iha.c revision 1.16 1 /* $NetBSD: iha.c,v 1.16 2002/03/15 12:57:21 tsutsui Exp $ */
2 /*
3 * Initio INI-9xxxU/UW SCSI Device Driver
4 *
5 * Copyright (c) 2000 Ken Westerback
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
21 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23 * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
25 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
26 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 *-------------------------------------------------------------------------
30 *
31 * Ported from i91u.c, provided by Initio Corporation, which credits:
32 *
33 * Device driver for the INI-9XXXU/UW or INIC-940/950 PCI SCSI Controller.
34 *
35 * FreeBSD
36 *
37 * Written for 386bsd and FreeBSD by
38 * Winston Hung <winstonh (at) initio.com>
39 *
40 * Copyright (c) 1997-99 Initio Corp. All rights reserved.
41 *
42 *-------------------------------------------------------------------------
43 */
44
45 /*
46 * Ported to NetBSD by Izumi Tsutsui <tsutsui (at) ceres.dti.ne.jp> from OpenBSD:
47 * $OpenBSD: iha.c,v 1.3 2001/02/20 00:47:33 krw Exp $
48 */
49
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: iha.c,v 1.16 2002/03/15 12:57:21 tsutsui Exp $");
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/buf.h>
57 #include <sys/device.h>
58 #include <sys/malloc.h>
59
60 #include <uvm/uvm_extern.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 #include <dev/scsipi/scsi_all.h>
66 #include <dev/scsipi/scsipi_all.h>
67 #include <dev/scsipi/scsiconf.h>
68 #include <dev/scsipi/scsi_message.h>
69
70 #include <dev/ic/ihareg.h>
71 #include <dev/ic/ihavar.h>
72
73 /*
74 * SCSI Rate Table, indexed by FLAG_SCSI_RATE field of
75 * tcs flags.
76 */
77 static const u_int8_t iha_rate_tbl[] = {
78 /* fast 20 */
79 /* nanosecond divide by 4 */
80 12, /* 50ns, 20M */
81 18, /* 75ns, 13.3M */
82 25, /* 100ns, 10M */
83 31, /* 125ns, 8M */
84 37, /* 150ns, 6.6M */
85 43, /* 175ns, 5.7M */
86 50, /* 200ns, 5M */
87 62 /* 250ns, 4M */
88 };
89 #define IHA_MAX_PERIOD 62
90
91 #ifdef notused
92 static u_int16_t eeprom_default[EEPROM_SIZE] = {
93 /* -- Header ------------------------------------ */
94 /* signature */
95 EEP_SIGNATURE,
96 /* size, revision */
97 EEP_WORD(EEPROM_SIZE * 2, 0x01),
98 /* -- Host Adapter Structure -------------------- */
99 /* model */
100 0x0095,
101 /* model info, number of channel */
102 EEP_WORD(0x00, 1),
103 /* BIOS config */
104 EEP_BIOSCFG_DEFAULT,
105 /* host adapter config */
106 0,
107
108 /* -- eeprom_adapter[0] ------------------------------- */
109 /* ID, adapter config 1 */
110 EEP_WORD(7, CFG_DEFAULT),
111 /* adapter config 2, number of targets */
112 EEP_WORD(0x00, 8),
113 /* target flags */
114 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
115 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
116 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
117 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
118 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
119 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
120 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
121 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
122
123 /* -- eeprom_adapter[1] ------------------------------- */
124 /* ID, adapter config 1 */
125 EEP_WORD(7, CFG_DEFAULT),
126 /* adapter config 2, number of targets */
127 EEP_WORD(0x00, 8),
128 /* target flags */
129 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
130 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
131 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
132 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
133 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
134 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
135 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
136 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
137 /* reserved[5] */
138 0, 0, 0, 0, 0,
139 /* checksum */
140 0
141 };
142 #endif
143
144 static void iha_append_free_scb(struct iha_softc *, struct iha_scb *);
145 static void iha_append_done_scb(struct iha_softc *, struct iha_scb *, u_int8_t);
146 static __inline struct iha_scb *iha_pop_done_scb(struct iha_softc *);
147
148 static struct iha_scb *iha_find_pend_scb(struct iha_softc *);
149 static __inline void iha_append_pend_scb(struct iha_softc *, struct iha_scb *);
150 static __inline void iha_push_pend_scb(struct iha_softc *, struct iha_scb *);
151 static __inline void iha_del_pend_scb(struct iha_softc *, struct iha_scb *);
152 static __inline void iha_mark_busy_scb(struct iha_scb *);
153
154 static __inline void iha_set_ssig(struct iha_softc *, u_int8_t, u_int8_t);
155
156 static int iha_alloc_sglist(struct iha_softc *);
157
158 static void iha_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t,
159 void *);
160 static void iha_update_xfer_mode(struct iha_softc *, int);
161
162 static void iha_reset_scsi_bus(struct iha_softc *);
163 static void iha_reset_chip(struct iha_softc *);
164 static void iha_reset_dma(struct iha_softc *);
165 static void iha_reset_tcs(struct tcs *, u_int8_t);
166
167 static void iha_main(struct iha_softc *);
168 static void iha_scsi(struct iha_softc *);
169 static void iha_select(struct iha_softc *, struct iha_scb *, u_int8_t);
170 static int iha_wait(struct iha_softc *, u_int8_t);
171
172 static void iha_exec_scb(struct iha_softc *, struct iha_scb *);
173 static void iha_done_scb(struct iha_softc *, struct iha_scb *);
174 static int iha_push_sense_request(struct iha_softc *, struct iha_scb *);
175
176 static void iha_timeout(void *);
177 static void iha_abort_xs(struct iha_softc *, struct scsipi_xfer *, u_int8_t);
178 static u_int8_t iha_data_over_run(struct iha_scb *);
179
180 static int iha_next_state(struct iha_softc *);
181 static int iha_state_1(struct iha_softc *);
182 static int iha_state_2(struct iha_softc *);
183 static int iha_state_3(struct iha_softc *);
184 static int iha_state_4(struct iha_softc *);
185 static int iha_state_5(struct iha_softc *);
186 static int iha_state_6(struct iha_softc *);
187 static int iha_state_8(struct iha_softc *);
188
189 static int iha_xfer_data(struct iha_softc *, struct iha_scb *, int);
190 static int iha_xpad_in(struct iha_softc *);
191 static int iha_xpad_out(struct iha_softc *);
192
193 static int iha_status_msg(struct iha_softc *);
194 static void iha_busfree(struct iha_softc *);
195 static int iha_resel(struct iha_softc *);
196
197 static int iha_msgin(struct iha_softc *);
198 static int iha_msgin_extended(struct iha_softc *);
199 static int iha_msgin_sdtr(struct iha_softc *);
200 static int iha_msgin_ignore_wid_resid(struct iha_softc *);
201
202 static int iha_msgout(struct iha_softc *, u_int8_t);
203 static void iha_msgout_abort(struct iha_softc *, u_int8_t);
204 static int iha_msgout_reject(struct iha_softc *);
205 static int iha_msgout_extended(struct iha_softc *);
206 static int iha_msgout_wdtr(struct iha_softc *);
207 static int iha_msgout_sdtr(struct iha_softc *);
208
209 static void iha_wide_done(struct iha_softc *);
210 static void iha_sync_done(struct iha_softc *);
211
212 static void iha_bad_seq(struct iha_softc *);
213
214 static void iha_read_eeprom(struct iha_softc *, struct iha_eeprom *);
215 static int iha_se2_rd_all(struct iha_softc *, u_int16_t *);
216 static void iha_se2_instr(struct iha_softc *, int);
217 static u_int16_t iha_se2_rd(struct iha_softc *, int);
218 #ifdef notused
219 static void iha_se2_update_all(struct iha_softc *);
220 static void iha_se2_wr(struct iha_softc *, int, u_int16_t);
221 #endif
222
223 /*
224 * iha_append_free_scb - append the supplied SCB to the tail of the
225 * sc_freescb queue after clearing and resetting
226 * everything possible.
227 */
228 static void
229 iha_append_free_scb(sc, scb)
230 struct iha_softc *sc;
231 struct iha_scb *scb;
232 {
233 int s;
234
235 s = splbio();
236
237 if (scb == sc->sc_actscb)
238 sc->sc_actscb = NULL;
239
240 scb->status = STATUS_QUEUED;
241 scb->ha_stat = HOST_OK;
242 scb->ta_stat = SCSI_OK;
243
244 scb->nextstat = 0;
245 scb->scb_tagmsg = 0;
246
247 scb->xs = NULL;
248 scb->tcs = NULL;
249
250 /*
251 * scb_tagid, sg_addr, sglist
252 * SCB_SensePtr are set at initialization
253 * and never change
254 */
255
256 TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
257
258 splx(s);
259 }
260
261 static void
262 iha_append_done_scb(sc, scb, hastat)
263 struct iha_softc *sc;
264 struct iha_scb *scb;
265 u_int8_t hastat;
266 {
267 struct tcs *tcs;
268 int s;
269
270 s = splbio();
271
272 if (scb->xs != NULL)
273 callout_stop(&scb->xs->xs_callout);
274
275 if (scb == sc->sc_actscb)
276 sc->sc_actscb = NULL;
277
278 tcs = scb->tcs;
279
280 if (scb->scb_tagmsg != 0) {
281 if (tcs->tagcnt)
282 tcs->tagcnt--;
283 } else if (tcs->ntagscb == scb)
284 tcs->ntagscb = NULL;
285
286 scb->status = STATUS_QUEUED;
287 scb->ha_stat = hastat;
288
289 TAILQ_INSERT_TAIL(&sc->sc_donescb, scb, chain);
290
291 splx(s);
292 }
293
294 static __inline struct iha_scb *
295 iha_pop_done_scb(sc)
296 struct iha_softc *sc;
297 {
298 struct iha_scb *scb;
299 int s;
300
301 s = splbio();
302
303 scb = TAILQ_FIRST(&sc->sc_donescb);
304
305 if (scb != NULL) {
306 scb->status = STATUS_RENT;
307 TAILQ_REMOVE(&sc->sc_donescb, scb, chain);
308 }
309
310 splx(s);
311
312 return (scb);
313 }
314
315 /*
316 * iha_find_pend_scb - scan the pending queue for a SCB that can be
317 * processed immediately. Return NULL if none found
318 * and a pointer to the SCB if one is found. If there
319 * is an active SCB, return NULL!
