interwave.c revision 1.23 1 /* $NetBSD: interwave.c,v 1.23 2004/07/09 02:46:44 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Author: Kari Mettinen
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: interwave.c,v 1.23 2004/07/09 02:46:44 mycroft Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/errno.h>
44 #include <sys/ioctl.h>
45 #include <sys/syslog.h>
46 #include <sys/device.h>
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52
53 #include <machine/cpu.h>
54 #include <machine/intr.h>
55 #include <machine/pio.h>
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58 #include <dev/mulaw.h>
59
60 #include <dev/isa/isavar.h>
61 #include <dev/isa/isadmavar.h>
62
63 #include <dev/ic/interwavereg.h>
64 #include <dev/ic/interwavevar.h>
65
66
67 static void iwreset __P((struct iw_softc *, int));
68
69 static int iw_set_speed __P((struct iw_softc *, u_long, char));
70 static u_long iw_set_format __P((struct iw_softc *, u_long, int));
71 static void iw_mixer_line_level __P((struct iw_softc *, int, int, int));
72 static void iw_trigger_dma __P((struct iw_softc *, u_char));
73 static void iw_stop_dma __P((struct iw_softc *, u_char, u_char));
74 static void iw_dma_count __P((struct iw_softc *, u_short, int));
75 static int iwintr __P((void *));
76 static void iw_meminit __P((struct iw_softc *));
77 static void iw_mempoke __P((struct iw_softc *, u_long, u_char));
78 static u_char iw_mempeek __P((struct iw_softc *, u_long));
79
80 #ifdef USE_WAVETABLE
81 static void iw_set_voice_place __P((struct iw_softc *, u_char, u_long));
82 static void iw_voice_pan __P((struct iw_softc *, u_char, u_short, u_short));
83 static void iw_voice_freq __P((struct iw_softc *, u_char, u_long));
84 static void iw_set_loopmode __P((struct iw_softc *, u_char, u_char, u_char));
85 static void iw_set_voice_pos __P((struct iw_softc *, u_short, u_long, u_long));
86 static void iw_start_voice __P((struct iw_softc *, u_char));
87 static void iw_play_voice __P((struct iw_softc *, u_long, u_long, u_short));
88 static void iw_stop_voice __P((struct iw_softc *, u_char));
89 static void iw_move_voice_end __P((struct iw_softc *, u_short, u_long));
90 static void iw_initvoices __P((struct iw_softc *));
91 #endif
92
93 struct audio_device iw_device = {
94 "Am78C201",
95 "0.1",
96 "guspnp"
97 };
98
99 #ifdef AUDIO_DEBUG
100 int iw_debug;
101 #define DPRINTF(p) if (iw_debug) printf p
102 #else
103 #define DPRINTF(p)
104 #endif
105
106 static int iw_cc = 1;
107 #ifdef DIAGNOSTIC
108 static int outputs = 0;
109 static int iw_ints = 0;
110 static int inputs = 0;
111 static int iw_inints = 0;
112 #endif
113
114 int
115 iwintr(arg)
116 void *arg;
117 {
118 struct iw_softc *sc = arg;
119 int val = 0;
120 u_char intrs = 0;
121
122 IW_READ_DIRECT_1(6, sc->p2xr_h, intrs); /* UISR */
123
124 /* codec ints */
125
126 /*
127 * The proper order to do this seems to be to read CSR3 to get the
128 * int cause and fifo over underrrun status, then deal with the ints
129 * (new DMA set up), and to clear ints by writing the respective bit
130 * to 0.
131 */
132
133 /* read what ints happened */
134
135 IW_READ_CODEC_1(CSR3I, intrs);
136
137 /* clear them */
138
139 IW_WRITE_DIRECT_1(2, sc->codec_index_h, 0x00);
140
141 /* and process them */
142
143 if (intrs & 0x20) {
144 #ifdef DIAGNOSTIC
145 iw_inints++;
146 #endif
147 if (sc->sc_recintr != 0)
148 sc->sc_recintr(sc->sc_recarg);
149 val = 1;
150 }
151 if (intrs & 0x10) {
152 #ifdef DIAGNOSTIC
153 iw_ints++;
154 #endif
155 if (sc->sc_playintr != 0)
156 sc->sc_playintr(sc->sc_playarg);
157 val = 1;
158 }
159 return val;
160
161 }
162
163 void
164 iwattach(sc)
165 struct iw_softc *sc;
166 {
167 int got_irq = 0;
168
169 DPRINTF(("iwattach sc %p\n", sc));
170
171 sc->cdatap = 1; /* relative offsets in region */
172 sc->csr1r = 2;
173 sc->cxdr = 3; /* CPDR or CRDR */
174
175 sc->gmxr = 0; /* sc->p3xr */
176 sc->gmxdr = 1; /* GMTDR or GMRDR */
177 sc->svsr = 2;
178 sc->igidxr = 3;
179 sc->i16dp = 4;
180 sc->i8dp = 5;
181 sc->lmbdr = 7;
182
183 sc->rec_precision = sc->play_precision = 8;
184 sc->rec_channels = sc->play_channels = 1;
185 sc->rec_encoding = sc->play_encoding = AUDIO_ENCODING_ULAW;
186 sc->sc_irate = 8000;
187 sc->sc_orate = 8000;
188
189 sc->sc_fullduplex = 1;
190
191 sc->sc_dma_flags = 0;
192
193 /*
194 * We can only use a few selected irqs, see if we got one from pnp
195 * code that suits us.
