iha.c revision 1.21 1 /* $NetBSD: iha.c,v 1.21 2003/01/20 05:30:06 simonb Exp $ */
2
3 /*-
4 * Device driver for the INI-9XXXU/UW or INIC-940/950 PCI SCSI Controller.
5 *
6 * Written for 386bsd and FreeBSD by
7 * Winston Hung <winstonh (at) initio.com>
8 *
9 * Copyright (c) 1997-1999 Initio Corp.
10 * Copyright (c) 2000, 2001 Ken Westerback
11 * Copyright (c) 2001, 2002 Izumi Tsutsui
12 * All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer,
19 * without modification, immediately at the beginning of the file.
20 * 2. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
31 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
32 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Ported to NetBSD by Izumi Tsutsui <tsutsui (at) ceres.dti.ne.jp> from OpenBSD:
38 * $OpenBSD: iha.c,v 1.3 2001/02/20 00:47:33 krw Exp $
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: iha.c,v 1.21 2003/01/20 05:30:06 simonb Exp $");
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/buf.h>
48 #include <sys/device.h>
49 #include <sys/malloc.h>
50
51 #include <uvm/uvm_extern.h>
52
53 #include <machine/bus.h>
54 #include <machine/intr.h>
55
56 #include <dev/scsipi/scsi_all.h>
57 #include <dev/scsipi/scsipi_all.h>
58 #include <dev/scsipi/scsiconf.h>
59 #include <dev/scsipi/scsi_message.h>
60
61 #include <dev/ic/ihareg.h>
62 #include <dev/ic/ihavar.h>
63
64 /*
65 * SCSI Rate Table, indexed by FLAG_SCSI_RATE field of
66 * tcs flags.
67 */
68 static const u_int8_t iha_rate_tbl[] = {
69 /* fast 20 */
70 /* nanosecond divide by 4 */
71 12, /* 50ns, 20M */
72 18, /* 75ns, 13.3M */
73 25, /* 100ns, 10M */
74 31, /* 125ns, 8M */
75 37, /* 150ns, 6.6M */
76 43, /* 175ns, 5.7M */
77 50, /* 200ns, 5M */
78 62 /* 250ns, 4M */
79 };
80 #define IHA_MAX_PERIOD 62
81
82 #ifdef notused
83 static u_int16_t eeprom_default[EEPROM_SIZE] = {
84 /* -- Header ------------------------------------ */
85 /* signature */
86 EEP_SIGNATURE,
87 /* size, revision */
88 EEP_WORD(EEPROM_SIZE * 2, 0x01),
89 /* -- Host Adapter Structure -------------------- */
90 /* model */
91 0x0095,
92 /* model info, number of channel */
93 EEP_WORD(0x00, 1),
94 /* BIOS config */
95 EEP_BIOSCFG_DEFAULT,
96 /* host adapter config */
97 0,
98
99 /* -- eeprom_adapter[0] ------------------------------- */
100 /* ID, adapter config 1 */
101 EEP_WORD(7, CFG_DEFAULT),
102 /* adapter config 2, number of targets */
103 EEP_WORD(0x00, 8),
104 /* target flags */
105 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
106 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
107 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
108 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
109 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
110 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
111 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
112 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
113
114 /* -- eeprom_adapter[1] ------------------------------- */
115 /* ID, adapter config 1 */
116 EEP_WORD(7, CFG_DEFAULT),
117 /* adapter config 2, number of targets */
118 EEP_WORD(0x00, 8),
119 /* target flags */
120 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
121 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
122 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
123 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
124 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
125 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
126 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
127 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
128 /* reserved[5] */
129 0, 0, 0, 0, 0,
130 /* checksum */
131 0
132 };
133 #endif
134
135 static void iha_append_free_scb(struct iha_softc *, struct iha_scb *);
136 static void iha_append_done_scb(struct iha_softc *, struct iha_scb *, u_int8_t);
137 static __inline struct iha_scb *iha_pop_done_scb(struct iha_softc *);
138
139 static struct iha_scb *iha_find_pend_scb(struct iha_softc *);
140 static __inline void iha_append_pend_scb(struct iha_softc *, struct iha_scb *);
141 static __inline void iha_push_pend_scb(struct iha_softc *, struct iha_scb *);
142 static __inline void iha_del_pend_scb(struct iha_softc *, struct iha_scb *);
143 static __inline void iha_mark_busy_scb(struct iha_scb *);
144
145 static __inline void iha_set_ssig(struct iha_softc *, u_int8_t, u_int8_t);
146
147 static int iha_alloc_sglist(struct iha_softc *);
148
149 static void iha_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t,
150 void *);
151 static void iha_update_xfer_mode(struct iha_softc *, int);
152
153 static void iha_reset_scsi_bus(struct iha_softc *);
154 static void iha_reset_chip(struct iha_softc *);
155 static void iha_reset_dma(struct iha_softc *);
156 static void iha_reset_tcs(struct tcs *, u_int8_t);
157
158 static void iha_main(struct iha_softc *);
159 static void iha_scsi(struct iha_softc *);
160 static void iha_select(struct iha_softc *, struct iha_scb *, u_int8_t);
161 static int iha_wait(struct iha_softc *, u_int8_t);
162
163 static void iha_exec_scb(struct iha_softc *, struct iha_scb *);
164 static void iha_done_scb(struct iha_softc *, struct iha_scb *);
165 static int iha_push_sense_request(struct iha_softc *, struct iha_scb *);
166
167 static void iha_timeout(void *);
168 static void iha_abort_xs(struct iha_softc *, struct scsipi_xfer *, u_int8_t);
169 static u_int8_t iha_data_over_run(struct iha_scb *);
170
171 static int iha_next_state(struct iha_softc *);
172 static int iha_state_1(struct iha_softc *);
173 static int iha_state_2(struct iha_softc *);
174 static int iha_state_3(struct iha_softc *);
175 static int iha_state_4(struct iha_softc *);
176 static int iha_state_5(struct iha_softc *);
177 static int iha_state_6(struct iha_softc *);
178 static int iha_state_8(struct iha_softc *);
179
180 static int iha_xfer_data(struct iha_softc *, struct iha_scb *, int);
181 static int iha_xpad_in(struct iha_softc *);
182 static int iha_xpad_out(struct iha_softc *);
183
184 static int iha_status_msg(struct iha_softc *);
185 static void iha_busfree(struct iha_softc *);
186 static int iha_resel(struct iha_softc *);
187
188 static int iha_msgin(struct iha_softc *);
189 static int iha_msgin_extended(struct iha_softc *);
190 static int iha_msgin_sdtr(struct iha_softc *);
191 static int iha_msgin_ignore_wid_resid(struct iha_softc *);
192
193 static int iha_msgout(struct iha_softc *, u_int8_t);
194 static void iha_msgout_abort(struct iha_softc *, u_int8_t);
195 static int iha_msgout_reject(struct iha_softc *);
196 static int iha_msgout_extended(struct iha_softc *);
197 static int iha_msgout_wdtr(struct iha_softc *);
198 static int iha_msgout_sdtr(struct iha_softc *);
199
200 static void iha_wide_done(struct iha_softc *);
201 static void iha_sync_done(struct iha_softc *);
202
203 static void iha_bad_seq(struct iha_softc *);
204
205 static void iha_read_eeprom(struct iha_softc *, struct iha_eeprom *);
206 static int iha_se2_rd_all(struct iha_softc *, u_int16_t *);
207 static void iha_se2_instr(struct iha_softc *, int);
208 static u_int16_t iha_se2_rd(struct iha_softc *, int);
209 #ifdef notused
210 static void iha_se2_update_all(struct iha_softc *);
211 static void iha_se2_wr(struct iha_softc *, int, u_int16_t);
212 #endif
213
214 /*
215 * iha_append_free_scb - append the supplied SCB to the tail of the
216 * sc_freescb queue after clearing and resetting
217 * everything possible.
218 */
219 static void
220 iha_append_free_scb(sc, scb)
221 struct iha_softc *sc;
222 struct iha_scb *scb;
223 {
224 int s;
225
226 s = splbio();
227
228 if (scb == sc->sc_actscb)
229 sc->sc_actscb = NULL;
230
231 scb->status = STATUS_QUEUED;
232 scb->ha_stat = HOST_OK;
233 scb->ta_stat = SCSI_OK;
234
235 scb->nextstat = 0;
236 scb->scb_tagmsg = 0;
237
238 scb->xs = NULL;
239 scb->tcs = NULL;
240
241 /*
242 * scb_tagid, sg_addr, sglist
243 * SCB_SensePtr are set at initialization
244 * and never change
245 */
246
247 TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
248
249 splx(s);
250 }
251
252 static void
253 iha_append_done_scb(sc, scb, hastat)
254 struct iha_softc *sc;
255 struct iha_scb *scb;
256 u_int8_t hastat;
257 {
258 struct tcs *tcs;
259 int s;
260
261 s = splbio();
262
263 if (scb->xs != NULL)
264 callout_stop(&scb->xs->xs_callout);
265
266 if (scb == sc->sc_actscb)
267 sc->sc_actscb = NULL;
268
269 tcs = scb->tcs;
270
271 if (scb->scb_tagmsg != 0) {
272 if (tcs->tagcnt)
273 tcs->tagcnt--;
274 } else if (tcs->ntagscb == scb)
275 tcs->ntagscb = NULL;
276
277 scb->status = STATUS_QUEUED;
278 scb->ha_stat = hastat;
279
280 TAILQ_INSERT_TAIL(&sc->sc_donescb, scb, chain);
281
282 splx(s);
283 }
284
285 static __inline struct iha_scb *
286 iha_pop_done_scb(sc)
287 struct iha_softc *sc;
288 {
289 struct iha_scb *scb;
290 int s;
291
292 s = splbio();
293
294 scb = TAILQ_FIRST(&sc->sc_donescb);
295
296 if (scb != NULL) {
297 scb->status = STATUS_RENT;
298 TAILQ_REMOVE(&sc->sc_donescb, scb, chain);
299 }
300
301 splx(s);
302
303 return (scb);
304 }
305
306 /*
307 * iha_find_pend_scb - scan the pending queue for a SCB that can be
308 * processed immediately. Return NULL if none found
309 * and a pointer to the SCB if one is found. If there
310 * is an active SCB, return NULL!
