interwave.c revision 1.7 1 /* $NetBSD: interwave.c,v 1.7 1998/06/10 10:24:13 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Author: Kari Mettinen
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/errno.h>
41 #include <sys/ioctl.h>
42 #include <sys/syslog.h>
43 #include <sys/device.h>
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/fcntl.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49
50 #include <machine/cpu.h>
51 #include <machine/intr.h>
52 #include <machine/pio.h>
53 #include <machine/cpufunc.h>
54 #include <sys/audioio.h>
55 #include <dev/audio_if.h>
56 #include <dev/mulaw.h>
57
58 #include <dev/isa/isavar.h>
59 #include <dev/isa/isadmavar.h>
60
61 #include <dev/ic/interwavereg.h>
62 #include <dev/ic/interwavevar.h>
63
64
65 static void iwreset __P((struct iw_softc *, int));
66
67 static int iw_set_speed __P((struct iw_softc *, u_long, char));
68 static u_long iw_set_format __P((struct iw_softc *, u_long, int));
69 static void iw_mixer_line_level __P((struct iw_softc *, int, int, int));
70 static void iw_trigger_dma __P((struct iw_softc *, u_char));
71 static void iw_stop_dma __P((struct iw_softc *, u_char, u_char));
72 static void iw_dma_count __P((struct iw_softc *, u_short, int));
73 static int iwintr __P((void *));
74 static void iw_meminit __P((struct iw_softc *));
75 static void iw_mempoke __P((struct iw_softc *, u_long, u_char));
76 static u_char iw_mempeek __P((struct iw_softc *, u_long));
77
78 #ifdef USE_WAVETABLE
79 static void iw_set_voice_place __P((struct iw_softc *, u_char, u_long));
80 static void iw_voice_pan __P((struct iw_softc *, u_char, u_short, u_short));
81 static void iw_voice_freq __P((struct iw_softc *, u_char, u_long));
82 static void iw_set_loopmode __P((struct iw_softc *, u_char, u_char, u_char));
83 static void iw_set_voice_pos __P((struct iw_softc *, u_short, u_long, u_long));
84 static void iw_start_voice __P((struct iw_softc *, u_char));
85 static void iw_play_voice __P((struct iw_softc *, u_long, u_long, u_short));
86 static void iw_stop_voice __P((struct iw_softc *, u_char));
87 static void iw_move_voice_end __P((struct iw_softc *, u_short, u_long));
88 static void iw_initvoices __P((struct iw_softc *));
89 #endif
90
91 struct audio_device iw_device = {
92 "Am78C201",
93 "0.1",
94 "guspnp"
95 };
96
97 #ifdef AUDIO_DEBUG
98 int iw_debug;
99 #define DPRINTF(p) if (iw_debug) printf p
100 #else
101 #define DPRINTF(p)
102 #endif
103
104 static int iw_cc = 1;
105 #ifdef DIAGNOSTIC
106 static int outputs = 0;
107 static int iw_ints = 0;
108 static int inputs = 0;
109 static int iw_inints = 0;
110 #endif
111
112 int
113 iwintr(arg)
114 void *arg;
115 {
116 struct iw_softc *sc = arg;
117 int val = 0;
118 u_char intrs = 0;
119
120 IW_READ_DIRECT_1(6, sc->p2xr_h, intrs); /* UISR */
121
122 /* codec ints */
123
124 /*
125 * The proper order to do this seems to be to read CSR3 to get the
126 * int cause and fifo over underrrun status, then deal with the ints
127 * (new dma set up), and to clear ints by writing the respective bit
128 * to 0.
129 */
130
131 /* read what ints happened */
132
133 IW_READ_CODEC_1(CSR3I, intrs);
134
135 /* clear them */
136
137 IW_WRITE_DIRECT_1(2, sc->codec_index_h, 0x00);
138
139 /* and process them */
140
141 if (intrs & 0x20) {
142 #ifdef DIAGNOSTIC
143 iw_inints++;
144 #endif
145 sc->sc_reclocked = 0;
146 if (sc->sc_recintr != 0)
147 sc->sc_recintr(sc->sc_recarg);
148 val = 1;
149 }
150 if (intrs & 0x10) {
151 #ifdef DIAGNOSTIC
152 iw_ints++;
153 #endif
154 sc->sc_playlocked = 0;
155 if (sc->sc_playintr != 0)
156 sc->sc_playintr(sc->sc_playarg);
157 val = 1;
158 }
159 return val;
160
161 }
162
163 void
164 iwattach(sc)
165 struct iw_softc *sc;
166 {
167 int got_irq = 0;
168
169 DPRINTF(("iwattach sc %p\n", sc));
170
171 sc->cdatap = 1; /* relative offsets in region */
172 sc->csr1r = 2;
173 sc->cxdr = 3; /* CPDR or CRDR */
174
175 sc->gmxr = 0; /* sc->p3xr */
176 sc->gmxdr = 1; /* GMTDR or GMRDR */
177 sc->svsr = 2;
178 sc->igidxr = 3;
179 sc->i16dp = 4;
180 sc->i8dp = 5;
181 sc->lmbdr = 7;
182
183 sc->rec_precision = sc->play_precision = 8;
184 sc->rec_channels = sc->play_channels = 1;
185 sc->rec_encoding = sc->play_encoding = AUDIO_ENCODING_ULAW;
186 sc->sc_irate = 8000;
187 sc->sc_orate = 8000;
188
189 sc->sc_fullduplex = 1;
190
191 sc->sc_reclocked = 0;
192 sc->sc_playlocked = 0;
193
194 sc->sc_dma_flags = 0;
195
196 /*
197 * We can only use a few selected irqs, see if we got one from pnp
198 * code that suits us.