196 */
197
198 if (sc->sc_irq > 0) {
199 sc->sc_ih = isa_intr_establish(sc->sc_p2xr_ic,
200 sc->sc_irq,
201 IST_EDGE, IPL_AUDIO, iwintr, sc);
202 got_irq = 1;
203 }
204 if (!got_irq) {
205 printf("\niwattach: couldn't get a suitable irq\n");
206 return;
207 }
208 printf("\n");
209 iwreset(sc, 0);
210 iw_set_format(sc, AUDIO_ENCODING_ULAW, 0);
211 iw_set_format(sc, AUDIO_ENCODING_ULAW, 1);
212 printf("%s: interwave version %s\n",
213 sc->sc_dev.dv_xname, iw_device.version);
214 audio_attach_mi(sc->iw_hw_if, sc, &sc->sc_dev);
215 }
216
217 int
218 iwopen(sc, flags)
219 struct iw_softc *sc;
220 int flags;
221 {
222
223 DPRINTF(("iwopen: sc %p\n", sc));
224
225 #ifdef DIAGNOSTIC
226 outputs = 0;
227 iw_ints = 0;
228 inputs = 0;
229 iw_inints = 0;
230 #endif
231
232 iwreset(sc, 1);
233
234 return 0;
235 }
236
237
238
239 void
240 iwclose(addr)
241 void *addr;
242 {
243 DPRINTF(("iwclose sc %p\n", addr));
244
245 #ifdef DIAGNOSTIC
246 DPRINTF(("iwclose: outputs %d ints %d inputs %d in_ints %d\n",
247 outputs, iw_ints, inputs, iw_inints));
248 #endif
249 }
250
251 #define RAM_STEP 64*1024
252
253 static void
254 iw_mempoke(sc, addy, val)
255 struct iw_softc *sc;
256 u_long addy;
257 u_char val;
258 {
259 IW_WRITE_GENERAL_2(LMALI, (u_short) addy);
260 IW_WRITE_GENERAL_1(LMAHI, (u_char) (addy >> 16));
261
262 /* Write byte to LMBDR */
263 IW_WRITE_DIRECT_1(sc->p3xr + 7, sc->p3xr_h, val);
264 }
265
266 static u_char
267 iw_mempeek(sc, addy)
268 struct iw_softc *sc;
269 u_long addy;
270 {
271 u_char ret;
272
273 IW_WRITE_GENERAL_2(LMALI, (u_short) addy);
274 IW_WRITE_GENERAL_1(LMAHI, (u_char) (addy >> 16));
275
276 IW_READ_DIRECT_1(sc->p3xr + 7, sc->p3xr_h, ret);
277 return ret; /* return byte from LMBDR */
278 }
279
280 static void
281 iw_meminit(sc)
282 struct iw_softc *sc;
283 {
284 u_long bank[4] = {0L, 0L, 0L, 0L};
285 u_long addr = 0L, base = 0L, cnt = 0L;
286 u_char i, ram = 0 /* ,memval=0 */ ;
287 u_short lmcfi;
288 u_long temppi;
289 u_long *lpbanks = &temppi;
290
291 IW_WRITE_GENERAL_1(LDMACI, 0x00);
292
293 IW_READ_GENERAL_2(LMCFI, lmcfi); /* 0x52 */
294 lmcfi |= 0x0A0C;
295 IW_WRITE_GENERAL_2(LMCFI, lmcfi); /* max addr span */
296 IW_WRITE_GENERAL_1(LMCI, 0x00);
297
298 /* fifo addresses */
299
300 IW_WRITE_GENERAL_2(LMRFAI, ((4 * 1024 * 1024) >> 8));
301 IW_WRITE_GENERAL_2(LMPFAI, ((4 * 1024 * 1024 + 16 * 1024) >> 8));
302
303 IW_WRITE_GENERAL_2(LMFSI, 0x000);
304
305 IW_WRITE_GENERAL_2(LDICI, 0x0000);
306
307 while (addr < (16 * 1024 * 1024)) {
308 iw_mempoke(sc, addr, 0x00);
309 addr += RAM_STEP;
310 }
311
312 printf("%s:", sc->sc_dev.dv_xname);
313
314 for (i = 0; i < 4; i++) {
315 iw_mempoke(sc, base, 0xAA); /* mark start of bank */
316 iw_mempoke(sc, base + 1L, 0x55);
317 if (iw_mempeek(sc, base) == 0xAA &&
318 iw_mempeek(sc, base + 1L) == 0x55)
319 ram = 1;
320 if (ram) {
321 while (cnt < (4 * 1024 * 1024)) {
322 bank[i] += RAM_STEP;
323 cnt += RAM_STEP;
324 addr = base + cnt;
325 if (iw_mempeek(sc, addr) == 0xAA)
326 break;
327 }
328 }
329 if (lpbanks != NULL) {
330 *lpbanks = bank[i];
331 lpbanks++;
332 }
333 bank[i] = bank[i] >> 10;
334 printf("%s bank[%d]: %ldK", i ? "," : "", i, bank[i]);
335 base += 4 * 1024 * 1024;
336 cnt = 0L;
337 ram = 0;
338 }
339
340 printf("\n");
341
342 /*
343 * this is not really useful since GUS PnP supports memory
344 * configurations that aren't really supported by Interwave...beware
345 * of holes! Also, we don't use the memory for anything in this
346 * version of the driver.
347 *
348 * we've configured for 4M-4M-4M-4M
349 */
350 }
351
352
353 static
354 void
355 iwreset(sc, warm)
356 struct iw_softc *sc;
357 int warm;
358 {
359 u_char reg, cmode, val = 0, mixer_image = 0;
360
361 reg = 0; /* XXX gcc -Wall */
362
363 cmode = 0x6c; /* enhanced codec mode (full duplex) */
364
365 /* reset */
366
367 IW_WRITE_GENERAL_1(URSTI, 0x00);
368 delay(10);
369 IW_WRITE_GENERAL_1(URSTI, 0x07);
370 IW_WRITE_GENERAL_1(ICMPTI, 0x1f); /* disable DSP and uici and
371 * udci writes */
372 IW_WRITE_GENERAL_1(IDECI, 0x7f); /* enable ints to ISA and
373 * codec access */
374 IW_READ_GENERAL_1(IVERI, reg);
375 IW_WRITE_GENERAL_1(IVERI, reg | 0x01); /* hidden reg lock disable */
376 IW_WRITE_GENERAL_1(UASBCI, 0x00);
377
378 /* synth enhanced mode (default), 0 active voices, disable ints */
379
380 IW_WRITE_GENERAL_1(SGMI_WR, 0x01); /* enhanced mode, LFOs
381 * disabled */
382 for (val = 0; val < 32; val++) {
383 /* set each synth sound volume to 0 */
384 IW_WRITE_DIRECT_1(sc->p3xr + 2, sc->p3xr_h, val);
385 IW_WRITE_GENERAL_1(SVSI_WR, 0x00);
386 IW_WRITE_GENERAL_2(SASLI_WR, 0x0000);
387 IW_WRITE_GENERAL_2(SASHI_WR, 0x0000);
388 IW_WRITE_GENERAL_2(SAELI_WR, 0x0000);
389 IW_WRITE_GENERAL_2(SAEHI_WR, 0x0000);
390 IW_WRITE_GENERAL_2(SFCI_WR, 0x0000);
391 IW_WRITE_GENERAL_1(SACI_WR, 0x02);
392 IW_WRITE_GENERAL_1(SVSI_WR, 0x00);
393 IW_WRITE_GENERAL_1(SVEI_WR, 0x00);
394 IW_WRITE_GENERAL_2(SVLI_WR, 0x0000);
395 IW_WRITE_GENERAL_1(SVCI_WR, 0x02);
396 IW_WRITE_GENERAL_1(SMSI_WR, 0x02);
397 }
398
399 IW_WRITE_GENERAL_1(SAVI_WR, 0x00);
400
401 /* codec mode/init */
402
403 /* first change mode to 1 */
404
405 IW_WRITE_CODEC_1(CMODEI, 0x00);
406
407 /* and mode 3 */
408
409 IW_WRITE_CODEC_1(CMODEI, cmode);
410
411 IW_READ_CODEC_1(CMODEI, reg);
412
413 DPRINTF(("cmode %x\n", reg));
