interwave.c revision 1.14 1 /* $NetBSD: interwave.c,v 1.14 2001/11/13 13:14:38 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Author: Kari Mettinen
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: interwave.c,v 1.14 2001/11/13 13:14:38 lukem Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/errno.h>
44 #include <sys/ioctl.h>
45 #include <sys/syslog.h>
46 #include <sys/device.h>
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52
53 #include <machine/cpu.h>
54 #include <machine/intr.h>
55 #include <machine/pio.h>
56 #include <machine/cpufunc.h>
57 #include <sys/audioio.h>
58 #include <dev/audio_if.h>
59 #include <dev/mulaw.h>
60
61 #include <dev/isa/isavar.h>
62 #include <dev/isa/isadmavar.h>
63
64 #include <dev/ic/interwavereg.h>
65 #include <dev/ic/interwavevar.h>
66
67
68 static void iwreset __P((struct iw_softc *, int));
69
70 static int iw_set_speed __P((struct iw_softc *, u_long, char));
71 static u_long iw_set_format __P((struct iw_softc *, u_long, int));
72 static void iw_mixer_line_level __P((struct iw_softc *, int, int, int));
73 static void iw_trigger_dma __P((struct iw_softc *, u_char));
74 static void iw_stop_dma __P((struct iw_softc *, u_char, u_char));
75 static void iw_dma_count __P((struct iw_softc *, u_short, int));
76 static int iwintr __P((void *));
77 static void iw_meminit __P((struct iw_softc *));
78 static void iw_mempoke __P((struct iw_softc *, u_long, u_char));
79 static u_char iw_mempeek __P((struct iw_softc *, u_long));
80
81 #ifdef USE_WAVETABLE
82 static void iw_set_voice_place __P((struct iw_softc *, u_char, u_long));
83 static void iw_voice_pan __P((struct iw_softc *, u_char, u_short, u_short));
84 static void iw_voice_freq __P((struct iw_softc *, u_char, u_long));
85 static void iw_set_loopmode __P((struct iw_softc *, u_char, u_char, u_char));
86 static void iw_set_voice_pos __P((struct iw_softc *, u_short, u_long, u_long));
87 static void iw_start_voice __P((struct iw_softc *, u_char));
88 static void iw_play_voice __P((struct iw_softc *, u_long, u_long, u_short));
89 static void iw_stop_voice __P((struct iw_softc *, u_char));
90 static void iw_move_voice_end __P((struct iw_softc *, u_short, u_long));
91 static void iw_initvoices __P((struct iw_softc *));
92 #endif
93
94 struct audio_device iw_device = {
95 "Am78C201",
96 "0.1",
97 "guspnp"
98 };
99
100 #ifdef AUDIO_DEBUG
101 int iw_debug;
102 #define DPRINTF(p) if (iw_debug) printf p
103 #else
104 #define DPRINTF(p)
105 #endif
106
107 static int iw_cc = 1;
108 #ifdef DIAGNOSTIC
109 static int outputs = 0;
110 static int iw_ints = 0;
111 static int inputs = 0;
112 static int iw_inints = 0;
113 #endif
114
115 int
116 iwintr(arg)
117 void *arg;
118 {
119 struct iw_softc *sc = arg;
120 int val = 0;
121 u_char intrs = 0;
122
123 IW_READ_DIRECT_1(6, sc->p2xr_h, intrs); /* UISR */
124
125 /* codec ints */
126
127 /*
128 * The proper order to do this seems to be to read CSR3 to get the
129 * int cause and fifo over underrrun status, then deal with the ints
130 * (new dma set up), and to clear ints by writing the respective bit
131 * to 0.
132 */
133
134 /* read what ints happened */
135
136 IW_READ_CODEC_1(CSR3I, intrs);
137
138 /* clear them */
139
140 IW_WRITE_DIRECT_1(2, sc->codec_index_h, 0x00);
141
142 /* and process them */
143
144 if (intrs & 0x20) {
145 #ifdef DIAGNOSTIC
146 iw_inints++;
147 #endif
148 sc->sc_reclocked = 0;
149 if (sc->sc_recintr != 0)
150 sc->sc_recintr(sc->sc_recarg);
151 val = 1;
152 }
153 if (intrs & 0x10) {
154 #ifdef DIAGNOSTIC
155 iw_ints++;
156 #endif
157 sc->sc_playlocked = 0;
158 if (sc->sc_playintr != 0)
159 sc->sc_playintr(sc->sc_playarg);
160 val = 1;
161 }
162 return val;
163
164 }
165
166 void
167 iwattach(sc)
168 struct iw_softc *sc;
169 {
170 int got_irq = 0;
171
172 DPRINTF(("iwattach sc %p\n", sc));
173
174 sc->cdatap = 1; /* relative offsets in region */
175 sc->csr1r = 2;
176 sc->cxdr = 3; /* CPDR or CRDR */
177
178 sc->gmxr = 0; /* sc->p3xr */
179 sc->gmxdr = 1; /* GMTDR or GMRDR */
180 sc->svsr = 2;
181 sc->igidxr = 3;
182 sc->i16dp = 4;
183 sc->i8dp = 5;
184 sc->lmbdr = 7;
185
186 sc->rec_precision = sc->play_precision = 8;
187 sc->rec_channels = sc->play_channels = 1;
188 sc->rec_encoding = sc->play_encoding = AUDIO_ENCODING_ULAW;
189 sc->sc_irate = 8000;
190 sc->sc_orate = 8000;
191
192 sc->sc_fullduplex = 1;
193
194 sc->sc_reclocked = 0;
195 sc->sc_playlocked = 0;
196
197 sc->sc_dma_flags = 0;
198
199 /*
200 * We can only use a few selected irqs, see if we got one from pnp
201 * code that suits us.