199 */
200
201 if (sc->sc_irq > 0) {
202 sc->sc_ih = isa_intr_establish(sc->sc_p2xr_ic,
203 sc->sc_irq,
204 IST_EDGE, IPL_AUDIO, iwintr, sc);
205 got_irq = 1;
206 }
207 if (!got_irq) {
208 printf("\niwattach: couldn't get a suitable irq\n");
209 return;
210 }
211 printf("\n");
212 iwreset(sc, 0);
213 iw_set_format(sc, AUDIO_ENCODING_ULAW, 0);
214 iw_set_format(sc, AUDIO_ENCODING_ULAW, 1);
215 printf("%s: interwave version %s\n",
216 sc->sc_dev.dv_xname, iw_device.version);
217 audio_attach_mi(sc->iw_hw_if, 0, sc, &sc->sc_dev);
218 }
219
220 int
221 iwopen(sc, flags)
222 struct iw_softc *sc;
223 int flags;
224 {
225 int s;
226
227 s = splaudio();
228 if (sc->sc_open) {
229 splx(s);
230 DPRINTF(("iwopen: open %x sc %p\n", sc->sc_open, sc));
231 return EBUSY;
232 } else
233 sc->sc_open = 1;
234 splx(s);
235
236 DPRINTF(("iwopen: open %x sc %p\n", sc->sc_open, sc));
237
238 #ifdef DIAGNOSTIC
239 outputs = 0;
240 iw_ints = 0;
241 inputs = 0;
242 iw_inints = 0;
243 #endif
244
245 iwreset(sc, 1);
246
247 /* READ/WRITE or both */
248
249 if (flags == FREAD) {
250 sc->sc_mode |= IW_READ;
251 sc->sc_reclocked = 0;
252 }
253 if (flags == FWRITE) {
254 sc->sc_mode |= IW_WRITE;
255 sc->sc_playlocked = 0;
256 }
257 sc->sc_playdma_cnt = 0;
258 sc->sc_recdma_cnt = 0;
259 sc->playfirst = 1;
260 sc->sc_playintr = 0;
261 sc->sc_recintr = 0;
262
263 return 0;
264 }
265
266
267
268 void
269 iwclose(addr)
270 void *addr;
271 {
272 struct iw_softc *sc = addr;
273
274 DPRINTF(("iwclose sc %p\n", sc));
275
276 #ifdef DIAGNOSTIC
277 DPRINTF(("iwclose: outputs %d ints %d inputs %d in_ints %d\n",
278 outputs, iw_ints, inputs, iw_inints));
279 #endif
280
281 /* close hardware */
282 sc->sc_open = 0;
283 sc->sc_flags = 0;
284 sc->sc_mode = 0;
285 sc->sc_playlocked = 0;
286 sc->sc_reclocked = 0;
287
288 iw_stop_dma(sc, IW_DMA_PLAYBACK, 1);
289 iw_stop_dma(sc, IW_DMA_RECORD, 1);
290
291 sc->sc_playdma_cnt = 0;
292 sc->sc_recdma_cnt = 0;
293 }
294
295 #define RAM_STEP 64*1024
296
297 static void
298 iw_mempoke(sc, addy, val)
299 struct iw_softc *sc;
300 u_long addy;
301 u_char val;
302 {
303 IW_WRITE_GENERAL_2(LMALI, (u_short) addy);
304 IW_WRITE_GENERAL_1(LMAHI, (u_char) (addy >> 16));
305
306 /* Write byte to LMBDR */
307 IW_WRITE_DIRECT_1(sc->p3xr + 7, sc->p3xr_h, val);
308 }
309
310 static u_char
311 iw_mempeek(sc, addy)
312 struct iw_softc *sc;
313 u_long addy;
314 {
315 u_char ret;
316
317 IW_WRITE_GENERAL_2(LMALI, (u_short) addy);
318 IW_WRITE_GENERAL_1(LMAHI, (u_char) (addy >> 16));
319
320 IW_READ_DIRECT_1(sc->p3xr + 7, sc->p3xr_h, ret);
321 return ret; /* return byte from LMBDR */
322 }
323
324 static void
325 iw_meminit(sc)
326 struct iw_softc *sc;
327 {
328 u_long bank[4] = {0L, 0L, 0L, 0L};
329 u_long addr = 0L, base = 0L, cnt = 0L;
330 u_char i, ram = 0 /* ,memval=0 */ ;
331 u_short lmcfi;
332 u_long temppi;