414
415 sc->revision = ((reg & 0x80) >> 3) | (reg & 0x0f);
416
417 IW_WRITE_DIRECT_1(sc->codec_index + 2, sc->p2xr_h, 0x00);
418
419 IW_WRITE_CODEC_1(CFIG1I | IW_MCE, 0x00); /* DMA 2 chan access */
420 IW_WRITE_CODEC_1(CEXTI, 0x00); /* disable ints for now */
421
422
423 IW_WRITE_CODEC_1(CLPCTI, 0x00); /* reset playback sample counters */
424 IW_WRITE_CODEC_1(CUPCTI, 0x00); /* always upper byte last */
425 IW_WRITE_CODEC_1(CFIG2I, 0x80); /* full voltage range, enable record
426 * and playback sample counters, and
427 * don't center output in case or
428 * FIFO underrun */
429 IW_WRITE_CODEC_1(CFIG3I, 0xc0); /* enable record/playback irq (still
430 * turned off from CEXTI), max DMA
431 * rate */
432 IW_WRITE_CODEC_1(CSR3I, 0x00); /* clear status 3 reg */
433
434
435 IW_WRITE_CODEC_1(CLRCTI, 0x00); /* reset record sample counters */
436 IW_WRITE_CODEC_1(CURCTI, 0x00); /* always upper byte last */
437
438
439 IW_READ_GENERAL_1(IVERI, reg);
440
441 sc->vers = reg >> 4;
442 if (!warm)
443 snprintf(iw_device.version, sizeof(iw_device.version), "%d.%d",
444 sc->vers, sc->revision);
445
446 IW_WRITE_GENERAL_1(IDECI, 0x7f); /* irqs and codec decode
447 * enable */
448
449
450 /* ports */
451
452 if (!warm) {
453 iw_mixer_line_level(sc, IW_LINE_OUT, 255, 255);
454 iw_mixer_line_level(sc, IW_LINE_IN, 0, 0);
455 iw_mixer_line_level(sc, IW_AUX1, 0, 0);
456 iw_mixer_line_level(sc, IW_AUX2, 200, 200); /* CD */
457 sc->sc_dac.off = 0;
458 iw_mixer_line_level(sc, IW_DAC, 200, 200);
459
460 iw_mixer_line_level(sc, IW_MIC_IN, 0, 0);
461 iw_mixer_line_level(sc, IW_REC, 0, 0);
462 iw_mixer_line_level(sc, IW_LOOPBACK, 0, 0);
463 iw_mixer_line_level(sc, IW_MONO_IN, 0, 0);
464
465 /* mem stuff */
466 iw_meminit(sc);
467
468 }
469 IW_WRITE_CODEC_1(CEXTI, 0x02); /* codec int enable */
470
471 /* clear _LDMACI */
472
473 IW_WRITE_GENERAL_1(LDMACI, 0x00);
474
475 /* enable mixer paths */
476 mixer_image = 0x0c;
477 IW_WRITE_DIRECT_1(sc->p2xr, sc->p2xr_h, mixer_image);
478 /*
479 * enable output, line in. disable mic in bit 0 = 0 -> line in on
480 * (from codec?) bit 1 = 0 -> output on bit 2 = 1 -> mic in on bit 3
481 * = 1 -> irq&drq pin enable bit 4 = 1 -> channel interrupts to chan
482 * 1 bit 5 = 1 -> enable midi loop back bit 6 = 0 -> irq latches
483 * URCR[2:0] bit 6 = 1 -> DMA latches URCR[2:0]
484 */
485
486
487 IW_READ_DIRECT_1(sc->p2xr, sc->p2xr_h, mixer_image);
488 #ifdef AUDIO_DEBUG
489 if (!warm)
490 DPRINTF(("mix image %x \n", mixer_image));
491 #endif
492 }
493
494 struct iw_codec_freq {
495 u_long freq;
496 u_char bits;
497 };
498
499 int
500 iw_set_speed(sc, freq, in)
501 struct iw_softc *sc;
502 u_long freq;
503 char in;
504 {
505 u_char var, cfig3, reg;
506
507 static struct iw_codec_freq iw_cf[17] = {
508 #define FREQ_1 24576000
509 #define FREQ_2 16934400
510 #define XTAL1 0
511 #define XTAL2 1
512 {5510, 0x00 | XTAL2}, {6620, 0x0E | XTAL2},
513 {8000, 0x00 | XTAL1}, {9600, 0x0E | XTAL1},
514 {11025, 0x02 | XTAL2}, {16000, 0x02 | XTAL1},
515 {18900, 0x04 | XTAL2}, {22050, 0x06 | XTAL2},
516 {27420, 0x04 | XTAL1}, {32000, 0x06 | XTAL1},
517 {33075, 0x0C | XTAL2}, {37800, 0x08 | XTAL2},
518 {38400, 0x0A | XTAL1}, {44100, 0x0A | XTAL2},
519 {44800, 0x08 | XTAL1}, {48000, 0x0C | XTAL1},
520 {48000, 0x0C | XTAL1} /* really a dummy for indexing later */
521 #undef XTAL1
522 #undef XTAL2
523 };
524
525 cfig3 = 0; /* XXX gcc -Wall */
526
527 /*
528 * if the frequency is between 3493Hz and 32KHz we can use a more
529 * accurate frequency than the ones listed above base on the formula
530 * FREQ/((16*(48+x))) where FREQ is either FREQ_1 (24576000Hz) or
531 * FREQ_2 (16934400Hz) and x is the value to be written to either
532 * CPVFI or CRVFI. To enable this option, bit 2 in CFIG3 needs to be
533 * set high
534 *
535 * NOT IMPLEMENTED!
536 *
537 * Note that if you have a 'bad' XTAL_1 (higher than 18.5 MHz), 44.8KHz
538 * and 38.4KHz modes will provide wrong frequencies to output.
539 */
540
541
542 if (freq > 48000)
543 freq = 48000;
544 if (freq < 5510)
545 freq = 5510;
546
547 /* reset CFIG3[2] */
548
549 IW_READ_CODEC_1(CFIG3I, cfig3);
550
551 cfig3 |= 0xc0; /* not full fifo treshhold */
552
553 DPRINTF(("cfig3i = %x -> ", cfig3));
554
555 cfig3 &= ~0x04;
556 IW_WRITE_CODEC_1(CFIG3I, cfig3);
557 IW_READ_CODEC_1(CFIG3I, cfig3);
558
559 DPRINTF(("%x\n", cfig3));
560
561 for (var = 0; var < 16; var++) /* select closest frequency */
562 if (freq <= iw_cf[var].freq)
563 break;
564 if (var != 16)
565 if (abs(freq - iw_cf[var].freq) > abs(iw_cf[var + 1].freq - freq))
566 var++;
567
568 if (in)
569 IW_WRITE_CODEC_1(CRDFI | IW_MCE, sc->recfmtbits | iw_cf[var].bits);
570 else
571 IW_WRITE_CODEC_1(CPDFI | IW_MCE, sc->playfmtbits | iw_cf[var].bits);
572 freq = iw_cf[var].freq;
573 DPRINTF(("setting %s frequency to %d bits %x \n",
574 in ? "in" : "out", (int) freq, iw_cf[var].bits));
575
576 IW_READ_CODEC_1(CPDFI, reg);
577
578 DPRINTF((" CPDFI %x ", reg));
579
580 IW_READ_CODEC_1(CRDFI, reg);
581
582 DPRINTF((" CRDFI %x ", reg));
583
584 return freq;
585 }
586
587 /* Encoding. */
588 int
589 iw_query_encoding(addr, fp)
590 void *addr;
591 struct audio_encoding *fp;
592 {
593 /*
594 * LINEAR, ALAW, ULAW, ADPCM in HW, we'll use linear unsigned
595 * hardware mode for all 8-bit modes due to buggy (?) codec.