202 */
203
204 if (sc->sc_irq > 0) {
205 sc->sc_ih = isa_intr_establish(sc->sc_p2xr_ic,
206 sc->sc_irq,
207 IST_EDGE, IPL_AUDIO, iwintr, sc);
208 got_irq = 1;
209 }
210 if (!got_irq) {
211 printf("\niwattach: couldn't get a suitable irq\n");
212 return;
213 }
214 printf("\n");
215 iwreset(sc, 0);
216 iw_set_format(sc, AUDIO_ENCODING_ULAW, 0);
217 iw_set_format(sc, AUDIO_ENCODING_ULAW, 1);
218 printf("%s: interwave version %s\n",
219 sc->sc_dev.dv_xname, iw_device.version);
220 audio_attach_mi(sc->iw_hw_if, sc, &sc->sc_dev);
221 }
222
223 int
224 iwopen(sc, flags)
225 struct iw_softc *sc;
226 int flags;
227 {
228 int s;
229
230 s = splaudio();
231 if (sc->sc_open) {
232 splx(s);
233 DPRINTF(("iwopen: open %x sc %p\n", sc->sc_open, sc));
234 return EBUSY;
235 } else
236 sc->sc_open = 1;
237 splx(s);
238
239 DPRINTF(("iwopen: open %x sc %p\n", sc->sc_open, sc));
240
241 #ifdef DIAGNOSTIC
242 outputs = 0;
243 iw_ints = 0;
244 inputs = 0;
245 iw_inints = 0;
246 #endif
247
248 iwreset(sc, 1);
249
250 /* READ/WRITE or both */
251
252 if (flags == FREAD) {
253 sc->sc_mode |= IW_READ;
254 sc->sc_reclocked = 0;
255 }
256 if (flags == FWRITE) {
257 sc->sc_mode |= IW_WRITE;
258 sc->sc_playlocked = 0;
259 }
260 sc->sc_playdma_cnt = 0;
261 sc->sc_recdma_cnt = 0;
262 sc->playfirst = 1;
263 sc->sc_playintr = 0;
264 sc->sc_recintr = 0;
265
266 return 0;
267 }
268
269
270
271 void
272 iwclose(addr)
273 void *addr;
274 {
275 struct iw_softc *sc = addr;
276
277 DPRINTF(("iwclose sc %p\n", sc));
278
279 #ifdef DIAGNOSTIC
280 DPRINTF(("iwclose: outputs %d ints %d inputs %d in_ints %d\n",
281 outputs, iw_ints, inputs, iw_inints));
282 #endif
283
284 /* close hardware */
285 sc->sc_open = 0;
286 sc->sc_flags = 0;
287 sc->sc_mode = 0;
288 sc->sc_playlocked = 0;
289 sc->sc_reclocked = 0;
290
291 iw_stop_dma(sc, IW_DMA_PLAYBACK, 1);
292 iw_stop_dma(sc, IW_DMA_RECORD, 1);
293
294 sc->sc_playdma_cnt = 0;
295 sc->sc_recdma_cnt = 0;
296 }
297
298 #define RAM_STEP 64*1024
299
300 static void
301 iw_mempoke(sc, addy, val)
302 struct iw_softc *sc;
303 u_long addy;
304 u_char val;
305 {
306 IW_WRITE_GENERAL_2(LMALI, (u_short) addy);
307 IW_WRITE_GENERAL_1(LMAHI, (u_char) (addy >> 16));
308
309 /* Write byte to LMBDR */
310 IW_WRITE_DIRECT_1(sc->p3xr + 7, sc->p3xr_h, val);
311 }
312
313 static u_char
314 iw_mempeek(sc, addy)
315 struct iw_softc *sc;
316 u_long addy;
317 {
318 u_char ret;
319
320 IW_WRITE_GENERAL_2(LMALI, (u_short) addy);
321 IW_WRITE_GENERAL_1(LMAHI, (u_char) (addy >> 16));
322
323 IW_READ_DIRECT_1(sc->p3xr + 7, sc->p3xr_h, ret);
324 return ret; /* return byte from LMBDR */
325 }
326
327 static void
328 iw_meminit(sc)
329 struct iw_softc *sc;
330 {
331 u_long bank[4] = {0L, 0L, 0L, 0L};
332 u_long addr = 0L, base = 0L, cnt = 0L;
333 u_char i, ram = 0 /* ,memval=0 */ ;
334 u_short lmcfi;
335 u_long temppi;
336 u_long *lpbanks = &temppi;
337
338 IW_WRITE_GENERAL_1(LDMACI, 0x00);
339
340 IW_READ_GENERAL_2(LMCFI, lmcfi); /* 0x52 */
341 lmcfi |= 0x0A0C;
342 IW_WRITE_GENERAL_2(LMCFI, lmcfi); /* max addr span */
343 IW_WRITE_GENERAL_1(LMCI, 0x00);
344
345 /* fifo addresses */
346
347 IW_WRITE_GENERAL_2(LMRFAI, ((4 * 1024 * 1024) >> 8));
348 IW_WRITE_GENERAL_2(LMPFAI, ((4 * 1024 * 1024 + 16 * 1024) >> 8));
349
350 IW_WRITE_GENERAL_2(LMFSI, 0x000);
351
352 IW_WRITE_GENERAL_2(LDICI, 0x0000);
353
354 while (addr < (16 * 1024 * 1024)) {
355 iw_mempoke(sc, addr, 0x00);
356 addr += RAM_STEP;
357 }
358
359 printf("%s:", sc->sc_dev.dv_xname);
360
361 for (i = 0; i < 4; i++) {
362 iw_mempoke(sc, base, 0xAA); /* mark start of bank */
363 iw_mempoke(sc, base + 1L, 0x55);
364 if (iw_mempeek(sc, base) == 0xAA &&
365 iw_mempeek(sc, base + 1L) == 0x55)
366 ram = 1;
367 if (ram) {
368 while (cnt < (4 * 1024 * 1024)) {
369 bank[i] += RAM_STEP;
370 cnt += RAM_STEP;
371 addr = base + cnt;
372 if (iw_mempeek(sc, addr) == 0xAA)
373 break;
374 }
375 }
376 if (lpbanks != NULL) {
377 *lpbanks = bank[i];
378 lpbanks++;
379 }
380 bank[i] = bank[i] >> 10;
381 printf("%s bank[%d]: %ldK", i ? "," : "", i, bank[i]);
382 base += 4 * 1024 * 1024;
383 cnt = 0L;
384 ram = 0;
385 }
386
387 printf("\n");
388
389 /*
390 * this is not really useful since GUS PnP supports memory
391 * configurations that aren't really supported by Interwave...beware
392 * of holes! Also, we don't use the memory for anything in this
393 * version of the driver.
394 *
395 * we've configured for 4M-4M-4M-4M
396 */
397 }
398
399
400 static
401 void
402 iwreset(sc, warm)
403 struct iw_softc *sc;
404 int warm;
405 {
406 u_char reg, cmode, val = 0, mixer_image = 0;
407
408 reg = 0; /* XXX gcc -Wall */
409
410 cmode = 0x6c; /* enhanced codec mode (full duplex) */
411
412 /* reset */
413
414 IW_WRITE_GENERAL_1(URSTI, 0x00);
415 delay(10);
416 IW_WRITE_GENERAL_1(URSTI, 0x07);
417 IW_WRITE_GENERAL_1(ICMPTI, 0x1f); /* disable DSP and uici and
418 * udci writes */
419 IW_WRITE_GENERAL_1(IDECI, 0x7f); /* enable ints to ISA and
420 * codec access */
421 IW_READ_GENERAL_1(IVERI, reg);
422 IW_WRITE_GENERAL_1(IVERI, reg | 0x01); /* hidden reg lock disable */
423 IW_WRITE_GENERAL_1(UASBCI, 0x00);
424
425 /* synth enhanced mode (default), 0 active voices, disable ints */
426
427 IW_WRITE_GENERAL_1(SGMI_WR, 0x01); /* enhanced mode, LFOs
428 * disabled */
429 for (val = 0; val < 32; val++) {
430 /* set each synth sound volume to 0 */
431 IW_WRITE_DIRECT_1(sc->p3xr + 2, sc->p3xr_h, val);
432 IW_WRITE_GENERAL_1(SVSI_WR, 0x00);
433 IW_WRITE_GENERAL_2(SASLI_WR, 0x0000);
434 IW_WRITE_GENERAL_2(SASHI_WR, 0x0000);
435 IW_WRITE_GENERAL_2(SAELI_WR, 0x0000);
436 IW_WRITE_GENERAL_2(SAEHI_WR, 0x0000);
437 IW_WRITE_GENERAL_2(SFCI_WR, 0x0000);
438 IW_WRITE_GENERAL_1(SACI_WR, 0x02);
439 IW_WRITE_GENERAL_1(SVSI_WR, 0x00);