320 */
321 static struct iha_scb *
322 iha_find_pend_scb(sc)
323 struct iha_softc *sc;
324 {
325 struct iha_scb *scb;
326 struct tcs *tcs;
327 int s;
328
329 s = splbio();
330
331 if (sc->sc_actscb != NULL)
332 scb = NULL;
333
334 else
335 TAILQ_FOREACH(scb, &sc->sc_pendscb, chain) {
336 if ((scb->xs->xs_control & XS_CTL_RESET) != 0)
337 /* ALWAYS willing to reset a device */
338 break;
339
340 tcs = scb->tcs;
341
342 if ((scb->scb_tagmsg) != 0) {
343 /*
344 * A Tagged I/O. OK to start If no
345 * non-tagged I/O is active on the same
346 * target
347 */
348 if (tcs->ntagscb == NULL)
349 break;
350
351 } else if (scb->cmd[0] == REQUEST_SENSE) {
352 /*
353 * OK to do a non-tagged request sense
354 * even if a non-tagged I/O has been
355 * started, 'cuz we don't allow any
356 * disconnect during a request sense op
357 */
358 break;
359
360 } else if (tcs->tagcnt == 0) {
361 /*
362 * No tagged I/O active on this target,
363 * ok to start a non-tagged one if one
364 * is not already active
365 */
366 if (tcs->ntagscb == NULL)
367 break;
368 }
369 }
370
371 splx(s);
372
373 return (scb);
374 }
375
376 static __inline void
377 iha_append_pend_scb(sc, scb)
378 struct iha_softc *sc;
379 struct iha_scb *scb;
380 {
381 /* ASSUMPTION: only called within a splbio()/splx() pair */
382
383 if (scb == sc->sc_actscb)
384 sc->sc_actscb = NULL;
385
386 scb->status = STATUS_QUEUED;
387
388 TAILQ_INSERT_TAIL(&sc->sc_pendscb, scb, chain);
389 }
390
391 static __inline void
392 iha_push_pend_scb(sc, scb)
393 struct iha_softc *sc;
394 struct iha_scb *scb;
395 {
396 int s;
397
398 s = splbio();
399
400 if (scb == sc->sc_actscb)
401 sc->sc_actscb = NULL;
402
403 scb->status = STATUS_QUEUED;
404
405 TAILQ_INSERT_HEAD(&sc->sc_pendscb, scb, chain);
406
407 splx(s);
408 }
409
410 /*
411 * iha_del_pend_scb - remove scb from sc_pendscb
412 */
413 static __inline void
414 iha_del_pend_scb(sc, scb)
415 struct iha_softc *sc;
416 struct iha_scb *scb;
417 {
418 int s;
419
420 s = splbio();
421
422 TAILQ_REMOVE(&sc->sc_pendscb, scb, chain);
423
424 splx(s);
425 }
426
427 static __inline void
428 iha_mark_busy_scb(scb)
429 struct iha_scb *scb;
430 {
431 int s;
432
433 s = splbio();
434
435 scb->status = STATUS_BUSY;
436
437 if (scb->scb_tagmsg == 0)
438 scb->tcs->ntagscb = scb;
439 else
440 scb->tcs->tagcnt++;
441
442 splx(s);
443 }
444
445 /*
446 * iha_set_ssig - read the current scsi signal mask, then write a new
447 * one which turns off/on the specified signals.
448 */
449 static __inline void
450 iha_set_ssig(sc, offsigs, onsigs)
451 struct iha_softc *sc;
452 u_int8_t offsigs, onsigs;
453 {
454 bus_space_tag_t iot = sc->sc_iot;
455 bus_space_handle_t ioh = sc->sc_ioh;
456 u_int8_t currsigs;
457
458 currsigs = bus_space_read_1(iot, ioh, TUL_SSIGI);
459 bus_space_write_1(iot, ioh, TUL_SSIGO, (currsigs & ~offsigs) | onsigs);
460 }
461
462 /*
463 * iha_intr - the interrupt service routine for the iha driver
464 */
465 int
466 iha_intr(arg)
467 void *arg;
468 {
469 bus_space_tag_t iot;
470 bus_space_handle_t ioh;
471 struct iha_softc *sc;
472 int s;
473
474 sc = (struct iha_softc *)arg;
475 iot = sc->sc_iot;
476 ioh = sc->sc_ioh;
477
478 if ((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
479 return (0);
480
481 s = splbio(); /* XXX - Or are interrupts off when ISR's are called? */
482
483 if (sc->sc_semaph != SEMAPH_IN_MAIN) {
484 /* XXX - need these inside a splbio()/splx()? */
485 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
486 sc->sc_semaph = SEMAPH_IN_MAIN;
487
488 iha_main(sc);
489
490 sc->sc_semaph = ~SEMAPH_IN_MAIN;
491 bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
492 }
493
494 splx(s);
495
496 return (1);
497 }
498
499 void
500 iha_attach(sc)
501 struct iha_softc *sc;
502 {
503 bus_space_tag_t iot = sc->sc_iot;
504 bus_space_handle_t ioh = sc->sc_ioh;
505 struct iha_scb *scb;
506 struct iha_eeprom eeprom;
507 struct eeprom_adapter *conf;
508 int i, error, reg;
509
510 iha_read_eeprom(sc, &eeprom);
511
512 conf = &eeprom.adapter[0];
513
514 /*
515 * fill in the rest of the iha_softc fields
516 */
517 sc->sc_id = CFG_ID(conf->config1);
518 sc->sc_semaph = ~SEMAPH_IN_MAIN;
519 sc->sc_status0 = 0;
520 sc->sc_actscb = NULL;
521
522 TAILQ_INIT(&sc->sc_freescb);
523 TAILQ_INIT(&sc->sc_pendscb);
524 TAILQ_INIT(&sc->sc_donescb);
525 error = iha_alloc_sglist(sc);
526 if (error != 0) {
527 printf(": cannot allocate sglist\n");
528 return;
529 }
530
531 sc->sc_scb = malloc(sizeof(struct iha_scb) * IHA_MAX_SCB,
532 M_DEVBUF, M_NOWAIT|M_ZERO);
533 if (sc->sc_scb == NULL) {
534 printf(": cannot allocate SCB\n");
535 return;
536 }
537
538 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) {
539 scb->scb_tagid = i;
540 scb->sgoffset = IHA_SG_SIZE * i;
541 scb->sglist = sc->sc_sglist + IHA_MAX_SG_ENTRIES * i;
542 scb->sg_addr =
543 sc->sc_dmamap->dm_segs[0].ds_addr + scb->sgoffset;
544
545 error = bus_dmamap_create(sc->sc_dmat,
546 MAXPHYS, IHA_MAX_SG_ENTRIES, MAXPHYS, 0,
547 BUS_DMA_NOWAIT, &scb->dmap);
548
549 if (error != 0) {
550 printf(": couldn't create SCB DMA map, error = %d\n",
551 error);
552 return;
553 }
554 TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
555 }
556
557 /* Mask all the interrupts */
558 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
559
560 /* Stop any I/O and reset the scsi module */
561 iha_reset_dma(sc);
562 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSMOD);
563
564 /* Program HBA's SCSI ID */
565 bus_space_write_1(iot, ioh, TUL_SID, sc->sc_id << 4);
566
567 /*
568 * Configure the channel as requested by the NVRAM settings read
569 * by iha_read_eeprom() above.
570 */
571
572 sc->sc_sconf1 = SCONFIG0DEFAULT;
573 if ((conf->config1 & CFG_EN_PAR) != 0)
574 sc->sc_sconf1 |= SPCHK;
575 bus_space_write_1(iot, ioh, TUL_SCONFIG0, sc->sc_sconf1);
576
577 /* set selection time out 250 ms */
578 bus_space_write_1(iot, ioh, TUL_STIMO, STIMO_250MS);
579
580 /* Enable desired SCSI termination configuration read from eeprom */
581 reg = 0;
582 if (conf->config1 & CFG_ACT_TERM1)
583 reg |= ENTMW;
584 if (conf->config1 & CFG_ACT_TERM2)
585 reg |= ENTM;
586 bus_space_write_1(iot, ioh, TUL_DCTRL0, reg);
587
588 reg = bus_space_read_1(iot, ioh, TUL_GCTRL1) & ~ATDEN;
589 if (conf->config1 & CFG_AUTO_TERM)
590 reg |= ATDEN;
591 bus_space_write_1(iot, ioh, TUL_GCTRL1, reg);
592
593 for (i = 0; i < IHA_MAX_TARGETS / 2; i++) {
594 sc->sc_tcs[i * 2 ].flags = EEP_LBYTE(conf->tflags[i]);
595 sc->sc_tcs[i * 2 + 1].flags = EEP_HBYTE(conf->tflags[i]);
596 iha_reset_tcs(&sc->sc_tcs[i * 2 ], sc->sc_sconf1);
597 iha_reset_tcs(&sc->sc_tcs[i * 2 + 1], sc->sc_sconf1);
598 }
599
600 iha_reset_chip(sc);
601 bus_space_write_1(iot, ioh, TUL_SIEN, ALL_INTERRUPTS);
602
603 /*
604 * fill in the adapter.
605 */
606 sc->sc_adapter.adapt_dev = &sc->sc_dev;
607 sc->sc_adapter.adapt_nchannels = 1;
608 sc->sc_adapter.adapt_openings = IHA_MAX_SCB;
609 sc->sc_adapter.adapt_max_periph = IHA_MAX_SCB;
610 sc->sc_adapter.adapt_ioctl = NULL;
611 sc->sc_adapter.adapt_minphys = minphys;
612 sc->sc_adapter.adapt_request = iha_scsipi_request;
613
614 /*
615 * fill in the channel.
616 */
617 sc->sc_channel.chan_adapter = &sc->sc_adapter;
618 sc->sc_channel.chan_bustype = &scsi_bustype;
619 sc->sc_channel.chan_channel = 0;
620 sc->sc_channel.chan_ntargets = CFG_TARGET(conf->config2);
621 sc->sc_channel.chan_nluns = 8;
622 sc->sc_channel.chan_id = sc->sc_id;
623
624 /*
625 * Now try to attach all the sub devices.
626 */
627 config_found(&sc->sc_dev, &sc->sc_channel, scsiprint);
628 }
629
630 /*
631 * iha_alloc_sglist - allocate and map sglist for SCB's
632 */
633 static int
634 iha_alloc_sglist(sc)
635 struct iha_softc *sc;
636 {
637 bus_dma_segment_t seg;
638 int error, rseg;
639
640 /*
641 * Allocate dma-safe memory for the SCB's sglist
642 */
643 if ((error = bus_dmamem_alloc(sc->sc_dmat,
644 IHA_SG_SIZE * IHA_MAX_SCB,
645 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
646 printf(": unable to allocate sglist, error = %d\n", error);
647 return (error);
648 }
649 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
650 IHA_SG_SIZE * IHA_MAX_SCB, (caddr_t *)&sc->sc_sglist,
651 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
652 printf(": unable to map sglist, error = %d\n", error);
653 return (error);
654 }
655
656 /*
657 * Create and load the DMA map used for the SCBs
658 */
659 if ((error = bus_dmamap_create(sc->sc_dmat,
660 IHA_SG_SIZE * IHA_MAX_SCB, 1, IHA_SG_SIZE * IHA_MAX_SCB,
661 0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
662 printf(": unable to create control DMA map, error = %d\n",
663 error);
664 return (error);
665 }
666 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
667 sc->sc_sglist, IHA_SG_SIZE * IHA_MAX_SCB,
668 NULL, BUS_DMA_NOWAIT)) != 0) {
669 printf(": unable to load control DMA map, error = %d\n", error);
670 return (error);
671 }
672
673 memset(sc->sc_sglist, 0, IHA_SG_SIZE * IHA_MAX_SCB);
674
675 return (0);
676 }
677
678 void
679 iha_scsipi_request(chan, req, arg)
680 struct scsipi_channel *chan;
681 scsipi_adapter_req_t req;
682 void *arg;
683 {
684 struct scsipi_xfer *xs;
685 struct scsipi_periph *periph;
686 struct iha_scb *scb;
687 struct iha_softc *sc;
688 int error, s;
689
690 sc = (struct iha_softc *)chan->chan_adapter->adapt_dev;
691
692 switch (req) {
693 case ADAPTER_REQ_RUN_XFER:
694 xs = arg;
695 periph = xs->xs_periph;
696
697 if (xs->cmdlen > sizeof(struct scsi_generic) ||
698 periph->periph_target >= IHA_MAX_TARGETS) {
699 xs->error = XS_DRIVER_STUFFUP;
700 return;
701 }
702
703 s = splbio();
704 scb = TAILQ_FIRST(&sc->sc_freescb);
705 if (scb != NULL) {
706 scb->status = STATUS_RENT;
707 TAILQ_REMOVE(&sc->sc_freescb, scb, chain);
708 }
709 #ifdef DIAGNOSTIC
710 else {
711 scsipi_printaddr(periph);
712 printf("unable to allocate scb\n");
713 panic("iha_scsipi_request");
714 }
715 #endif
716 splx(s);
717
718 scb->target = periph->periph_target;
719 scb->lun = periph->periph_lun;
720 scb->tcs = &sc->sc_tcs[scb->target];
721 scb->scb_id = MSG_IDENTIFY(periph->periph_lun,
722 (xs->xs_control & XS_CTL_REQSENSE) == 0);
723
724 scb->xs = xs;
725 scb->cmdlen = xs->cmdlen;
726 memcpy(&scb->cmd, xs->cmd, xs->cmdlen);
727 scb->buflen = xs->datalen;
728 scb->flags = 0;
729 if (xs->xs_control & XS_CTL_DATA_OUT)
730 scb->flags |= FLAG_DATAOUT;
731 if (xs->xs_control & XS_CTL_DATA_IN)
732 scb->flags |= FLAG_DATAIN;
733
734 if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
735 error = bus_dmamap_load(sc->sc_dmat, scb->dmap,
736 xs->data, scb->buflen, NULL,
737 ((xs->xs_control & XS_CTL_NOSLEEP) ?