333 u_long *lpbanks = &temppi;
334
335 IW_WRITE_GENERAL_1(LDMACI, 0x00);
336
337 IW_READ_GENERAL_2(LMCFI, lmcfi); /* 0x52 */
338 lmcfi |= 0x0A0C;
339 IW_WRITE_GENERAL_2(LMCFI, lmcfi); /* max addr span */
340 IW_WRITE_GENERAL_1(LMCI, 0x00);
341
342 /* fifo addresses */
343
344 IW_WRITE_GENERAL_2(LMRFAI, ((4 * 1024 * 1024) >> 8));
345 IW_WRITE_GENERAL_2(LMPFAI, ((4 * 1024 * 1024 + 16 * 1024) >> 8));
346
347 IW_WRITE_GENERAL_2(LMFSI, 0x000);
348
349 IW_WRITE_GENERAL_2(LDICI, 0x0000);
350
351 while (addr < (16 * 1024 * 1024)) {
352 iw_mempoke(sc, addr, 0x00);
353 addr += RAM_STEP;
354 }
355
356 printf("%s:", sc->sc_dev.dv_xname);
357
358 for (i = 0; i < 4; i++) {
359 iw_mempoke(sc, base, 0xAA); /* mark start of bank */
360 iw_mempoke(sc, base + 1L, 0x55);
361 if (iw_mempeek(sc, base) == 0xAA &&
362 iw_mempeek(sc, base + 1L) == 0x55)
363 ram = 1;
364 if (ram) {
365 while (cnt < (4 * 1024 * 1024)) {
366 bank[i] += RAM_STEP;
367 cnt += RAM_STEP;
368 addr = base + cnt;
369 if (iw_mempeek(sc, addr) == 0xAA)
370 break;
371 }
372 }
373 if (lpbanks != NULL) {
374 *lpbanks = bank[i];
375 lpbanks++;
376 }
377 bank[i] = bank[i] >> 10;
378 printf("%s bank[%d]: %ldK", i ? "," : "", i, bank[i]);
379 base += 4 * 1024 * 1024;
380 cnt = 0L;
381 ram = 0;
382 }
383
384 printf("\n");
385
386 /*
387 * this is not really useful since GUS PnP supports memory
388 * configurations that aren't really supported by Interwave...beware
389 * of holes! Also, we don't use the memory for anything in this
390 * version of the driver.
391 *
392 * we've configured for 4M-4M-4M-4M
393 */
394 }
395
396
397 static
398 void
399 iwreset(sc, warm)
400 struct iw_softc *sc;
401 int warm;
402 {
403 u_char reg, cmode, val = 0, mixer_image = 0;
404
405 reg = 0; /* XXX gcc -Wall */
406
407 cmode = 0x6c; /* enhanced codec mode (full duplex) */
408
409 /* reset */
410
411 IW_WRITE_GENERAL_1(URSTI, 0x00);
412 delay(10);
413 IW_WRITE_GENERAL_1(URSTI, 0x07);
414 IW_WRITE_GENERAL_1(ICMPTI, 0x1f); /* disable DSP and uici and
415 * udci writes */
416 IW_WRITE_GENERAL_1(IDECI, 0x7f); /* enable ints to ISA and
417 * codec access */
418 IW_READ_GENERAL_1(IVERI, reg);
419 IW_WRITE_GENERAL_1(IVERI, reg | 0x01); /* hidden reg lock disable */
420 IW_WRITE_GENERAL_1(UASBCI, 0x00);
421
422 /* synth enhanced mode (default), 0 active voices, disable ints */
423
424 IW_WRITE_GENERAL_1(SGMI_WR, 0x01); /* enhanced mode, LFOs
425 * disabled */
426 for (val = 0; val < 32; val++) {
427 /* set each synth sound volume to 0 */
428 IW_WRITE_DIRECT_1(sc->p3xr + 2, sc->p3xr_h, val);
429 IW_WRITE_GENERAL_1(SVSI_WR, 0x00);
430 IW_WRITE_GENERAL_2(SASLI_WR, 0x0000);
431 IW_WRITE_GENERAL_2(SASHI_WR, 0x0000);
432 IW_WRITE_GENERAL_2(SAELI_WR, 0x0000);
433 IW_WRITE_GENERAL_2(SAEHI_WR, 0x0000);
434 IW_WRITE_GENERAL_2(SFCI_WR, 0x0000);
435 IW_WRITE_GENERAL_1(SACI_WR, 0x02);
436 IW_WRITE_GENERAL_1(SVSI_WR, 0x00);