440 IW_WRITE_GENERAL_1(SVEI_WR, 0x00);
441 IW_WRITE_GENERAL_2(SVLI_WR, 0x0000);
442 IW_WRITE_GENERAL_1(SVCI_WR, 0x02);
443 IW_WRITE_GENERAL_1(SMSI_WR, 0x02);
444 }
445
446 IW_WRITE_GENERAL_1(SAVI_WR, 0x00);
447
448 /* codec mode/init */
449
450 /* first change mode to 1 */
451
452 IW_WRITE_CODEC_1(CMODEI, 0x00);
453
454 /* and mode 3 */
455
456 IW_WRITE_CODEC_1(CMODEI, cmode);
457
458 IW_READ_CODEC_1(CMODEI, reg);
459
460 DPRINTF(("cmode %x\n", reg));
461
462 sc->revision = ((reg & 0x80) >> 3) | (reg & 0x0f);
463
464 IW_WRITE_DIRECT_1(sc->codec_index + 2, sc->p2xr_h, 0x00);
465
466 IW_WRITE_CODEC_1(CFIG1I | IW_MCE, 0x00); /* dma 2 chan access */
467 IW_WRITE_CODEC_1(CEXTI, 0x00); /* disable ints for now */
468
469
470 IW_WRITE_CODEC_1(CLPCTI, 0x00); /* reset playback sample counters */
471 IW_WRITE_CODEC_1(CUPCTI, 0x00); /* always upper byte last */
472 IW_WRITE_CODEC_1(CFIG2I, 0x80); /* full voltage range, enable record
473 * and playback sample counters, and
474 * don't center output in case or
475 * FIFO underrun */
476 IW_WRITE_CODEC_1(CFIG3I, 0xc0); /* enable record/playback irq (still
477 * turned off from CEXTI), max dma
478 * rate */
479 IW_WRITE_CODEC_1(CSR3I, 0x00); /* clear status 3 reg */
480
481
482 IW_WRITE_CODEC_1(CLRCTI, 0x00); /* reset record sample counters */
483 IW_WRITE_CODEC_1(CURCTI, 0x00); /* always upper byte last */
484
485
486 IW_READ_GENERAL_1(IVERI, reg);
487
488 sc->vers = reg >> 4;
489 if (!warm)
490 sprintf(iw_device.version, "%d.%d", sc->vers, sc->revision);
491
492 IW_WRITE_GENERAL_1(IDECI, 0x7f); /* irqs and codec decode
493 * enable */
494
495
496 /* ports */
497
498 if (!warm) {
499 iw_mixer_line_level(sc, IW_LINE_OUT, 255, 255);
500 iw_mixer_line_level(sc, IW_LINE_IN, 0, 0);
501 iw_mixer_line_level(sc, IW_AUX1, 0, 0);
502 iw_mixer_line_level(sc, IW_AUX2, 200, 200); /* CD */
503 sc->sc_dac.off = 0;
504 iw_mixer_line_level(sc, IW_DAC, 200, 200);
505
506 iw_mixer_line_level(sc, IW_MIC_IN, 0, 0);
507 iw_mixer_line_level(sc, IW_REC, 0, 0);
508 iw_mixer_line_level(sc, IW_LOOPBACK, 0, 0);
509 iw_mixer_line_level(sc, IW_MONO_IN, 0, 0);
510
511 /* mem stuff */
512 iw_meminit(sc);
513
514 }
515 IW_WRITE_CODEC_1(CEXTI, 0x02); /* codec int enable */
516
517 /* clear _LDMACI */
518
519 IW_WRITE_GENERAL_1(LDMACI, 0x00);
520
521 /* enable mixer paths */
522 mixer_image = 0x0c;
523 IW_WRITE_DIRECT_1(sc->p2xr, sc->p2xr_h, mixer_image);
524 /*
525 * enable output, line in. disable mic in bit 0 = 0 -> line in on
526 * (from codec?) bit 1 = 0 -> output on bit 2 = 1 -> mic in on bit 3
527 * = 1 -> irq&drq pin enable bit 4 = 1 -> channel interrupts to chan
528 * 1 bit 5 = 1 -> enable midi loop back bit 6 = 0 -> irq latches
529 * URCR[2:0] bit 6 = 1 -> dma latches URCR[2:0]
530 */
531
532
533 IW_READ_DIRECT_1(sc->p2xr, sc->p2xr_h, mixer_image);
534 #ifdef AUDIO_DEBUG
535 if (!warm)
536 DPRINTF(("mix image %x \n", mixer_image));
537 #endif
538 }
539
540 struct iw_codec_freq {
541 u_long freq;
542 u_char bits;
543 };
544
545 int
546 iw_set_speed(sc, freq, in)
547 struct iw_softc *sc;
548 u_long freq;
549 char in;
550 {
551 u_char var, cfig3, reg;
552
553 static struct iw_codec_freq iw_cf[17] = {
554 #define FREQ_1 24576000
555 #define FREQ_2 16934400
556 #define XTAL1 0
557 #define XTAL2 1
558 {5510, 0x00 | XTAL2}, {6620, 0x0E | XTAL2},
559 {8000, 0x00 | XTAL1}, {9600, 0x0E | XTAL1},
560 {11025, 0x02 | XTAL2}, {16000, 0x02 | XTAL1},
561 {18900, 0x04 | XTAL2}, {22050, 0x06 | XTAL2},
562 {27420, 0x04 | XTAL1}, {32000, 0x06 | XTAL1},
563 {33075, 0x0C | XTAL2}, {37800, 0x08 | XTAL2},
564 {38400, 0x0A | XTAL1}, {44100, 0x0A | XTAL2},
565 {44800, 0x08 | XTAL1}, {48000, 0x0C | XTAL1},
566 {48000, 0x0C | XTAL1} /* really a dummy for indexing later */
567 #undef XTAL1
568 #undef XTAL2
569 };
570
571 cfig3 = 0; /* XXX gcc -Wall */
572
573 /*
574 * if the frequency is between 3493Hz and 32KHz we can use a more
575 * accurate frequency than the ones listed above base on the formula
576 * FREQ/((16*(48+x))) where FREQ is either FREQ_1 (24576000Hz) or
577 * FREQ_2 (16934400Hz) and x is the value to be written to either
578 * CPVFI or CRVFI. To enable this option, bit 2 in CFIG3 needs to be
579 * set high
580 *
581 * NOT IMPLEMENTED!
582 *
583 * Note that if you have a 'bad' XTAL_1 (higher than 18.5 MHz), 44.8KHz
584 * and 38.4KHz modes will provide wrong frequencies to output.
585 */
586
587
588 if (freq > 48000)
589 freq = 48000;
590 if (freq < 5510)
591 freq = 5510;
592
593 /* reset CFIG3[2] */
594
595 IW_READ_CODEC_1(CFIG3I, cfig3);
596
597 cfig3 |= 0xc0; /* not full fifo treshhold */
598
599 DPRINTF(("cfig3i = %x -> ", cfig3));
600
601 cfig3 &= ~0x04;
602 IW_WRITE_CODEC_1(CFIG3I, cfig3);
603 IW_READ_CODEC_1(CFIG3I, cfig3);
604
605 DPRINTF(("%x\n", cfig3));
606
607 for (var = 0; var < 16; var++) /* select closest frequency */
608 if (freq <= iw_cf[var].freq)
609 break;
610 if (var != 16)
611 if (abs(freq - iw_cf[var].freq) > abs(iw_cf[var + 1].freq - freq))
612 var++;
613
614 if (in)
615 IW_WRITE_CODEC_1(CRDFI | IW_MCE, sc->recfmtbits | iw_cf[var].bits);
616 else
617 IW_WRITE_CODEC_1(CPDFI | IW_MCE, sc->playfmtbits | iw_cf[var].bits);
618 freq = iw_cf[var].freq;
619 DPRINTF(("setting %s frequency to %d bits %x \n",
620 in ? "in" : "out", (int) freq, iw_cf[var].bits));
621
622 IW_READ_CODEC_1(CPDFI, reg);
623
624 DPRINTF((" CPDFI %x ", reg));
625
626 IW_READ_CODEC_1(CRDFI, reg);
627
628 DPRINTF((" CRDFI %x ", reg));
629
630 return freq;
631 }
632
633 /* Encoding. */
634 int
635 iw_query_encoding(addr, fp)
636 void *addr;
637 struct audio_encoding *fp;
638 {
639 /*
640 * LINEAR, ALAW, ULAW, ADPCM in HW, we'll use linear unsigned
641 * hardware mode for all 8-bit modes due to buggy (?) codec.