596 */
597
598 /*
599 * except in wavetable synth. there we have only mu-law and 8 and 16
600 * bit linear data
601 */
602
603 switch (fp->index) {
604 case 0:
605 strcpy(fp->name, AudioEulinear);
606 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
607 fp->precision = 8;
608 fp->flags = 0;
609 break;
610 case 1:
611 strcpy(fp->name, AudioEmulaw);
612 fp->encoding = AUDIO_ENCODING_ULAW;
613 fp->precision = 8;
614 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
615 break;
616 case 2:
617 strcpy(fp->name, AudioEalaw);
618 fp->encoding = AUDIO_ENCODING_ALAW;
619 fp->precision = 8;
620 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
621 break;
622 case 3:
623 strcpy(fp->name, AudioEadpcm);
624 fp->encoding = AUDIO_ENCODING_ADPCM;
625 fp->precision = 8; /* really 4 bit */
626 fp->flags = 0;
627 break;
628 case 4:
629 strcpy(fp->name, AudioEslinear_le);
630 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
631 fp->precision = 16;
632 fp->flags = 0;
633 break;
634 case 5:
635 strcpy(fp->name, AudioEslinear_be);
636 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
637 fp->precision = 16;
638 fp->flags = 0;
639 break;
640 default:
641 return (EINVAL);
642 /* NOTREACHED */
643 }
644 return (0);
645 }
646
647
648
649 u_long
650 iw_set_format(sc, precision, in)
651 struct iw_softc *sc;
652 u_long precision;
653 int in;
654 {
655 u_char data;
656 int encoding, channels;
657
658 encoding = in ? sc->rec_encoding : sc->play_encoding;
659 channels = in ? sc->rec_channels : sc->play_channels;
660
661 DPRINTF(("iw_set_format\n"));
662
663 switch (encoding) {
664 case AUDIO_ENCODING_ULAW:
665 data = 0x00;
666 break;
667
668 case AUDIO_ENCODING_ALAW:
669 data = 0x00;
670 break;
671
672 case AUDIO_ENCODING_SLINEAR_LE:
673 if (precision == 16)
674 data = 0x40; /* little endian. 0xc0 is big endian */
675 else
676 data = 0x00;
677 break;
678
679 case AUDIO_ENCODING_SLINEAR_BE:
680 if (precision == 16)
681 data = 0xc0;
682 else
683 data = 0x00;
684 break;
685
686 case AUDIO_ENCODING_ADPCM:
687 data = 0xa0;
688 break;
689
690 default:
691 return -1;
692 }
693
694 if (channels == 2)
695 data |= 0x10; /* stereo */
696
697 if (in) {
698 /* in */
699 sc->recfmtbits = data;
700 /* This will zero the normal codec frequency,
701 * iw_set_speed should always be called afterwards.
702 */
703 IW_WRITE_CODEC_1(CRDFI | IW_MCE, data);
704 } else {
705 /* out */
706 sc->playfmtbits = data;
707 IW_WRITE_CODEC_1(CPDFI | IW_MCE, data);
708 }
709
710 DPRINTF(("formatbits %s %x", in ? "in" : "out", data));
711
712 return encoding;
713 }
714
715
716
717 int
718 iw_set_params(addr, setmode, usemode, p, q)
719 void *addr;
720 int setmode;
721 int usemode;
722 struct audio_params *p;
723 struct audio_params *q;
724 {
725 struct iw_softc *sc = addr;
726 void (*swcode)__P((void *, u_char * buf, int cnt)) = NULL;
727 int factor = 1;
728 DPRINTF(("iw_setparams: code %d, prec %d, rate %d, chan %d\n",
729 (int) p->encoding, (int) p->precision, (int) p->sample_rate,
730 (int) p->channels));
731
732
733 switch (p->encoding) {
734 case AUDIO_ENCODING_ULAW:
735 if (p->precision != 8)
736 return EINVAL;
737 swcode = setmode & AUMODE_PLAY ? mulaw_to_ulinear8 : ulinear8_to_mulaw;
738 factor = 1;
739 break;
740 case AUDIO_ENCODING_ALAW:
741 if (p->precision != 8)
742 return EINVAL;
743 swcode = setmode & AUMODE_PLAY ? alaw_to_ulinear8 : ulinear8_to_alaw;
744 factor = 1;
745 break;
746 case AUDIO_ENCODING_ADPCM:
747 if (p->precision != 8)
748 return EINVAL;
749 else
750 break;
751
752 case AUDIO_ENCODING_SLINEAR_LE:
753 case AUDIO_ENCODING_SLINEAR_BE:
754 if (p->precision != 8 && p->precision != 16)
755 return EINVAL;
756 else
757 break;
758
759 default:
760 return EINVAL;
761
762 }
763
764 if (setmode & AUMODE_PLAY) {
765 sc->play_channels = p->channels;
766 sc->play_encoding = p->encoding;
767 sc->play_precision = p->precision;
768 p->factor = factor;
769 p->sw_code = swcode;
770 iw_set_format(sc, p->precision, 0);
771 q->sample_rate = p->sample_rate = sc->sc_orate =
772 iw_set_speed(sc, p->sample_rate, 0);
773 } else {
774 #if 0
775 q->channels = sc->rec_channels = p->channels;
776 q->encoding = sc->rec_encoding = p->encoding;
777 q->precision = sc->rec_precision = p->precision;
778 #endif
779 sc->rec_channels = q->channels;
780 sc->rec_encoding = q->encoding;
781 sc->rec_precision = q->precision;
782 q->factor = factor;
783 q->sw_code = swcode;
784
785 iw_set_format(sc, p->precision, 1);
786 q->sample_rate = sc->sc_irate =
787 iw_set_speed(sc, q->sample_rate, 1);
788 }
789 return 0;
790 }
791
792
793 int
794 iw_round_blocksize(addr, blk)
795 void *addr;
796 int blk;
797 {
798 /* Round to a multiple of the biggest sample size. */
799 return blk &= -4;
800 }
801
802 void
803 iw_mixer_line_level(sc, line, levl, levr)
804 struct iw_softc *sc;
805 int line;
806 int levl, levr;
807 {
808 u_char gainl, gainr, attenl, attenr;
809
810 switch (line) {
811 case IW_REC:
812 gainl = sc->sc_recsrcbits | (levl >> 4);
813 gainr = sc->sc_recsrcbits | (levr >> 4);