437 IW_WRITE_GENERAL_1(SVEI_WR, 0x00);
438 IW_WRITE_GENERAL_2(SVLI_WR, 0x0000);
439 IW_WRITE_GENERAL_1(SVCI_WR, 0x02);
440 IW_WRITE_GENERAL_1(SMSI_WR, 0x02);
441 }
442
443 IW_WRITE_GENERAL_1(SAVI_WR, 0x00);
444
445 /* codec mode/init */
446
447 /* first change mode to 1 */
448
449 IW_WRITE_CODEC_1(CMODEI, 0x00);
450
451 /* and mode 3 */
452
453 IW_WRITE_CODEC_1(CMODEI, cmode);
454
455 IW_READ_CODEC_1(CMODEI, reg);
456
457 DPRINTF(("cmode %x\n", reg));
458
459 sc->revision = ((reg & 0x80) >> 3) | (reg & 0x0f);
460
461 IW_WRITE_DIRECT_1(sc->codec_index + 2, sc->p2xr_h, 0x00);
462
463 IW_WRITE_CODEC_1(CFIG1I | IW_MCE, 0x00); /* dma 2 chan access */
464 IW_WRITE_CODEC_1(CEXTI, 0x00); /* disable ints for now */
465
466
467 IW_WRITE_CODEC_1(CLPCTI, 0x00); /* reset playback sample counters */
468 IW_WRITE_CODEC_1(CUPCTI, 0x00); /* always upper byte last */
469 IW_WRITE_CODEC_1(CFIG2I, 0x80); /* full voltage range, enable record
470 * and playback sample counters, and
471 * don't center output in case or
472 * FIFO underrun */
473 IW_WRITE_CODEC_1(CFIG3I, 0xc0); /* enable record/playback irq (still
474 * turned off from CEXTI), max dma
475 * rate */
476 IW_WRITE_CODEC_1(CSR3I, 0x00); /* clear status 3 reg */
477
478
479 IW_WRITE_CODEC_1(CLRCTI, 0x00); /* reset record sample counters */
480 IW_WRITE_CODEC_1(CURCTI, 0x00); /* always upper byte last */
481
482
483 IW_READ_GENERAL_1(IVERI, reg);
484
485 sc->vers = reg >> 4;
486 if (!warm)
487 sprintf(iw_device.version, "%d.%d", sc->vers, sc->revision);
488
489 IW_WRITE_GENERAL_1(IDECI, 0x7f); /* irqs and codec decode
490 * enable */
491
492
493 /* ports */
494
495 if (!warm) {
496 iw_mixer_line_level(sc, IW_LINE_OUT, 255, 255);
497 iw_mixer_line_level(sc, IW_LINE_IN, 0, 0);
498 iw_mixer_line_level(sc, IW_AUX1, 0, 0);
499 iw_mixer_line_level(sc, IW_AUX2, 200, 200); /* CD */
500 sc->sc_dac.off = 0;
501 iw_mixer_line_level(sc, IW_DAC, 200, 200);
502
503 iw_mixer_line_level(sc, IW_MIC_IN, 0, 0);
504 iw_mixer_line_level(sc, IW_REC, 0, 0);
505 iw_mixer_line_level(sc, IW_LOOPBACK, 0, 0);
506 iw_mixer_line_level(sc, IW_MONO_IN, 0, 0);
507
508 /* mem stuff */
509 iw_meminit(sc);
510
511 }
512 IW_WRITE_CODEC_1(CEXTI, 0x02); /* codec int enable */
513
514 /* clear _LDMACI */
515
516 IW_WRITE_GENERAL_1(LDMACI, 0x00);
517
518 /* enable mixer paths */
519 mixer_image = 0x0c;
520 IW_WRITE_DIRECT_1(sc->p2xr, sc->p2xr_h, mixer_image);
521 /*
522 * enable output, line in. disable mic in bit 0 = 0 -> line in on
523 * (from codec?) bit 1 = 0 -> output on bit 2 = 1 -> mic in on bit 3
524 * = 1 -> irq&drq pin enable bit 4 = 1 -> channel interrupts to chan
525 * 1 bit 5 = 1 -> enable midi loop back bit 6 = 0 -> irq latches
526 * URCR[2:0] bit 6 = 1 -> dma latches URCR[2:0]
527 */
528
529
530 IW_READ_DIRECT_1(sc->p2xr, sc->p2xr_h, mixer_image);
531 #ifdef AUDIO_DEBUG
532 if (!warm)