642 */
643
644 /*
645 * except in wavetable synth. there we have only ulaw and 8 and 16
646 * bit linear data
647 */
648
649 switch (fp->index) {
650 case 0:
651 strcpy(fp->name, AudioEulinear);
652 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
653 fp->precision = 8;
654 fp->flags = 0;
655 break;
656 case 1:
657 strcpy(fp->name, AudioEmulaw);
658 fp->encoding = AUDIO_ENCODING_ULAW;
659 fp->precision = 8;
660 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
661 break;
662 case 2:
663 strcpy(fp->name, AudioEalaw);
664 fp->encoding = AUDIO_ENCODING_ALAW;
665 fp->precision = 8;
666 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
667 break;
668 case 3:
669 strcpy(fp->name, AudioEadpcm);
670 fp->encoding = AUDIO_ENCODING_ADPCM;
671 fp->precision = 8; /* really 4 bit */
672 fp->flags = 0;
673 break;
674 case 4:
675 strcpy(fp->name, AudioEslinear_le);
676 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
677 fp->precision = 16;
678 fp->flags = 0;
679 break;
680 case 5:
681 strcpy(fp->name, AudioEslinear_be);
682 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
683 fp->precision = 16;
684 fp->flags = 0;
685 break;
686 default:
687 return (EINVAL);
688 /* NOTREACHED */
689 }
690 return (0);
691 }
692
693
694
695 u_long
696 iw_set_format(sc, precision, in)
697 struct iw_softc *sc;
698 u_long precision;
699 int in;
700 {
701 u_char data;
702 int encoding, channels;
703
704 encoding = in ? sc->rec_encoding : sc->play_encoding;
705 channels = in ? sc->rec_channels : sc->play_channels;
706
707 DPRINTF(("iw_set_format\n"));
708
709 switch (encoding) {
710 case AUDIO_ENCODING_ULAW:
711 data = 0x00;
712 break;
713
714 case AUDIO_ENCODING_ALAW:
715 data = 0x00;
716 break;
717
718 case AUDIO_ENCODING_SLINEAR_LE:
719 if (precision == 16)
720 data = 0x40; /* little endian. 0xc0 is big endian */
721 else
722 data = 0x00;
723 break;
724
725 case AUDIO_ENCODING_SLINEAR_BE:
726 if (precision == 16)
727 data = 0xc0;
728 else
729 data = 0x00;
730 break;
731
732 case AUDIO_ENCODING_ADPCM:
733 data = 0xa0;
734 break;
735
736 default:
737 return -1;
738 }
739
740 if (channels == 2)
741 data |= 0x10; /* stereo */
742
743 if (in) {
744 /* in */
745 sc->recfmtbits = data;
746 /* This will zero the normal codec frequency,
747 * iw_set_speed should always be called afterwards.
748 */
749 IW_WRITE_CODEC_1(CRDFI | IW_MCE, data);
750 } else {
751 /* out */
752 sc->playfmtbits = data;
753 IW_WRITE_CODEC_1(CPDFI | IW_MCE, data);
754 }
755
756 DPRINTF(("formatbits %s %x", in ? "in" : "out", data));
757
758 return encoding;
759 }
760
761
762
763 int
764 iw_set_params(addr, setmode, usemode, p, q)
765 void *addr;
766 int setmode;
767 int usemode;
768 struct audio_params *p;
769 struct audio_params *q;
770 {
771 struct iw_softc *sc = addr;
772 void (*swcode)__P((void *, u_char * buf, int cnt)) = NULL;
773 int factor = 1;
774 DPRINTF(("iw_setparams: code %d, prec %d, rate %d, chan %d\n",
775 (int) p->encoding, (int) p->precision, (int) p->sample_rate,
776 (int) p->channels));
777
778
779 switch (p->encoding) {
780 case AUDIO_ENCODING_ULAW:
781 if (p->precision != 8)
782 return EINVAL;
783 swcode = setmode & AUMODE_PLAY ? mulaw_to_ulinear8 : ulinear8_to_mulaw;
784 factor = 1;
785 break;
786 case AUDIO_ENCODING_ALAW:
787 if (p->precision != 8)
788 return EINVAL;
789 swcode = setmode & AUMODE_PLAY ? alaw_to_ulinear8 : ulinear8_to_alaw;
790 factor = 1;
791 break;
792 case AUDIO_ENCODING_ADPCM:
793 if (p->precision != 8)
794 return EINVAL;
795 else
796 break;
797
798 case AUDIO_ENCODING_SLINEAR_LE:
799 case AUDIO_ENCODING_SLINEAR_BE:
800 if (p->precision != 8 && p->precision != 16)
801 return EINVAL;
802 else
803 break;
804
805 default:
806 return EINVAL;
807
808 }
809
810 if (setmode & AUMODE_PLAY) {
811 sc->play_channels = p->channels;
812 sc->play_encoding = p->encoding;
813 sc->play_precision = p->precision;
814 p->factor = factor;
815 p->sw_code = swcode;
816 iw_set_format(sc, p->precision, 0);
817 q->sample_rate = p->sample_rate = sc->sc_orate =
818 iw_set_speed(sc, p->sample_rate, 0);
819 } else {
820 #if 0
821 q->channels = sc->rec_channels = p->channels;
822 q->encoding = sc->rec_encoding = p->encoding;
823 q->precision = sc->rec_precision = p->precision;
824 #endif
825 sc->rec_channels = q->channels;
826 sc->rec_encoding = q->encoding;
827 sc->rec_precision = q->precision;
828 q->factor = factor;
829 q->sw_code = swcode;
830
831 iw_set_format(sc, p->precision, 1);
832 q->sample_rate = sc->sc_irate =
833 iw_set_speed(sc, q->sample_rate, 1);
834 }
835 return 0;
836 }
837
838
839 int
840 iw_round_blocksize(addr, blk)
841 void *addr;
842 int blk;
843 {
844 /* Round to a multiple of the biggest sample size. */
845 return blk &= -4;
846 }
847
848 void
849 iw_mixer_line_level(sc, line, levl, levr)
850 struct iw_softc *sc;
851 int line;
852 int levl, levr;
853 {
854 u_char gainl, gainr, attenl, attenr;
855
856 switch (line) {
857 case IW_REC:
858 gainl = sc->sc_recsrcbits | (levl >> 4);
859 gainr = sc->sc_recsrcbits | (levr >> 4);
860 DPRINTF(("recording with %x", gainl));
861 IW_WRITE_CODEC_1(CLICI, gainl);
862 IW_WRITE_CODEC_1(CRICI, gainr);