738 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
739 BUS_DMA_STREAMING |
740 ((scb->flags & FLAG_DATAIN) ?
741 BUS_DMA_READ : BUS_DMA_WRITE));
742
743 if (error) {
744 printf("%s: error %d loading dma map\n",
745 sc->sc_dev.dv_xname, error);
746 iha_append_free_scb(sc, scb);
747 xs->error = XS_DRIVER_STUFFUP;
748 scsipi_done(xs);
749 return;
750 }
751 bus_dmamap_sync(sc->sc_dmat, scb->dmap,
752 0, scb->dmap->dm_mapsize,
753 (scb->flags & FLAG_DATAIN) ?
754 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
755 }
756
757 iha_exec_scb(sc, scb);
758 return;
759
760 case ADAPTER_REQ_GROW_RESOURCES:
761 return; /* XXX */
762
763 case ADAPTER_REQ_SET_XFER_MODE:
764 {
765 struct tcs *tcs;
766 struct scsipi_xfer_mode *xm = arg;
767
768 tcs = &sc->sc_tcs[xm->xm_target];
769
770 if ((xm->xm_mode & PERIPH_CAP_WIDE16) != 0 &&
771 (tcs->flags & FLAG_NO_WIDE) == 0)
772 tcs->flags &= ~(FLAG_WIDE_DONE|FLAG_SYNC_DONE);
773
774 if ((xm->xm_mode & PERIPH_CAP_SYNC) != 0 &&
775 (tcs->flags & FLAG_NO_SYNC) == 0)
776 tcs->flags &= ~FLAG_SYNC_DONE;
777
778 /*
779 * If we're not going to negotiate, send the
780 * notification now, since it won't happen later.
781 */
782 if ((tcs->flags & (FLAG_WIDE_DONE|FLAG_SYNC_DONE)) ==
783 (FLAG_WIDE_DONE|FLAG_SYNC_DONE))
784 iha_update_xfer_mode(sc, xm->xm_target);
785
786 return;
787 }
788 }
789 }
790
791 void
792 iha_update_xfer_mode(sc, target)
793 struct iha_softc *sc;
794 int target;
795 {
796 struct tcs *tcs = &sc->sc_tcs[target];
797 struct scsipi_xfer_mode xm;
798
799 xm.xm_target = target;
800 xm.xm_mode = 0;
801 xm.xm_period = 0;
802 xm.xm_offset = 0;
803
804 if (tcs->syncm & PERIOD_WIDE_SCSI)
805 xm.xm_mode |= PERIPH_CAP_WIDE16;
806
807 if (tcs->period) {
808 xm.xm_mode |= PERIPH_CAP_SYNC;
809 xm.xm_period = tcs->period;
810 xm.xm_offset = tcs->offset;
811 }
812
813 scsipi_async_event(&sc->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
814 }
815
816 static void
817 iha_reset_scsi_bus(sc)
818 struct iha_softc *sc;
819 {
820 struct iha_scb *scb;
821 struct tcs *tcs;
822 int i, s;
823
824 s = splbio();
825
826 iha_reset_dma(sc);
827
828 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
829 switch (scb->status) {
830 case STATUS_BUSY:
831 iha_append_done_scb(sc, scb, HOST_SCSI_RST);
832 break;
833
834 case STATUS_SELECT:
835 iha_push_pend_scb(sc, scb);
836 break;
837
838 default:
839 break;
840 }
841
842 for (i = 0, tcs = sc->sc_tcs; i < IHA_MAX_TARGETS; i++, tcs++)
843 iha_reset_tcs(tcs, sc->sc_sconf1);
844
845 splx(s);
846 }
847
848 void
849 iha_reset_chip(sc)
850 struct iha_softc *sc;
851 {
852 bus_space_tag_t iot = sc->sc_iot;
853 bus_space_handle_t ioh = sc->sc_ioh;
854
855 /* reset tulip chip */
856
857 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSCSI);
858
859 do {
860 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
861 } while ((sc->sc_sistat & SRSTD) == 0);
862
863 iha_set_ssig(sc, 0, 0);
864
865 bus_space_read_1(iot, ioh, TUL_SISTAT); /* Clear any active interrupt*/
866 }
867
868 /*
869 * iha_reset_dma - abort any active DMA xfer, reset tulip FIFO.
870 */
871 static void
872 iha_reset_dma(sc)
873 struct iha_softc *sc;
874 {
875 bus_space_tag_t iot = sc->sc_iot;
876 bus_space_handle_t ioh = sc->sc_ioh;
877
878 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
879 /* if DMA xfer is pending, abort DMA xfer */
880 bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
881 /* wait Abort DMA xfer done */
882 while ((bus_space_read_1(iot, ioh, TUL_ISTUS0) & DABT) == 0)
883 ;
884 }
885
886 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
887 }
888
889 /*
890 * iha_reset_tcs - reset the target control structure pointed
891 * to by tcs to default values. tcs flags
892 * only has the negotiation done bits reset as
893 * the other bits are fixed at initialization.
894 */
895 static void
896 iha_reset_tcs(tcs, config0)
897 struct tcs *tcs;
898 u_int8_t config0;
899 {
900
901 tcs->flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
902 tcs->period = 0;
903 tcs->offset = 0;
904 tcs->tagcnt = 0;
905 tcs->ntagscb = NULL;
906 tcs->syncm = 0;
907 tcs->sconfig0 = config0;
908 }
909
910 /*
911 * iha_main - process the active SCB, taking one off pending and making it
912 * active if necessary, and any done SCB's created as
913 * a result until there are no interrupts pending and no pending
914 * SCB's that can be started.
915 */
916 static void
917 iha_main(sc)
918 struct iha_softc *sc;
919 {
920 bus_space_tag_t iot = sc->sc_iot;
921 bus_space_handle_t ioh =sc->sc_ioh;
922 struct iha_scb *scb;
923
924 for (;;) {
925 iha_scsi(sc);
926
927 while ((scb = iha_pop_done_scb(sc)) != NULL)
928 iha_done_scb(sc, scb);
929
930 /*
931 * If there are no interrupts pending, or we can't start
932 * a pending sc, break out of the for(;;). Otherwise
933 * continue the good work with another call to
934 * iha_scsi().
935 */
936 if (((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
937 && (iha_find_pend_scb(sc) == NULL))
938 break;
939 }
940 }
941
942 /*
943 * iha_scsi - service any outstanding interrupts. If there are none, try to
944 * start another SCB currently in the pending queue.
945 */
946 static void
947 iha_scsi(sc)
948 struct iha_softc *sc;
949 {
950 bus_space_tag_t iot = sc->sc_iot;
951 bus_space_handle_t ioh = sc->sc_ioh;
952 struct iha_scb *scb;
953 struct tcs *tcs;
954 u_int8_t stat;
955
956 /* service pending interrupts asap */
957
958 stat = bus_space_read_1(iot, ioh, TUL_STAT0);
959 if ((stat & INTPD) != 0) {
960 sc->sc_status0 = stat;
961 sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
962 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
963
964 sc->sc_phase = sc->sc_status0 & PH_MASK;
965
966 if ((sc->sc_sistat & SRSTD) != 0) {
967 iha_reset_scsi_bus(sc);
968 return;
969 }
970
971 if ((sc->sc_sistat & RSELED) != 0) {
972 iha_resel(sc);
973 return;
974 }
975
976 if ((sc->sc_sistat & (STIMEO | DISCD)) != 0) {
977 iha_busfree(sc);
978 return;
979 }
980
981 if ((sc->sc_sistat & (SCMDN | SBSRV)) != 0) {
982 iha_next_state(sc);
983 return;
984 }
985
986 if ((sc->sc_sistat & SELED) != 0)
987 iha_set_ssig(sc, 0, 0);
988 }
989
990 /*
991 * There were no interrupts pending which required action elsewhere, so
992 * see if it is possible to start the selection phase on a pending SCB
993 */
994 if ((scb = iha_find_pend_scb(sc)) == NULL)
995 return;
996
997 tcs = scb->tcs;
998
999 /* program HBA's SCSI ID & target SCSI ID */
1000 bus_space_write_1(iot, ioh, TUL_SID, (sc->sc_id << 4) | scb->target);
1001
1002 if ((scb->xs->xs_control & XS_CTL_RESET) == 0) {
1003 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
1004
1005 if ((tcs->flags & FLAG_NO_NEG_SYNC) == 0 ||
1006 (tcs->flags & FLAG_NO_NEG_WIDE) == 0)
1007 iha_select(sc, scb, SELATNSTOP);
1008
1009 else if (scb->scb_tagmsg != 0)
1010 iha_select(sc, scb, SEL_ATN3);
1011
1012 else
1013 iha_select(sc, scb, SEL_ATN);
1014
1015 } else {
1016 iha_select(sc, scb, SELATNSTOP);
1017 scb->nextstat = 8;
1018 }
1019
1020 if ((scb->xs->xs_control & XS_CTL_POLL) != 0) {
1021 int timeout;
1022 for (timeout = scb->xs->timeout; timeout > 0; timeout--) {
1023 if (iha_wait(sc, NO_OP) == -1)
1024 break;
1025 if (iha_next_state(sc) == -1)
1026 break;
1027 delay(1000); /* Only happens in boot, so it's ok */
1028 }
1029
1030 /*
1031 * Since done queue processing not done until AFTER this
1032 * function returns, scb is on the done queue, not
1033 * the free queue at this point and still has valid data
1034 *
1035 * Conversely, xs->error has not been set yet
1036 */
1037 if (timeout == 0)
1038 iha_timeout(scb);
1039 }
1040 }
1041
1042 static void
1043 iha_select(sc, scb, select_type)
1044 struct iha_softc *sc;
1045 struct iha_scb *scb;
1046 u_int8_t select_type;
1047 {
1048 bus_space_tag_t iot = sc->sc_iot;
1049 bus_space_handle_t ioh = sc->sc_ioh;
1050
1051 switch (select_type) {
1052 case SEL_ATN:
1053 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1054 bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1055 scb->cmd, scb->cmdlen);
1056
1057 scb->nextstat = 2;
1058 break;
1059
1060 case SELATNSTOP:
1061 scb->nextstat = 1;
1062 break;
1063
1064 case SEL_ATN3:
1065 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1066 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagmsg);
1067 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagid);
1068
1069 bus_space_write_multi_1(iot, ioh, TUL_SFIFO, scb->cmd,
1070 scb->cmdlen);
1071
1072 scb->nextstat = 2;
1073 break;
1074
1075 default:
1076 printf("[debug] iha_select() - unknown select type = 0x%02x\n",
1077 select_type);
1078 return;
1079 }
1080
1081 iha_del_pend_scb(sc, scb);
1082 scb->status = STATUS_SELECT;
1083
1084 sc->sc_actscb = scb;
1085
1086 bus_space_write_1(iot, ioh, TUL_SCMD, select_type);
1087 }
1088
1089 /*
1090 * iha_wait - wait for an interrupt to service or a SCSI bus phase change
1091 * after writing the supplied command to the tulip chip. If
1092 * the command is NO_OP, skip the command writing.
