->sc_cb_sz = roundup2(sizeof(struct iee_cb), sc->sc_cl_align);
589 sc->sc_tbd_off = sc->sc_cb_off + sc->sc_cb_sz * IEE_NCB;
590 sc->sc_tbd_sz = roundup2(sizeof(struct iee_tbd), sc->sc_cl_align);
591 sc->sc_shmem_sz = sc->sc_tbd_off + sc->sc_tbd_sz * IEE_NTBD * IEE_NCB;
592
593 /* allocate memory for shared DMA descriptors */
594 if (bus_dmamem_alloc(sc->sc_dmat, sc->sc_shmem_sz, PAGE_SIZE, 0,
595 &sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) {
596 aprint_error(": can't allocate %d bytes of DMA memory\n",
597 sc->sc_shmem_sz);
598 return;
599 }
600 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs,
601 sc->sc_shmem_sz, (void **)&sc->sc_shmem_addr,
602 BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) {
603 aprint_error(": can't map DMA memory\n");
604 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
605 sc->sc_dma_rsegs);
606 return;
607 }
608 if (bus_dmamap_create(sc->sc_dmat, sc->sc_shmem_sz, sc->sc_dma_rsegs,
609 sc->sc_shmem_sz, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) {
610 aprint_error(": can't create DMA map\n");
611 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
612 sc->sc_shmem_sz);
613 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
614 sc->sc_dma_rsegs);
615 return;
616 }
617 if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr,
618 sc->sc_shmem_sz, NULL, BUS_DMA_NOWAIT) != 0) {
619 aprint_error(": can't load DMA map\n");
620 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
621 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
622 sc->sc_shmem_sz);
623 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
624 sc->sc_dma_rsegs);
625 return;
626 }
627 memset(sc->sc_shmem_addr, 0, sc->sc_shmem_sz);
628
629 /*
630 * Set pointer to Intermediate System Configuration Pointer.
631 * Phys. addr. in big endian order. (Big endian as defined by Intel.)
632 */
633 SC_SCP(sc)->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_iscp_off));
634 SC_SCP(sc)->scp_sysbus = sc->sc_sysbus;
635 /*
636 * Set pointer to System Control Block.
637 * Phys. addr. in big endian order. (Big endian as defined by Intel.)
638 */
639 SC_ISCP(sc)->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_scb_off));
640 /* Set pointer to Receive Frame Area. (physical address) */
641 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
642 /* Set pointer to Command Block. (physical address) */
643 SC_SCB(sc)->scb_cmd_blk_addr =
644 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off));
645
646 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
647 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
648
649 /* Initialize ifmedia structures. */
650 sc->sc_ethercom.ec_ifmedia = &sc->sc_ifmedia;
651 ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus);
652 if (media != NULL) {
653 for (n = 0 ; n < nmedia ; n++)
654 ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL);
655 ifmedia_set(&sc->sc_ifmedia, defmedia);
656 } else {
657 ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL);
658 ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE);
659 }
660
661 ifp->if_softc = sc;
662 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
663 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
664 ifp->if_start = iee_start; /* initiate output routine */
665 ifp->if_ioctl = iee_ioctl; /* ioctl routine */
666 ifp->if_init = iee_init; /* init routine */
667 ifp->if_stop = iee_stop; /* stop routine */
668 ifp->if_watchdog = iee_watchdog; /* timer routine */
669 IFQ_SET_READY(&ifp->if_snd);
670 /* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */
671 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
672
673 if_attach(ifp);
674 if_deferred_start_init(ifp, NULL);
675 ether_ifattach(ifp, eth_addr);
676
677 aprint_normal(": Intel 82596%s address %s\n",
678 i82596_typenames[sc->sc_type], ether_sprintf(eth_addr));
679
680 for (n = 0 ; n < IEE_NCB ; n++)
681 sc->sc_tx_map[n] = NULL;
682 for (n = 0 ; n < IEE_NRFD ; n++) {
683 sc->sc_rx_mbuf[n] = NULL;
684 sc->sc_rx_map[n] = NULL;
685 }
686 sc->sc_tx_timeout = 0;
687 sc->sc_setup_timeout = 0;
688 (sc->sc_iee_reset)(sc);
689 }
690
691
692 void
693 iee_detach(struct iee_softc *sc, int flags)
694 {
695 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
696
697 if ((ifp->if_flags & IFF_RUNNING) != 0)
698 iee_stop(ifp, 1);
699 ether_ifdetach(ifp);
700 if_detach(ifp);
701 bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map);
702 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
703 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, sc->sc_shmem_sz);
704 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs);
705 }
706
707
708 /* Media change and status callback */
709 int
710 iee_mediachange(struct ifnet *ifp)
711 {
712 struct iee_softc *sc = ifp->if_softc;
713
714 if (sc->sc_mediachange != NULL)
715 return (sc->sc_mediachange)(ifp);
716 return 0;
717 }
718
719
720 void
721 iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq)
722 {
723 struct iee_softc *sc = ifp->if_softc;
724
725 if (sc->sc_mediastatus != NULL)
726 (sc->sc_mediastatus)(ifp, ifmreq);
727 }
728
729
730 /* Initiate output routine */
731 void
732 iee_start(struct ifnet *ifp)
733 {
734 struct iee_softc *sc = ifp->if_softc;
735 struct mbuf *m = NULL;
736 struct iee_tbd *tbd;
737 int t;
738 int n;
739
740 if (sc->sc_next_cb != 0)
741 /* There is already a CMD running. Defer packet enqueuing. */
742 return;
743 for (t = 0 ; t < IEE_NCB ; t++) {
744 IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]);
745 if (sc->sc_tx_mbuf[t] == NULL)
746 break;
747 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
748 sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
749 /*
750 * The packet needs more TBD than we support.