863 sc->sc_rec.voll = levl & 0xf0;
864 sc->sc_rec.volr = levr & 0xf0;
865 break;
866
867 case IW_AUX1:
868
869 gainl = (255 - levl) >> 3;
870 gainr = (255 - levr) >> 3;
871
872 /* mute if 0 level */
873 if (levl == 0)
874 gainl |= 0x80;
875 if (levr == 0)
876 gainr |= 0x80;
877
878 IW_WRITE_CODEC_1(IW_LEFT_AUX1_PORT, gainl);
879 IW_WRITE_CODEC_1(IW_RIGHT_AUX1_PORT, gainr);
880 sc->sc_aux1.voll = levl & 0xf8;
881 sc->sc_aux1.volr = levr & 0xf8;
882
883 break;
884
885 case IW_AUX2:
886
887 gainl = (255 - levl) >> 3;
888 gainr = (255 - levr) >> 3;
889
890 /* mute if 0 level */
891 if (levl == 0)
892 gainl |= 0x80;
893 if (levr == 0)
894 gainr |= 0x80;
895
896 IW_WRITE_CODEC_1(IW_LEFT_AUX2_PORT, gainl);
897 IW_WRITE_CODEC_1(IW_RIGHT_AUX2_PORT, gainr);
898 sc->sc_aux2.voll = levl & 0xf8;
899 sc->sc_aux2.volr = levr & 0xf8;
900 break;
901 case IW_DAC:
902 attenl = ((255 - levl) >> 2) | ((levl && !sc->sc_dac.off) ? 0 : 0x80);
903 attenr = ((255 - levr) >> 2) | ((levr && !sc->sc_dac.off) ? 0 : 0x80);
904 IW_WRITE_CODEC_1(CLDACI, attenl);
905 IW_WRITE_CODEC_1(CRDACI, attenr);
906 sc->sc_dac.voll = levl & 0xfc;
907 sc->sc_dac.volr = levr & 0xfc;
908 break;
909 case IW_LOOPBACK:
910 attenl = ((255 - levl) & 0xfc) | (levl ? 0x01 : 0);
911 IW_WRITE_CODEC_1(CLCI, attenl);
912 sc->sc_loopback.voll = levl & 0xfc;
913 break;
914 case IW_LINE_IN:
915 gainl = (levl >> 3) | (levl ? 0 : 0x80);
916 gainr = (levr >> 3) | (levr ? 0 : 0x80);
917 IW_WRITE_CODEC_1(CLLICI, gainl);
918 IW_WRITE_CODEC_1(CRLICI, gainr);
919 sc->sc_linein.voll = levl & 0xf8;
920 sc->sc_linein.volr = levr & 0xf8;
921 break;
922 case IW_MIC_IN:
923 gainl = ((255 - levl) >> 3) | (levl ? 0 : 0x80);
924 gainr = ((255 - levr) >> 3) | (levr ? 0 : 0x80);
925 IW_WRITE_CODEC_1(CLMICI, gainl);
926 IW_WRITE_CODEC_1(CRMICI, gainr);
927 sc->sc_mic.voll = levl & 0xf8;
928 sc->sc_mic.volr = levr & 0xf8;
929 break;
930 case IW_LINE_OUT:
931 attenl = ((255 - levl) >> 3) | (levl ? 0 : 0x80);
932 attenr = ((255 - levr) >> 3) | (levr ? 0 : 0x80);
933 IW_WRITE_CODEC_1(CLOAI, attenl);
934 IW_WRITE_CODEC_1(CROAI, attenr);
935 sc->sc_lineout.voll = levl & 0xf8;
936 sc->sc_lineout.volr = levr & 0xf8;
937 break;
938 case IW_MONO_IN:
939 attenl = ((255 - levl) >> 4) | (levl ? 0 : 0xc0); /* in/out mute */
940 IW_WRITE_CODEC_1(CMONOI, attenl);
941 sc->sc_monoin.voll = levl & 0xf0;
942 break;
943 }
944 }
945
946 int
947 iw_commit_settings(addr)
948 void *addr;
949 {
950 return 0;
951 }
952
953
954 void
955 iw_trigger_dma(sc, io)
956 struct iw_softc *sc;
957 u_char io;
958 {
959 u_char reg;
960 int s;
961
962 s = splaudio();
963
964 IW_READ_CODEC_1(CSR3I, reg);
965 IW_WRITE_CODEC_1(CSR3I, reg & ~(io == IW_DMA_PLAYBACK ? 0x10 : 0x20));
966
967 IW_READ_CODEC_1(CFIG1I, reg);
968
969 IW_WRITE_CODEC_1(CFIG1I, reg | io);
970
971 /* let the counter run */
972 IW_READ_CODEC_1(CFIG2I, reg);
973 IW_WRITE_CODEC_1(CFIG2I, reg & ~(io << 4));
974
975 splx(s);
976 }
977
978 void
979 iw_stop_dma(sc, io, hard)
980 struct iw_softc *sc;
981 u_char io, hard;
982 {
983 u_char reg;
984
985 /* just stop the counter, no need to flush the fifo */
986 IW_READ_CODEC_1(CFIG2I, reg);
987 IW_WRITE_CODEC_1(CFIG2I, (reg | (io << 4)));
988
989 if (hard) {
990 /* unless we're closing the device */
991 IW_READ_CODEC_1(CFIG1I, reg);
992 IW_WRITE_CODEC_1(CFIG1I, reg & ~io);
993 }
994 }
995
996 void
997 iw_dma_count(sc, count, io)
998 struct iw_softc *sc;
999 u_short count;
1000 int io;
1001 {
1002 if (io == IW_DMA_PLAYBACK) {
1003 IW_WRITE_CODEC_1(CLPCTI, (u_char) (count & 0x00ff));
1004 IW_WRITE_CODEC_1(CUPCTI, (u_char) ((count >> 8) & 0x00ff));
1005 } else {
1006 IW_WRITE_CODEC_1(CLRCTI, (u_char) (count & 0x00ff));
1007 IW_WRITE_CODEC_1(CURCTI, (u_char) ((count >> 8) & 0x00ff));
1008 }
1009 }
1010
1011 int
1012 iw_init_output(addr, buf, cc)
1013 void *addr;
1014 void *buf;
1015 int cc;
1016 {
1017 struct iw_softc *sc = (struct iw_softc *) addr;
1018
1019 DPRINTF(("iw_init_output\n"));
1020
1021 isa_dmastart(sc->sc_ic, sc->sc_playdrq, buf,
1022 cc, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1023 return 0;
1024 }
1025
1026 int
1027 iw_init_input(addr, buf, cc)
1028 void *addr;
1029 void *buf;
1030 int cc;
1031 {
1032 struct iw_softc *sc = (struct iw_softc *) addr;
1033
1034 DPRINTF(("iw_init_input\n"));
1035
1036 isa_dmastart(sc->sc_ic, sc->sc_recdrq, buf,
1037 cc, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1038 return 0;
1039 }
1040
1041
1042 int
1043 iw_start_output(addr, p, cc, intr, arg)
1044 void *addr;
1045 void *p;
1046 int cc;
1047 void (*intr)__P((void *));
1048 void *arg;
1049 {
1050 struct iw_softc *sc = addr;
1051 int counter;
1052
1053 #ifdef AUDIO_DEBUG
1054 if (sc->sc_playlocked) {
1055 DPRINTF(("iw_start_output: playback dma already going on\n"));
1056 /* return 0; */
1057 }
1058 #endif
1059
1060 sc->sc_playlocked = 1;
1061 #ifdef DIAGNOSTIC
1062 if (!intr) {
1063 printf("iw_start_output: no callback!\n");
1064 return 1;
1065 }
1066 #endif
1067
1068 sc->sc_playintr = intr;
1069 sc->sc_playarg = arg;
1070 sc->sc_dma_flags |= DMAMODE_WRITE;
1071 sc->sc_playdma_bp = p;
1072
1073 counter = 0;
1074