814 DPRINTF(("recording with %x", gainl));
815 IW_WRITE_CODEC_1(CLICI, gainl);
816 IW_WRITE_CODEC_1(CRICI, gainr);
817 sc->sc_rec.voll = levl & 0xf0;
818 sc->sc_rec.volr = levr & 0xf0;
819 break;
820
821 case IW_AUX1:
822
823 gainl = (255 - levl) >> 3;
824 gainr = (255 - levr) >> 3;
825
826 /* mute if 0 level */
827 if (levl == 0)
828 gainl |= 0x80;
829 if (levr == 0)
830 gainr |= 0x80;
831
832 IW_WRITE_CODEC_1(IW_LEFT_AUX1_PORT, gainl);
833 IW_WRITE_CODEC_1(IW_RIGHT_AUX1_PORT, gainr);
834 sc->sc_aux1.voll = levl & 0xf8;
835 sc->sc_aux1.volr = levr & 0xf8;
836
837 break;
838
839 case IW_AUX2:
840
841 gainl = (255 - levl) >> 3;
842 gainr = (255 - levr) >> 3;
843
844 /* mute if 0 level */
845 if (levl == 0)
846 gainl |= 0x80;
847 if (levr == 0)
848 gainr |= 0x80;
849
850 IW_WRITE_CODEC_1(IW_LEFT_AUX2_PORT, gainl);
851 IW_WRITE_CODEC_1(IW_RIGHT_AUX2_PORT, gainr);
852 sc->sc_aux2.voll = levl & 0xf8;
853 sc->sc_aux2.volr = levr & 0xf8;
854 break;
855 case IW_DAC:
856 attenl = ((255 - levl) >> 2) | ((levl && !sc->sc_dac.off) ? 0 : 0x80);
857 attenr = ((255 - levr) >> 2) | ((levr && !sc->sc_dac.off) ? 0 : 0x80);
858 IW_WRITE_CODEC_1(CLDACI, attenl);
859 IW_WRITE_CODEC_1(CRDACI, attenr);
860 sc->sc_dac.voll = levl & 0xfc;
861 sc->sc_dac.volr = levr & 0xfc;
862 break;
863 case IW_LOOPBACK:
864 attenl = ((255 - levl) & 0xfc) | (levl ? 0x01 : 0);
865 IW_WRITE_CODEC_1(CLCI, attenl);
866 sc->sc_loopback.voll = levl & 0xfc;
867 break;
868 case IW_LINE_IN:
869 gainl = (levl >> 3) | (levl ? 0 : 0x80);
870 gainr = (levr >> 3) | (levr ? 0 : 0x80);
871 IW_WRITE_CODEC_1(CLLICI, gainl);
872 IW_WRITE_CODEC_1(CRLICI, gainr);
873 sc->sc_linein.voll = levl & 0xf8;
874 sc->sc_linein.volr = levr & 0xf8;
875 break;
876 case IW_MIC_IN:
877 gainl = ((255 - levl) >> 3) | (levl ? 0 : 0x80);
878 gainr = ((255 - levr) >> 3) | (levr ? 0 : 0x80);
879 IW_WRITE_CODEC_1(CLMICI, gainl);
880 IW_WRITE_CODEC_1(CRMICI, gainr);
881 sc->sc_mic.voll = levl & 0xf8;
882 sc->sc_mic.volr = levr & 0xf8;
883 break;
884 case IW_LINE_OUT:
885 attenl = ((255 - levl) >> 3) | (levl ? 0 : 0x80);
886 attenr = ((255 - levr) >> 3) | (levr ? 0 : 0x80);
887 IW_WRITE_CODEC_1(CLOAI, attenl);
888 IW_WRITE_CODEC_1(CROAI, attenr);
889 sc->sc_lineout.voll = levl & 0xf8;
890 sc->sc_lineout.volr = levr & 0xf8;
891 break;
892 case IW_MONO_IN:
893 attenl = ((255 - levl) >> 4) | (levl ? 0 : 0xc0); /* in/out mute */
894 IW_WRITE_CODEC_1(CMONOI, attenl);
895 sc->sc_monoin.voll = levl & 0xf0;
896 break;
897 }
898 }
899
900 int
901 iw_commit_settings(addr)
902 void *addr;
903 {
904 return 0;
905 }
906
907
908 void
909 iw_trigger_dma(sc, io)
910 struct iw_softc *sc;
911 u_char io;
912 {
913 u_char reg;
914 int s;
915
916 s = splaudio();
917
918 IW_READ_CODEC_1(CSR3I, reg);
919 IW_WRITE_CODEC_1(CSR3I, reg & ~(io == IW_DMA_PLAYBACK ? 0x10 : 0x20));
920
921 IW_READ_CODEC_1(CFIG1I, reg);
922
923 IW_WRITE_CODEC_1(CFIG1I, reg | io);
924
925 /* let the counter run */
926 IW_READ_CODEC_1(CFIG2I, reg);
927 IW_WRITE_CODEC_1(CFIG2I, reg & ~(io << 4));
928
929 splx(s);
930 }
931
932 void
933 iw_stop_dma(sc, io, hard)
934 struct iw_softc *sc;
935 u_char io, hard;
936 {
937 u_char reg;
938
939 /* just stop the counter, no need to flush the fifo */
940 IW_READ_CODEC_1(CFIG2I, reg);
941 IW_WRITE_CODEC_1(CFIG2I, (reg | (io << 4)));
942
943 if (hard) {
944 /* unless we're closing the device */
945 IW_READ_CODEC_1(CFIG1I, reg);
946 IW_WRITE_CODEC_1(CFIG1I, reg & ~io);
947 }
948 }
949
950 void
951 iw_dma_count(sc, count, io)
952 struct iw_softc *sc;
953 u_short count;
954 int io;
955 {
956 if (io == IW_DMA_PLAYBACK) {
957 IW_WRITE_CODEC_1(CLPCTI, (u_char) (count & 0x00ff));
958 IW_WRITE_CODEC_1(CUPCTI, (u_char) ((count >> 8) & 0x00ff));
959 } else {
960 IW_WRITE_CODEC_1(CLRCTI, (u_char) (count & 0x00ff));
961 IW_WRITE_CODEC_1(CURCTI, (u_char) ((count >> 8) & 0x00ff));
962 }
963 }
964
965 int
966 iw_init_output(addr, buf, cc)
967 void *addr;
968 void *buf;
969 int cc;
970 {
971 struct iw_softc *sc = (struct iw_softc *) addr;
972
973 DPRINTF(("iw_init_output\n"));
974
975 isa_dmastart(sc->sc_ic, sc->sc_playdrq, buf,
976 cc, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
977 return 0;
978 }
979
980 int
981 iw_init_input(addr, buf, cc)
982 void *addr;
983 void *buf;
984 int cc;
985 {
986 struct iw_softc *sc = (struct iw_softc *) addr;
987
988 DPRINTF(("iw_init_input\n"));
989
990 isa_dmastart(sc->sc_ic, sc->sc_recdrq, buf,
991 cc, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
992 return 0;
993 }
994
995
996 int
997 iw_start_output(addr, p, cc, intr, arg)
998 void *addr;
999 void *p;
1000 int cc;
1001 void (*intr)__P((void *));
1002 void *arg;
1003 {
1004 struct iw_softc *sc = addr;
1005
1006 #ifdef DIAGNOSTIC
1007 if (!intr) {
1008 printf("iw_start_output: no callback!\n");
1009 return 1;
1010 }
1011 #endif
1012
1013 sc->sc_playintr = intr;
1014 sc->sc_playarg = arg;
1015 sc->sc_dma_flags |= DMAMODE_WRITE;
1016 sc->sc_playdma_bp = p;
1017
1018 isa_dmastart(sc->sc_ic, sc->sc_playdrq, sc->sc_playdma_bp,