751 * Copy the packet into a mbuf cluster to get it out.
752 */
753 printf("%s: iee_start: failed to load DMA map\n",
754 device_xname(sc->sc_dev));
755 MGETHDR(m, M_DONTWAIT, MT_DATA);
756 if (m == NULL) {
757 printf("%s: iee_start: can't allocate mbuf\n",
758 device_xname(sc->sc_dev));
759 m_freem(sc->sc_tx_mbuf[t]);
760 sc->sc_tx_mbuf[t] = NULL;
761 t--;
762 continue;
763 }
764 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
765 MCLGET(m, M_DONTWAIT);
766 if ((m->m_flags & M_EXT) == 0) {
767 printf("%s: iee_start: can't allocate mbuf "
768 "cluster\n", device_xname(sc->sc_dev));
769 m_freem(sc->sc_tx_mbuf[t]);
770 sc->sc_tx_mbuf[t] = NULL;
771 m_freem(m);
772 t--;
773 continue;
774 }
775 m_copydata(sc->sc_tx_mbuf[t], 0,
776 sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *));
777 m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
778 m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
779 m_freem(sc->sc_tx_mbuf[t]);
780 sc->sc_tx_mbuf[t] = m;
781 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
782 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
783 printf("%s: iee_start: can't load TX DMA map\n",
784 device_xname(sc->sc_dev));
785 m_freem(sc->sc_tx_mbuf[t]);
786 sc->sc_tx_mbuf[t] = NULL;
787 t--;
788 continue;
789 }
790 }
791 for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) {
792 tbd = SC_TBD(sc, sc->sc_next_tbd + n);
793 tbd->tbd_tb_addr =
794 IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr);
795 tbd->tbd_size =
796 sc->sc_tx_map[t]->dm_segs[n].ds_len;
797 tbd->tbd_link_addr =
798 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off +
799 sc->sc_tbd_sz * (sc->sc_next_tbd + n + 1)));
800 }
801 SC_TBD(sc, sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL;
802 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
803 sc->sc_tbd_off + sc->sc_next_tbd * sc->sc_tbd_sz,
804 sc->sc_tbd_sz * sc->sc_tx_map[t]->dm_nsegs,
805 BUS_DMASYNC_PREWRITE);
806 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0,
807 sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE);
808 IFQ_POLL(&ifp->if_snd, m);
809 if (m == NULL)
810 iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL
811 | IEE_CB_I);
812 else
813 iee_cb_setup(sc, IEE_CB_CMD_TR);
814 sc->sc_next_tbd += n;
815 /* Pass packet to bpf if someone listens. */
816 bpf_mtap(ifp, sc->sc_tx_mbuf[t], BPF_D_OUT);
817 }
818 if (t == 0)
819 /* No packets got set up for TX. */
820 return;
821 if (t == IEE_NCB)
822 ifp->if_flags |= IFF_OACTIVE;
823 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
824 }
825
826
827
828 /* ioctl routine */
829 int
830 iee_ioctl(struct ifnet *ifp, u_long cmd, void *data)
831 {
832 struct iee_softc *sc = ifp->if_softc;
833 int s;
834 int err;
835
836 s = splnet();
837 switch (cmd) {
838 default:
839 err = ether_ioctl(ifp, cmd, data);
840 if (err == ENETRESET) {
841 /*
842 * Multicast list as changed; set the hardware filter
843 * accordingly.