533 DPRINTF(("mix image %x \n", mixer_image));
534 #endif
535 }
536
537 struct iw_codec_freq {
538 u_long freq;
539 u_char bits;
540 };
541
542 int
543 iw_set_speed(sc, freq, in)
544 struct iw_softc *sc;
545 u_long freq;
546 char in;
547 {
548 u_char var, cfig3, reg;
549
550 static struct iw_codec_freq iw_cf[17] = {
551 #define FREQ_1 24576000
552 #define FREQ_2 16934400
553 #define XTAL1 0
554 #define XTAL2 1
555 {5510, 0x00 | XTAL2}, {6620, 0x0E | XTAL2},
556 {8000, 0x00 | XTAL1}, {9600, 0x0E | XTAL1},
557 {11025, 0x02 | XTAL2}, {16000, 0x02 | XTAL1},
558 {18900, 0x04 | XTAL2}, {22050, 0x06 | XTAL2},
559 {27420, 0x04 | XTAL1}, {32000, 0x06 | XTAL1},
560 {33075, 0x0C | XTAL2}, {37800, 0x08 | XTAL2},
561 {38400, 0x0A | XTAL1}, {44100, 0x0A | XTAL2},
562 {44800, 0x08 | XTAL1}, {48000, 0x0C | XTAL1},
563 {48000, 0x0C | XTAL1} /* really a dummy for indexing later */
564 #undef XTAL1
565 #undef XTAL2
566 };
567
568 cfig3 = 0; /* XXX gcc -Wall */
569
570 /*
571 * if the frequency is between 3493Hz and 32KHz we can use a more
572 * accurate frequency than the ones listed above base on the formula
573 * FREQ/((16*(48+x))) where FREQ is either FREQ_1 (24576000Hz) or
574 * FREQ_2 (16934400Hz) and x is the value to be written to either
575 * CPVFI or CRVFI. To enable this option, bit 2 in CFIG3 needs to be
576 * set high
577 *
578 * NOT IMPLEMENTED!
579 *
580 * Note that if you have a 'bad' XTAL_1 (higher than 18.5 MHz), 44.8KHz
581 * and 38.4KHz modes will provide wrong frequencies to output.
582 */
583
584
585 if (freq > 48000)
586 freq = 48000;
587 if (freq < 5510)
588 freq = 5510;
589
590 /* reset CFIG3[2] */
591
592 IW_READ_CODEC_1(CFIG3I, cfig3);
593
594 cfig3 |= 0xc0; /* not full fifo treshhold */
595
596 DPRINTF(("cfig3i = %x -> ", cfig3));
597
598 cfig3 &= ~0x04;
599 IW_WRITE_CODEC_1(CFIG3I, cfig3);
600 IW_READ_CODEC_1(CFIG3I, cfig3);
601
602 DPRINTF(("%x\n", cfig3));
603
604 for (var = 0; var < 16; var++) /* select closest frequency */
605 if (freq <= iw_cf[var].freq)
606 break;
607 if (var != 16)
608 if (abs(freq - iw_cf[var].freq) > abs(iw_cf[var + 1].freq - freq))
609 var++;
610
611 if (in)
612 IW_WRITE_CODEC_1(CRDFI | IW_MCE, sc->recfmtbits | iw_cf[var].bits);
613 else
614 IW_WRITE_CODEC_1(CPDFI | IW_MCE, sc->playfmtbits | iw_cf[var].bits);
615 freq = iw_cf[var].freq;
616 DPRINTF(("setting %s frequency to %d bits %x \n",
617 in ? "in" : "out", (int) freq, iw_cf[var].bits));
618
619 IW_READ_CODEC_1(CPDFI, reg);
620
621 DPRINTF((" CPDFI %x ", reg));
622
623 IW_READ_CODEC_1(CRDFI, reg);
624
625 DPRINTF((" CRDFI %x ", reg));
626
627 return freq;
628 }
629
630 /* Encoding. */
631 int
632 iw_query_encoding(addr, fp)
633 void *addr;
634 struct audio_encoding *fp;
635 {
636 /*
637 * LINEAR, ALAW, ULAW, ADPCM in HW, we'll use linear unsigned
638 * hardware mode for all 8-bit modes due to buggy (?) codec.