1093 */
1094 static int
1095 iha_wait(sc, cmd)
1096 struct iha_softc *sc;
1097 u_int8_t cmd;
1098 {
1099 bus_space_tag_t iot = sc->sc_iot;
1100 bus_space_handle_t ioh = sc->sc_ioh;
1101
1102 if (cmd != NO_OP)
1103 bus_space_write_1(iot, ioh, TUL_SCMD, cmd);
1104
1105 /*
1106 * Have to do this here, in addition to in iha_isr, because
1107 * interrupts might be turned off when we get here.
1108 */
1109 do {
1110 sc->sc_status0 = bus_space_read_1(iot, ioh, TUL_STAT0);
1111 } while ((sc->sc_status0 & INTPD) == 0);
1112
1113 sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
1114 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
1115
1116 sc->sc_phase = sc->sc_status0 & PH_MASK;
1117
1118 if ((sc->sc_sistat & SRSTD) != 0) {
1119 /* SCSI bus reset interrupt */
1120 iha_reset_scsi_bus(sc);
1121 return (-1);
1122 }
1123
1124 if ((sc->sc_sistat & RSELED) != 0)
1125 /* Reselection interrupt */
1126 return (iha_resel(sc));
1127
1128 if ((sc->sc_sistat & STIMEO) != 0) {
1129 /* selected/reselected timeout interrupt */
1130 iha_busfree(sc);
1131 return (-1);
1132 }
1133
1134 if ((sc->sc_sistat & DISCD) != 0) {
1135 /* BUS disconnection interrupt */
1136 if ((sc->sc_flags & FLAG_EXPECT_DONE_DISC) != 0) {
1137 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1138 bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1139 SCONFIG0DEFAULT);
1140 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1141 iha_append_done_scb(sc, sc->sc_actscb, HOST_OK);
1142 sc->sc_flags &= ~FLAG_EXPECT_DONE_DISC;
1143
1144 } else if ((sc->sc_flags & FLAG_EXPECT_DISC) != 0) {
1145 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1146 bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1147 SCONFIG0DEFAULT);
1148 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1149 sc->sc_actscb = NULL;
1150 sc->sc_flags &= ~FLAG_EXPECT_DISC;
1151
1152 } else
1153 iha_busfree(sc);
1154
1155 return (-1);
1156 }
1157
1158 return (sc->sc_phase);
1159 }
1160
1161 static void
1162 iha_exec_scb(sc, scb)
1163 struct iha_softc *sc;
1164 struct iha_scb *scb;
1165 {
1166 bus_space_tag_t iot;
1167 bus_space_handle_t ioh;
1168 bus_dmamap_t dm;
1169 struct scsipi_xfer *xs = scb->xs;
1170 int nseg, s;
1171
1172 dm = scb->dmap;
1173 nseg = dm->dm_nsegs;
1174
1175 if (nseg > 1) {
1176 struct iha_sg_element *sg = scb->sglist;
1177 int i;
1178
1179 for (i = 0; i < nseg; i++) {
1180 sg[i].sg_len = htole32(dm->dm_segs[i].ds_len);
1181 sg[i].sg_addr = htole32(dm->dm_segs[i].ds_addr);
1182 }
1183 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1184 scb->sgoffset, IHA_SG_SIZE,
1185 BUS_DMASYNC_PREWRITE);
1186
1187 scb->flags |= FLAG_SG;
1188 scb->sg_size = scb->sg_max = nseg;
1189 scb->sg_index = 0;
1190
1191 scb->bufaddr = scb->sg_addr;
1192 } else
1193 scb->bufaddr = dm->dm_segs[0].ds_addr;
1194
1195 if ((xs->xs_control & XS_CTL_POLL) == 0) {
1196 int timeout = xs->timeout;
1197 timeout = (timeout > 100000) ?
1198 timeout / 1000 * hz : timeout * hz / 1000;
1199 if (timeout == 0)
1200 timeout = 1;
1201 callout_reset(&xs->xs_callout, timeout, iha_timeout, scb);
1202 }
1203
1204 s = splbio();
1205
1206 if (((scb->xs->xs_control & XS_RESET) != 0) ||
1207 (scb->cmd[0] == REQUEST_SENSE))
1208 iha_push_pend_scb(sc, scb); /* Insert SCB at head of Pend */
1209 else
1210 iha_append_pend_scb(sc, scb); /* Append SCB to tail of Pend */
1211
1212 /*
1213 * Run through iha_main() to ensure something is active, if
1214 * only this new SCB.
1215 */
1216 if (sc->sc_semaph != SEMAPH_IN_MAIN) {
1217 iot = sc->sc_iot;
1218 ioh = sc->sc_ioh;
1219
1220 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
1221 sc->sc_semaph = SEMAPH_IN_MAIN;;
1222
1223 splx(s);
1224 iha_main(sc);
1225 s = splbio();
1226
1227 sc->sc_semaph = ~SEMAPH_IN_MAIN;;
1228 bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
1229 }
1230
1231 splx(s);
1232 }
1233
1234 /*
1235 * iha_done_scb - We have a scb which has been processed by the
1236 * adaptor, now we look to see how the operation went.
1237 */
1238 static void
1239 iha_done_scb(sc, scb)
1240 struct iha_softc *sc;
1241 struct iha_scb *scb;
1242 {
1243 struct scsipi_xfer *xs = scb->xs;
1244
1245 if (xs != NULL) {
1246 /* Cancel the timeout. */
1247 callout_stop(&xs->xs_callout);
1248
1249 if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
1250 bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1251 0, scb->dmap->dm_mapsize,
1252 (scb->flags & FLAG_DATAIN) ?
1253 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1254 bus_dmamap_unload(sc->sc_dmat, scb->dmap);
1255 }
1256
1257 xs->status = scb->ta_stat;
1258
1259 switch (scb->ha_stat) {
1260 case HOST_OK:
1261 switch (scb->ta_stat) {
1262 case SCSI_OK:
1263 case SCSI_CONDITION_MET:
1264 case SCSI_INTERM:
1265 case SCSI_INTERM_COND_MET:
1266 xs->resid = scb->buflen;
1267 xs->error = XS_NOERROR;
1268 if ((scb->flags & FLAG_RSENS) != 0)
1269 xs->error = XS_SENSE;
1270 break;
1271
1272 case SCSI_RESV_CONFLICT:
1273 case SCSI_BUSY:
1274 case SCSI_QUEUE_FULL:
1275 xs->error = XS_BUSY;
1276 break;
1277
1278 case SCSI_TERMINATED:
1279 case SCSI_ACA_ACTIVE:
1280 case SCSI_CHECK:
1281 scb->tcs->flags &=
1282 ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
1283
1284 if ((scb->flags & FLAG_RSENS) != 0 ||
1285 iha_push_sense_request(sc, scb) != 0) {
1286 scb->flags &= ~FLAG_RSENS;
1287 printf("%s: request sense failed\n",
1288 sc->sc_dev.dv_xname);
1289 xs->error = XS_DRIVER_STUFFUP;
1290 break;
1291 }
1292
1293 xs->error = XS_SENSE;
1294 return;
1295
1296 default:
1297 xs->error = XS_DRIVER_STUFFUP;
1298 break;
1299 }
1300 break;
1301
1302 case HOST_SEL_TOUT:
1303 xs->error = XS_SELTIMEOUT;
1304 break;
1305
1306 case HOST_SCSI_RST:
1307 case HOST_DEV_RST:
1308 xs->error = XS_RESET;
1309 break;
1310
1311 case HOST_SPERR:
1312 printf("%s: SCSI Parity error detected\n",
1313 sc->sc_dev.dv_xname);
1314 xs->error = XS_DRIVER_STUFFUP;
1315 break;
1316
1317 case HOST_TIMED_OUT:
1318 xs->error = XS_TIMEOUT;
1319 break;
1320
1321 case HOST_DO_DU:
1322 case HOST_BAD_PHAS:
1323 default:
1324 xs->error = XS_DRIVER_STUFFUP;
1325 break;
1326 }
1327
1328 scsipi_done(xs);
1329 }
1330
1331 iha_append_free_scb(sc, scb);
1332 }
1333
1334 /*
1335 * iha_push_sense_request - obtain auto sense data by pushing the
1336 * SCB needing it back onto the pending
1337 * queue with a REQUEST_SENSE CDB.
1338 */
1339 static int
1340 iha_push_sense_request(sc, scb)
1341 struct iha_softc *sc;
1342 struct iha_scb *scb;
1343 {
1344 struct scsipi_xfer *xs = scb->xs;
1345 struct scsipi_periph *periph = xs->xs_periph;
1346 struct scsipi_sense *ss = (struct scsipi_sense *)scb->cmd;
1347 int lun = periph->periph_lun;
1348 int err;
1349
1350 ss->opcode = REQUEST_SENSE;
1351 ss->byte2 = lun << SCSI_CMD_LUN_SHIFT;
1352 ss->unused[0] = ss->unused[1] = 0;
1353 ss->length = sizeof(struct scsipi_sense_data);
1354 ss->control = 0;
1355
1356 scb->flags = FLAG_RSENS | FLAG_DATAIN;
1357
1358 scb->scb_id &= ~MSG_IDENTIFY_DISCFLAG;
1359
1360 scb->scb_tagmsg = 0;
1361 scb->ta_stat = SCSI_OK;
1362
1363 scb->cmdlen = sizeof(struct scsipi_sense);
1364 scb->buflen = ss->length;
1365
1366 err = bus_dmamap_load(sc->sc_dmat, scb->dmap,
1367 &xs->sense.scsi_sense, scb->buflen, NULL,
1368 BUS_DMA_READ|BUS_DMA_NOWAIT);
1369 if (err != 0) {
1370 printf("iha_push_sense_request: cannot bus_dmamap_load()\n");
1371 xs->error = XS_DRIVER_STUFFUP;
1372 return 1;
1373 }
1374 bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1375 0, scb->buflen, BUS_DMASYNC_PREREAD);
1376
1377 /* XXX What about queued command? */
1378 iha_exec_scb(sc, scb);
1379
1380 return 0;
1381 }
1382
1383 static void
1384 iha_timeout(arg)
1385 void *arg;
1386 {
1387 struct iha_scb *scb = (struct iha_scb *)arg;
1388 struct scsipi_xfer *xs = scb->xs;
1389 struct scsipi_periph *periph = xs->xs_periph;
1390 struct iha_softc *sc;
1391
1392 sc = (void *)periph->periph_channel->chan_adapter->adapt_dev;
1393
1394 if (xs == NULL)
1395 printf("[debug] iha_timeout called with xs == NULL\n");
1396
1397 else {
1398 scsipi_printaddr(periph);
1399 printf("SCSI OpCode 0x%02x timed out\n", xs->cmd->opcode);
1400
1401 iha_abort_xs(sc, xs, HOST_TIMED_OUT);
1402 }
1403 }
1404
1405 /*
1406 * iha_abort_xs - find the SCB associated with the supplied xs and
1407 * stop all processing on it, moving it to the done
1408 * queue with the supplied host status value.
1409 */
1410 static void
1411 iha_abort_xs(sc, xs, hastat)
1412 struct iha_softc *sc;
1413 struct scsipi_xfer *xs;
1414 u_int8_t hastat;
1415 {
1416 struct iha_scb *scb;
1417 int i, s;
1418
1419 s = splbio();
1420
1421 /* Check the pending queue for the SCB pointing to xs */
1422
1423 TAILQ_FOREACH(scb, &sc->sc_pendscb, chain)
1424 if (scb->xs == xs) {
1425 iha_del_pend_scb(sc, scb);
1426 iha_append_done_scb(sc, scb, hastat);
1427 splx(s);
1428 return;
1429 }
1430
1431 /*
1432 * If that didn't work, check all BUSY/SELECTING SCB's for one
1433 * pointing to xs
1434 */
1435
1436 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1437 switch (scb->status) {
1438 case STATUS_BUSY:
1439 case STATUS_SELECT:
1440 if (scb->xs == xs) {
1441 iha_append_done_scb(sc, scb, hastat);
1442 splx(s);
1443 return;
1444 }
1445 break;
1446 default:
1447 break;
1448 }
1449
1450 splx(s);
1451 }
1452
1453 /*
1454 * iha_data_over_run - return HOST_OK for all SCSI opcodes where BufLen
1455 * is an 'Allocation Length'. All other SCSI opcodes
1456 * get HOST_DO_DU as they SHOULD have xferred all the
1457 * data requested.