844 */
845 if (ifp->if_flags & IFF_RUNNING) {
846 iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S |
847 IEE_CB_EL | IEE_CB_I);
848 if ((sc->sc_flags & IEE_WANT_MCAST) == 0)
849 (*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
850 }
851 err = 0;
852 }
853 break;
854 }
855 splx(s);
856 return err;
857 }
858
859
860
861 /* init routine */
862 int
863 iee_init(struct ifnet *ifp)
864 {
865 struct iee_softc *sc = ifp->if_softc;
866 int r;
867 int t;
868 int n;
869 int err;
870
871 sc->sc_next_cb = 0;
872 sc->sc_next_tbd = 0;
873 sc->sc_flags &= ~IEE_WANT_MCAST;
874 sc->sc_rx_done = 0;
875 SC_SCB(sc)->scb_crc_err = 0;
876 SC_SCB(sc)->scb_align_err = 0;
877 SC_SCB(sc)->scb_resource_err = 0;
878 SC_SCB(sc)->scb_overrun_err = 0;
879 SC_SCB(sc)->scb_rcvcdt_err = 0;
880 SC_SCB(sc)->scb_short_fr_err = 0;
881 sc->sc_crc_err = 0;
882 sc->sc_align_err = 0;
883 sc->sc_resource_err = 0;
884 sc->sc_overrun_err = 0;
885 sc->sc_rcvcdt_err = 0;
886 sc->sc_short_fr_err = 0;
887 sc->sc_tx_col = 0;
888 sc->sc_rx_err = 0;
889 sc->sc_cmd_err = 0;
890 /* Create Transmit DMA maps. */
891 for (t = 0 ; t < IEE_NCB ; t++) {
892 if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat,
893 MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT,
894 &sc->sc_tx_map[t]) != 0) {
895 printf("%s: iee_init: can't create TX DMA map\n",
896 device_xname(sc->sc_dev));
897 for (n = 0 ; n < t ; n++)
898 bus_dmamap_destroy(sc->sc_dmat,
899 sc->sc_tx_map[n]);
900 return ENOBUFS;
901 }
902 }
903 /* Initialize Receive Frame and Receive Buffer Descriptors */
904 err = 0;
905 memset(SC_RFD(sc, 0), 0, sc->sc_rfd_sz * IEE_NRFD);
906 memset(SC_RBD(sc, 0), 0, sc->sc_rbd_sz * IEE_NRFD);
907 for (r = 0 ; r < IEE_NRFD ; r++) {
908 SC_RFD(sc, r)->rfd_cmd = IEE_RFD_SF;
909 SC_RFD(sc, r)->rfd_link_addr =
910 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
911 + sc->sc_rfd_sz * ((r + 1) % IEE_NRFD)));
912
913 SC_RBD(sc, r)->rbd_next_rbd =
914 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
915 + sc->sc_rbd_sz * ((r + 1) % IEE_NRFD)));
916 if (sc->sc_rx_mbuf[r] == NULL) {
917 MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA);
918 if (sc->sc_rx_mbuf[r] == NULL) {
919 printf("%s: iee_init: can't allocate mbuf\n",
920 device_xname(sc->sc_dev));
921 err = 1;
922 break;
923 }
924 MCLAIM(sc->sc_rx_mbuf[r],
925 &sc->sc_ethercom.ec_rx_mowner);
926 MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT);
927 if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) {
928 printf("%s: iee_init: can't allocate mbuf"
929 " cluster\n", device_xname(sc->sc_dev));
930 m_freem(sc->sc_rx_mbuf[r]);
931 sc->sc_rx_mbuf[r] = NULL;
932 err = 1;
933 break;
934 }
935 sc->sc_rx_mbuf[r]->m_len =
936 sc->sc_rx_mbuf[r]->m_pkthdr.len = MCLBYTES - 2;
937 sc->sc_rx_mbuf[r]->m_data += 2;
938 }
939 if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat,
940 MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT,
941 &sc->sc_rx_map[r]) != 0) {
942 printf("%s: iee_init: can't create RX DMA map\n",
943 device_xname(sc->sc_dev));
944 m_freem(sc->sc_rx_mbuf[r]);
945 sc->sc_rx_mbuf[r] = NULL;
946 err = 1;
947 break;
948 }
949 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_map[r],
950 sc->sc_rx_mbuf[r], BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) {
951 printf("%s: iee_init: can't load RX DMA map\n",
952 device_xname(sc->sc_dev));
953 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]);
954 m_freem(sc->sc_rx_mbuf[r]);
955 sc->sc_rx_mbuf[r] = NULL;
956 err = 1;
957 break;
958 }