639 */
640
641 /*
642 * except in wavetable synth. there we have only ulaw and 8 and 16
643 * bit linear data
644 */
645
646 switch (fp->index) {
647 case 0:
648 strcpy(fp->name, AudioEulinear);
649 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
650 fp->precision = 8;
651 fp->flags = 0;
652 break;
653 case 1:
654 strcpy(fp->name, AudioEmulaw);
655 fp->encoding = AUDIO_ENCODING_ULAW;
656 fp->precision = 8;
657 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
658 break;
659 case 2:
660 strcpy(fp->name, AudioEalaw);
661 fp->encoding = AUDIO_ENCODING_ALAW;
662 fp->precision = 8;
663 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
664 break;
665 case 3:
666 strcpy(fp->name, AudioEadpcm);
667 fp->encoding = AUDIO_ENCODING_ADPCM;
668 fp->precision = 8; /* really 4 bit */
669 fp->flags = 0;
670 break;
671 case 4:
672 strcpy(fp->name, AudioEslinear_le);
673 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
674 fp->precision = 16;
675 fp->flags = 0;
676 break;
677 case 5:
678 strcpy(fp->name, AudioEslinear_be);
679 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
680 fp->precision = 16;
681 fp->flags = 0;
682 break;
683 default:
684 return (EINVAL);
685 /* NOTREACHED */
686 }
687 return (0);
688 }
689
690
691
692 u_long
693 iw_set_format(sc, precision, in)
694 struct iw_softc *sc;
695 u_long precision;
696 int in;
697 {
698 u_char data;
699 int encoding, channels;
700
701 encoding = in ? sc->rec_encoding : sc->play_encoding;
702 channels = in ? sc->rec_channels : sc->play_channels;
703
704 DPRINTF(("iw_set_format\n"));
705
706 switch (encoding) {
707 case AUDIO_ENCODING_ULAW:
708 data = 0x00;
709 break;
710
711 case AUDIO_ENCODING_ALAW:
712 data = 0x00;
713 break;
714
715 case AUDIO_ENCODING_SLINEAR_LE:
716 if (precision == 16)
717 data = 0x40; /* little endian. 0xc0 is big endian */
718 else
719 data = 0x00;
720 break;
721
722 case AUDIO_ENCODING_SLINEAR_BE:
723 if (precision == 16)
724 data = 0xc0;
725 else
726 data = 0x00;
727 break;
728
729 case AUDIO_ENCODING_ADPCM:
730 data = 0xa0;
731 break;
732
733 default:
734 return -1;
735 }
736
737 if (channels == 2)
738 data |= 0x10; /* stereo */
739
740 if (in) {
741 /* in */
742 sc->recfmtbits = data;
743 /* This will zero the normal codec frequency,
744 * iw_set_speed should always be called afterwards.
745 */
746 IW_WRITE_CODEC_1(CRDFI | IW_MCE, data);
747 } else {
748 /* out */
749 sc->playfmtbits = data;
750 IW_WRITE_CODEC_1(CPDFI | IW_MCE, data);
751 }
752
753 DPRINTF(("formatbits %s %x", in ? "in" : "out", data));
754
755 return encoding;
756 }
757
758
759
760 int
761 iw_set_params(addr, setmode, usemode, p, q)
762 void *addr;
763 int setmode;
764 int usemode;
765 struct audio_params *p;
766 struct audio_params *q;
767 {
768 struct iw_softc *sc = addr;
769 void (*swcode)__P((void *, u_char * buf, int cnt)) = NULL;
770 int factor = 1;
771 DPRINTF(("iw_setparams: code %d, prec %d, rate %d, chan %d\n",
772 (int) p->encoding, (int) p->precision, (int) p->sample_rate,
773 (int) p->channels));
774
775
776 switch (p->encoding) {
777 case AUDIO_ENCODING_ULAW:
778 if (p->precision != 8)
779 return EINVAL;
780 swcode = setmode & AUMODE_PLAY ? mulaw_to_ulinear8 : ulinear8_to_mulaw;
781 factor = 1;
782 break;
783 case AUDIO_ENCODING_ALAW:
784 if (p->precision != 8)
785 return EINVAL;
786 swcode = setmode & AUMODE_PLAY ? alaw_to_ulinear8 : ulinear8_to_alaw;
787 factor = 1;
788 break;
789 case AUDIO_ENCODING_ADPCM:
790 if (p->precision != 8)
791 return EINVAL;
792 else
793 break;
794
795 case AUDIO_ENCODING_SLINEAR_LE:
796 case AUDIO_ENCODING_SLINEAR_BE:
797 if (p->precision != 8 && p->precision != 16)
798 return EINVAL;