1019 cc, NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
1020
1021
1022 if (sc->play_encoding == AUDIO_ENCODING_ADPCM)
1023 cc >>= 2;
1024 if (sc->play_precision == 16)
1025 cc >>= 1;
1026
1027 if (sc->play_channels == 2 && sc->play_encoding != AUDIO_ENCODING_ADPCM)
1028 cc >>= 1;
1029
1030 cc -= iw_cc;
1031
1032 /* iw_dma_access(sc,1); */
1033 if (cc != sc->sc_playdma_cnt) {
1034 iw_dma_count(sc, (u_short) cc, IW_DMA_PLAYBACK);
1035 sc->sc_playdma_cnt = cc;
1036
1037 iw_trigger_dma(sc, IW_DMA_PLAYBACK);
1038 }
1039
1040 #ifdef DIAGNOSTIC
1041 if (outputs != iw_ints)
1042 printf("iw_start_output: out %d, int %d\n", outputs, iw_ints);
1043 outputs++;
1044 #endif
1045
1046 return 0;
1047 }
1048
1049
1050 int
1051 iw_start_input(addr, p, cc, intr, arg)
1052 void *addr;
1053 void *p;
1054 int cc;
1055 void (*intr)__P((void *));
1056 void *arg;
1057 {
1058 struct iw_softc *sc = addr;
1059
1060 #ifdef DIAGNOSTIC
1061 if (!intr) {
1062 printf("iw_start_input: no callback!\n");
1063 return 1;
1064 }
1065 #endif
1066
1067 sc->sc_recintr = intr;
1068 sc->sc_recarg = arg;
1069 sc->sc_dma_flags |= DMAMODE_READ;
1070 sc->sc_recdma_bp = p;
1071
1072 isa_dmastart(sc->sc_ic, sc->sc_recdrq, sc->sc_recdma_bp,
1073 cc, NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
1074
1075
1076 if (sc->rec_encoding == AUDIO_ENCODING_ADPCM)
1077 cc >>= 2;
1078 if (sc->rec_precision == 16)
1079 cc >>= 1;
1080
1081 if (sc->rec_channels == 2 && sc->rec_encoding != AUDIO_ENCODING_ADPCM)
1082 cc >>= 1;
1083
1084 cc -= iw_cc;
1085
1086 /* iw_dma_access(sc,0); */
1087 if (sc->sc_recdma_cnt != cc) {
1088 iw_dma_count(sc, (u_short) cc, IW_DMA_RECORD);
1089 sc->sc_recdma_cnt = cc;
1090 /* iw_dma_ctrl(sc, IW_DMA_RECORD); */
1091 iw_trigger_dma(sc, IW_DMA_RECORD);
1092 }
1093
1094 #ifdef DIAGNOSTIC
1095 if ((inputs != iw_inints))
1096 printf("iw_start_input: in %d, inints %d\n", inputs, iw_inints);
1097 inputs++;
1098 #endif
1099
1100 return 0;
1101 }
1102
1103
1104 int
1105 iw_halt_output(addr)
1106 void *addr;
1107 {
1108 struct iw_softc *sc = addr;
1109
1110 iw_stop_dma(sc, IW_DMA_PLAYBACK, 0);
1111 return 0;
1112 }
1113
1114
1115 int
1116 iw_halt_input(addr)
1117 void *addr;
1118 {
1119 struct iw_softc *sc = addr;
1120
1121 iw_stop_dma(sc, IW_DMA_RECORD, 0);
1122 return 0;
1123 }
1124
1125
1126 int
1127 iw_speaker_ctl(addr, newstate)
1128 void *addr;
1129 int newstate;
1130 {
1131 struct iw_softc *sc = addr;
1132 u_char reg;
1133 if (newstate == SPKR_ON) {
1134 sc->sc_dac.off = 0;
1135 IW_READ_CODEC_1(CLDACI, reg);
1136 IW_WRITE_CODEC_1(CLDACI, reg & 0x7f);
1137 IW_READ_CODEC_1(CRDACI, reg);
1138 IW_WRITE_CODEC_1(CRDACI, reg & 0x7f);
1139 } else {
1140 /* SPKR_OFF */
1141 sc->sc_dac.off = 1;
1142 IW_READ_CODEC_1(CLDACI, reg);
1143 IW_WRITE_CODEC_1(CLDACI, reg | 0x80);
1144 IW_READ_CODEC_1(CRDACI, reg);
1145 IW_WRITE_CODEC_1(CRDACI, reg | 0x80);
1146 }
1147 return 0;
1148 }
1149
1150
1151 int
1152 iw_getdev(addr, retp)
1153 void *addr;
1154 struct audio_device *retp;
1155 {
1156 *retp = iw_device;
1157 return 0;
1158 }
1159
1160
1161 int
1162 iw_setfd(addr, flag)
1163 void *addr;
1164 int flag;
1165 {
1166 return 0;
1167 }
1168
1169
1170 /* Mixer (in/out ports) */
1171 int
1172 iw_set_port(addr, cp)
1173 void *addr;
1174 mixer_ctrl_t *cp;
1175 {
1176 struct iw_softc *sc = addr;
1177 u_char vall = 0, valr = 0;
1178 int error = EINVAL;
1179
1180 switch (cp->dev) {
1181 case IW_MIC_IN_LVL:
1182 if (cp->type == AUDIO_MIXER_VALUE) {
1183 error = 0;
1184 if (cp->un.value.num_channels == 1) {
1185 vall = valr = cp->un.value.level[0];
1186 } else {
1187 vall = cp->un.value.level[0];
1188 valr = cp->un.value.level[1];
1189 }
1190 sc->sc_mic.voll = vall;
1191 sc->sc_mic.volr = valr;
1192 iw_mixer_line_level(sc, IW_MIC_IN, vall, valr);
1193 }
1194 break;
1195 case IW_AUX1_LVL:
1196 if (cp->type == AUDIO_MIXER_VALUE) {
1197 error = 0;
1198 if (cp->un.value.num_channels == 1) {
1199 vall = valr = cp->un.value.level[0];
1200 } else {
1201 vall = cp->un.value.level[0];
1202 valr = cp->un.value.level[1];
1203 }
1204 sc->sc_aux1.voll = vall;
1205 sc->sc_aux1.volr = valr;
1206 iw_mixer_line_level(sc, IW_AUX1, vall, valr);
1207 }
1208 break;
1209 case IW_AUX2_LVL:
1210 if (cp->type == AUDIO_MIXER_VALUE) {
1211 error = 0;
1212 if (cp->un.value.num_channels == 1) {
1213 vall = valr = cp->un.value.level[0];
1214 } else {
1215 vall = cp->un.value.level[0];
1216 valr = cp->un.value.level[1];
1217 }
1218 sc->sc_aux2.voll = vall;
1219 sc->sc_aux2.volr = valr;
1220 iw_mixer_line_level(sc, IW_AUX2, vall, valr);
1221 }
1222 break;
1223 case IW_LINE_IN_LVL:
1224 if (cp->type == AUDIO_MIXER_VALUE) {
1225 error = 0;
1226 if (cp->un.value.num_channels == 1) {
1227 vall = valr = cp->un.value.level[0];
1228 } else {
1229 vall = cp->un.value.level[0];
1230 valr = cp->un.value.level[1];
1231 }
1232 sc->sc_linein.voll = vall;
1233 sc->sc_linein.volr = valr;
1234 iw_mixer_line_level(sc, IW_LINE_IN, vall, valr);
1235 }
1236 break;
1237 case IW_LINE_OUT_LVL:
1238 if (cp->type == AUDIO_MIXER_VALUE) {
1239 error = 0;