311 */
312 static struct iha_scb *
313 iha_find_pend_scb(sc)
314 struct iha_softc *sc;
315 {
316 struct iha_scb *scb;
317 struct tcs *tcs;
318 int s;
319
320 s = splbio();
321
322 if (sc->sc_actscb != NULL)
323 scb = NULL;
324
325 else
326 TAILQ_FOREACH(scb, &sc->sc_pendscb, chain) {
327 if ((scb->xs->xs_control & XS_CTL_RESET) != 0)
328 /* ALWAYS willing to reset a device */
329 break;
330
331 tcs = scb->tcs;
332
333 if ((scb->scb_tagmsg) != 0) {
334 /*
335 * A Tagged I/O. OK to start If no
336 * non-tagged I/O is active on the same
337 * target
338 */
339 if (tcs->ntagscb == NULL)
340 break;
341
342 } else if (scb->cmd[0] == REQUEST_SENSE) {
343 /*
344 * OK to do a non-tagged request sense
345 * even if a non-tagged I/O has been
346 * started, 'cuz we don't allow any
347 * disconnect during a request sense op
348 */
349 break;
350
351 } else if (tcs->tagcnt == 0) {
352 /*
353 * No tagged I/O active on this target,
354 * ok to start a non-tagged one if one
355 * is not already active
356 */
357 if (tcs->ntagscb == NULL)
358 break;
359 }
360 }
361
362 splx(s);
363
364 return (scb);
365 }
366
367 static __inline void
368 iha_append_pend_scb(sc, scb)
369 struct iha_softc *sc;
370 struct iha_scb *scb;
371 {
372 /* ASSUMPTION: only called within a splbio()/splx() pair */
373
374 if (scb == sc->sc_actscb)
375 sc->sc_actscb = NULL;
376
377 scb->status = STATUS_QUEUED;
378
379 TAILQ_INSERT_TAIL(&sc->sc_pendscb, scb, chain);
380 }
381
382 static __inline void
383 iha_push_pend_scb(sc, scb)
384 struct iha_softc *sc;
385 struct iha_scb *scb;
386 {
387 int s;
388
389 s = splbio();
390
391 if (scb == sc->sc_actscb)
392 sc->sc_actscb = NULL;
393
394 scb->status = STATUS_QUEUED;
395
396 TAILQ_INSERT_HEAD(&sc->sc_pendscb, scb, chain);
397
398 splx(s);
399 }
400
401 /*
402 * iha_del_pend_scb - remove scb from sc_pendscb
403 */
404 static __inline void
405 iha_del_pend_scb(sc, scb)
406 struct iha_softc *sc;
407 struct iha_scb *scb;
408 {
409 int s;
410
411 s = splbio();
412
413 TAILQ_REMOVE(&sc->sc_pendscb, scb, chain);
414
415 splx(s);
416 }
417
418 static __inline void
419 iha_mark_busy_scb(scb)
420 struct iha_scb *scb;
421 {
422 int s;
423
424 s = splbio();
425
426 scb->status = STATUS_BUSY;
427
428 if (scb->scb_tagmsg == 0)
429 scb->tcs->ntagscb = scb;
430 else
431 scb->tcs->tagcnt++;
432
433 splx(s);
434 }
435
436 /*
437 * iha_set_ssig - read the current scsi signal mask, then write a new
438 * one which turns off/on the specified signals.
439 */
440 static __inline void
441 iha_set_ssig(sc, offsigs, onsigs)
442 struct iha_softc *sc;
443 u_int8_t offsigs, onsigs;
444 {
445 bus_space_tag_t iot = sc->sc_iot;
446 bus_space_handle_t ioh = sc->sc_ioh;
447 u_int8_t currsigs;
448
449 currsigs = bus_space_read_1(iot, ioh, TUL_SSIGI);
450 bus_space_write_1(iot, ioh, TUL_SSIGO, (currsigs & ~offsigs) | onsigs);
451 }
452
453 /*
454 * iha_intr - the interrupt service routine for the iha driver
455 */
456 int
457 iha_intr(arg)
458 void *arg;
459 {
460 bus_space_tag_t iot;
461 bus_space_handle_t ioh;
462 struct iha_softc *sc;
463 int s;
464
465 sc = (struct iha_softc *)arg;
466 iot = sc->sc_iot;
467 ioh = sc->sc_ioh;
468
469 if ((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
470 return (0);
471
472 s = splbio(); /* XXX - Or are interrupts off when ISR's are called? */
473
474 if (sc->sc_semaph != SEMAPH_IN_MAIN) {
475 /* XXX - need these inside a splbio()/splx()? */
476 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
477 sc->sc_semaph = SEMAPH_IN_MAIN;
478
479 iha_main(sc);
480
481 sc->sc_semaph = ~SEMAPH_IN_MAIN;
482 bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
483 }
484
485 splx(s);
486
487 return (1);
488 }
489
490 void
491 iha_attach(sc)
492 struct iha_softc *sc;
493 {
494 bus_space_tag_t iot = sc->sc_iot;
495 bus_space_handle_t ioh = sc->sc_ioh;
496 struct iha_scb *scb;
497 struct iha_eeprom eeprom;
498 struct eeprom_adapter *conf;
499 int i, error, reg;
500
501 iha_read_eeprom(sc, &eeprom);
502
503 conf = &eeprom.adapter[0];
504
505 /*
506 * fill in the rest of the iha_softc fields
507 */
508 sc->sc_id = CFG_ID(conf->config1);
509 sc->sc_semaph = ~SEMAPH_IN_MAIN;
510 sc->sc_status0 = 0;
511 sc->sc_actscb = NULL;
512
513 TAILQ_INIT(&sc->sc_freescb);
514 TAILQ_INIT(&sc->sc_pendscb);
515 TAILQ_INIT(&sc->sc_donescb);
516 error = iha_alloc_sglist(sc);
517 if (error != 0) {
518 printf(": cannot allocate sglist\n");
519 return;
520 }
521
522 sc->sc_scb = malloc(sizeof(struct iha_scb) * IHA_MAX_SCB,
523 M_DEVBUF, M_NOWAIT|M_ZERO);
524 if (sc->sc_scb == NULL) {
525 printf(": cannot allocate SCB\n");
526 return;
527 }
528
529 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) {
530 scb->scb_tagid = i;
531 scb->sgoffset = IHA_SG_SIZE * i;
532 scb->sglist = sc->sc_sglist + IHA_MAX_SG_ENTRIES * i;
533 scb->sg_addr =
534 sc->sc_dmamap->dm_segs[0].ds_addr + scb->sgoffset;
535
536 error = bus_dmamap_create(sc->sc_dmat,
537 MAXPHYS, IHA_MAX_SG_ENTRIES, MAXPHYS, 0,
538 BUS_DMA_NOWAIT, &scb->dmap);
539
540 if (error != 0) {
541 printf(": couldn't create SCB DMA map, error = %d\n",
542 error);
543 return;
544 }
545 TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
546 }
547
548 /* Mask all the interrupts */
549 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
550
551 /* Stop any I/O and reset the scsi module */
552 iha_reset_dma(sc);
553 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSMOD);
554
555 /* Program HBA's SCSI ID */
556 bus_space_write_1(iot, ioh, TUL_SID, sc->sc_id << 4);
557
558 /*
559 * Configure the channel as requested by the NVRAM settings read
560 * by iha_read_eeprom() above.
561 */
562
563 sc->sc_sconf1 = SCONFIG0DEFAULT;
564 if ((conf->config1 & CFG_EN_PAR) != 0)
565 sc->sc_sconf1 |= SPCHK;
566 bus_space_write_1(iot, ioh, TUL_SCONFIG0, sc->sc_sconf1);
567
568 /* set selection time out 250 ms */
569 bus_space_write_1(iot, ioh, TUL_STIMO, STIMO_250MS);
570
571 /* Enable desired SCSI termination configuration read from eeprom */
572 reg = 0;
573 if (conf->config1 & CFG_ACT_TERM1)
574 reg |= ENTMW;
575 if (conf->config1 & CFG_ACT_TERM2)
576 reg |= ENTM;
577 bus_space_write_1(iot, ioh, TUL_DCTRL0, reg);
578
579 reg = bus_space_read_1(iot, ioh, TUL_GCTRL1) & ~ATDEN;
580 if (conf->config1 & CFG_AUTO_TERM)
581 reg |= ATDEN;
582 bus_space_write_1(iot, ioh, TUL_GCTRL1, reg);
583
584 for (i = 0; i < IHA_MAX_TARGETS / 2; i++) {
585 sc->sc_tcs[i * 2 ].flags = EEP_LBYTE(conf->tflags[i]);
586 sc->sc_tcs[i * 2 + 1].flags = EEP_HBYTE(conf->tflags[i]);
587 iha_reset_tcs(&sc->sc_tcs[i * 2 ], sc->sc_sconf1);
588 iha_reset_tcs(&sc->sc_tcs[i * 2 + 1], sc->sc_sconf1);
589 }
590
591 iha_reset_chip(sc);
592 bus_space_write_1(iot, ioh, TUL_SIEN, ALL_INTERRUPTS);
593
594 /*
595 * fill in the adapter.
596 */
597 sc->sc_adapter.adapt_dev = &sc->sc_dev;
598 sc->sc_adapter.adapt_nchannels = 1;
599 sc->sc_adapter.adapt_openings = IHA_MAX_SCB;
600 sc->sc_adapter.adapt_max_periph = IHA_MAX_SCB;
601 sc->sc_adapter.adapt_ioctl = NULL;
602 sc->sc_adapter.adapt_minphys = minphys;
603 sc->sc_adapter.adapt_request = iha_scsipi_request;
604
605 /*
606 * fill in the channel.
607 */
608 sc->sc_channel.chan_adapter = &sc->sc_adapter;
609 sc->sc_channel.chan_bustype = &scsi_bustype;
610 sc->sc_channel.chan_channel = 0;
611 sc->sc_channel.chan_ntargets = CFG_TARGET(conf->config2);
612 sc->sc_channel.chan_nluns = 8;
613 sc->sc_channel.chan_id = sc->sc_id;
614
615 /*
616 * Now try to attach all the sub devices.
617 */
618 config_found(&sc->sc_dev, &sc->sc_channel, scsiprint);
619 }
620
621 /*
622 * iha_alloc_sglist - allocate and map sglist for SCB's
623 */
624 static int
625 iha_alloc_sglist(sc)
626 struct iha_softc *sc;
627 {
628 bus_dma_segment_t seg;
629 int error, rseg;
630
631 /*
632 * Allocate dma-safe memory for the SCB's sglist
633 */
634 if ((error = bus_dmamem_alloc(sc->sc_dmat,
635 IHA_SG_SIZE * IHA_MAX_SCB,
636 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
637 printf(": unable to allocate sglist, error = %d\n", error);
638 return (error);
639 }
640 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
641 IHA_SG_SIZE * IHA_MAX_SCB, (caddr_t *)&sc->sc_sglist,
642 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
643 printf(": unable to map sglist, error = %d\n", error);
644 return (error);
645 }
646
647 /*
648 * Create and load the DMA map used for the SCBs
649 */
650 if ((error = bus_dmamap_create(sc->sc_dmat,
651 IHA_SG_SIZE * IHA_MAX_SCB, 1, IHA_SG_SIZE * IHA_MAX_SCB,
652 0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
653 printf(": unable to create control DMA map, error = %d\n",
654 error);
655 return (error);
656 }
657 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
658 sc->sc_sglist, IHA_SG_SIZE * IHA_MAX_SCB,
659 NULL, BUS_DMA_NOWAIT)) != 0) {
660 printf(": unable to load control DMA map, error = %d\n", error);
661 return (error);
662 }
663
664 memset(sc->sc_sglist, 0, IHA_SG_SIZE * IHA_MAX_SCB);
665
666 return (0);
667 }
668
669 void
670 iha_scsipi_request(chan, req, arg)
671 struct scsipi_channel *chan;
672 scsipi_adapter_req_t req;
673 void *arg;
674 {
675 struct scsipi_xfer *xs;
676 struct scsipi_periph *periph;
677 struct iha_scb *scb;
678 struct iha_softc *sc;
679 int error, s;
680
681 sc = (struct iha_softc *)chan->chan_adapter->adapt_dev;
682
683 switch (req) {
684 case ADAPTER_REQ_RUN_XFER:
685 xs = arg;
686 periph = xs->xs_periph;
687
688 if (xs->cmdlen > sizeof(struct scsi_generic) ||
689 periph->periph_target >= IHA_MAX_TARGETS) {
690 xs->error = XS_DRIVER_STUFFUP;
691 return;
692 }
693
694 s = splbio();
695 scb = TAILQ_FIRST(&sc->sc_freescb);
696 if (scb != NULL) {
697 scb->status = STATUS_RENT;
698 TAILQ_REMOVE(&sc->sc_freescb, scb, chain);
699 }
700 #ifdef DIAGNOSTIC
701 else {
702 scsipi_printaddr(periph);
703 printf("unable to allocate scb\n");
704 panic("iha_scsipi_request");
705 }
706 #endif
707 splx(s);
708
709 scb->target = periph->periph_target;
710 scb->lun = periph->periph_lun;
711 scb->tcs = &sc->sc_tcs[scb->target];
712 scb->scb_id = MSG_IDENTIFY(periph->periph_lun,
713 (xs->xs_control & XS_CTL_REQSENSE) == 0);
714
715 scb->xs = xs;
716 scb->cmdlen = xs->cmdlen;
717 memcpy(&scb->cmd, xs->cmd, xs->cmdlen);
718 scb->buflen = xs->datalen;
719 scb->flags = 0;
720 if (xs->xs_control & XS_CTL_DATA_OUT)
721 scb->flags |= FLAG_DATAOUT;
722 if (xs->xs_control & XS_CTL_DATA_IN)
723 scb->flags |= FLAG_DATAIN;
724
725 if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
726 error = bus_dmamap_load(sc->sc_dmat, scb->dmap,
727 xs->data, scb->buflen, NULL,
728 ((xs->xs_control & XS_CTL_NOSLEEP) ?