1075 isa_dmastart(sc->sc_ic, sc->sc_playdrq, sc->sc_playdma_bp,
1076 cc, NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
1077
1078
1079 if (sc->play_encoding == AUDIO_ENCODING_ADPCM)
1080 cc >>= 2;
1081 if (sc->play_precision == 16)
1082 cc >>= 1;
1083
1084 if (sc->play_channels == 2 && sc->play_encoding != AUDIO_ENCODING_ADPCM)
1085 cc >>= 1;
1086
1087 cc -= iw_cc;
1088
1089
1090 /* iw_dma_access(sc,1); */
1091 if (cc != sc->sc_playdma_cnt) {
1092 iw_dma_count(sc, (u_short) cc, IW_DMA_PLAYBACK);
1093 sc->sc_playdma_cnt = cc;
1094
1095 iw_trigger_dma(sc, IW_DMA_PLAYBACK);
1096 }
1097
1098 #ifdef DIAGNOSTIC
1099 if (outputs != iw_ints)
1100 printf("iw_start_output: out %d, int %d\n", outputs, iw_ints);
1101 outputs++;
1102 #endif
1103 return 0;
1104 }
1105
1106
1107 int
1108 iw_start_input(addr, p, cc, intr, arg)
1109 void *addr;
1110 void *p;
1111 int cc;
1112 void (*intr)__P((void *));
1113 void *arg;
1114 {
1115 struct iw_softc *sc = addr;
1116 int counter;
1117
1118 #if AUDIO_DEBUG
1119 if (sc->sc_reclocked) {
1120 DPRINTF(("iw_start_input: record dma already going on\n"));
1121 /* return 0; */
1122 }
1123 #endif
1124
1125 sc->sc_reclocked = 1;
1126 #ifdef DIAGNOSTIC
1127 if (!intr) {
1128 printf("iw_start_input: no callback!\n");
1129 return 1;
1130 }
1131 #endif
1132
1133
1134 sc->sc_recintr = intr;
1135 sc->sc_recarg = arg;
1136 sc->sc_dma_flags |= DMAMODE_READ;
1137 sc->sc_recdma_bp = p;
1138
1139 counter = 0;
1140
1141 isa_dmastart(sc->sc_ic, sc->sc_recdrq, sc->sc_recdma_bp,
1142 cc, NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
1143
1144
1145 if (sc->rec_encoding == AUDIO_ENCODING_ADPCM)
1146 cc >>= 2;
1147 if (sc->rec_precision == 16)
1148 cc >>= 1;
1149
1150 if (sc->rec_channels == 2 && sc->rec_encoding != AUDIO_ENCODING_ADPCM)
1151 cc >>= 1;
1152
1153 cc -= iw_cc;
1154
1155 /* iw_dma_access(sc,0); */
1156 if (sc->sc_recdma_cnt != cc) {
1157 iw_dma_count(sc, (u_short) cc, IW_DMA_RECORD);
1158 sc->sc_recdma_cnt = cc;
1159 /* iw_dma_ctrl(sc, IW_DMA_RECORD); */
1160 iw_trigger_dma(sc, IW_DMA_RECORD);
1161 }
1162
1163 #ifdef DIAGNOSTIC
1164 if ((inputs != iw_inints))
1165 printf("iw_start_input: in %d, inints %d\n", inputs, iw_inints);
1166 inputs++;
1167 #endif
1168
1169 return 0;
1170 }
1171
1172
1173 int
1174 iw_halt_output(addr)
1175 void *addr;
1176 {
1177 struct iw_softc *sc = addr;
1178 iw_stop_dma(sc, IW_DMA_PLAYBACK, 0);
1179 /* sc->sc_playlocked = 0; */
1180 return 0;
1181 }
1182
1183
1184 int
1185 iw_halt_input(addr)
1186 void *addr;
1187 {
1188 struct iw_softc *sc = addr;
1189 iw_stop_dma(sc, IW_DMA_RECORD, 0);
1190 /* sc->sc_reclocked = 0; */
1191 return 0;
1192 }
1193
1194
1195 int
1196 iw_speaker_ctl(addr, newstate)
1197 void *addr;
1198 int newstate;
1199 {
1200 struct iw_softc *sc = addr;
1201 u_char reg;
1202 if (newstate == SPKR_ON) {
1203 sc->sc_dac.off = 0;
1204 IW_READ_CODEC_1(CLDACI, reg);
1205 IW_WRITE_CODEC_1(CLDACI, reg & 0x7f);
1206 IW_READ_CODEC_1(CRDACI, reg);
1207 IW_WRITE_CODEC_1(CRDACI, reg & 0x7f);
1208 } else {
1209 /* SPKR_OFF */
1210 sc->sc_dac.off = 1;
1211 IW_READ_CODEC_1(CLDACI, reg);
1212 IW_WRITE_CODEC_1(CLDACI, reg | 0x80);
1213 IW_READ_CODEC_1(CRDACI, reg);
1214 IW_WRITE_CODEC_1(CRDACI, reg | 0x80);
1215 }
1216 return 0;
1217 }
1218
1219
1220 int
1221 iw_getdev(addr, retp)
1222 void *addr;
1223 struct audio_device *retp;
1224 {
1225 *retp = iw_device;
1226 return 0;
1227 }
1228
1229
1230 int
1231 iw_setfd(addr, flag)
1232 void *addr;
1233 int flag;
1234 {
1235 return 0;
1236 }
1237
1238
1239 /* Mixer (in/out ports) */
1240 int
1241 iw_set_port(addr, cp)
1242 void *addr;
1243 mixer_ctrl_t *cp;
1244 {
1245 struct iw_softc *sc = addr;
1246 u_char vall = 0, valr = 0;
1247 int error = EINVAL;
1248
1249 switch (cp->dev) {
1250 case IW_MIC_IN_LVL:
1251 if (cp->type == AUDIO_MIXER_VALUE) {
1252 error = 0;
1253 if (cp->un.value.num_channels == 1) {
1254 vall = valr = cp->un.value.level[0];
1255 } else {
1256 vall = cp->un.value.level[0];
1257 valr = cp->un.value.level[1];
1258 }
1259 sc->sc_mic.voll = vall;
1260 sc->sc_mic.volr = valr;
1261 iw_mixer_line_level(sc, IW_MIC_IN, vall, valr);
1262 }
1263 break;
1264 case IW_AUX1_LVL:
1265 if (cp->type == AUDIO_MIXER_VALUE) {
1266 error = 0;
1267 if (cp->un.value.num_channels == 1) {
1268 vall = valr = cp->un.value.level[0];
1269 } else {
1270 vall = cp->un.value.level[0];
1271 valr = cp->un.value.level[1];
1272 }
1273 sc->sc_aux1.voll = vall;
1274 sc->sc_aux1.volr = valr;
1275 iw_mixer_line_level(sc, IW_AUX1, vall, valr);
1276 }
1277 break;
1278 case IW_AUX2_LVL:
1279 if (cp->type == AUDIO_MIXER_VALUE) {
1280 error = 0;
1281 if (cp->un.value.num_channels == 1) {
1282 vall = valr = cp->un.value.level[0];
1283 } else {
1284 vall = cp->un.value.level[0];
1285 valr = cp->un.value.level[1];
1286 }
1287 sc->sc_aux2.voll = vall;
1288 sc->sc_aux2.volr = valr;
1289 iw_mixer_line_level(sc, IW_AUX2, vall, valr);
1290 }
1291 break;
1292 case IW_LINE_IN_LVL:
1293 if (cp->type == AUDIO_MIXER_VALUE) {
1294 error = 0;
1295 if (cp->un.value.num_channels == 1) {
1296 vall = valr = cp->un.value.level[0];
1297 } else {
1298 vall = cp->un.value.level[0];
1299 valr = cp->un.value.level[1];