959 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0,
960 sc->sc_rx_map[r]->dm_mapsize, BUS_DMASYNC_PREREAD);
961 SC_RBD(sc, r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len;
962 SC_RBD(sc, r)->rbd_rb_addr =
963 IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr);
964 }
965 SC_RFD(sc, 0)->rfd_rbd_addr =
966 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
967 if (err != 0) {
968 for (n = 0 ; n < r; n++) {
969 m_freem(sc->sc_rx_mbuf[n]);
970 sc->sc_rx_mbuf[n] = NULL;
971 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
972 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
973 sc->sc_rx_map[n] = NULL;
974 }
975 for (n = 0 ; n < t ; n++) {
976 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
977 sc->sc_tx_map[n] = NULL;
978 }
979 return ENOBUFS;
980 }
981
982 (sc->sc_iee_reset)(sc);
983 iee_cb_setup(sc, IEE_CB_CMD_IAS);
984 sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF;
985 sc->sc_cf[1] = IEE_CF_1_DEF;
986 sc->sc_cf[2] = IEE_CF_2_DEF;
987 sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI
988 | IEE_CF_3_PREAMLEN_DEF;
989 sc->sc_cf[4] = IEE_CF_4_DEF;
990 sc->sc_cf[5] = IEE_CF_5_DEF;
991 sc->sc_cf[6] = IEE_CF_6_DEF;
992 sc->sc_cf[7] = IEE_CF_7_DEF;
993 sc->sc_cf[8] = IEE_CF_8_DEF;
994 sc->sc_cf[9] = IEE_CF_9_DEF;
995 sc->sc_cf[10] = IEE_CF_10_DEF;
996 sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD;
997 sc->sc_cf[12] = IEE_CF_12_DEF;
998 sc->sc_cf[13] = IEE_CF_13_DEF;
999 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL);
1000 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
1001 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
1002 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1003 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST);
1004 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1005 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
1006
1007 /* Mark the interface as running and ready to RX/TX packets. */
1008 ifp->if_flags |= IFF_RUNNING;
1009 ifp->if_flags &= ~IFF_OACTIVE;
1010 return 0;
1011 }
1012
1013
1014 /* Stop routine */
1015 void
1016 iee_stop(struct ifnet *ifp, int disable)
1017 {
1018 struct iee_softc *sc = ifp->if_softc;
1019 int n;
1020
1021 ifp->if_flags &= ~IFF_RUNNING;
1022 ifp->if_flags |= IFF_OACTIVE;
1023 ifp->if_timer = 0;
1024 /* Reset the chip to get it quiet. */
1025 (sc->sc_iee_reset)(ifp->if_softc);
1026 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1027 (sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK);
1028 /* Release any dynamically allocated resources. */
1029 for (n = 0 ; n < IEE_NCB ; n++) {
1030 if (sc->sc_tx_map[n] != NULL)
1031 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
1032 sc->sc_tx_map[n] = NULL;
1033 }
1034 for (n = 0 ; n < IEE_NRFD ; n++) {
1035 if (sc->sc_rx_mbuf[n] != NULL)
1036 m_freem(sc->sc_rx_mbuf[n]);
1037 sc->sc_rx_mbuf[n] = NULL;
1038 if (sc->sc_rx_map[n] != NULL) {
1039 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
1040 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
1041 }
1042 sc->sc_rx_map[n] = NULL;
1043 }
1044 }
1045
1046
1047 /* Timer routine */
1048 void
1049 iee_watchdog(struct ifnet *ifp)
1050 {
1051 struct iee_softc *sc = ifp->if_softc;
1052
1053 (sc->sc_iee_reset)(sc);
1054 if (sc->sc_next_tbd != 0)
1055 printf("%s: iee_watchdog: transmit timeout %d\n",
1056 device_xname(sc->sc_dev), ++sc->sc_tx_timeout);
1057 else
1058 printf("%s: iee_watchdog: setup timeout %d\n",
1059 device_xname(sc->sc_dev), ++sc->sc_setup_timeout);
1060 iee_init(ifp);
1061 }
1062