729 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
730 BUS_DMA_STREAMING |
731 ((scb->flags & FLAG_DATAIN) ?
732 BUS_DMA_READ : BUS_DMA_WRITE));
733
734 if (error) {
735 printf("%s: error %d loading dma map\n",
736 sc->sc_dev.dv_xname, error);
737 iha_append_free_scb(sc, scb);
738 xs->error = XS_DRIVER_STUFFUP;
739 scsipi_done(xs);
740 return;
741 }
742 bus_dmamap_sync(sc->sc_dmat, scb->dmap,
743 0, scb->dmap->dm_mapsize,
744 (scb->flags & FLAG_DATAIN) ?
745 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
746 }
747
748 iha_exec_scb(sc, scb);
749 return;
750
751 case ADAPTER_REQ_GROW_RESOURCES:
752 return; /* XXX */
753
754 case ADAPTER_REQ_SET_XFER_MODE:
755 {
756 struct tcs *tcs;
757 struct scsipi_xfer_mode *xm = arg;
758
759 tcs = &sc->sc_tcs[xm->xm_target];
760
761 if ((xm->xm_mode & PERIPH_CAP_WIDE16) != 0 &&
762 (tcs->flags & FLAG_NO_WIDE) == 0)
763 tcs->flags &= ~(FLAG_WIDE_DONE|FLAG_SYNC_DONE);
764
765 if ((xm->xm_mode & PERIPH_CAP_SYNC) != 0 &&
766 (tcs->flags & FLAG_NO_SYNC) == 0)
767 tcs->flags &= ~FLAG_SYNC_DONE;
768
769 /*
770 * If we're not going to negotiate, send the
771 * notification now, since it won't happen later.
772 */
773 if ((tcs->flags & (FLAG_WIDE_DONE|FLAG_SYNC_DONE)) ==
774 (FLAG_WIDE_DONE|FLAG_SYNC_DONE))
775 iha_update_xfer_mode(sc, xm->xm_target);
776
777 return;
778 }
779 }
780 }
781
782 void
783 iha_update_xfer_mode(sc, target)
784 struct iha_softc *sc;
785 int target;
786 {
787 struct tcs *tcs = &sc->sc_tcs[target];
788 struct scsipi_xfer_mode xm;
789
790 xm.xm_target = target;
791 xm.xm_mode = 0;
792 xm.xm_period = 0;
793 xm.xm_offset = 0;
794
795 if (tcs->syncm & PERIOD_WIDE_SCSI)
796 xm.xm_mode |= PERIPH_CAP_WIDE16;
797
798 if (tcs->period) {
799 xm.xm_mode |= PERIPH_CAP_SYNC;
800 xm.xm_period = tcs->period;
801 xm.xm_offset = tcs->offset;
802 }
803
804 scsipi_async_event(&sc->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
805 }
806
807 static void
808 iha_reset_scsi_bus(sc)
809 struct iha_softc *sc;
810 {
811 struct iha_scb *scb;
812 struct tcs *tcs;
813 int i, s;
814
815 s = splbio();
816
817 iha_reset_dma(sc);
818
819 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
820 switch (scb->status) {
821 case STATUS_BUSY:
822 iha_append_done_scb(sc, scb, HOST_SCSI_RST);
823 break;
824
825 case STATUS_SELECT:
826 iha_push_pend_scb(sc, scb);
827 break;
828
829 default:
830 break;
831 }
832
833 for (i = 0, tcs = sc->sc_tcs; i < IHA_MAX_TARGETS; i++, tcs++)
834 iha_reset_tcs(tcs, sc->sc_sconf1);
835
836 splx(s);
837 }
838
839 void
840 iha_reset_chip(sc)
841 struct iha_softc *sc;
842 {
843 bus_space_tag_t iot = sc->sc_iot;
844 bus_space_handle_t ioh = sc->sc_ioh;
845
846 /* reset tulip chip */
847
848 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSCSI);
849
850 do {
851 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
852 } while ((sc->sc_sistat & SRSTD) == 0);
853
854 iha_set_ssig(sc, 0, 0);
855
856 bus_space_read_1(iot, ioh, TUL_SISTAT); /* Clear any active interrupt*/
857 }
858
859 /*
860 * iha_reset_dma - abort any active DMA xfer, reset tulip FIFO.
861 */
862 static void
863 iha_reset_dma(sc)
864 struct iha_softc *sc;
865 {
866 bus_space_tag_t iot = sc->sc_iot;
867 bus_space_handle_t ioh = sc->sc_ioh;
868
869 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
870 /* if DMA xfer is pending, abort DMA xfer */
871 bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
872 /* wait Abort DMA xfer done */
873 while ((bus_space_read_1(iot, ioh, TUL_ISTUS0) & DABT) == 0)
874 ;
875 }
876
877 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
878 }
879
880 /*
881 * iha_reset_tcs - reset the target control structure pointed
882 * to by tcs to default values. tcs flags
883 * only has the negotiation done bits reset as
884 * the other bits are fixed at initialization.
885 */
886 static void
887 iha_reset_tcs(tcs, config0)
888 struct tcs *tcs;
889 u_int8_t config0;
890 {
891
892 tcs->flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
893 tcs->period = 0;
894 tcs->offset = 0;
895 tcs->tagcnt = 0;
896 tcs->ntagscb = NULL;
897 tcs->syncm = 0;
898 tcs->sconfig0 = config0;
899 }
900
901 /*
902 * iha_main - process the active SCB, taking one off pending and making it
903 * active if necessary, and any done SCB's created as
904 * a result until there are no interrupts pending and no pending
905 * SCB's that can be started.
906 */
907 static void
908 iha_main(sc)
909 struct iha_softc *sc;
910 {
911 bus_space_tag_t iot = sc->sc_iot;
912 bus_space_handle_t ioh =sc->sc_ioh;
913 struct iha_scb *scb;
914
915 for (;;) {
916 iha_scsi(sc);
917
918 while ((scb = iha_pop_done_scb(sc)) != NULL)
919 iha_done_scb(sc, scb);
920
921 /*
922 * If there are no interrupts pending, or we can't start
923 * a pending sc, break out of the for(;;). Otherwise
924 * continue the good work with another call to
925 * iha_scsi().
926 */
927 if (((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
928 && (iha_find_pend_scb(sc) == NULL))
929 break;
930 }
931 }
932
933 /*
934 * iha_scsi - service any outstanding interrupts. If there are none, try to
935 * start another SCB currently in the pending queue.
936 */
937 static void
938 iha_scsi(sc)
939 struct iha_softc *sc;
940 {
941 bus_space_tag_t iot = sc->sc_iot;
942 bus_space_handle_t ioh = sc->sc_ioh;
943 struct iha_scb *scb;
944 struct tcs *tcs;
945 u_int8_t stat;
946
947 /* service pending interrupts asap */
948
949 stat = bus_space_read_1(iot, ioh, TUL_STAT0);
950 if ((stat & INTPD) != 0) {
951 sc->sc_status0 = stat;
952 sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
953 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
954
955 sc->sc_phase = sc->sc_status0 & PH_MASK;
956
957 if ((sc->sc_sistat & SRSTD) != 0) {
958 iha_reset_scsi_bus(sc);
959 return;
960 }
961
962 if ((sc->sc_sistat & RSELED) != 0) {
963 iha_resel(sc);
964 return;
965 }
966
967 if ((sc->sc_sistat & (STIMEO | DISCD)) != 0) {
968 iha_busfree(sc);
969 return;
970 }
971
972 if ((sc->sc_sistat & (SCMDN | SBSRV)) != 0) {
973 iha_next_state(sc);
974 return;
975 }
976
977 if ((sc->sc_sistat & SELED) != 0)
978 iha_set_ssig(sc, 0, 0);
979 }
980
981 /*
982 * There were no interrupts pending which required action elsewhere, so
983 * see if it is possible to start the selection phase on a pending SCB
984 */
985 if ((scb = iha_find_pend_scb(sc)) == NULL)
986 return;
987
988 tcs = scb->tcs;
989
990 /* program HBA's SCSI ID & target SCSI ID */
991 bus_space_write_1(iot, ioh, TUL_SID, (sc->sc_id << 4) | scb->target);
992
993 if ((scb->xs->xs_control & XS_CTL_RESET) == 0) {
994 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
995
996 if ((tcs->flags & FLAG_NO_NEG_SYNC) == 0 ||
997 (tcs->flags & FLAG_NO_NEG_WIDE) == 0)
998 iha_select(sc, scb, SELATNSTOP);
999
1000 else if (scb->scb_tagmsg != 0)
1001 iha_select(sc, scb, SEL_ATN3);
1002
1003 else
1004 iha_select(sc, scb, SEL_ATN);
1005
1006 } else {
1007 iha_select(sc, scb, SELATNSTOP);
1008 scb->nextstat = 8;
1009 }
1010
1011 if ((scb->xs->xs_control & XS_CTL_POLL) != 0) {
1012 int timeout;
1013 for (timeout = scb->xs->timeout; timeout > 0; timeout--) {
1014 if (iha_wait(sc, NO_OP) == -1)
1015 break;
1016 if (iha_next_state(sc) == -1)
1017 break;
1018 delay(1000); /* Only happens in boot, so it's ok */
1019 }
1020
1021 /*
1022 * Since done queue processing not done until AFTER this
1023 * function returns, scb is on the done queue, not
1024 * the free queue at this point and still has valid data
1025 *
1026 * Conversely, xs->error has not been set yet
1027 */
1028 if (timeout == 0)
1029 iha_timeout(scb);
1030 }
1031 }
1032
1033 static void
1034 iha_select(sc, scb, select_type)
1035 struct iha_softc *sc;
1036 struct iha_scb *scb;
1037 u_int8_t select_type;
1038 {
1039 bus_space_tag_t iot = sc->sc_iot;
1040 bus_space_handle_t ioh = sc->sc_ioh;
1041
1042 switch (select_type) {
1043 case SEL_ATN:
1044 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1045 bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1046 scb->cmd, scb->cmdlen);
1047
1048 scb->nextstat = 2;
1049 break;
1050
1051 case SELATNSTOP:
1052 scb->nextstat = 1;
1053 break;
1054
1055 case SEL_ATN3:
1056 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1057 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagmsg);
1058 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagid);
1059
1060 bus_space_write_multi_1(iot, ioh, TUL_SFIFO, scb->cmd,
1061 scb->cmdlen);
1062
1063 scb->nextstat = 2;
1064 break;
1065
1066 default:
1067 printf("[debug] iha_select() - unknown select type = 0x%02x\n",
1068 select_type);
1069 return;
1070 }
1071
1072 iha_del_pend_scb(sc, scb);
1073 scb->status = STATUS_SELECT;
1074
1075 sc->sc_actscb = scb;
1076
1077 bus_space_write_1(iot, ioh, TUL_SCMD, select_type);
1078 }
1079
1080 /*
1081 * iha_wait - wait for an interrupt to service or a SCSI bus phase change
1082 * after writing the supplied command to the tulip chip. If
1083 * the command is NO_OP, skip the command writing.