1458 *
1459 * The list of opcodes using 'Allocation Length' was
1460 * found by scanning all the SCSI-3 T10 drafts. See
1461 * www.t10.org for the curious with a .pdf reader.
1462 */
1463 static u_int8_t
1464 iha_data_over_run(scb)
1465 struct iha_scb *scb;
1466 {
1467 switch (scb->cmd[0]) {
1468 case 0x03: /* Request Sense SPC-2 */
1469 case 0x12: /* Inquiry SPC-2 */
1470 case 0x1a: /* Mode Sense (6 byte version) SPC-2 */
1471 case 0x1c: /* Receive Diagnostic Results SPC-2 */
1472 case 0x23: /* Read Format Capacities MMC-2 */
1473 case 0x29: /* Read Generation SBC */
1474 case 0x34: /* Read Position SSC-2 */
1475 case 0x37: /* Read Defect Data SBC */
1476 case 0x3c: /* Read Buffer SPC-2 */
1477 case 0x42: /* Read Sub Channel MMC-2 */
1478 case 0x43: /* Read TOC/PMA/ATIP MMC */
1479
1480 /* XXX - 2 with same opcode of 0x44? */
1481 case 0x44: /* Read Header/Read Density Suprt MMC/SSC*/
1482
1483 case 0x46: /* Get Configuration MMC-2 */
1484 case 0x4a: /* Get Event/Status Notification MMC-2 */
1485 case 0x4d: /* Log Sense SPC-2 */
1486 case 0x51: /* Read Disc Information MMC */
1487 case 0x52: /* Read Track Information MMC */
1488 case 0x59: /* Read Master CUE MMC */
1489 case 0x5a: /* Mode Sense (10 byte version) SPC-2 */
1490 case 0x5c: /* Read Buffer Capacity MMC */
1491 case 0x5e: /* Persistant Reserve In SPC-2 */
1492 case 0x84: /* Receive Copy Results SPC-2 */
1493 case 0xa0: /* Report LUNs SPC-2 */
1494 case 0xa3: /* Various Report requests SBC-2/SCC-2*/
1495 case 0xa4: /* Report Key MMC-2 */
1496 case 0xad: /* Read DVD Structure MMC-2 */
1497 case 0xb4: /* Read Element Status (Attached) SMC */
1498 case 0xb5: /* Request Volume Element Address SMC */
1499 case 0xb7: /* Read Defect Data (12 byte ver.) SBC */
1500 case 0xb8: /* Read Element Status (Independ.) SMC */
1501 case 0xba: /* Report Redundancy SCC-2 */
1502 case 0xbd: /* Mechanism Status MMC */
1503 case 0xbe: /* Report Basic Redundancy SCC-2 */
1504
1505 return (HOST_OK);
1506 break;
1507
1508 default:
1509 return (HOST_DO_DU);
1510 break;
1511 }
1512 }
1513
1514 /*
1515 * iha_next_state - prcess the current SCB as requested in it's
1516 * nextstat member.
1517 */
1518 static int
1519 iha_next_state(sc)
1520 struct iha_softc *sc;
1521 {
1522
1523 if (sc->sc_actscb == NULL)
1524 return (-1);
1525
1526 switch (sc->sc_actscb->nextstat) {
1527 case 1:
1528 if (iha_state_1(sc) == 3)
1529 goto state_3;
1530 break;
1531
1532 case 2:
1533 switch (iha_state_2(sc)) {
1534 case 3:
1535 goto state_3;
1536 case 4:
1537 goto state_4;
1538 default:
1539 break;
1540 }
1541 break;
1542
1543 case 3:
1544 state_3:
1545 if (iha_state_3(sc) == 4)
1546 goto state_4;
1547 break;
1548
1549 case 4:
1550 state_4:
1551 switch (iha_state_4(sc)) {
1552 case 0:
1553 return (0);
1554 case 6:
1555 goto state_6;
1556 default:
1557 break;
1558 }
1559 break;
1560
1561 case 5:
1562 switch (iha_state_5(sc)) {
1563 case 4:
1564 goto state_4;
1565 case 6:
1566 goto state_6;
1567 default:
1568 break;
1569 }
1570 break;
1571
1572 case 6:
1573 state_6:
1574 iha_state_6(sc);
1575 break;
1576
1577 case 8:
1578 iha_state_8(sc);
1579 break;
1580
1581 default:
1582 #ifdef IHA_DEBUG_STATE
1583 printf("[debug] -unknown state: %i-\n",
1584 sc->sc_actscb->nextstat);
1585 #endif
1586 iha_bad_seq(sc);
1587 break;
1588 }
1589
1590 return (-1);
1591 }
1592
1593 /*
1594 * iha_state_1 - selection is complete after a SELATNSTOP. If the target
1595 * has put the bus into MSG_OUT phase start wide/sync
1596 * negotiation. Otherwise clear the FIFO and go to state 3,
1597 * which will send the SCSI CDB to the target.
1598 */
1599 static int
1600 iha_state_1(sc)
1601 struct iha_softc *sc;
1602 {
1603 bus_space_tag_t iot = sc->sc_iot;
1604 bus_space_handle_t ioh = sc->sc_ioh;
1605 struct iha_scb *scb = sc->sc_actscb;
1606 struct tcs *tcs;
1607 int flags;
1608
1609 iha_mark_busy_scb(scb);
1610
1611 tcs = scb->tcs;
1612
1613 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
1614
1615 /*
1616 * If we are in PHASE_MSG_OUT, send
1617 * a) IDENT message (with tags if appropriate)
1618 * b) WDTR if the target is configured to negotiate wide xfers
1619 * ** OR **
1620 * c) SDTR if the target is configured to negotiate sync xfers
1621 * but not wide ones
1622 *
1623 * If we are NOT, then the target is not asking for anything but
1624 * the data/command, so go straight to state 3.
1625 */
1626 if (sc->sc_phase == PHASE_MSG_OUT) {
1627 bus_space_write_1(iot, ioh, TUL_SCTRL1, (ESBUSIN | EHRSL));
1628 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1629
1630 if (scb->scb_tagmsg != 0) {
1631 bus_space_write_1(iot, ioh, TUL_SFIFO,
1632 scb->scb_tagmsg);
1633 bus_space_write_1(iot, ioh, TUL_SFIFO,
1634 scb->scb_tagid);
1635 }
1636
1637 flags = tcs->flags;
1638 if ((flags & FLAG_NO_NEG_WIDE) == 0) {
1639 if (iha_msgout_wdtr(sc) == -1)
1640 return (-1);
1641 } else if ((flags & FLAG_NO_NEG_SYNC) == 0) {
1642 if (iha_msgout_sdtr(sc) == -1)
1643 return (-1);
1644 }
1645
1646 } else {
1647 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1648 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1649 }
1650
1651 return (3);
1652 }
1653
1654 /*
1655 * iha_state_2 - selection is complete after a SEL_ATN or SEL_ATN3. If the SCSI
1656 * CDB has already been send, go to state 4 to start the data
1657 * xfer. Otherwise reset the FIFO and go to state 3, sending
1658 * the SCSI CDB.
1659 */
1660 static int
1661 iha_state_2(sc)
1662 struct iha_softc *sc;
1663 {
1664 bus_space_tag_t iot = sc->sc_iot;
1665 bus_space_handle_t ioh = sc->sc_ioh;
1666 struct iha_scb *scb = sc->sc_actscb;
1667
1668 iha_mark_busy_scb(scb);
1669
1670 bus_space_write_1(iot, ioh, TUL_SCONFIG0, scb->tcs->sconfig0);
1671
1672 if ((sc->sc_status1 & CPDNE) != 0)
1673 return (4);
1674
1675 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1676
1677 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1678
1679 return (3);
1680 }
1681
1682 /*
1683 * iha_state_3 - send the SCSI CDB to the target, processing any status
1684 * or other messages received until that is done or
1685 * abandoned.
1686 */
1687 static int
1688 iha_state_3(sc)
1689 struct iha_softc *sc;
1690 {
1691 bus_space_tag_t iot = sc->sc_iot;
1692 bus_space_handle_t ioh = sc->sc_ioh;
1693 struct iha_scb *scb = sc->sc_actscb;
1694 int flags;
1695
1696 for (;;) {
1697 switch (sc->sc_phase) {
1698 case PHASE_CMD_OUT:
1699 bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1700 scb->cmd, scb->cmdlen);
1701 if (iha_wait(sc, XF_FIFO_OUT) == -1)
1702 return (-1);
1703 else if (sc->sc_phase == PHASE_CMD_OUT) {
1704 iha_bad_seq(sc);
1705 return (-1);
1706 } else
1707 return (4);
1708
1709 case PHASE_MSG_IN:
1710 scb->nextstat = 3;
1711 if (iha_msgin(sc) == -1)
1712 return (-1);
1713 break;
1714
1715 case PHASE_STATUS_IN:
1716 if (iha_status_msg(sc) == -1)
1717 return (-1);
1718 break;
1719
1720 case PHASE_MSG_OUT:
1721 flags = scb->tcs->flags;
1722 if ((flags & FLAG_NO_NEG_SYNC) != 0) {
1723 if (iha_msgout(sc, MSG_NOOP) == -1)
1724 return (-1);
1725 } else if (iha_msgout_sdtr(sc) == -1)
1726 return (-1);
1727 break;
1728
1729 default:
1730 printf("[debug] -s3- bad phase = %d\n", sc->sc_phase);
1731 iha_bad_seq(sc);
1732 return (-1);
1733 }
1734 }
1735 }
1736
1737 /*
1738 * iha_state_4 - start a data xfer. Handle any bus state
1739 * transitions until PHASE_DATA_IN/_OUT
1740 * or the attempt is abandoned. If there is
1741 * no data to xfer, go to state 6 and finish
1742 * processing the current SCB.
1743 */
1744 static int
1745 iha_state_4(sc)
1746 struct iha_softc *sc;
1747 {
1748 struct iha_scb *scb = sc->sc_actscb;
1749
1750 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) ==
1751 (FLAG_DATAIN | FLAG_DATAOUT))
1752 return (6); /* Both dir flags set => NO xfer was requested */
1753
1754 for (;;) {
1755 if (scb->buflen == 0)
1756 return (6);
1757
1758 switch (sc->sc_phase) {
1759 case PHASE_STATUS_IN:
1760 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
1761 scb->ha_stat = iha_data_over_run(scb);
1762 if ((iha_status_msg(sc)) == -1)
1763 return (-1);
1764 break;
1765
1766 case PHASE_MSG_IN:
1767 scb->nextstat = 4;
1768 if (iha_msgin(sc) == -1)
1769 return (-1);
1770 break;
1771
1772 case PHASE_MSG_OUT:
1773 if ((sc->sc_status0 & SPERR) != 0) {
1774 scb->buflen = 0;
1775 scb->ha_stat = HOST_SPERR;
1776 if (iha_msgout(sc, MSG_INITIATOR_DET_ERR) == -1)
1777 return (-1);
1778 else
1779 return (6);
1780 } else {
1781 if (iha_msgout(sc, MSG_NOOP) == -1)
1782 return (-1);
1783 }
1784 break;
1785
1786 case PHASE_DATA_IN:
1787 return (iha_xfer_data(sc, scb, FLAG_DATAIN));
1788
1789 case PHASE_DATA_OUT:
1790 return (iha_xfer_data(sc, scb, FLAG_DATAOUT));
1791
1792 default:
1793 iha_bad_seq(sc);
1794 return (-1);
1795 }
1796 }
1797 }
1798
1799 /*
1800 * iha_state_5 - handle the partial or final completion of the current
1801 * data xfer. If DMA is still active stop it. If there is
1802 * more data to xfer, go to state 4 and start the xfer.