1300 }
1301 sc->sc_linein.voll = vall;
1302 sc->sc_linein.volr = valr;
1303 iw_mixer_line_level(sc, IW_LINE_IN, vall, valr);
1304 }
1305 break;
1306 case IW_LINE_OUT_LVL:
1307 if (cp->type == AUDIO_MIXER_VALUE) {
1308 error = 0;
1309 if (cp->un.value.num_channels == 1) {
1310 vall = valr = cp->un.value.level[0];
1311 } else {
1312 vall = cp->un.value.level[0];
1313 valr = cp->un.value.level[1];
1314 }
1315 sc->sc_lineout.voll = vall;
1316 sc->sc_lineout.volr = valr;
1317 iw_mixer_line_level(sc, IW_LINE_OUT, vall, valr);
1318 }
1319 break;
1320 case IW_REC_LVL:
1321 if (cp->type == AUDIO_MIXER_VALUE) {
1322 error = 0;
1323 if (cp->un.value.num_channels == 1) {
1324 vall = valr = cp->un.value.level[0];
1325 } else {
1326 vall = cp->un.value.level[0];
1327 valr = cp->un.value.level[1];
1328 }
1329 sc->sc_rec.voll = vall;
1330 sc->sc_rec.volr = valr;
1331 iw_mixer_line_level(sc, IW_REC, vall, valr);
1332 }
1333 break;
1334
1335 case IW_DAC_LVL:
1336 if (cp->type == AUDIO_MIXER_VALUE) {
1337 error = 0;
1338 if (cp->un.value.num_channels == 1) {
1339 vall = valr = cp->un.value.level[0];
1340 } else {
1341 vall = cp->un.value.level[0];
1342 valr = cp->un.value.level[1];
1343 }
1344 sc->sc_dac.voll = vall;
1345 sc->sc_dac.volr = valr;
1346 iw_mixer_line_level(sc, IW_DAC, vall, valr);
1347 }
1348 break;
1349
1350 case IW_LOOPBACK_LVL:
1351 if (cp->type == AUDIO_MIXER_VALUE) {
1352 error = 0;
1353 if (cp->un.value.num_channels != 1) {
1354 return EINVAL;
1355 } else {
1356 valr = vall = cp->un.value.level[0];
1357 }
1358 sc->sc_loopback.voll = vall;
1359 sc->sc_loopback.volr = valr;
1360 iw_mixer_line_level(sc, IW_LOOPBACK, vall, valr);
1361 }
1362 break;
1363
1364 case IW_MONO_IN_LVL:
1365 if (cp->type == AUDIO_MIXER_VALUE) {
1366 error = 0;
1367 if (cp->un.value.num_channels != 1) {
1368 return EINVAL;
1369 } else {
1370 valr = vall = cp->un.value.level[0];
1371 }
1372 sc->sc_monoin.voll = vall;
1373 sc->sc_monoin.volr = valr;
1374 iw_mixer_line_level(sc, IW_MONO_IN, vall, valr);
1375 }
1376 break;
1377 case IW_RECORD_SOURCE:
1378 error = 0;
1379 sc->sc_recsrcbits = cp->un.ord << 6;
1380 DPRINTF(("record source %d bits %x\n", cp->un.ord, sc->sc_recsrcbits));
1381 iw_mixer_line_level(sc, IW_REC, sc->sc_rec.voll, sc->sc_rec.volr);
1382 break;
1383 }
1384
1385 return error;
1386 }
1387
1388
1389 int
1390 iw_get_port(addr, cp)
1391 void *addr;
1392 mixer_ctrl_t *cp;
1393 {
1394 struct iw_softc *sc = addr;
1395
1396 int error = EINVAL;
1397
1398 switch (cp->dev) {
1399 case IW_MIC_IN_LVL:
1400 if (cp->type == AUDIO_MIXER_VALUE) {
1401 cp->un.value.num_channels = 2;
1402 cp->un.value.level[0] = sc->sc_mic.voll;
1403 cp->un.value.level[1] = sc->sc_mic.volr;
1404 error = 0;
1405 }
1406 break;
1407 case IW_AUX1_LVL:
1408 if (cp->type == AUDIO_MIXER_VALUE) {
1409 cp->un.value.num_channels = 2;
1410 cp->un.value.level[0] = sc->sc_aux1.voll;
1411 cp->un.value.level[1] = sc->sc_aux1.volr;
1412 error = 0;
1413 }
1414 break;
1415 case IW_AUX2_LVL:
1416 if (cp->type == AUDIO_MIXER_VALUE) {
1417 cp->un.value.num_channels = 2;
1418 cp->un.value.level[0] = sc->sc_aux2.voll;
1419 cp->un.value.level[1] = sc->sc_aux2.volr;
1420 error = 0;
1421 }
1422 break;
1423 case IW_LINE_OUT_LVL:
1424 if (cp->type == AUDIO_MIXER_VALUE) {
1425 cp->un.value.num_channels = 2;
1426 cp->un.value.level[0] = sc->sc_lineout.voll;
1427 cp->un.value.level[1] = sc->sc_lineout.volr;
1428 error = 0;
1429 }
1430 break;
1431 case IW_LINE_IN_LVL:
1432 if (cp->type == AUDIO_MIXER_VALUE) {
1433 cp->un.value.num_channels = 2;
1434 cp->un.value.level[0] = sc->sc_linein.voll;
1435 cp->un.value.level[1] = sc->sc_linein.volr;
1436 error = 0;
1437 }
1438 case IW_REC_LVL:
1439 if (cp->type == AUDIO_MIXER_VALUE) {
1440 cp->un.value.num_channels = 2;
1441 cp->un.value.level[0] = sc->sc_rec.voll;
1442 cp->un.value.level[1] = sc->sc_rec.volr;
1443 error = 0;
1444 }
1445 break;
1446
1447 case IW_DAC_LVL:
1448 if (cp->type == AUDIO_MIXER_VALUE) {
1449 cp->un.value.num_channels = 2;
1450 cp->un.value.level[0] = sc->sc_dac.voll;
1451 cp->un.value.level[1] = sc->sc_dac.volr;
1452 error = 0;
1453 }
1454 break;
1455
1456 case IW_LOOPBACK_LVL:
1457 if (cp->type == AUDIO_MIXER_VALUE) {
1458 cp->un.value.num_channels = 1;
1459 cp->un.value.level[0] = sc->sc_loopback.voll;
1460 error = 0;
1461 }
1462 break;
1463
1464 case IW_MONO_IN_LVL:
1465 if (cp->type == AUDIO_MIXER_VALUE) {
1466 cp->un.value.num_channels = 1;
1467 cp->un.value.level[0] = sc->sc_monoin.voll;
1468 error = 0;
1469 }
1470 break;
1471 case IW_RECORD_SOURCE:
1472 cp->un.ord = sc->sc_recsrcbits >> 6;
1473 error = 0;
1474 break;
1475 }
1476
1477 return error;
1478 }
1479
1480
1481
1482 int
1483 iw_query_devinfo(addr, dip)
1484 void *addr;
1485 mixer_devinfo_t *dip;
1486 {
1487
1488 switch (dip->index) {
1489 case IW_MIC_IN_LVL: /* Microphone */
1490 dip->type = AUDIO_MIXER_VALUE;
1491 dip->mixer_class = IW_INPUT_CLASS;
1492 dip->prev = AUDIO_MIXER_LAST;
1493 dip->next = AUDIO_MIXER_LAST;
1494 strcpy(dip->label.name, AudioNmicrophone);
1495 dip->un.v.num_channels = 2;
1496 strcpy(dip->un.v.units.name, AudioNvolume);
1497 break;