1084 */
1085 static int
1086 iha_wait(sc, cmd)
1087 struct iha_softc *sc;
1088 u_int8_t cmd;
1089 {
1090 bus_space_tag_t iot = sc->sc_iot;
1091 bus_space_handle_t ioh = sc->sc_ioh;
1092
1093 if (cmd != NO_OP)
1094 bus_space_write_1(iot, ioh, TUL_SCMD, cmd);
1095
1096 /*
1097 * Have to do this here, in addition to in iha_isr, because
1098 * interrupts might be turned off when we get here.
1099 */
1100 do {
1101 sc->sc_status0 = bus_space_read_1(iot, ioh, TUL_STAT0);
1102 } while ((sc->sc_status0 & INTPD) == 0);
1103
1104 sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
1105 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
1106
1107 sc->sc_phase = sc->sc_status0 & PH_MASK;
1108
1109 if ((sc->sc_sistat & SRSTD) != 0) {
1110 /* SCSI bus reset interrupt */
1111 iha_reset_scsi_bus(sc);
1112 return (-1);
1113 }
1114
1115 if ((sc->sc_sistat & RSELED) != 0)
1116 /* Reselection interrupt */
1117 return (iha_resel(sc));
1118
1119 if ((sc->sc_sistat & STIMEO) != 0) {
1120 /* selected/reselected timeout interrupt */
1121 iha_busfree(sc);
1122 return (-1);
1123 }
1124
1125 if ((sc->sc_sistat & DISCD) != 0) {
1126 /* BUS disconnection interrupt */
1127 if ((sc->sc_flags & FLAG_EXPECT_DONE_DISC) != 0) {
1128 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1129 bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1130 SCONFIG0DEFAULT);
1131 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1132 iha_append_done_scb(sc, sc->sc_actscb, HOST_OK);
1133 sc->sc_flags &= ~FLAG_EXPECT_DONE_DISC;
1134
1135 } else if ((sc->sc_flags & FLAG_EXPECT_DISC) != 0) {
1136 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1137 bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1138 SCONFIG0DEFAULT);
1139 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1140 sc->sc_actscb = NULL;
1141 sc->sc_flags &= ~FLAG_EXPECT_DISC;
1142
1143 } else
1144 iha_busfree(sc);
1145
1146 return (-1);
1147 }
1148
1149 return (sc->sc_phase);
1150 }
1151
1152 static void
1153 iha_exec_scb(sc, scb)
1154 struct iha_softc *sc;
1155 struct iha_scb *scb;
1156 {
1157 bus_space_tag_t iot;
1158 bus_space_handle_t ioh;
1159 bus_dmamap_t dm;
1160 struct scsipi_xfer *xs = scb->xs;
1161 int nseg, s;
1162
1163 dm = scb->dmap;
1164 nseg = dm->dm_nsegs;
1165
1166 if (nseg > 1) {
1167 struct iha_sg_element *sg = scb->sglist;
1168 int i;
1169
1170 for (i = 0; i < nseg; i++) {
1171 sg[i].sg_len = htole32(dm->dm_segs[i].ds_len);
1172 sg[i].sg_addr = htole32(dm->dm_segs[i].ds_addr);
1173 }
1174 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1175 scb->sgoffset, IHA_SG_SIZE,
1176 BUS_DMASYNC_PREWRITE);
1177
1178 scb->flags |= FLAG_SG;
1179 scb->sg_size = scb->sg_max = nseg;
1180 scb->sg_index = 0;
1181
1182 scb->bufaddr = scb->sg_addr;
1183 } else
1184 scb->bufaddr = dm->dm_segs[0].ds_addr;
1185
1186 if ((xs->xs_control & XS_CTL_POLL) == 0) {
1187 int timeout = mstohz(xs->timeout);
1188 if (timeout == 0)
1189 timeout = 1;
1190 callout_reset(&xs->xs_callout, timeout, iha_timeout, scb);
1191 }
1192
1193 s = splbio();
1194
1195 if (((scb->xs->xs_control & XS_RESET) != 0) ||
1196 (scb->cmd[0] == REQUEST_SENSE))
1197 iha_push_pend_scb(sc, scb); /* Insert SCB at head of Pend */
1198 else
1199 iha_append_pend_scb(sc, scb); /* Append SCB to tail of Pend */
1200
1201 /*
1202 * Run through iha_main() to ensure something is active, if
1203 * only this new SCB.
1204 */
1205 if (sc->sc_semaph != SEMAPH_IN_MAIN) {
1206 iot = sc->sc_iot;
1207 ioh = sc->sc_ioh;
1208
1209 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
1210 sc->sc_semaph = SEMAPH_IN_MAIN;
1211
1212 splx(s);
1213 iha_main(sc);
1214 s = splbio();
1215
1216 sc->sc_semaph = ~SEMAPH_IN_MAIN;
1217 bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
1218 }
1219
1220 splx(s);
1221 }
1222
1223 /*
1224 * iha_done_scb - We have a scb which has been processed by the
1225 * adaptor, now we look to see how the operation went.
1226 */
1227 static void
1228 iha_done_scb(sc, scb)
1229 struct iha_softc *sc;
1230 struct iha_scb *scb;
1231 {
1232 struct scsipi_xfer *xs = scb->xs;
1233
1234 if (xs != NULL) {
1235 /* Cancel the timeout. */
1236 callout_stop(&xs->xs_callout);
1237
1238 if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
1239 bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1240 0, scb->dmap->dm_mapsize,
1241 (scb->flags & FLAG_DATAIN) ?
1242 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1243 bus_dmamap_unload(sc->sc_dmat, scb->dmap);
1244 }
1245
1246 xs->status = scb->ta_stat;
1247
1248 switch (scb->ha_stat) {
1249 case HOST_OK:
1250 switch (scb->ta_stat) {
1251 case SCSI_OK:
1252 case SCSI_CONDITION_MET:
1253 case SCSI_INTERM:
1254 case SCSI_INTERM_COND_MET:
1255 xs->resid = scb->buflen;
1256 xs->error = XS_NOERROR;
1257 if ((scb->flags & FLAG_RSENS) != 0)
1258 xs->error = XS_SENSE;
1259 break;
1260
1261 case SCSI_RESV_CONFLICT:
1262 case SCSI_BUSY:
1263 case SCSI_QUEUE_FULL:
1264 xs->error = XS_BUSY;
1265 break;
1266
1267 case SCSI_TERMINATED:
1268 case SCSI_ACA_ACTIVE:
1269 case SCSI_CHECK:
1270 scb->tcs->flags &=
1271 ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
1272
1273 if ((scb->flags & FLAG_RSENS) != 0 ||
1274 iha_push_sense_request(sc, scb) != 0) {
1275 scb->flags &= ~FLAG_RSENS;
1276 printf("%s: request sense failed\n",
1277 sc->sc_dev.dv_xname);
1278 xs->error = XS_DRIVER_STUFFUP;
1279 break;
1280 }
1281
1282 xs->error = XS_SENSE;
1283 return;
1284
1285 default:
1286 xs->error = XS_DRIVER_STUFFUP;
1287 break;
1288 }
1289 break;
1290
1291 case HOST_SEL_TOUT:
1292 xs->error = XS_SELTIMEOUT;
1293 break;
1294
1295 case HOST_SCSI_RST:
1296 case HOST_DEV_RST:
1297 xs->error = XS_RESET;
1298 break;
1299
1300 case HOST_SPERR:
1301 printf("%s: SCSI Parity error detected\n",
1302 sc->sc_dev.dv_xname);
1303 xs->error = XS_DRIVER_STUFFUP;
1304 break;
1305
1306 case HOST_TIMED_OUT:
1307 xs->error = XS_TIMEOUT;
1308 break;
1309
1310 case HOST_DO_DU:
1311 case HOST_BAD_PHAS:
1312 default:
1313 xs->error = XS_DRIVER_STUFFUP;
1314 break;
1315 }
1316
1317 scsipi_done(xs);
1318 }
1319
1320 iha_append_free_scb(sc, scb);
1321 }
1322
1323 /*
1324 * iha_push_sense_request - obtain auto sense data by pushing the
1325 * SCB needing it back onto the pending
1326 * queue with a REQUEST_SENSE CDB.
1327 */
1328 static int
1329 iha_push_sense_request(sc, scb)
1330 struct iha_softc *sc;
1331 struct iha_scb *scb;
1332 {
1333 struct scsipi_xfer *xs = scb->xs;
1334 struct scsipi_periph *periph = xs->xs_periph;
1335 struct scsipi_sense *ss = (struct scsipi_sense *)scb->cmd;
1336 int lun = periph->periph_lun;
1337 int err;
1338
1339 ss->opcode = REQUEST_SENSE;
1340 ss->byte2 = lun << SCSI_CMD_LUN_SHIFT;
1341 ss->unused[0] = ss->unused[1] = 0;
1342 ss->length = sizeof(struct scsipi_sense_data);
1343 ss->control = 0;
1344
1345 scb->flags = FLAG_RSENS | FLAG_DATAIN;
1346
1347 scb->scb_id &= ~MSG_IDENTIFY_DISCFLAG;
1348
1349 scb->scb_tagmsg = 0;
1350 scb->ta_stat = SCSI_OK;
1351
1352 scb->cmdlen = sizeof(struct scsipi_sense);
1353 scb->buflen = ss->length;
1354
1355 err = bus_dmamap_load(sc->sc_dmat, scb->dmap,
1356 &xs->sense.scsi_sense, scb->buflen, NULL,
1357 BUS_DMA_READ|BUS_DMA_NOWAIT);
1358 if (err != 0) {
1359 printf("iha_push_sense_request: cannot bus_dmamap_load()\n");
1360 xs->error = XS_DRIVER_STUFFUP;
1361 return 1;
1362 }
1363 bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1364 0, scb->buflen, BUS_DMASYNC_PREREAD);
1365
1366 /* XXX What about queued command? */
1367 iha_exec_scb(sc, scb);
1368
1369 return 0;
1370 }
1371
1372 static void
1373 iha_timeout(arg)
1374 void *arg;
1375 {
1376 struct iha_scb *scb = (struct iha_scb *)arg;
1377 struct scsipi_xfer *xs = scb->xs;
1378 struct scsipi_periph *periph = xs->xs_periph;
1379 struct iha_softc *sc;
1380
1381 sc = (void *)periph->periph_channel->chan_adapter->adapt_dev;
1382
1383 if (xs == NULL)
1384 printf("[debug] iha_timeout called with xs == NULL\n");
1385
1386 else {
1387 scsipi_printaddr(periph);
1388 printf("SCSI OpCode 0x%02x timed out\n", xs->cmd->opcode);
1389
1390 iha_abort_xs(sc, xs, HOST_TIMED_OUT);
1391 }
1392 }
1393
1394 /*
1395 * iha_abort_xs - find the SCB associated with the supplied xs and
1396 * stop all processing on it, moving it to the done
1397 * queue with the supplied host status value.
1398 */
1399 static void
1400 iha_abort_xs(sc, xs, hastat)
1401 struct iha_softc *sc;
1402 struct scsipi_xfer *xs;
1403 u_int8_t hastat;
1404 {
1405 struct iha_scb *scb;
1406 int i, s;
1407
1408 s = splbio();
1409
1410 /* Check the pending queue for the SCB pointing to xs */
1411
1412 TAILQ_FOREACH(scb, &sc->sc_pendscb, chain)
1413 if (scb->xs == xs) {
1414 iha_del_pend_scb(sc, scb);
1415 iha_append_done_scb(sc, scb, hastat);
1416 splx(s);
1417 return;
1418 }
1419
1420 /*
1421 * If that didn't work, check all BUSY/SELECTING SCB's for one
1422 * pointing to xs
1423 */
1424
1425 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1426 switch (scb->status) {
1427 case STATUS_BUSY:
1428 case STATUS_SELECT:
1429 if (scb->xs == xs) {
1430 iha_append_done_scb(sc, scb, hastat);
1431 splx(s);
1432 return;
1433 }
1434 break;
1435 default:
1436 break;
1437 }
1438
1439 splx(s);
1440 }
1441
1442 /*
1443 * iha_data_over_run - return HOST_OK for all SCSI opcodes where BufLen
1444 * is an 'Allocation Length'. All other SCSI opcodes
1445 * get HOST_DO_DU as they SHOULD have xferred all the
1446 * data requested.