1803 * If not go to state 6 and finish the SCB.
1804 */
1805 static int
1806 iha_state_5(sc)
1807 struct iha_softc *sc;
1808 {
1809 bus_space_tag_t iot = sc->sc_iot;
1810 bus_space_handle_t ioh = sc->sc_ioh;
1811 struct iha_scb *scb = sc->sc_actscb;
1812 struct iha_sg_element *sg;
1813 u_int32_t cnt;
1814 u_int8_t period, stat;
1815 long xcnt; /* cannot use unsigned!! see code: if (xcnt < 0) */
1816 int i;
1817
1818 cnt = bus_space_read_4(iot, ioh, TUL_STCNT0) & TCNT;
1819
1820 /*
1821 * Stop any pending DMA activity and check for parity error.
1822 */
1823
1824 if ((bus_space_read_1(iot, ioh, TUL_DCMD) & XDIR) != 0) {
1825 /* Input Operation */
1826 if ((sc->sc_status0 & SPERR) != 0)
1827 scb->ha_stat = HOST_SPERR;
1828
1829 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1830 bus_space_write_1(iot, ioh, TUL_DCTRL0,
1831 bus_space_read_1(iot, ioh, TUL_DCTRL0) | SXSTP);
1832 while (bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND)
1833 ;
1834 }
1835
1836 } else {
1837 /* Output Operation */
1838 if ((sc->sc_status1 & SXCMP) == 0) {
1839 period = scb->tcs->syncm;
1840 if ((period & PERIOD_WIDE_SCSI) != 0)
1841 cnt += (bus_space_read_1(iot, ioh,
1842 TUL_SFIFOCNT) & FIFOC) * 2;
1843 else
1844 cnt += bus_space_read_1(iot, ioh,
1845 TUL_SFIFOCNT) & FIFOC;
1846 }
1847
1848 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1849 bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
1850 do
1851 stat = bus_space_read_1(iot, ioh, TUL_ISTUS0);
1852 while ((stat & DABT) == 0);
1853 }
1854
1855 if ((cnt == 1) && (sc->sc_phase == PHASE_DATA_OUT)) {
1856 if (iha_wait(sc, XF_FIFO_OUT) == -1)
1857 return (-1);
1858 cnt = 0;
1859
1860 } else if ((sc->sc_status1 & SXCMP) == 0)
1861 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1862 }
1863
1864 if (cnt == 0) {
1865 scb->buflen = 0;
1866 return (6);
1867 }
1868
1869 /* Update active data pointer and restart the I/O at the new point */
1870
1871 xcnt = scb->buflen - cnt; /* xcnt == bytes xferred */
1872 scb->buflen = cnt; /* cnt == bytes left */
1873
1874 if ((scb->flags & FLAG_SG) != 0) {
1875 sg = &scb->sglist[scb->sg_index];
1876 for (i = scb->sg_index; i < scb->sg_max; sg++, i++) {
1877 xcnt -= le32toh(sg->sg_len);
1878 if (xcnt < 0) {
1879 xcnt += le32toh(sg->sg_len);
1880
1881 sg->sg_addr =
1882 htole32(le32toh(sg->sg_addr) + xcnt);
1883 sg->sg_len =
1884 htole32(le32toh(sg->sg_len) - xcnt);
1885 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1886 scb->sgoffset, IHA_SG_SIZE,
1887 BUS_DMASYNC_PREWRITE);
1888
1889 scb->bufaddr += (i - scb->sg_index) *
1890 sizeof(struct iha_sg_element);
1891 scb->sg_size = scb->sg_max - i;
1892 scb->sg_index = i;
1893
1894 return (4);
1895 }
1896 }
1897 return (6);
1898
1899 } else
1900 scb->bufaddr += xcnt;
1901
1902 return (4);
1903 }
1904
1905 /*
1906 * iha_state_6 - finish off the active scb (may require several
1907 * iterations if PHASE_MSG_IN) and return -1 to indicate
1908 * the bus is free.
1909 */
1910 static int
1911 iha_state_6(sc)
1912 struct iha_softc *sc;
1913 {
1914
1915 for (;;) {
1916 switch (sc->sc_phase) {
1917 case PHASE_STATUS_IN:
1918 if (iha_status_msg(sc) == -1)
1919 return (-1);
1920 break;
1921
1922 case PHASE_MSG_IN:
1923 sc->sc_actscb->nextstat = 6;
1924 if ((iha_msgin(sc)) == -1)
1925 return (-1);
1926 break;
1927
1928 case PHASE_MSG_OUT:
1929 if ((iha_msgout(sc, MSG_NOOP)) == -1)
1930 return (-1);
1931 break;
1932
1933 case PHASE_DATA_IN:
1934 if (iha_xpad_in(sc) == -1)
1935 return (-1);
1936 break;
1937
1938 case PHASE_DATA_OUT:
1939 if (iha_xpad_out(sc) == -1)
1940 return (-1);
1941 break;
1942
1943 default:
1944 iha_bad_seq(sc);
1945 return (-1);
1946 }
1947 }
1948 }
1949
1950 /*
1951 * iha_state_8 - reset the active device and all busy SCBs using it
1952 */
1953 static int
1954 iha_state_8(sc)
1955 struct iha_softc *sc;
1956 {
1957 bus_space_tag_t iot = sc->sc_iot;
1958 bus_space_handle_t ioh = sc->sc_ioh;
1959 struct iha_scb *scb;
1960 int i;
1961 u_int8_t tar;
1962
1963 if (sc->sc_phase == PHASE_MSG_OUT) {
1964 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_BUS_DEV_RESET);
1965
1966 scb = sc->sc_actscb;
1967
1968 /* This SCB finished correctly -- resetting the device */
1969 iha_append_done_scb(sc, scb, HOST_OK);
1970
1971 iha_reset_tcs(scb->tcs, sc->sc_sconf1);
1972
1973 tar = scb->target;
1974 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1975 if (scb->target == tar)
1976 switch (scb->status) {
1977 case STATUS_BUSY:
1978 iha_append_done_scb(sc,
1979 scb, HOST_DEV_RST);
1980 break;
1981
1982 case STATUS_SELECT:
1983 iha_push_pend_scb(sc, scb);
1984 break;
1985
1986 default:
1987 break;
1988 }
1989
1990 sc->sc_flags |= FLAG_EXPECT_DISC;
1991
1992 if (iha_wait(sc, XF_FIFO_OUT) == -1)
1993 return (-1);
1994 }
1995
1996 iha_bad_seq(sc);
1997 return (-1);
1998 }
1999
2000 /*
2001 * iha_xfer_data - initiate the DMA xfer of the data
2002 */
2003 static int
2004 iha_xfer_data(sc, scb, direction)
2005 struct iha_softc *sc;
2006 struct iha_scb *scb;
2007 int direction;
2008 {
2009 bus_space_tag_t iot = sc->sc_iot;
2010 bus_space_handle_t ioh = sc->sc_ioh;
2011 u_int32_t xferlen;
2012 u_int8_t xfercmd;
2013
2014 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != direction)
2015 return (6); /* wrong direction, abandon I/O */
2016
2017 bus_space_write_4(iot, ioh, TUL_STCNT0, scb->buflen);
2018
2019 xfercmd = STRXFR;
2020 if (direction == FLAG_DATAIN)
2021 xfercmd |= XDIR;
2022
2023 if (scb->flags & FLAG_SG) {
2024 xferlen = scb->sg_size * sizeof(struct iha_sg_element);
2025 xfercmd |= SGXFR;
2026 } else
2027 xferlen = scb->buflen;
2028
2029 bus_space_write_4(iot, ioh, TUL_DXC, xferlen);
2030 bus_space_write_4(iot, ioh, TUL_DXPA, scb->bufaddr);
2031 bus_space_write_1(iot, ioh, TUL_DCMD, xfercmd);
2032
2033 bus_space_write_1(iot, ioh, TUL_SCMD,
2034 (direction == FLAG_DATAIN) ? XF_DMA_IN : XF_DMA_OUT);
2035
2036 scb->nextstat = 5;
2037
2038 return (0);
2039 }
2040
2041 static int
2042 iha_xpad_in(sc)
2043 struct iha_softc *sc;
2044 {
2045 bus_space_tag_t iot = sc->sc_iot;
2046 bus_space_handle_t ioh = sc->sc_ioh;
2047 struct iha_scb *scb = sc->sc_actscb;
2048
2049 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2050 scb->ha_stat = HOST_DO_DU;
2051
2052 for (;;) {
2053 if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2054 bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2055 else
2056 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2057
2058 switch (iha_wait(sc, XF_FIFO_IN)) {
2059 case -1:
2060 return (-1);
2061
2062 case PHASE_DATA_IN:
2063 bus_space_read_1(iot, ioh, TUL_SFIFO);
2064 break;
2065
2066 default:
2067 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2068 return (6);
2069 }
2070 }
2071 }
2072
2073 static int
2074 iha_xpad_out(sc)
2075 struct iha_softc *sc;
2076 {
2077 bus_space_tag_t iot = sc->sc_iot;
2078 bus_space_handle_t ioh = sc->sc_ioh;
2079 struct iha_scb *scb = sc->sc_actscb;
2080
2081 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2082 scb->ha_stat = HOST_DO_DU;
2083
2084 for (;;) {
2085 if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2086 bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2087 else
2088 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2089
2090 bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2091
2092 switch (iha_wait(sc, XF_FIFO_OUT)) {
2093 case -1:
2094 return (-1);
2095
2096 case PHASE_DATA_OUT:
2097 break;
2098
2099 default:
2100 /* Disable wide CPU to allow read 16 bits */
2101 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2102 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2103 return (6);
2104 }
2105 }
2106 }
2107
2108 static int
2109 iha_status_msg(sc)
2110 struct iha_softc *sc;
2111 {
2112 bus_space_tag_t iot = sc->sc_iot;
2113 bus_space_handle_t ioh = sc->sc_ioh;
2114 struct iha_scb *scb;
2115 u_int8_t msg;
2116 int phase;
2117
2118 if ((phase = iha_wait(sc, CMD_COMP)) == -1)
2119 return (-1);
2120
2121 scb = sc->sc_actscb;
2122
2123 scb->ta_stat = bus_space_read_1(iot, ioh, TUL_SFIFO);
2124
2125 if (phase == PHASE_MSG_OUT) {
2126 if ((sc->sc_status0 & SPERR) == 0)
2127 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_NOOP);
2128 else
2129 bus_space_write_1(iot, ioh, TUL_SFIFO,
2130 MSG_PARITY_ERROR);
2131
2132 return (iha_wait(sc, XF_FIFO_OUT));
2133
2134 } else if (phase == PHASE_MSG_IN) {
2135 msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2136
2137 if ((sc->sc_status0 & SPERR) != 0)
2138 switch (iha_wait(sc, MSG_ACCEPT)) {
2139 case -1:
2140 return (-1);
2141 case PHASE_MSG_OUT:
2142 bus_space_write_1(iot, ioh, TUL_SFIFO,
2143 MSG_PARITY_ERROR);
2144 return (iha_wait(sc, XF_FIFO_OUT));
2145 default:
2146 iha_bad_seq(sc);
2147 return (-1);
2148 }
2149
2150 if (msg == MSG_CMDCOMPLETE) {
2151 if ((scb->ta_stat &
2152 (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) {
2153 iha_bad_seq(sc);
2154 return (-1);
2155 }
2156 sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2157 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2158 return (iha_wait(sc, MSG_ACCEPT));
2159 }
2160
2161 if ((msg == MSG_LINK_CMD_COMPLETE)
2162 || (msg == MSG_LINK_CMD_COMPLETEF)) {
2163 if ((scb->ta_stat &
2164 (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM)
2165 return (iha_wait(sc, MSG_ACCEPT));
2166 }
2167 }
2168
2169 iha_bad_seq(sc);
2170 return (-1);
2171 }
2172
2173 /*
2174 * iha_busfree - SCSI bus free detected as a result of a TIMEOUT or
2175 * DISCONNECT interrupt. Reset the tulip FIFO and
2176 * SCONFIG0 and enable hardware reselect. Move any active
2177 * SCB to sc_donescb list. Return an appropriate host status
2178 * if an I/O was active.