1240 if (cp->un.value.num_channels == 1) {
1241 vall = valr = cp->un.value.level[0];
1242 } else {
1243 vall = cp->un.value.level[0];
1244 valr = cp->un.value.level[1];
1245 }
1246 sc->sc_lineout.voll = vall;
1247 sc->sc_lineout.volr = valr;
1248 iw_mixer_line_level(sc, IW_LINE_OUT, vall, valr);
1249 }
1250 break;
1251 case IW_REC_LVL:
1252 if (cp->type == AUDIO_MIXER_VALUE) {
1253 error = 0;
1254 if (cp->un.value.num_channels == 1) {
1255 vall = valr = cp->un.value.level[0];
1256 } else {
1257 vall = cp->un.value.level[0];
1258 valr = cp->un.value.level[1];
1259 }
1260 sc->sc_rec.voll = vall;
1261 sc->sc_rec.volr = valr;
1262 iw_mixer_line_level(sc, IW_REC, vall, valr);
1263 }
1264 break;
1265
1266 case IW_DAC_LVL:
1267 if (cp->type == AUDIO_MIXER_VALUE) {
1268 error = 0;
1269 if (cp->un.value.num_channels == 1) {
1270 vall = valr = cp->un.value.level[0];
1271 } else {
1272 vall = cp->un.value.level[0];
1273 valr = cp->un.value.level[1];
1274 }
1275 sc->sc_dac.voll = vall;
1276 sc->sc_dac.volr = valr;
1277 iw_mixer_line_level(sc, IW_DAC, vall, valr);
1278 }
1279 break;
1280
1281 case IW_LOOPBACK_LVL:
1282 if (cp->type == AUDIO_MIXER_VALUE) {
1283 error = 0;
1284 if (cp->un.value.num_channels != 1) {
1285 return EINVAL;
1286 } else {
1287 valr = vall = cp->un.value.level[0];
1288 }
1289 sc->sc_loopback.voll = vall;
1290 sc->sc_loopback.volr = valr;
1291 iw_mixer_line_level(sc, IW_LOOPBACK, vall, valr);
1292 }
1293 break;
1294
1295 case IW_MONO_IN_LVL:
1296 if (cp->type == AUDIO_MIXER_VALUE) {
1297 error = 0;
1298 if (cp->un.value.num_channels != 1) {
1299 return EINVAL;
1300 } else {
1301 valr = vall = cp->un.value.level[0];
1302 }
1303 sc->sc_monoin.voll = vall;
1304 sc->sc_monoin.volr = valr;
1305 iw_mixer_line_level(sc, IW_MONO_IN, vall, valr);
1306 }
1307 break;
1308 case IW_RECORD_SOURCE:
1309 error = 0;
1310 sc->sc_recsrcbits = cp->un.ord << 6;
1311 DPRINTF(("record source %d bits %x\n", cp->un.ord, sc->sc_recsrcbits));
1312 iw_mixer_line_level(sc, IW_REC, sc->sc_rec.voll, sc->sc_rec.volr);
1313 break;
1314 }
1315
1316 return error;
1317 }
1318
1319
1320 int
1321 iw_get_port(addr, cp)
1322 void *addr;
1323 mixer_ctrl_t *cp;
1324 {
1325 struct iw_softc *sc = addr;
1326
1327 int error = EINVAL;
1328
1329 switch (cp->dev) {
1330 case IW_MIC_IN_LVL:
1331 if (cp->type == AUDIO_MIXER_VALUE) {
1332 cp->un.value.num_channels = 2;
1333 cp->un.value.level[0] = sc->sc_mic.voll;
1334 cp->un.value.level[1] = sc->sc_mic.volr;
1335 error = 0;
1336 }
1337 break;
1338 case IW_AUX1_LVL:
1339 if (cp->type == AUDIO_MIXER_VALUE) {
1340 cp->un.value.num_channels = 2;
1341 cp->un.value.level[0] = sc->sc_aux1.voll;
1342 cp->un.value.level[1] = sc->sc_aux1.volr;
1343 error = 0;
1344 }
1345 break;
1346 case IW_AUX2_LVL:
1347 if (cp->type == AUDIO_MIXER_VALUE) {
1348 cp->un.value.num_channels = 2;
1349 cp->un.value.level[0] = sc->sc_aux2.voll;
1350 cp->un.value.level[1] = sc->sc_aux2.volr;
1351 error = 0;
1352 }
1353 break;
1354 case IW_LINE_OUT_LVL:
1355 if (cp->type == AUDIO_MIXER_VALUE) {
1356 cp->un.value.num_channels = 2;
1357 cp->un.value.level[0] = sc->sc_lineout.voll;
1358 cp->un.value.level[1] = sc->sc_lineout.volr;
1359 error = 0;
1360 }
1361 break;
1362 case IW_LINE_IN_LVL:
1363 if (cp->type == AUDIO_MIXER_VALUE) {
1364 cp->un.value.num_channels = 2;
1365 cp->un.value.level[0] = sc->sc_linein.voll;
1366 cp->un.value.level[1] = sc->sc_linein.volr;
1367 error = 0;
1368 }
1369 case IW_REC_LVL:
1370 if (cp->type == AUDIO_MIXER_VALUE) {
1371 cp->un.value.num_channels = 2;
1372 cp->un.value.level[0] = sc->sc_rec.voll;
1373 cp->un.value.level[1] = sc->sc_rec.volr;
1374 error = 0;
1375 }
1376 break;
1377
1378 case IW_DAC_LVL:
1379 if (cp->type == AUDIO_MIXER_VALUE) {
1380 cp->un.value.num_channels = 2;
1381 cp->un.value.level[0] = sc->sc_dac.voll;
1382 cp->un.value.level[1] = sc->sc_dac.volr;
1383 error = 0;
1384 }
1385 break;
1386
1387 case IW_LOOPBACK_LVL:
1388 if (cp->type == AUDIO_MIXER_VALUE) {
1389 cp->un.value.num_channels = 1;
1390 cp->un.value.level[0] = sc->sc_loopback.voll;
1391 error = 0;
1392 }
1393 break;
1394
1395 case IW_MONO_IN_LVL:
1396 if (cp->type == AUDIO_MIXER_VALUE) {
1397 cp->un.value.num_channels = 1;
1398 cp->un.value.level[0] = sc->sc_monoin.voll;
1399 error = 0;
1400 }
1401 break;
1402 case IW_RECORD_SOURCE:
1403 cp->un.ord = sc->sc_recsrcbits >> 6;
1404 error = 0;
1405 break;
1406 }
1407
1408 return error;
1409 }
1410
1411
1412
1413 int
1414 iw_query_devinfo(addr, dip)
1415 void *addr;
1416 mixer_devinfo_t *dip;
1417 {
1418
1419 switch (dip->index) {
1420 case IW_MIC_IN_LVL: /* Microphone */
1421 dip->type = AUDIO_MIXER_VALUE;
1422 dip->mixer_class = IW_INPUT_CLASS;
1423 dip->prev = AUDIO_MIXER_LAST;
1424 dip->next = AUDIO_MIXER_LAST;
1425 strcpy(dip->label.name, AudioNmicrophone);
1426 dip->un.v.num_channels = 2;
1427 strcpy(dip->un.v.units.name, AudioNvolume);
1428 break;
1429 case IW_AUX1_LVL:
1430 dip->type = AUDIO_MIXER_VALUE;
1431 dip->mixer_class = IW_INPUT_CLASS;
1432 dip->prev = AUDIO_MIXER_LAST;
1433 dip->next = AUDIO_MIXER_LAST;