1447 *
1448 * The list of opcodes using 'Allocation Length' was
1449 * found by scanning all the SCSI-3 T10 drafts. See
1450 * www.t10.org for the curious with a .pdf reader.
1451 */
1452 static u_int8_t
1453 iha_data_over_run(scb)
1454 struct iha_scb *scb;
1455 {
1456 switch (scb->cmd[0]) {
1457 case 0x03: /* Request Sense SPC-2 */
1458 case 0x12: /* Inquiry SPC-2 */
1459 case 0x1a: /* Mode Sense (6 byte version) SPC-2 */
1460 case 0x1c: /* Receive Diagnostic Results SPC-2 */
1461 case 0x23: /* Read Format Capacities MMC-2 */
1462 case 0x29: /* Read Generation SBC */
1463 case 0x34: /* Read Position SSC-2 */
1464 case 0x37: /* Read Defect Data SBC */
1465 case 0x3c: /* Read Buffer SPC-2 */
1466 case 0x42: /* Read Sub Channel MMC-2 */
1467 case 0x43: /* Read TOC/PMA/ATIP MMC */
1468
1469 /* XXX - 2 with same opcode of 0x44? */
1470 case 0x44: /* Read Header/Read Density Suprt MMC/SSC*/
1471
1472 case 0x46: /* Get Configuration MMC-2 */
1473 case 0x4a: /* Get Event/Status Notification MMC-2 */
1474 case 0x4d: /* Log Sense SPC-2 */
1475 case 0x51: /* Read Disc Information MMC */
1476 case 0x52: /* Read Track Information MMC */
1477 case 0x59: /* Read Master CUE MMC */
1478 case 0x5a: /* Mode Sense (10 byte version) SPC-2 */
1479 case 0x5c: /* Read Buffer Capacity MMC */
1480 case 0x5e: /* Persistant Reserve In SPC-2 */
1481 case 0x84: /* Receive Copy Results SPC-2 */
1482 case 0xa0: /* Report LUNs SPC-2 */
1483 case 0xa3: /* Various Report requests SBC-2/SCC-2*/
1484 case 0xa4: /* Report Key MMC-2 */
1485 case 0xad: /* Read DVD Structure MMC-2 */
1486 case 0xb4: /* Read Element Status (Attached) SMC */
1487 case 0xb5: /* Request Volume Element Address SMC */
1488 case 0xb7: /* Read Defect Data (12 byte ver.) SBC */
1489 case 0xb8: /* Read Element Status (Independ.) SMC */
1490 case 0xba: /* Report Redundancy SCC-2 */
1491 case 0xbd: /* Mechanism Status MMC */
1492 case 0xbe: /* Report Basic Redundancy SCC-2 */
1493
1494 return (HOST_OK);
1495 break;
1496
1497 default:
1498 return (HOST_DO_DU);
1499 break;
1500 }
1501 }
1502
1503 /*
1504 * iha_next_state - prcess the current SCB as requested in it's
1505 * nextstat member.
1506 */
1507 static int
1508 iha_next_state(sc)
1509 struct iha_softc *sc;
1510 {
1511
1512 if (sc->sc_actscb == NULL)
1513 return (-1);
1514
1515 switch (sc->sc_actscb->nextstat) {
1516 case 1:
1517 if (iha_state_1(sc) == 3)
1518 goto state_3;
1519 break;
1520
1521 case 2:
1522 switch (iha_state_2(sc)) {
1523 case 3:
1524 goto state_3;
1525 case 4:
1526 goto state_4;
1527 default:
1528 break;
1529 }
1530 break;
1531
1532 case 3:
1533 state_3:
1534 if (iha_state_3(sc) == 4)
1535 goto state_4;
1536 break;
1537
1538 case 4:
1539 state_4:
1540 switch (iha_state_4(sc)) {
1541 case 0:
1542 return (0);
1543 case 6:
1544 goto state_6;
1545 default:
1546 break;
1547 }
1548 break;
1549
1550 case 5:
1551 switch (iha_state_5(sc)) {
1552 case 4:
1553 goto state_4;
1554 case 6:
1555 goto state_6;
1556 default:
1557 break;
1558 }
1559 break;
1560
1561 case 6:
1562 state_6:
1563 iha_state_6(sc);
1564 break;
1565
1566 case 8:
1567 iha_state_8(sc);
1568 break;
1569
1570 default:
1571 #ifdef IHA_DEBUG_STATE
1572 printf("[debug] -unknown state: %i-\n",
1573 sc->sc_actscb->nextstat);
1574 #endif
1575 iha_bad_seq(sc);
1576 break;
1577 }
1578
1579 return (-1);
1580 }
1581
1582 /*
1583 * iha_state_1 - selection is complete after a SELATNSTOP. If the target
1584 * has put the bus into MSG_OUT phase start wide/sync
1585 * negotiation. Otherwise clear the FIFO and go to state 3,
1586 * which will send the SCSI CDB to the target.
1587 */
1588 static int
1589 iha_state_1(sc)
1590 struct iha_softc *sc;
1591 {
1592 bus_space_tag_t iot = sc->sc_iot;
1593 bus_space_handle_t ioh = sc->sc_ioh;
1594 struct iha_scb *scb = sc->sc_actscb;
1595 struct tcs *tcs;
1596 int flags;
1597
1598 iha_mark_busy_scb(scb);
1599
1600 tcs = scb->tcs;
1601
1602 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
1603
1604 /*
1605 * If we are in PHASE_MSG_OUT, send
1606 * a) IDENT message (with tags if appropriate)
1607 * b) WDTR if the target is configured to negotiate wide xfers
1608 * ** OR **
1609 * c) SDTR if the target is configured to negotiate sync xfers
1610 * but not wide ones
1611 *
1612 * If we are NOT, then the target is not asking for anything but
1613 * the data/command, so go straight to state 3.
1614 */
1615 if (sc->sc_phase == PHASE_MSG_OUT) {
1616 bus_space_write_1(iot, ioh, TUL_SCTRL1, (ESBUSIN | EHRSL));
1617 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1618
1619 if (scb->scb_tagmsg != 0) {
1620 bus_space_write_1(iot, ioh, TUL_SFIFO,
1621 scb->scb_tagmsg);
1622 bus_space_write_1(iot, ioh, TUL_SFIFO,
1623 scb->scb_tagid);
1624 }
1625
1626 flags = tcs->flags;
1627 if ((flags & FLAG_NO_NEG_WIDE) == 0) {
1628 if (iha_msgout_wdtr(sc) == -1)
1629 return (-1);
1630 } else if ((flags & FLAG_NO_NEG_SYNC) == 0) {
1631 if (iha_msgout_sdtr(sc) == -1)
1632 return (-1);
1633 }
1634
1635 } else {
1636 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1637 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1638 }
1639
1640 return (3);
1641 }
1642
1643 /*
1644 * iha_state_2 - selection is complete after a SEL_ATN or SEL_ATN3. If the SCSI
1645 * CDB has already been send, go to state 4 to start the data
1646 * xfer. Otherwise reset the FIFO and go to state 3, sending
1647 * the SCSI CDB.
1648 */
1649 static int
1650 iha_state_2(sc)
1651 struct iha_softc *sc;
1652 {
1653 bus_space_tag_t iot = sc->sc_iot;
1654 bus_space_handle_t ioh = sc->sc_ioh;
1655 struct iha_scb *scb = sc->sc_actscb;
1656
1657 iha_mark_busy_scb(scb);
1658
1659 bus_space_write_1(iot, ioh, TUL_SCONFIG0, scb->tcs->sconfig0);
1660
1661 if ((sc->sc_status1 & CPDNE) != 0)
1662 return (4);
1663
1664 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1665
1666 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1667
1668 return (3);
1669 }
1670
1671 /*
1672 * iha_state_3 - send the SCSI CDB to the target, processing any status
1673 * or other messages received until that is done or
1674 * abandoned.
1675 */
1676 static int
1677 iha_state_3(sc)
1678 struct iha_softc *sc;
1679 {
1680 bus_space_tag_t iot = sc->sc_iot;
1681 bus_space_handle_t ioh = sc->sc_ioh;
1682 struct iha_scb *scb = sc->sc_actscb;
1683 int flags;
1684
1685 for (;;) {
1686 switch (sc->sc_phase) {
1687 case PHASE_CMD_OUT:
1688 bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1689 scb->cmd, scb->cmdlen);
1690 if (iha_wait(sc, XF_FIFO_OUT) == -1)
1691 return (-1);
1692 else if (sc->sc_phase == PHASE_CMD_OUT) {
1693 iha_bad_seq(sc);
1694 return (-1);
1695 } else
1696 return (4);
1697
1698 case PHASE_MSG_IN:
1699 scb->nextstat = 3;
1700 if (iha_msgin(sc) == -1)
1701 return (-1);
1702 break;
1703
1704 case PHASE_STATUS_IN:
1705 if (iha_status_msg(sc) == -1)
1706 return (-1);
1707 break;
1708
1709 case PHASE_MSG_OUT:
1710 flags = scb->tcs->flags;
1711 if ((flags & FLAG_NO_NEG_SYNC) != 0) {
1712 if (iha_msgout(sc, MSG_NOOP) == -1)
1713 return (-1);
1714 } else if (iha_msgout_sdtr(sc) == -1)
1715 return (-1);
1716 break;
1717
1718 default:
1719 printf("[debug] -s3- bad phase = %d\n", sc->sc_phase);
1720 iha_bad_seq(sc);
1721 return (-1);
1722 }
1723 }
1724 }
1725
1726 /*
1727 * iha_state_4 - start a data xfer. Handle any bus state
1728 * transitions until PHASE_DATA_IN/_OUT
1729 * or the attempt is abandoned. If there is
1730 * no data to xfer, go to state 6 and finish
1731 * processing the current SCB.
1732 */
1733 static int
1734 iha_state_4(sc)
1735 struct iha_softc *sc;
1736 {
1737 struct iha_scb *scb = sc->sc_actscb;
1738
1739 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) ==
1740 (FLAG_DATAIN | FLAG_DATAOUT))
1741 return (6); /* Both dir flags set => NO xfer was requested */
1742
1743 for (;;) {
1744 if (scb->buflen == 0)
1745 return (6);
1746
1747 switch (sc->sc_phase) {
1748 case PHASE_STATUS_IN:
1749 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
1750 scb->ha_stat = iha_data_over_run(scb);
1751 if ((iha_status_msg(sc)) == -1)
1752 return (-1);
1753 break;
1754
1755 case PHASE_MSG_IN:
1756 scb->nextstat = 4;
1757 if (iha_msgin(sc) == -1)
1758 return (-1);
1759 break;
1760
1761 case PHASE_MSG_OUT:
1762 if ((sc->sc_status0 & SPERR) != 0) {
1763 scb->buflen = 0;
1764 scb->ha_stat = HOST_SPERR;
1765 if (iha_msgout(sc, MSG_INITIATOR_DET_ERR) == -1)
1766 return (-1);
1767 else
1768 return (6);
1769 } else {
1770 if (iha_msgout(sc, MSG_NOOP) == -1)
1771 return (-1);
1772 }
1773 break;
1774
1775 case PHASE_DATA_IN:
1776 return (iha_xfer_data(sc, scb, FLAG_DATAIN));
1777
1778 case PHASE_DATA_OUT:
1779 return (iha_xfer_data(sc, scb, FLAG_DATAOUT));
1780
1781 default:
1782 iha_bad_seq(sc);
1783 return (-1);
1784 }
1785 }
1786 }
1787
1788 /*
1789 * iha_state_5 - handle the partial or final completion of the current
1790 * data xfer. If DMA is still active stop it. If there is
1791 * more data to xfer, go to state 4 and start the xfer.