799 else
800 break;
801
802 default:
803 return EINVAL;
804
805 }
806
807 if (setmode & AUMODE_PLAY) {
808 sc->play_channels = p->channels;
809 sc->play_encoding = p->encoding;
810 sc->play_precision = p->precision;
811 p->factor = factor;
812 p->sw_code = swcode;
813 iw_set_format(sc, p->precision, 0);
814 q->sample_rate = p->sample_rate = sc->sc_orate =
815 iw_set_speed(sc, p->sample_rate, 0);
816 } else {
817 #if 0
818 q->channels = sc->rec_channels = p->channels;
819 q->encoding = sc->rec_encoding = p->encoding;
820 q->precision = sc->rec_precision = p->precision;
821 #endif
822 sc->rec_channels = q->channels;
823 sc->rec_encoding = q->encoding;
824 sc->rec_precision = q->precision;
825 q->factor = factor;
826 q->sw_code = swcode;
827
828 iw_set_format(sc, p->precision, 1);
829 q->sample_rate = sc->sc_irate =
830 iw_set_speed(sc, q->sample_rate, 1);
831 }
832 return 0;
833 }
834
835
836 int
837 iw_round_blocksize(addr, blk)
838 void *addr;
839 int blk;
840 {
841 /* Round to a multiple of the biggest sample size. */
842 return blk &= -4;
843 }
844
845 void
846 iw_mixer_line_level(sc, line, levl, levr)
847 struct iw_softc *sc;
848 int line;
849 int levl, levr;
850 {
851 u_char gainl, gainr, attenl, attenr;
852
853 switch (line) {
854 case IW_REC:
855 gainl = sc->sc_recsrcbits | (levl >> 4);
856 gainr = sc->sc_recsrcbits | (levr >> 4);
857 DPRINTF(("recording with %x", gainl));
858 IW_WRITE_CODEC_1(CLICI, gainl);
859 IW_WRITE_CODEC_1(CRICI, gainr);
860 sc->sc_rec.voll = levl & 0xf0;
861 sc->sc_rec.volr = levr & 0xf0;
862 break;
863
864 case IW_AUX1:
865
866 gainl = (255 - levl) >> 3;
867 gainr = (255 - levr) >> 3;
868
869 /* mute if 0 level */
870 if (levl == 0)
871 gainl |= 0x80;
872 if (levr == 0)
873 gainr |= 0x80;
874
875 IW_WRITE_CODEC_1(IW_LEFT_AUX1_PORT, gainl);
876 IW_WRITE_CODEC_1(IW_RIGHT_AUX1_PORT, gainr);
877 sc->sc_aux1.voll = levl & 0xf8;
878 sc->sc_aux1.volr = levr & 0xf8;
879
880 break;
881
882 case IW_AUX2:
883
884 gainl = (255 - levl) >> 3;
885 gainr = (255 - levr) >> 3;
886
887 /* mute if 0 level */
888 if (levl == 0)
889 gainl |= 0x80;
890 if (levr == 0)
891 gainr |= 0x80;
892
893 IW_WRITE_CODEC_1(IW_LEFT_AUX2_PORT, gainl);
894 IW_WRITE_CODEC_1(IW_RIGHT_AUX2_PORT, gainr);
895 sc->sc_aux2.voll = levl & 0xf8;
896 sc->sc_aux2.volr = levr & 0xf8;
897 break;
898 case IW_DAC:
899 attenl = ((255 - levl) >> 2) | ((levl && !sc->sc_dac.off) ? 0 : 0x80);
900 attenr = ((255 - levr) >> 2) | ((levr && !sc->sc_dac.off) ? 0 : 0x80);
901 IW_WRITE_CODEC_1(CLDACI, attenl);
902 IW_WRITE_CODEC_1(CRDACI, attenr);
903 sc->sc_dac.voll = levl & 0xfc;
904 sc->sc_dac.volr = levr & 0xfc;
905 break;
906 case IW_LOOPBACK:
907 attenl = ((255 - levl) & 0xfc) | (levl ? 0x01 : 0);
908 IW_WRITE_CODEC_1(CLCI, attenl);
909 sc->sc_loopback.voll = levl & 0xfc;
910 break;
911 case IW_LINE_IN:
912 gainl = (levl >> 3) | (levl ? 0 : 0x80);
913 gainr = (levr >> 3) | (levr ? 0 : 0x80);
914 IW_WRITE_CODEC_1(CLLICI, gainl);
915 IW_WRITE_CODEC_1(CRLICI, gainr);
916 sc->sc_linein.voll = levl & 0xf8;
917 sc->sc_linein.volr = levr & 0xf8;
918 break;
919 case IW_MIC_IN:
920 gainl = ((255 - levl) >> 3) | (levl ? 0 : 0x80);
921 gainr = ((255 - levr) >> 3) | (levr ? 0 : 0x80);
922 IW_WRITE_CODEC_1(CLMICI, gainl);
923 IW_WRITE_CODEC_1(CRMICI, gainr);
924 sc->sc_mic.voll = levl & 0xf8;
925 sc->sc_mic.volr = levr & 0xf8;
926 break;
927 case IW_LINE_OUT:
928 attenl = ((255 - levl) >> 3) | (levl ? 0 : 0x80);
929 attenr = ((255 - levr) >> 3) | (levr ? 0 : 0x80);
930 IW_WRITE_CODEC_1(CLOAI, attenl);
931 IW_WRITE_CODEC_1(CROAI, attenr);
932 sc->sc_lineout.voll = levl & 0xf8;
933 sc->sc_lineout.volr = levr & 0xf8;