2179 */
2180 static void
2181 iha_busfree(sc)
2182 struct iha_softc *sc;
2183 {
2184 bus_space_tag_t iot = sc->sc_iot;
2185 bus_space_handle_t ioh = sc->sc_ioh;
2186 struct iha_scb *scb;
2187
2188 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2189 bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT);
2190 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2191
2192 scb = sc->sc_actscb;
2193
2194 if (scb != NULL) {
2195 if (scb->status == STATUS_SELECT)
2196 /* selection timeout */
2197 iha_append_done_scb(sc, scb, HOST_SEL_TOUT);
2198 else
2199 /* Unexpected bus free */
2200 iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2201 }
2202 }
2203
2204 /*
2205 * iha_resel - handle a detected SCSI bus reselection request.
2206 */
2207 static int
2208 iha_resel(sc)
2209 struct iha_softc *sc;
2210 {
2211 bus_space_tag_t iot = sc->sc_iot;
2212 bus_space_handle_t ioh = sc->sc_ioh;
2213 struct iha_scb *scb;
2214 struct tcs *tcs;
2215 u_int8_t tag, target, lun, msg, abortmsg;
2216
2217 if (sc->sc_actscb != NULL) {
2218 if ((sc->sc_actscb->status == STATUS_SELECT))
2219 iha_push_pend_scb(sc, sc->sc_actscb);
2220 sc->sc_actscb = NULL;
2221 }
2222
2223 target = bus_space_read_1(iot, ioh, TUL_SBID);
2224 lun = bus_space_read_1(iot, ioh, TUL_SALVC) & MSG_IDENTIFY_LUNMASK;
2225
2226 tcs = &sc->sc_tcs[target];
2227
2228 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2229 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2230
2231 abortmsg = MSG_ABORT; /* until a valid tag has been obtained */
2232
2233 if (tcs->ntagscb != NULL)
2234 /* There is a non-tagged I/O active on the target */
2235 scb = tcs->ntagscb;
2236
2237 else {
2238 /*
2239 * Since there is no active non-tagged operation
2240 * read the tag type, the tag itself, and find
2241 * the appropriate scb by indexing sc_scb with
2242 * the tag.
2243 */
2244
2245 switch (iha_wait(sc, MSG_ACCEPT)) {
2246 case -1:
2247 return (-1);
2248 case PHASE_MSG_IN:
2249 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2250 if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2251 return (-1);
2252 break;
2253 default:
2254 goto abort;
2255 }
2256
2257 msg = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag Msg */
2258
2259 if ((msg < MSG_SIMPLE_Q_TAG) || (msg > MSG_ORDERED_Q_TAG))
2260 goto abort;
2261
2262 switch (iha_wait(sc, MSG_ACCEPT)) {
2263 case -1:
2264 return (-1);
2265 case PHASE_MSG_IN:
2266 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2267 if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2268 return (-1);
2269 break;
2270 default:
2271 goto abort;
2272 }
2273
2274 tag = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag ID */
2275 scb = &sc->sc_scb[tag];
2276
2277 abortmsg = MSG_ABORT_TAG; /* Now that we have valdid tag! */
2278 }
2279
2280 if ((scb->target != target)
2281 || (scb->lun != lun)
2282 || (scb->status != STATUS_BUSY)) {
2283 abort:
2284 iha_msgout_abort(sc, abortmsg);
2285 return (-1);
2286 }
2287
2288 sc->sc_actscb = scb;
2289
2290 if (iha_wait(sc, MSG_ACCEPT) == -1)
2291 return (-1);
2292
2293 return (iha_next_state(sc));
2294 }
2295
2296 static int
2297 iha_msgin(sc)
2298 struct iha_softc *sc;
2299 {
2300 bus_space_tag_t iot = sc->sc_iot;
2301 bus_space_handle_t ioh = sc->sc_ioh;
2302 int flags;
2303 int phase;
2304 u_int8_t msg;
2305
2306 for (;;) {
2307 if ((bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) > 0)
2308 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2309
2310 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2311
2312 phase = iha_wait(sc, XF_FIFO_IN);
2313 msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2314
2315 switch (msg) {
2316 case MSG_DISCONNECT:
2317 sc->sc_flags |= FLAG_EXPECT_DISC;
2318 if (iha_wait(sc, MSG_ACCEPT) != -1)
2319 iha_bad_seq(sc);
2320 phase = -1;
2321 break;
2322 case MSG_SAVEDATAPOINTER:
2323 case MSG_RESTOREPOINTERS:
2324 case MSG_NOOP:
2325 phase = iha_wait(sc, MSG_ACCEPT);
2326 break;
2327 case MSG_MESSAGE_REJECT:
2328 /* XXX - need to clear FIFO like other 'Clear ATN'?*/
2329 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2330 flags = sc->sc_actscb->tcs->flags;
2331 if ((flags & FLAG_NO_NEG_SYNC) == 0)
2332 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2333 phase = iha_wait(sc, MSG_ACCEPT);
2334 break;
2335 case MSG_EXTENDED:
2336 phase = iha_msgin_extended(sc);
2337 break;
2338 case MSG_IGN_WIDE_RESIDUE:
2339 phase = iha_msgin_ignore_wid_resid(sc);
2340 break;
2341 case MSG_CMDCOMPLETE:
2342 sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2343 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2344 phase = iha_wait(sc, MSG_ACCEPT);
2345 if (phase != -1) {
2346 iha_bad_seq(sc);
2347 return (-1);
2348 }
2349 break;
2350 default:
2351 printf("[debug] iha_msgin: bad msg type: %d\n", msg);
2352 phase = iha_msgout_reject(sc);
2353 break;
2354 }
2355
2356 if (phase != PHASE_MSG_IN)
2357 return (phase);
2358 }
2359 /* NOTREACHED */
2360 }
2361
2362 static int
2363 iha_msgin_extended(sc)
2364 struct iha_softc *sc;
2365 {
2366 bus_space_tag_t iot = sc->sc_iot;
2367 bus_space_handle_t ioh = sc->sc_ioh;
2368 int flags, i, phase, msglen, msgcode;
2369
2370 /*
2371 * XXX - can we just stop reading and reject, or do we have to
2372 * read all input, discarding the excess, and then reject
2373 */
2374 for (i = 0; i < IHA_MAX_EXTENDED_MSG; i++) {
2375 phase = iha_wait(sc, MSG_ACCEPT);
2376
2377 if (phase != PHASE_MSG_IN)
2378 return (phase);
2379
2380 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2381
2382 if (iha_wait(sc, XF_FIFO_IN) == -1)
2383 return (-1);
2384
2385 sc->sc_msg[i] = bus_space_read_1(iot, ioh, TUL_SFIFO);
2386
2387 if (sc->sc_msg[0] == i)
2388 break;
2389 }
2390
2391 msglen = sc->sc_msg[0];
2392 msgcode = sc->sc_msg[1];
2393
2394 if ((msglen == MSG_EXT_SDTR_LEN) && (msgcode == MSG_EXT_SDTR)) {
2395 if (iha_msgin_sdtr(sc) == 0) {
2396 iha_sync_done(sc);
2397 return (iha_wait(sc, MSG_ACCEPT));
2398 }
2399
2400 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2401
2402 phase = iha_wait(sc, MSG_ACCEPT);
2403 if (phase != PHASE_MSG_OUT)
2404 return (phase);
2405
2406 /* Clear FIFO for important message - final SYNC offer */
2407 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2408
2409 iha_sync_done(sc); /* This is our final offer */
2410
2411 } else if ((msglen == MSG_EXT_WDTR_LEN) && (msgcode == MSG_EXT_WDTR)) {
2412
2413 flags = sc->sc_actscb->tcs->flags;
2414
2415 if ((flags & FLAG_NO_WIDE) != 0)
2416 /* Offer 8bit xfers only */
2417 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_8_BIT;
2418
2419 else if (sc->sc_msg[2] > MSG_EXT_WDTR_BUS_32_BIT)
2420 /* BAD MSG */
2421 return (iha_msgout_reject(sc));
2422
2423 else if (sc->sc_msg[2] == MSG_EXT_WDTR_BUS_32_BIT)
2424 /* Offer 16bit instead */
2425 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2426
2427 else {
2428 iha_wide_done(sc);
2429 if ((flags & FLAG_NO_NEG_SYNC) == 0)
2430 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2431 return (iha_wait(sc, MSG_ACCEPT));
2432 }
2433
2434 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2435
2436 phase = iha_wait(sc, MSG_ACCEPT);
2437 if (phase != PHASE_MSG_OUT)
2438 return (phase);
2439 } else
2440 return (iha_msgout_reject(sc));
2441
2442 return (iha_msgout_extended(sc));
2443 }
2444
2445 /*
2446 * iha_msgin_sdtr - check SDTR msg in sc_msg. If the offer is
2447 * acceptable leave sc_msg as is and return 0.
2448 * If the negotiation must continue, modify sc_msg
2449 * as needed and return 1. Else return 0.