1792 * If not go to state 6 and finish the SCB.
1793 */
1794 static int
1795 iha_state_5(sc)
1796 struct iha_softc *sc;
1797 {
1798 bus_space_tag_t iot = sc->sc_iot;
1799 bus_space_handle_t ioh = sc->sc_ioh;
1800 struct iha_scb *scb = sc->sc_actscb;
1801 struct iha_sg_element *sg;
1802 u_int32_t cnt;
1803 u_int8_t period, stat;
1804 long xcnt; /* cannot use unsigned!! see code: if (xcnt < 0) */
1805 int i;
1806
1807 cnt = bus_space_read_4(iot, ioh, TUL_STCNT0) & TCNT;
1808
1809 /*
1810 * Stop any pending DMA activity and check for parity error.
1811 */
1812
1813 if ((bus_space_read_1(iot, ioh, TUL_DCMD) & XDIR) != 0) {
1814 /* Input Operation */
1815 if ((sc->sc_status0 & SPERR) != 0)
1816 scb->ha_stat = HOST_SPERR;
1817
1818 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1819 bus_space_write_1(iot, ioh, TUL_DCTRL0,
1820 bus_space_read_1(iot, ioh, TUL_DCTRL0) | SXSTP);
1821 while (bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND)
1822 ;
1823 }
1824
1825 } else {
1826 /* Output Operation */
1827 if ((sc->sc_status1 & SXCMP) == 0) {
1828 period = scb->tcs->syncm;
1829 if ((period & PERIOD_WIDE_SCSI) != 0)
1830 cnt += (bus_space_read_1(iot, ioh,
1831 TUL_SFIFOCNT) & FIFOC) * 2;
1832 else
1833 cnt += bus_space_read_1(iot, ioh,
1834 TUL_SFIFOCNT) & FIFOC;
1835 }
1836
1837 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1838 bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
1839 do
1840 stat = bus_space_read_1(iot, ioh, TUL_ISTUS0);
1841 while ((stat & DABT) == 0);
1842 }
1843
1844 if ((cnt == 1) && (sc->sc_phase == PHASE_DATA_OUT)) {
1845 if (iha_wait(sc, XF_FIFO_OUT) == -1)
1846 return (-1);
1847 cnt = 0;
1848
1849 } else if ((sc->sc_status1 & SXCMP) == 0)
1850 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1851 }
1852
1853 if (cnt == 0) {
1854 scb->buflen = 0;
1855 return (6);
1856 }
1857
1858 /* Update active data pointer and restart the I/O at the new point */
1859
1860 xcnt = scb->buflen - cnt; /* xcnt == bytes xferred */
1861 scb->buflen = cnt; /* cnt == bytes left */
1862
1863 if ((scb->flags & FLAG_SG) != 0) {
1864 sg = &scb->sglist[scb->sg_index];
1865 for (i = scb->sg_index; i < scb->sg_max; sg++, i++) {
1866 xcnt -= le32toh(sg->sg_len);
1867 if (xcnt < 0) {
1868 xcnt += le32toh(sg->sg_len);
1869
1870 sg->sg_addr =
1871 htole32(le32toh(sg->sg_addr) + xcnt);
1872 sg->sg_len =
1873 htole32(le32toh(sg->sg_len) - xcnt);
1874 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1875 scb->sgoffset, IHA_SG_SIZE,
1876 BUS_DMASYNC_PREWRITE);
1877
1878 scb->bufaddr += (i - scb->sg_index) *
1879 sizeof(struct iha_sg_element);
1880 scb->sg_size = scb->sg_max - i;
1881 scb->sg_index = i;
1882
1883 return (4);
1884 }
1885 }
1886 return (6);
1887
1888 } else
1889 scb->bufaddr += xcnt;
1890
1891 return (4);
1892 }
1893
1894 /*
1895 * iha_state_6 - finish off the active scb (may require several
1896 * iterations if PHASE_MSG_IN) and return -1 to indicate
1897 * the bus is free.
1898 */
1899 static int
1900 iha_state_6(sc)
1901 struct iha_softc *sc;
1902 {
1903
1904 for (;;) {
1905 switch (sc->sc_phase) {
1906 case PHASE_STATUS_IN:
1907 if (iha_status_msg(sc) == -1)
1908 return (-1);
1909 break;
1910
1911 case PHASE_MSG_IN:
1912 sc->sc_actscb->nextstat = 6;
1913 if ((iha_msgin(sc)) == -1)
1914 return (-1);
1915 break;
1916
1917 case PHASE_MSG_OUT:
1918 if ((iha_msgout(sc, MSG_NOOP)) == -1)
1919 return (-1);
1920 break;
1921
1922 case PHASE_DATA_IN:
1923 if (iha_xpad_in(sc) == -1)
1924 return (-1);
1925 break;
1926
1927 case PHASE_DATA_OUT:
1928 if (iha_xpad_out(sc) == -1)
1929 return (-1);
1930 break;
1931
1932 default:
1933 iha_bad_seq(sc);
1934 return (-1);
1935 }
1936 }
1937 }
1938
1939 /*
1940 * iha_state_8 - reset the active device and all busy SCBs using it
1941 */
1942 static int
1943 iha_state_8(sc)
1944 struct iha_softc *sc;
1945 {
1946 bus_space_tag_t iot = sc->sc_iot;
1947 bus_space_handle_t ioh = sc->sc_ioh;
1948 struct iha_scb *scb;
1949 int i;
1950 u_int8_t tar;
1951
1952 if (sc->sc_phase == PHASE_MSG_OUT) {
1953 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_BUS_DEV_RESET);
1954
1955 scb = sc->sc_actscb;
1956
1957 /* This SCB finished correctly -- resetting the device */
1958 iha_append_done_scb(sc, scb, HOST_OK);
1959
1960 iha_reset_tcs(scb->tcs, sc->sc_sconf1);
1961
1962 tar = scb->target;
1963 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1964 if (scb->target == tar)
1965 switch (scb->status) {
1966 case STATUS_BUSY:
1967 iha_append_done_scb(sc,
1968 scb, HOST_DEV_RST);
1969 break;
1970
1971 case STATUS_SELECT:
1972 iha_push_pend_scb(sc, scb);
1973 break;
1974
1975 default:
1976 break;
1977 }
1978
1979 sc->sc_flags |= FLAG_EXPECT_DISC;
1980
1981 if (iha_wait(sc, XF_FIFO_OUT) == -1)
1982 return (-1);
1983 }
1984
1985 iha_bad_seq(sc);
1986 return (-1);
1987 }
1988
1989 /*
1990 * iha_xfer_data - initiate the DMA xfer of the data
1991 */
1992 static int
1993 iha_xfer_data(sc, scb, direction)
1994 struct iha_softc *sc;
1995 struct iha_scb *scb;
1996 int direction;
1997 {
1998 bus_space_tag_t iot = sc->sc_iot;
1999 bus_space_handle_t ioh = sc->sc_ioh;
2000 u_int32_t xferlen;
2001 u_int8_t xfercmd;
2002
2003 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != direction)
2004 return (6); /* wrong direction, abandon I/O */
2005
2006 bus_space_write_4(iot, ioh, TUL_STCNT0, scb->buflen);
2007
2008 xfercmd = STRXFR;
2009 if (direction == FLAG_DATAIN)
2010 xfercmd |= XDIR;
2011
2012 if (scb->flags & FLAG_SG) {
2013 xferlen = scb->sg_size * sizeof(struct iha_sg_element);
2014 xfercmd |= SGXFR;
2015 } else
2016 xferlen = scb->buflen;
2017
2018 bus_space_write_4(iot, ioh, TUL_DXC, xferlen);
2019 bus_space_write_4(iot, ioh, TUL_DXPA, scb->bufaddr);
2020 bus_space_write_1(iot, ioh, TUL_DCMD, xfercmd);
2021
2022 bus_space_write_1(iot, ioh, TUL_SCMD,
2023 (direction == FLAG_DATAIN) ? XF_DMA_IN : XF_DMA_OUT);
2024
2025 scb->nextstat = 5;
2026
2027 return (0);
2028 }
2029
2030 static int
2031 iha_xpad_in(sc)
2032 struct iha_softc *sc;
2033 {
2034 bus_space_tag_t iot = sc->sc_iot;
2035 bus_space_handle_t ioh = sc->sc_ioh;
2036 struct iha_scb *scb = sc->sc_actscb;
2037
2038 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2039 scb->ha_stat = HOST_DO_DU;
2040
2041 for (;;) {
2042 if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2043 bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2044 else
2045 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2046
2047 switch (iha_wait(sc, XF_FIFO_IN)) {
2048 case -1:
2049 return (-1);
2050
2051 case PHASE_DATA_IN:
2052 bus_space_read_1(iot, ioh, TUL_SFIFO);
2053 break;
2054
2055 default:
2056 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2057 return (6);
2058 }
2059 }
2060 }
2061
2062 static int
2063 iha_xpad_out(sc)
2064 struct iha_softc *sc;
2065 {
2066 bus_space_tag_t iot = sc->sc_iot;
2067 bus_space_handle_t ioh = sc->sc_ioh;
2068 struct iha_scb *scb = sc->sc_actscb;
2069
2070 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2071 scb->ha_stat = HOST_DO_DU;
2072
2073 for (;;) {
2074 if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2075 bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2076 else
2077 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2078
2079 bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2080
2081 switch (iha_wait(sc, XF_FIFO_OUT)) {
2082 case -1:
2083 return (-1);
2084
2085 case PHASE_DATA_OUT:
2086 break;
2087
2088 default:
2089 /* Disable wide CPU to allow read 16 bits */
2090 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2091 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2092 return (6);
2093 }
2094 }
2095 }
2096
2097 static int
2098 iha_status_msg(sc)
2099 struct iha_softc *sc;
2100 {
2101 bus_space_tag_t iot = sc->sc_iot;
2102 bus_space_handle_t ioh = sc->sc_ioh;
2103 struct iha_scb *scb;
2104 u_int8_t msg;
2105 int phase;
2106
2107 if ((phase = iha_wait(sc, CMD_COMP)) == -1)
2108 return (-1);
2109
2110 scb = sc->sc_actscb;
2111
2112 scb->ta_stat = bus_space_read_1(iot, ioh, TUL_SFIFO);
2113
2114 if (phase == PHASE_MSG_OUT) {
2115 if ((sc->sc_status0 & SPERR) == 0)
2116 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_NOOP);
2117 else
2118 bus_space_write_1(iot, ioh, TUL_SFIFO,
2119 MSG_PARITY_ERROR);
2120
2121 return (iha_wait(sc, XF_FIFO_OUT));
2122
2123 } else if (phase == PHASE_MSG_IN) {
2124 msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2125
2126 if ((sc->sc_status0 & SPERR) != 0)
2127 switch (iha_wait(sc, MSG_ACCEPT)) {
2128 case -1:
2129 return (-1);
2130 case PHASE_MSG_OUT:
2131 bus_space_write_1(iot, ioh, TUL_SFIFO,
2132 MSG_PARITY_ERROR);
2133 return (iha_wait(sc, XF_FIFO_OUT));
2134 default:
2135 iha_bad_seq(sc);
2136 return (-1);
2137 }
2138
2139 if (msg == MSG_CMDCOMPLETE) {
2140 if ((scb->ta_stat &
2141 (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) {
2142 iha_bad_seq(sc);
2143 return (-1);
2144 }
2145 sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2146 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2147 return (iha_wait(sc, MSG_ACCEPT));
2148 }
2149
2150 if ((msg == MSG_LINK_CMD_COMPLETE)
2151 || (msg == MSG_LINK_CMD_COMPLETEF)) {
2152 if ((scb->ta_stat &
2153 (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM)
2154 return (iha_wait(sc, MSG_ACCEPT));
2155 }
2156 }
2157
2158 iha_bad_seq(sc);
2159 return (-1);
2160 }
2161
2162 /*
2163 * iha_busfree - SCSI bus free detected as a result of a TIMEOUT or
2164 * DISCONNECT interrupt. Reset the tulip FIFO and
2165 * SCONFIG0 and enable hardware reselect. Move any active
2166 * SCB to sc_donescb list. Return an appropriate host status
2167 * if an I/O was active.