1498 case IW_AUX1_LVL:
1499 dip->type = AUDIO_MIXER_VALUE;
1500 dip->mixer_class = IW_INPUT_CLASS;
1501 dip->prev = AUDIO_MIXER_LAST;
1502 dip->next = AUDIO_MIXER_LAST;
1503 strcpy(dip->label.name, AudioNline);
1504 dip->un.v.num_channels = 2;
1505 strcpy(dip->un.v.units.name, AudioNvolume);
1506 break;
1507 case IW_AUX2_LVL:
1508 dip->type = AUDIO_MIXER_VALUE;
1509 dip->mixer_class = IW_INPUT_CLASS;
1510 dip->prev = AUDIO_MIXER_LAST;
1511 dip->next = AUDIO_MIXER_LAST;
1512 strcpy(dip->label.name, AudioNcd);
1513 dip->un.v.num_channels = 2;
1514 strcpy(dip->un.v.units.name, AudioNvolume);
1515 break;
1516 case IW_LINE_OUT_LVL:
1517 dip->type = AUDIO_MIXER_VALUE;
1518 dip->mixer_class = IW_OUTPUT_CLASS;
1519 dip->prev = AUDIO_MIXER_LAST;
1520 dip->next = AUDIO_MIXER_LAST;
1521 strcpy(dip->label.name, AudioNline);
1522 dip->un.v.num_channels = 2;
1523 strcpy(dip->un.v.units.name, AudioNvolume);
1524 break;
1525 case IW_DAC_LVL:
1526 dip->type = AUDIO_MIXER_VALUE;
1527 dip->mixer_class = IW_OUTPUT_CLASS;
1528 dip->prev = AUDIO_MIXER_LAST;
1529 dip->next = AUDIO_MIXER_LAST;
1530 strcpy(dip->label.name, AudioNdac);
1531 dip->un.v.num_channels = 2;
1532 strcpy(dip->un.v.units.name, AudioNvolume);
1533 break;
1534 case IW_LINE_IN_LVL:
1535 dip->type = AUDIO_MIXER_VALUE;
1536 dip->mixer_class = IW_INPUT_CLASS;
1537 dip->prev = AUDIO_MIXER_LAST;
1538 dip->next = AUDIO_MIXER_LAST;
1539 strcpy(dip->label.name, AudioNinput);
1540 dip->un.v.num_channels = 2;
1541 strcpy(dip->un.v.units.name, AudioNvolume);
1542 break;
1543 case IW_MONO_IN_LVL:
1544 dip->type = AUDIO_MIXER_VALUE;
1545 dip->mixer_class = IW_INPUT_CLASS;
1546 dip->prev = AUDIO_MIXER_LAST;
1547 dip->next = AUDIO_MIXER_LAST;
1548 strcpy(dip->label.name, AudioNmono);
1549 dip->un.v.num_channels = 1;
1550 strcpy(dip->un.v.units.name, AudioNvolume);
1551 break;
1552
1553 case IW_REC_LVL: /* record level */
1554 dip->type = AUDIO_MIXER_VALUE;
1555 dip->mixer_class = IW_RECORD_CLASS;
1556 dip->prev = AUDIO_MIXER_LAST;
1557 dip->next = AUDIO_MIXER_LAST;
1558 strcpy(dip->label.name, AudioNrecord);
1559 dip->un.v.num_channels = 2;
1560 strcpy(dip->un.v.units.name, AudioNvolume);
1561 break;
1562
1563 case IW_LOOPBACK_LVL:
1564 dip->type = AUDIO_MIXER_VALUE;
1565 dip->mixer_class = IW_RECORD_CLASS;
1566 dip->prev = AUDIO_MIXER_LAST;
1567 dip->next = AUDIO_MIXER_LAST;
1568 strcpy(dip->label.name, "filter");
1569 dip->un.v.num_channels = 1;
1570 strcpy(dip->un.v.units.name, AudioNvolume);
1571 break;
1572
1573 case IW_RECORD_SOURCE:
1574 dip->mixer_class = IW_RECORD_CLASS;
1575 dip->type = AUDIO_MIXER_ENUM;
1576 dip->prev = AUDIO_MIXER_LAST;
1577 dip->next = AUDIO_MIXER_LAST;
1578 strcpy(dip->label.name, AudioNsource);
1579 dip->un.e.num_mem = 4;
1580 strcpy(dip->un.e.member[0].label.name, AudioNline);
1581 dip->un.e.member[0].ord = IW_LINE_IN_SRC;
1582 strcpy(dip->un.e.member[1].label.name, "aux1");
1583 dip->un.e.member[1].ord = IW_AUX1_SRC;
1584 strcpy(dip->un.e.member[2].label.name, AudioNmicrophone);
1585 dip->un.e.member[2].ord = IW_MIC_IN_SRC;
1586 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1587 dip->un.e.member[3].ord = IW_MIX_OUT_SRC;
1588 break;
1589 case IW_INPUT_CLASS:
1590 dip->type = AUDIO_MIXER_CLASS;
1591 dip->mixer_class = IW_INPUT_CLASS;
1592 dip->next = dip->prev = AUDIO_MIXER_LAST;
1593 strcpy(dip->label.name, AudioCinputs);
1594 break;
1595 case IW_OUTPUT_CLASS:
1596 dip->type = AUDIO_MIXER_CLASS;
1597 dip->mixer_class = IW_OUTPUT_CLASS;
1598 dip->next = dip->prev = AUDIO_MIXER_LAST;
1599 strcpy(dip->label.name, AudioCoutputs);
1600 break;
1601 case IW_RECORD_CLASS: /* record source class */
1602 dip->type = AUDIO_MIXER_CLASS;
1603 dip->mixer_class = IW_RECORD_CLASS;
1604 dip->next = dip->prev = AUDIO_MIXER_LAST;
1605 strcpy(dip->label.name, AudioCrecord);
1606 return 0;
1607 default:
1608 return ENXIO;
1609 }
1610 return 0;
1611 }
1612
1613
1614 void *
1615 iw_malloc(addr, direction, size, pool, flags)
1616 void *addr;
1617 int direction;
1618 size_t size;
1619 int pool, flags;
1620 {
1621 struct iw_softc *sc = addr;
1622 int drq;
1623
1624 if (direction == AUMODE_PLAY)
1625 drq = sc->sc_playdrq;
1626 else
1627 drq = sc->sc_recdrq;
1628 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
1629 }
1630
1631 void
1632 iw_free(addr, ptr, pool)
1633 void *addr;
1634 void *ptr;
1635 int pool;
1636 {
1637 isa_free(ptr, pool);
1638 }
1639
1640 size_t
1641 iw_round_buffersize(addr, direction, size)
1642 void *addr;
1643 int direction;
1644 size_t size;
1645 {
1646 struct iw_softc *sc = addr;
1647 bus_size_t maxsize;
1648
1649 if (direction == AUMODE_PLAY)
1650 maxsize = sc->sc_play_maxsize;
1651 else
1652 maxsize = sc->sc_rec_maxsize;
1653
1654 if (size > maxsize)
1655 size = maxsize;
1656 return (size);
1657 }
1658
1659 paddr_t
1660 iw_mappage(addr, mem, off, prot)
1661 void *addr;
1662 void *mem;
1663 off_t off;
1664 int prot;
1665 {
1666 return isa_mappage(mem, off, prot);
1667 }
1668
1669 int
1670 iw_get_props(addr)
1671 void *addr;
1672 {
1673 struct iw_softc *sc = addr;
1674 return AUDIO_PROP_MMAP |
1675 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
1676 }
1677