2450 */
2451 static int
2452 iha_msgin_sdtr(sc)
2453 struct iha_softc *sc;
2454 {
2455 int flags;
2456 int newoffer;
2457 u_int8_t default_period;
2458
2459 flags = sc->sc_actscb->tcs->flags;
2460
2461 default_period = iha_rate_tbl[flags & FLAG_SCSI_RATE];
2462
2463 if (sc->sc_msg[3] == 0)
2464 /* target offered async only. Accept it. */
2465 return (0);
2466
2467 newoffer = 0;
2468
2469 if ((flags & FLAG_NO_SYNC) != 0) {
2470 sc->sc_msg[3] = 0;
2471 newoffer = 1;
2472 }
2473
2474 if (sc->sc_msg[3] > IHA_MAX_OFFSET) {
2475 sc->sc_msg[3] = IHA_MAX_OFFSET;
2476 newoffer = 1;
2477 }
2478
2479 if (sc->sc_msg[2] < default_period) {
2480 sc->sc_msg[2] = default_period;
2481 newoffer = 1;
2482 }
2483
2484 if (sc->sc_msg[2] > IHA_MAX_PERIOD) {
2485 /* Use async */
2486 sc->sc_msg[3] = 0;
2487 newoffer = 1;
2488 }
2489
2490 return (newoffer);
2491 }
2492
2493 static int
2494 iha_msgin_ignore_wid_resid(sc)
2495 struct iha_softc *sc;
2496 {
2497 bus_space_tag_t iot = sc->sc_iot;
2498 bus_space_handle_t ioh = sc->sc_ioh;
2499 int phase;
2500
2501 phase = iha_wait(sc, MSG_ACCEPT);
2502
2503 if (phase == PHASE_MSG_IN) {
2504 phase = iha_wait(sc, XF_FIFO_IN);
2505
2506 if (phase != -1) {
2507 bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2508 bus_space_read_1(iot, ioh, TUL_SFIFO);
2509 bus_space_read_1(iot, ioh, TUL_SFIFO);
2510
2511 phase = iha_wait(sc, MSG_ACCEPT);
2512 }
2513 }
2514
2515 return (phase);
2516 }
2517
2518 static int
2519 iha_msgout(sc, msg)
2520 struct iha_softc *sc;
2521 u_int8_t msg;
2522 {
2523
2524 bus_space_write_1(sc->sc_iot, sc->sc_ioh, TUL_SFIFO, msg);
2525
2526 return (iha_wait(sc, XF_FIFO_OUT));
2527 }
2528
2529 static void
2530 iha_msgout_abort(sc, aborttype)
2531 struct iha_softc *sc;
2532 u_int8_t aborttype;
2533 {
2534
2535 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2536
2537 switch (iha_wait(sc, MSG_ACCEPT)) {
2538 case -1:
2539 break;
2540
2541 case PHASE_MSG_OUT:
2542 sc->sc_flags |= FLAG_EXPECT_DISC;
2543 if (iha_msgout(sc, aborttype) != -1)
2544 iha_bad_seq(sc);
2545 break;
2546
2547 default:
2548 iha_bad_seq(sc);
2549 break;
2550 }
2551 }
2552
2553 static int
2554 iha_msgout_reject(sc)
2555 struct iha_softc *sc;
2556 {
2557
2558 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2559
2560 if (iha_wait(sc, MSG_ACCEPT) == PHASE_MSG_OUT)
2561 return (iha_msgout(sc, MSG_MESSAGE_REJECT));
2562
2563 return (-1);
2564 }
2565
2566 static int
2567 iha_msgout_extended(sc)
2568 struct iha_softc *sc;
2569 {
2570 bus_space_tag_t iot = sc->sc_iot;
2571 bus_space_handle_t ioh = sc->sc_ioh;
2572 int phase;
2573
2574 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTENDED);
2575
2576 bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
2577 sc->sc_msg, sc->sc_msg[0] + 1);
2578
2579 phase = iha_wait(sc, XF_FIFO_OUT);
2580
2581 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2582 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2583
2584 return (phase);
2585 }
2586
2587 static int
2588 iha_msgout_wdtr(sc)
2589 struct iha_softc *sc;
2590 {
2591
2592 sc->sc_actscb->tcs->flags |= FLAG_WIDE_DONE;
2593
2594 sc->sc_msg[0] = MSG_EXT_WDTR_LEN;
2595 sc->sc_msg[1] = MSG_EXT_WDTR;
2596 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2597
2598 return (iha_msgout_extended(sc));
2599 }
2600
2601 static int
2602 iha_msgout_sdtr(sc)
2603 struct iha_softc *sc;
2604 {
2605 struct tcs *tcs = sc->sc_actscb->tcs;
2606
2607 tcs->flags |= FLAG_SYNC_DONE;
2608
2609 sc->sc_msg[0] = MSG_EXT_SDTR_LEN;
2610 sc->sc_msg[1] = MSG_EXT_SDTR;
2611 sc->sc_msg[2] = iha_rate_tbl[tcs->flags & FLAG_SCSI_RATE];
2612 sc->sc_msg[3] = IHA_MAX_OFFSET; /* REQ/ACK */
2613
2614 return (iha_msgout_extended(sc));
2615 }
2616
2617 static void
2618 iha_wide_done(sc)
2619 struct iha_softc *sc;
2620 {
2621 bus_space_tag_t iot = sc->sc_iot;
2622 bus_space_handle_t ioh = sc->sc_ioh;
2623 struct tcs *tcs = sc->sc_actscb->tcs;
2624
2625 tcs->syncm = 0;
2626 tcs->period = 0;
2627 tcs->offset = 0;
2628
2629 if (sc->sc_msg[2] != 0)
2630 tcs->syncm |= PERIOD_WIDE_SCSI;
2631
2632 tcs->sconfig0 &= ~ALTPD;
2633 tcs->flags &= ~FLAG_SYNC_DONE;
2634 tcs->flags |= FLAG_WIDE_DONE;
2635
2636 iha_update_xfer_mode(sc, sc->sc_actscb->target);
2637
2638 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2639 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2640 }
2641
2642 static void
2643 iha_sync_done(sc)
2644 struct iha_softc *sc;
2645 {
2646 bus_space_tag_t iot = sc->sc_iot;
2647 bus_space_handle_t ioh = sc->sc_ioh;
2648 struct tcs *tcs = sc->sc_actscb->tcs;
2649 int i;
2650
2651 tcs->period = sc->sc_msg[2];
2652 tcs->offset = sc->sc_msg[3];
2653 if (tcs->offset != 0) {
2654 tcs->syncm |= tcs->offset;
2655
2656 /* pick the highest possible rate */
2657 for (i = 0; i < sizeof(iha_rate_tbl); i++)
2658 if (iha_rate_tbl[i] >= tcs->period)
2659 break;
2660
2661 tcs->syncm |= (i << 4);
2662 tcs->sconfig0 |= ALTPD;
2663 }
2664
2665 tcs->flags |= FLAG_SYNC_DONE;
2666
2667 iha_update_xfer_mode(sc, sc->sc_actscb->target);
2668
2669 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2670 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2671 }
2672
2673 /*
2674 * iha_bad_seq - a SCSI bus phase was encountered out of the
2675 * correct/expected sequence. Reset the SCSI bus.
2676 */
2677 static void
2678 iha_bad_seq(sc)
2679 struct iha_softc *sc;
2680 {
2681 struct iha_scb *scb = sc->sc_actscb;
2682
2683 if (scb != NULL)
2684 iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2685
2686 iha_reset_scsi_bus(sc);
2687 iha_reset_chip(sc);
2688 }
2689
2690 /*
2691 * iha_read_eeprom - read Serial EEPROM value & set to defaults
2692 * if required. XXX - Writing does NOT work!
2693 */
2694 static void
2695 iha_read_eeprom(sc, eeprom)
2696 struct iha_softc *sc;
2697 struct iha_eeprom *eeprom;
2698 {
2699 bus_space_tag_t iot = sc->sc_iot;
2700 bus_space_handle_t ioh = sc->sc_ioh;
2701 u_int16_t *buf = (u_int16_t *)eeprom;
2702 u_int8_t gctrl;
2703
2704 /* Enable EEProm programming */
2705 gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) | EEPRG;
2706 bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2707
2708 /* Read EEProm */
2709 if (iha_se2_rd_all(sc, buf) == 0)
2710 panic("%s: cannot read EEPROM\n", sc->sc_dev.dv_xname);
2711
2712 /* Disable EEProm programming */
2713 gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) & ~EEPRG;
2714 bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2715 }
2716
2717 #ifdef notused
2718 /*
2719 * iha_se2_update_all - Update SCSI H/A configuration parameters from
2720 * serial EEPROM Setup default pattern. Only
2721 * change those values different from the values
2722 * in iha_eeprom.
2723 */
2724 static void
2725 iha_se2_update_all(sc)
2726 struct iha_softc *sc;
2727 {
2728 bus_space_tag_t iot = sc->sc_iot;
2729 bus_space_handle_t ioh = sc->sc_ioh;
2730 u_int16_t *np;
2731 u_int32_t chksum;
2732 int i;
2733
2734 /* Enable erase/write state of EEPROM */
2735 iha_se2_instr(sc, ENABLE_ERASE);
2736 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2737 EEP_WAIT();
2738
2739 np = (u_int16_t *)&eeprom_default;
2740
2741 for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2742 iha_se2_wr(sc, i, *np);
2743 chksum += *np++;
2744 }
2745
2746 chksum &= 0x0000ffff;
2747 iha_se2_wr(sc, 31, chksum);
2748
2749 /* Disable erase/write state of EEPROM */
2750 iha_se2_instr(sc, 0);
2751 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2752 EEP_WAIT();
2753 }
2754
2755 /*
2756 * iha_se2_wr - write the given 16 bit value into the Serial EEPROM
2757 * at the specified offset
2758 */
2759 static void
2760 iha_se2_wr(sc, addr, writeword)
2761 struct iha_softc *sc;
2762 int addr;
2763 u_int16_t writeword;
2764 {
2765 bus_space_tag_t iot = sc->sc_iot;
2766 bus_space_handle_t ioh = sc->sc_ioh;
2767 int i, bit;
2768
2769 /* send 'WRITE' Instruction == address | WRITE bit */
2770 iha_se2_instr(sc, addr | WRITE);
2771
2772 for (i = 16; i > 0; i--) {
2773 if (writeword & (1 << (i - 1)))
2774 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRDO);
2775 else
2776 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2777 EEP_WAIT();
2778 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2779 EEP_WAIT();
2780 }
2781
2782 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2783 EEP_WAIT();
2784 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2785 EEP_WAIT();
2786 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2787 EEP_WAIT();
2788
2789 for (;;) {
2790 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2791 EEP_WAIT();
2792 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2793 EEP_WAIT();
2794 bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI;
2795 EEP_WAIT();
2796 if (bit != 0)
2797 break; /* write complete */
2798 }
2799
2800 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2801 }
2802 #endif
2803
2804 /*
2805 * iha_se2_rd - read & return the 16 bit value at the specified
2806 * offset in the Serial E2PROM
2807 *
2808 */
2809 static u_int16_t
2810 iha_se2_rd(sc, addr)
2811 struct iha_softc *sc;
2812 int addr;
2813 {
2814 bus_space_tag_t iot = sc->sc_iot;
2815 bus_space_handle_t ioh = sc->sc_ioh;
2816 int i, bit;
2817 u_int16_t readword;
2818
2819 /* Send 'READ' instruction == address | READ bit */
2820 iha_se2_instr(sc, addr | READ);
2821
2822 readword = 0;
2823 for (i = 16; i > 0; i--) {
2824 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2825 EEP_WAIT();
2826 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2827 EEP_WAIT();
2828 /* sample data after the following edge of clock */
2829 bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI ? 1 : 0;
2830 EEP_WAIT();
2831
2832 readword |= bit << (i - 1);
2833 }
2834
2835 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2836
2837 return (readword);
2838 }
2839
2840 /*
2841 * iha_se2_rd_all - Read SCSI H/A config parameters from serial EEPROM
2842 */
2843 static int
2844 iha_se2_rd_all(sc, buf)
2845 struct iha_softc *sc;
2846 u_int16_t *buf;
2847 {
2848 struct iha_eeprom *eeprom = (struct iha_eeprom *)buf;
2849 u_int32_t chksum;
2850 int i;
2851
2852 for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2853 *buf = iha_se2_rd(sc, i);
2854 chksum += *buf++;
2855 }
2856 *buf = iha_se2_rd(sc, 31); /* read checksum from EEPROM */
2857
2858 chksum &= 0x0000ffff; /* lower 16 bits */
2859
2860 return (eeprom->signature == EEP_SIGNATURE) &&
2861 (eeprom->checksum == chksum);
2862 }
2863
2864 /*
2865 * iha_se2_instr - write an octet to serial E2PROM one bit at a time
2866 */
2867 static void
2868 iha_se2_instr(sc, instr)
2869 struct iha_softc *sc;
2870 int instr;
2871 {
2872 bus_space_tag_t iot = sc->sc_iot;
2873 bus_space_handle_t ioh = sc->sc_ioh;
2874 int b, i;
2875
2876 b = NVRCS | NVRDO; /* Write the start bit (== 1) */
2877
2878 bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2879 EEP_WAIT();
2880 bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2881 EEP_WAIT();
2882
2883 for (i = 8; i > 0; i--) {
2884 if (instr & (1 << (i - 1)))
2885 b = NVRCS | NVRDO; /* Write a 1 bit */
2886 else
2887 b = NVRCS; /* Write a 0 bit */
2888
2889 bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2890 EEP_WAIT();
2891 bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2892 EEP_WAIT();
2893 }
2894
2895 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2896 }
2897