2168 */
2169 static void
2170 iha_busfree(sc)
2171 struct iha_softc *sc;
2172 {
2173 bus_space_tag_t iot = sc->sc_iot;
2174 bus_space_handle_t ioh = sc->sc_ioh;
2175 struct iha_scb *scb;
2176
2177 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2178 bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT);
2179 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2180
2181 scb = sc->sc_actscb;
2182
2183 if (scb != NULL) {
2184 if (scb->status == STATUS_SELECT)
2185 /* selection timeout */
2186 iha_append_done_scb(sc, scb, HOST_SEL_TOUT);
2187 else
2188 /* Unexpected bus free */
2189 iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2190 }
2191 }
2192
2193 /*
2194 * iha_resel - handle a detected SCSI bus reselection request.
2195 */
2196 static int
2197 iha_resel(sc)
2198 struct iha_softc *sc;
2199 {
2200 bus_space_tag_t iot = sc->sc_iot;
2201 bus_space_handle_t ioh = sc->sc_ioh;
2202 struct iha_scb *scb;
2203 struct tcs *tcs;
2204 u_int8_t tag, target, lun, msg, abortmsg;
2205
2206 if (sc->sc_actscb != NULL) {
2207 if ((sc->sc_actscb->status == STATUS_SELECT))
2208 iha_push_pend_scb(sc, sc->sc_actscb);
2209 sc->sc_actscb = NULL;
2210 }
2211
2212 target = bus_space_read_1(iot, ioh, TUL_SBID);
2213 lun = bus_space_read_1(iot, ioh, TUL_SALVC) & IHA_MSG_IDENTIFY_LUNMASK;
2214
2215 tcs = &sc->sc_tcs[target];
2216
2217 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2218 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2219
2220 abortmsg = MSG_ABORT; /* until a valid tag has been obtained */
2221
2222 if (tcs->ntagscb != NULL)
2223 /* There is a non-tagged I/O active on the target */
2224 scb = tcs->ntagscb;
2225
2226 else {
2227 /*
2228 * Since there is no active non-tagged operation
2229 * read the tag type, the tag itself, and find
2230 * the appropriate scb by indexing sc_scb with
2231 * the tag.
2232 */
2233
2234 switch (iha_wait(sc, MSG_ACCEPT)) {
2235 case -1:
2236 return (-1);
2237 case PHASE_MSG_IN:
2238 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2239 if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2240 return (-1);
2241 break;
2242 default:
2243 goto abort;
2244 }
2245
2246 msg = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag Msg */
2247
2248 if ((msg < MSG_SIMPLE_Q_TAG) || (msg > MSG_ORDERED_Q_TAG))
2249 goto abort;
2250
2251 switch (iha_wait(sc, MSG_ACCEPT)) {
2252 case -1:
2253 return (-1);
2254 case PHASE_MSG_IN:
2255 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2256 if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2257 return (-1);
2258 break;
2259 default:
2260 goto abort;
2261 }
2262
2263 tag = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag ID */
2264 scb = &sc->sc_scb[tag];
2265
2266 abortmsg = MSG_ABORT_TAG; /* Now that we have valdid tag! */
2267 }
2268
2269 if ((scb->target != target)
2270 || (scb->lun != lun)
2271 || (scb->status != STATUS_BUSY)) {
2272 abort:
2273 iha_msgout_abort(sc, abortmsg);
2274 return (-1);
2275 }
2276
2277 sc->sc_actscb = scb;
2278
2279 if (iha_wait(sc, MSG_ACCEPT) == -1)
2280 return (-1);
2281
2282 return (iha_next_state(sc));
2283 }
2284
2285 static int
2286 iha_msgin(sc)
2287 struct iha_softc *sc;
2288 {
2289 bus_space_tag_t iot = sc->sc_iot;
2290 bus_space_handle_t ioh = sc->sc_ioh;
2291 int flags;
2292 int phase;
2293 u_int8_t msg;
2294
2295 for (;;) {
2296 if ((bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) > 0)
2297 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2298
2299 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2300
2301 phase = iha_wait(sc, XF_FIFO_IN);
2302 msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2303
2304 switch (msg) {
2305 case MSG_DISCONNECT:
2306 sc->sc_flags |= FLAG_EXPECT_DISC;
2307 if (iha_wait(sc, MSG_ACCEPT) != -1)
2308 iha_bad_seq(sc);
2309 phase = -1;
2310 break;
2311 case MSG_SAVEDATAPOINTER:
2312 case MSG_RESTOREPOINTERS:
2313 case MSG_NOOP:
2314 phase = iha_wait(sc, MSG_ACCEPT);
2315 break;
2316 case MSG_MESSAGE_REJECT:
2317 /* XXX - need to clear FIFO like other 'Clear ATN'?*/
2318 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2319 flags = sc->sc_actscb->tcs->flags;
2320 if ((flags & FLAG_NO_NEG_SYNC) == 0)
2321 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2322 phase = iha_wait(sc, MSG_ACCEPT);
2323 break;
2324 case MSG_EXTENDED:
2325 phase = iha_msgin_extended(sc);
2326 break;
2327 case MSG_IGN_WIDE_RESIDUE:
2328 phase = iha_msgin_ignore_wid_resid(sc);
2329 break;
2330 case MSG_CMDCOMPLETE:
2331 sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2332 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2333 phase = iha_wait(sc, MSG_ACCEPT);
2334 if (phase != -1) {
2335 iha_bad_seq(sc);
2336 return (-1);
2337 }
2338 break;
2339 default:
2340 printf("[debug] iha_msgin: bad msg type: %d\n", msg);
2341 phase = iha_msgout_reject(sc);
2342 break;
2343 }
2344
2345 if (phase != PHASE_MSG_IN)
2346 return (phase);
2347 }
2348 /* NOTREACHED */
2349 }
2350
2351 static int
2352 iha_msgin_extended(sc)
2353 struct iha_softc *sc;
2354 {
2355 bus_space_tag_t iot = sc->sc_iot;
2356 bus_space_handle_t ioh = sc->sc_ioh;
2357 int flags, i, phase, msglen, msgcode;
2358
2359 /*
2360 * XXX - can we just stop reading and reject, or do we have to
2361 * read all input, discarding the excess, and then reject
2362 */
2363 for (i = 0; i < IHA_MAX_EXTENDED_MSG; i++) {
2364 phase = iha_wait(sc, MSG_ACCEPT);
2365
2366 if (phase != PHASE_MSG_IN)
2367 return (phase);
2368
2369 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2370
2371 if (iha_wait(sc, XF_FIFO_IN) == -1)
2372 return (-1);
2373
2374 sc->sc_msg[i] = bus_space_read_1(iot, ioh, TUL_SFIFO);
2375
2376 if (sc->sc_msg[0] == i)
2377 break;
2378 }
2379
2380 msglen = sc->sc_msg[0];
2381 msgcode = sc->sc_msg[1];
2382
2383 if ((msglen == MSG_EXT_SDTR_LEN) && (msgcode == MSG_EXT_SDTR)) {
2384 if (iha_msgin_sdtr(sc) == 0) {
2385 iha_sync_done(sc);
2386 return (iha_wait(sc, MSG_ACCEPT));
2387 }
2388
2389 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2390
2391 phase = iha_wait(sc, MSG_ACCEPT);
2392 if (phase != PHASE_MSG_OUT)
2393 return (phase);
2394
2395 /* Clear FIFO for important message - final SYNC offer */
2396 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2397
2398 iha_sync_done(sc); /* This is our final offer */
2399
2400 } else if ((msglen == MSG_EXT_WDTR_LEN) && (msgcode == MSG_EXT_WDTR)) {
2401
2402 flags = sc->sc_actscb->tcs->flags;
2403
2404 if ((flags & FLAG_NO_WIDE) != 0)
2405 /* Offer 8bit xfers only */
2406 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_8_BIT;
2407
2408 else if (sc->sc_msg[2] > MSG_EXT_WDTR_BUS_32_BIT)
2409 /* BAD MSG */
2410 return (iha_msgout_reject(sc));
2411
2412 else if (sc->sc_msg[2] == MSG_EXT_WDTR_BUS_32_BIT)
2413 /* Offer 16bit instead */
2414 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2415
2416 else {
2417 iha_wide_done(sc);
2418 if ((flags & FLAG_NO_NEG_SYNC) == 0)
2419 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2420 return (iha_wait(sc, MSG_ACCEPT));
2421 }
2422
2423 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2424
2425 phase = iha_wait(sc, MSG_ACCEPT);
2426 if (phase != PHASE_MSG_OUT)
2427 return (phase);
2428 } else
2429 return (iha_msgout_reject(sc));
2430
2431 return (iha_msgout_extended(sc));
2432 }
2433
2434 /*
2435 * iha_msgin_sdtr - check SDTR msg in sc_msg. If the offer is
2436 * acceptable leave sc_msg as is and return 0.
2437 * If the negotiation must continue, modify sc_msg
2438 * as needed and return 1. Else return 0.