1434 strcpy(dip->label.name, AudioNline);
1435 dip->un.v.num_channels = 2;
1436 strcpy(dip->un.v.units.name, AudioNvolume);
1437 break;
1438 case IW_AUX2_LVL:
1439 dip->type = AUDIO_MIXER_VALUE;
1440 dip->mixer_class = IW_INPUT_CLASS;
1441 dip->prev = AUDIO_MIXER_LAST;
1442 dip->next = AUDIO_MIXER_LAST;
1443 strcpy(dip->label.name, AudioNcd);
1444 dip->un.v.num_channels = 2;
1445 strcpy(dip->un.v.units.name, AudioNvolume);
1446 break;
1447 case IW_LINE_OUT_LVL:
1448 dip->type = AUDIO_MIXER_VALUE;
1449 dip->mixer_class = IW_OUTPUT_CLASS;
1450 dip->prev = AUDIO_MIXER_LAST;
1451 dip->next = AUDIO_MIXER_LAST;
1452 strcpy(dip->label.name, AudioNline);
1453 dip->un.v.num_channels = 2;
1454 strcpy(dip->un.v.units.name, AudioNvolume);
1455 break;
1456 case IW_DAC_LVL:
1457 dip->type = AUDIO_MIXER_VALUE;
1458 dip->mixer_class = IW_OUTPUT_CLASS;
1459 dip->prev = AUDIO_MIXER_LAST;
1460 dip->next = AUDIO_MIXER_LAST;
1461 strcpy(dip->label.name, AudioNdac);
1462 dip->un.v.num_channels = 2;
1463 strcpy(dip->un.v.units.name, AudioNvolume);
1464 break;
1465 case IW_LINE_IN_LVL:
1466 dip->type = AUDIO_MIXER_VALUE;
1467 dip->mixer_class = IW_INPUT_CLASS;
1468 dip->prev = AUDIO_MIXER_LAST;
1469 dip->next = AUDIO_MIXER_LAST;
1470 strcpy(dip->label.name, AudioNinput);
1471 dip->un.v.num_channels = 2;
1472 strcpy(dip->un.v.units.name, AudioNvolume);
1473 break;
1474 case IW_MONO_IN_LVL:
1475 dip->type = AUDIO_MIXER_VALUE;
1476 dip->mixer_class = IW_INPUT_CLASS;
1477 dip->prev = AUDIO_MIXER_LAST;
1478 dip->next = AUDIO_MIXER_LAST;
1479 strcpy(dip->label.name, AudioNmono);
1480 dip->un.v.num_channels = 1;
1481 strcpy(dip->un.v.units.name, AudioNvolume);
1482 break;
1483
1484 case IW_REC_LVL: /* record level */
1485 dip->type = AUDIO_MIXER_VALUE;
1486 dip->mixer_class = IW_RECORD_CLASS;
1487 dip->prev = AUDIO_MIXER_LAST;
1488 dip->next = AUDIO_MIXER_LAST;
1489 strcpy(dip->label.name, AudioNrecord);
1490 dip->un.v.num_channels = 2;
1491 strcpy(dip->un.v.units.name, AudioNvolume);
1492 break;
1493
1494 case IW_LOOPBACK_LVL:
1495 dip->type = AUDIO_MIXER_VALUE;
1496 dip->mixer_class = IW_RECORD_CLASS;
1497 dip->prev = AUDIO_MIXER_LAST;
1498 dip->next = AUDIO_MIXER_LAST;
1499 strcpy(dip->label.name, "filter");
1500 dip->un.v.num_channels = 1;
1501 strcpy(dip->un.v.units.name, AudioNvolume);
1502 break;
1503
1504 case IW_RECORD_SOURCE:
1505 dip->mixer_class = IW_RECORD_CLASS;
1506 dip->type = AUDIO_MIXER_ENUM;
1507 dip->prev = AUDIO_MIXER_LAST;
1508 dip->next = AUDIO_MIXER_LAST;
1509 strcpy(dip->label.name, AudioNsource);
1510 dip->un.e.num_mem = 4;
1511 strcpy(dip->un.e.member[0].label.name, AudioNline);
1512 dip->un.e.member[0].ord = IW_LINE_IN_SRC;
1513 strcpy(dip->un.e.member[1].label.name, "aux1");
1514 dip->un.e.member[1].ord = IW_AUX1_SRC;
1515 strcpy(dip->un.e.member[2].label.name, AudioNmicrophone);
1516 dip->un.e.member[2].ord = IW_MIC_IN_SRC;
1517 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1518 dip->un.e.member[3].ord = IW_MIX_OUT_SRC;
1519 break;
1520 case IW_INPUT_CLASS:
1521 dip->type = AUDIO_MIXER_CLASS;
1522 dip->mixer_class = IW_INPUT_CLASS;
1523 dip->next = dip->prev = AUDIO_MIXER_LAST;
1524 strcpy(dip->label.name, AudioCinputs);
1525 break;
1526 case IW_OUTPUT_CLASS:
1527 dip->type = AUDIO_MIXER_CLASS;
1528 dip->mixer_class = IW_OUTPUT_CLASS;
1529 dip->next = dip->prev = AUDIO_MIXER_LAST;
1530 strcpy(dip->label.name, AudioCoutputs);
1531 break;
1532 case IW_RECORD_CLASS: /* record source class */
1533 dip->type = AUDIO_MIXER_CLASS;
1534 dip->mixer_class = IW_RECORD_CLASS;
1535 dip->next = dip->prev = AUDIO_MIXER_LAST;
1536 strcpy(dip->label.name, AudioCrecord);
1537 return 0;
1538 default:
1539 return ENXIO;
1540 }
1541 return 0;
1542 }
1543
1544
1545 void *
1546 iw_malloc(addr, direction, size, pool, flags)
1547 void *addr;
1548 int direction;
1549 size_t size;
1550 struct malloc_type *pool;
1551 int flags;
1552 {
1553 struct iw_softc *sc = addr;
1554 int drq;
1555
1556 if (direction == AUMODE_PLAY)
1557 drq = sc->sc_playdrq;
1558 else
1559 drq = sc->sc_recdrq;
1560 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
1561 }
1562
1563 void
1564 iw_free(addr, ptr, pool)
1565 void *addr;
1566 void *ptr;
1567 struct malloc_type *pool;
1568 {
1569 isa_free(ptr, pool);
1570 }
1571
1572 size_t
1573 iw_round_buffersize(addr, direction, size)
1574 void *addr;
1575 int direction;
1576 size_t size;
1577 {
1578 struct iw_softc *sc = addr;
1579 bus_size_t maxsize;
1580
1581 if (direction == AUMODE_PLAY)
1582 maxsize = sc->sc_play_maxsize;
1583 else
1584 maxsize = sc->sc_rec_maxsize;
1585
1586 if (size > maxsize)
1587 size = maxsize;
1588 return (size);
1589 }
1590
1591 paddr_t
1592 iw_mappage(addr, mem, off, prot)
1593 void *addr;
1594 void *mem;
1595 off_t off;
1596 int prot;
1597 {
1598 return isa_mappage(mem, off, prot);
1599 }
1600
1601 int
1602 iw_get_props(addr)
1603 void *addr;
1604 {
1605 struct iw_softc *sc = addr;
1606 return AUDIO_PROP_MMAP |
1607 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
1608 }
1609