2439 */
2440 static int
2441 iha_msgin_sdtr(sc)
2442 struct iha_softc *sc;
2443 {
2444 int flags;
2445 int newoffer;
2446 u_int8_t default_period;
2447
2448 flags = sc->sc_actscb->tcs->flags;
2449
2450 default_period = iha_rate_tbl[flags & FLAG_SCSI_RATE];
2451
2452 if (sc->sc_msg[3] == 0)
2453 /* target offered async only. Accept it. */
2454 return (0);
2455
2456 newoffer = 0;
2457
2458 if ((flags & FLAG_NO_SYNC) != 0) {
2459 sc->sc_msg[3] = 0;
2460 newoffer = 1;
2461 }
2462
2463 if (sc->sc_msg[3] > IHA_MAX_OFFSET) {
2464 sc->sc_msg[3] = IHA_MAX_OFFSET;
2465 newoffer = 1;
2466 }
2467
2468 if (sc->sc_msg[2] < default_period) {
2469 sc->sc_msg[2] = default_period;
2470 newoffer = 1;
2471 }
2472
2473 if (sc->sc_msg[2] > IHA_MAX_PERIOD) {
2474 /* Use async */
2475 sc->sc_msg[3] = 0;
2476 newoffer = 1;
2477 }
2478
2479 return (newoffer);
2480 }
2481
2482 static int
2483 iha_msgin_ignore_wid_resid(sc)
2484 struct iha_softc *sc;
2485 {
2486 bus_space_tag_t iot = sc->sc_iot;
2487 bus_space_handle_t ioh = sc->sc_ioh;
2488 int phase;
2489
2490 phase = iha_wait(sc, MSG_ACCEPT);
2491
2492 if (phase == PHASE_MSG_IN) {
2493 phase = iha_wait(sc, XF_FIFO_IN);
2494
2495 if (phase != -1) {
2496 bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2497 bus_space_read_1(iot, ioh, TUL_SFIFO);
2498 bus_space_read_1(iot, ioh, TUL_SFIFO);
2499
2500 phase = iha_wait(sc, MSG_ACCEPT);
2501 }
2502 }
2503
2504 return (phase);
2505 }
2506
2507 static int
2508 iha_msgout(sc, msg)
2509 struct iha_softc *sc;
2510 u_int8_t msg;
2511 {
2512
2513 bus_space_write_1(sc->sc_iot, sc->sc_ioh, TUL_SFIFO, msg);
2514
2515 return (iha_wait(sc, XF_FIFO_OUT));
2516 }
2517
2518 static void
2519 iha_msgout_abort(sc, aborttype)
2520 struct iha_softc *sc;
2521 u_int8_t aborttype;
2522 {
2523
2524 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2525
2526 switch (iha_wait(sc, MSG_ACCEPT)) {
2527 case -1:
2528 break;
2529
2530 case PHASE_MSG_OUT:
2531 sc->sc_flags |= FLAG_EXPECT_DISC;
2532 if (iha_msgout(sc, aborttype) != -1)
2533 iha_bad_seq(sc);
2534 break;
2535
2536 default:
2537 iha_bad_seq(sc);
2538 break;
2539 }
2540 }
2541
2542 static int
2543 iha_msgout_reject(sc)
2544 struct iha_softc *sc;
2545 {
2546
2547 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2548
2549 if (iha_wait(sc, MSG_ACCEPT) == PHASE_MSG_OUT)
2550 return (iha_msgout(sc, MSG_MESSAGE_REJECT));
2551
2552 return (-1);
2553 }
2554
2555 static int
2556 iha_msgout_extended(sc)
2557 struct iha_softc *sc;
2558 {
2559 bus_space_tag_t iot = sc->sc_iot;
2560 bus_space_handle_t ioh = sc->sc_ioh;
2561 int phase;
2562
2563 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTENDED);
2564
2565 bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
2566 sc->sc_msg, sc->sc_msg[0] + 1);
2567
2568 phase = iha_wait(sc, XF_FIFO_OUT);
2569
2570 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2571 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2572
2573 return (phase);
2574 }
2575
2576 static int
2577 iha_msgout_wdtr(sc)
2578 struct iha_softc *sc;
2579 {
2580
2581 sc->sc_actscb->tcs->flags |= FLAG_WIDE_DONE;
2582
2583 sc->sc_msg[0] = MSG_EXT_WDTR_LEN;
2584 sc->sc_msg[1] = MSG_EXT_WDTR;
2585 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2586
2587 return (iha_msgout_extended(sc));
2588 }
2589
2590 static int
2591 iha_msgout_sdtr(sc)
2592 struct iha_softc *sc;
2593 {
2594 struct tcs *tcs = sc->sc_actscb->tcs;
2595
2596 tcs->flags |= FLAG_SYNC_DONE;
2597
2598 sc->sc_msg[0] = MSG_EXT_SDTR_LEN;
2599 sc->sc_msg[1] = MSG_EXT_SDTR;
2600 sc->sc_msg[2] = iha_rate_tbl[tcs->flags & FLAG_SCSI_RATE];
2601 sc->sc_msg[3] = IHA_MAX_OFFSET; /* REQ/ACK */
2602
2603 return (iha_msgout_extended(sc));
2604 }
2605
2606 static void
2607 iha_wide_done(sc)
2608 struct iha_softc *sc;
2609 {
2610 bus_space_tag_t iot = sc->sc_iot;
2611 bus_space_handle_t ioh = sc->sc_ioh;
2612 struct tcs *tcs = sc->sc_actscb->tcs;
2613
2614 tcs->syncm = 0;
2615 tcs->period = 0;
2616 tcs->offset = 0;
2617
2618 if (sc->sc_msg[2] != 0)
2619 tcs->syncm |= PERIOD_WIDE_SCSI;
2620
2621 tcs->sconfig0 &= ~ALTPD;
2622 tcs->flags &= ~FLAG_SYNC_DONE;
2623 tcs->flags |= FLAG_WIDE_DONE;
2624
2625 iha_update_xfer_mode(sc, sc->sc_actscb->target);
2626
2627 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2628 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2629 }
2630
2631 static void
2632 iha_sync_done(sc)
2633 struct iha_softc *sc;
2634 {
2635 bus_space_tag_t iot = sc->sc_iot;
2636 bus_space_handle_t ioh = sc->sc_ioh;
2637 struct tcs *tcs = sc->sc_actscb->tcs;
2638 int i;
2639
2640 tcs->period = sc->sc_msg[2];
2641 tcs->offset = sc->sc_msg[3];
2642 if (tcs->offset != 0) {
2643 tcs->syncm |= tcs->offset;
2644
2645 /* pick the highest possible rate */
2646 for (i = 0; i < sizeof(iha_rate_tbl); i++)
2647 if (iha_rate_tbl[i] >= tcs->period)
2648 break;
2649
2650 tcs->syncm |= (i << 4);
2651 tcs->sconfig0 |= ALTPD;
2652 }
2653
2654 tcs->flags |= FLAG_SYNC_DONE;
2655
2656 iha_update_xfer_mode(sc, sc->sc_actscb->target);
2657
2658 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2659 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2660 }
2661
2662 /*
2663 * iha_bad_seq - a SCSI bus phase was encountered out of the
2664 * correct/expected sequence. Reset the SCSI bus.
2665 */
2666 static void
2667 iha_bad_seq(sc)
2668 struct iha_softc *sc;
2669 {
2670 struct iha_scb *scb = sc->sc_actscb;
2671
2672 if (scb != NULL)
2673 iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2674
2675 iha_reset_scsi_bus(sc);
2676 iha_reset_chip(sc);
2677 }
2678
2679 /*
2680 * iha_read_eeprom - read Serial EEPROM value & set to defaults
2681 * if required. XXX - Writing does NOT work!
2682 */
2683 static void
2684 iha_read_eeprom(sc, eeprom)
2685 struct iha_softc *sc;
2686 struct iha_eeprom *eeprom;
2687 {
2688 bus_space_tag_t iot = sc->sc_iot;
2689 bus_space_handle_t ioh = sc->sc_ioh;
2690 u_int16_t *buf = (u_int16_t *)eeprom;
2691 u_int8_t gctrl;
2692
2693 /* Enable EEProm programming */
2694 gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) | EEPRG;
2695 bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2696
2697 /* Read EEProm */
2698 if (iha_se2_rd_all(sc, buf) == 0)
2699 panic("%s: cannot read EEPROM", sc->sc_dev.dv_xname);
2700
2701 /* Disable EEProm programming */
2702 gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) & ~EEPRG;
2703 bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2704 }
2705
2706 #ifdef notused
2707 /*
2708 * iha_se2_update_all - Update SCSI H/A configuration parameters from
2709 * serial EEPROM Setup default pattern. Only
2710 * change those values different from the values
2711 * in iha_eeprom.
2712 */
2713 static void
2714 iha_se2_update_all(sc)
2715 struct iha_softc *sc;
2716 {
2717 bus_space_tag_t iot = sc->sc_iot;
2718 bus_space_handle_t ioh = sc->sc_ioh;
2719 u_int16_t *np;
2720 u_int32_t chksum;
2721 int i;
2722
2723 /* Enable erase/write state of EEPROM */
2724 iha_se2_instr(sc, ENABLE_ERASE);
2725 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2726 EEP_WAIT();
2727
2728 np = (u_int16_t *)&eeprom_default;
2729
2730 for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2731 iha_se2_wr(sc, i, *np);
2732 chksum += *np++;
2733 }
2734
2735 chksum &= 0x0000ffff;
2736 iha_se2_wr(sc, 31, chksum);
2737
2738 /* Disable erase/write state of EEPROM */
2739 iha_se2_instr(sc, 0);
2740 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2741 EEP_WAIT();
2742 }
2743
2744 /*
2745 * iha_se2_wr - write the given 16 bit value into the Serial EEPROM
2746 * at the specified offset
2747 */
2748 static void
2749 iha_se2_wr(sc, addr, writeword)
2750 struct iha_softc *sc;
2751 int addr;
2752 u_int16_t writeword;
2753 {
2754 bus_space_tag_t iot = sc->sc_iot;
2755 bus_space_handle_t ioh = sc->sc_ioh;
2756 int i, bit;
2757
2758 /* send 'WRITE' Instruction == address | WRITE bit */
2759 iha_se2_instr(sc, addr | WRITE);
2760
2761 for (i = 16; i > 0; i--) {
2762 if (writeword & (1 << (i - 1)))
2763 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRDO);
2764 else
2765 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2766 EEP_WAIT();
2767 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2768 EEP_WAIT();
2769 }
2770
2771 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2772 EEP_WAIT();
2773 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2774 EEP_WAIT();
2775 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2776 EEP_WAIT();
2777
2778 for (;;) {
2779 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2780 EEP_WAIT();
2781 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2782 EEP_WAIT();
2783 bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI;
2784 EEP_WAIT();
2785 if (bit != 0)
2786 break; /* write complete */
2787 }
2788
2789 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2790 }
2791 #endif
2792
2793 /*
2794 * iha_se2_rd - read & return the 16 bit value at the specified
2795 * offset in the Serial E2PROM
2796 *
2797 */
2798 static u_int16_t
2799 iha_se2_rd(sc, addr)
2800 struct iha_softc *sc;
2801 int addr;
2802 {
2803 bus_space_tag_t iot = sc->sc_iot;
2804 bus_space_handle_t ioh = sc->sc_ioh;
2805 int i, bit;
2806 u_int16_t readword;
2807
2808 /* Send 'READ' instruction == address | READ bit */
2809 iha_se2_instr(sc, addr | READ);
2810
2811 readword = 0;
2812 for (i = 16; i > 0; i--) {
2813 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2814 EEP_WAIT();
2815 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2816 EEP_WAIT();
2817 /* sample data after the following edge of clock */
2818 bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI ? 1 : 0;
2819 EEP_WAIT();
2820
2821 readword |= bit << (i - 1);
2822 }
2823
2824 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2825
2826 return (readword);
2827 }
2828
2829 /*
2830 * iha_se2_rd_all - Read SCSI H/A config parameters from serial EEPROM
2831 */
2832 static int
2833 iha_se2_rd_all(sc, buf)
2834 struct iha_softc *sc;
2835 u_int16_t *buf;
2836 {
2837 struct iha_eeprom *eeprom = (struct iha_eeprom *)buf;
2838 u_int32_t chksum;
2839 int i;
2840
2841 for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2842 *buf = iha_se2_rd(sc, i);
2843 chksum += *buf++;
2844 }
2845 *buf = iha_se2_rd(sc, 31); /* read checksum from EEPROM */
2846
2847 chksum &= 0x0000ffff; /* lower 16 bits */
2848
2849 return (eeprom->signature == EEP_SIGNATURE) &&
2850 (eeprom->checksum == chksum);
2851 }
2852
2853 /*
2854 * iha_se2_instr - write an octet to serial E2PROM one bit at a time
2855 */
2856 static void
2857 iha_se2_instr(sc, instr)
2858 struct iha_softc *sc;
2859 int instr;
2860 {
2861 bus_space_tag_t iot = sc->sc_iot;
2862 bus_space_handle_t ioh = sc->sc_ioh;
2863 int b, i;
2864
2865 b = NVRCS | NVRDO; /* Write the start bit (== 1) */
2866
2867 bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2868 EEP_WAIT();
2869 bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2870 EEP_WAIT();
2871
2872 for (i = 8; i > 0; i--) {
2873 if (instr & (1 << (i - 1)))
2874 b = NVRCS | NVRDO; /* Write a 1 bit */
2875 else
2876 b = NVRCS; /* Write a 0 bit */
2877
2878 bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2879 EEP_WAIT();
2880 bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2881 EEP_WAIT();
2882 }
2883
2884 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2885 }
2886