934 break;
935 case IW_MONO_IN:
936 attenl = ((255 - levl) >> 4) | (levl ? 0 : 0xc0); /* in/out mute */
937 IW_WRITE_CODEC_1(CMONOI, attenl);
938 sc->sc_monoin.voll = levl & 0xf0;
939 break;
940 }
941 }
942
943 int
944 iw_commit_settings(addr)
945 void *addr;
946 {
947 return 0;
948 }
949
950
951 void
952 iw_trigger_dma(sc, io)
953 struct iw_softc *sc;
954 u_char io;
955 {
956 u_char reg;
957 int s;
958
959 s = splaudio();
960
961 IW_READ_CODEC_1(CSR3I, reg);
962 IW_WRITE_CODEC_1(CSR3I, reg & ~(io == IW_DMA_PLAYBACK ? 0x10 : 0x20));
963
964 IW_READ_CODEC_1(CFIG1I, reg);
965
966 IW_WRITE_CODEC_1(CFIG1I, reg | io);
967
968 /* let the counter run */
969 IW_READ_CODEC_1(CFIG2I, reg);
970 IW_WRITE_CODEC_1(CFIG2I, reg & ~(io << 4));
971
972 splx(s);
973 }
974
975 void
976 iw_stop_dma(sc, io, hard)
977 struct iw_softc *sc;
978 u_char io, hard;
979 {
980 u_char reg;
981
982 /* just stop the counter, no need to flush the fifo */
983 IW_READ_CODEC_1(CFIG2I, reg);
984 IW_WRITE_CODEC_1(CFIG2I, (reg | (io << 4)));
985
986 if (hard) {
987 /* unless we're closing the device */
988 IW_READ_CODEC_1(CFIG1I, reg);
989 IW_WRITE_CODEC_1(CFIG1I, reg & ~io);
990 }
991 }
992
993 void
994 iw_dma_count(sc, count, io)
995 struct iw_softc *sc;
996 u_short count;
997 int io;
998 {
999 if (io == IW_DMA_PLAYBACK) {
1000 IW_WRITE_CODEC_1(CLPCTI, (u_char) (count & 0x00ff));
1001 IW_WRITE_CODEC_1(CUPCTI, (u_char) ((count >> 8) & 0x00ff));
1002 } else {
1003 IW_WRITE_CODEC_1(CLRCTI, (u_char) (count & 0x00ff));
1004 IW_WRITE_CODEC_1(CURCTI, (u_char) ((count >> 8) & 0x00ff));
1005 }
1006 }
1007
1008 int
1009 iw_init_output(addr, buf, cc)
1010 void *addr;
1011 void *buf;
1012 int cc;
1013 {
1014 struct iw_softc *sc = (struct iw_softc *) addr;
1015
1016 DPRINTF(("iw_init_output\n"));
1017
1018 isa_dmastart(sc->sc_ic, sc->sc_playdrq, buf,
1019 cc, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1020 return 0;
1021 }
1022
1023 int
1024 iw_init_input(addr, buf, cc)
1025 void *addr;
1026 void *buf;
1027 int cc;
1028 {
1029 struct iw_softc *sc = (struct iw_softc *) addr;
1030
1031 DPRINTF(("iw_init_input\n"));
1032
1033 isa_dmastart(sc->sc_ic, sc->sc_playdrq, buf,
1034 cc, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1035 return 0;
1036 }
1037
1038
1039 int
1040 iw_start_output(addr, p, cc, intr, arg)
1041 void *addr;
1042 void *p;
1043 int cc;
1044 void (*intr)__P((void *));
1045 void *arg;
1046 {
1047 struct iw_softc *sc = addr;
1048 int counter;
1049
1050 #ifdef AUDIO_DEBUG
1051 if (sc->sc_playlocked) {
1052 DPRINTF(("iw_start_output: playback dma already going on\n"));
1053 /* return 0; */
1054 }
1055 #endif
1056
1057 sc->sc_playlocked = 1;
1058 #ifdef DIAGNOSTIC
1059 if (!intr) {
1060 printf("iw_start_output: no callback!\n");
1061 return 1;
1062 }
1063 #endif
1064
1065 sc->sc_playintr = intr;
1066 sc->sc_playarg = arg;
1067 sc->sc_dma_flags |= DMAMODE_WRITE;
1068 sc->sc_playdma_bp = p;
1069
1070 counter = 0;
1071
1072 isa_dmastart(sc->sc_ic, sc->sc_playdrq, sc->sc_playdma_bp,
1073 cc, NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
1074
1075
1076 if (sc->play_encoding == AUDIO_ENCODING_ADPCM)
1077 cc >>= 2;
1078 if (sc->play_precision == 16)
1079 cc >>= 1;
1080
1081
1082 if (sc->play_channels == 2 && sc->play_encoding != AUDIO_ENCODING_ADPCM)
1083 cc >>= 1;
1084
1085 cc -= iw_cc;
1086
1087
1088 /* iw_dma_access(sc,1); */
1089 if (cc != sc->sc_playdma_cnt) {
1090 iw_dma_count(sc, (u_short) cc, IW_DMA_PLAYBACK);
1091 sc->sc_playdma_cnt = cc;
1092
1093 iw_trigger_dma(sc, IW_DMA_PLAYBACK);
1094 }
1095
1096 #ifdef DIAGNOSTIC
1097 if (outputs != iw_ints)
1098 printf("iw_start_output: out %d, int %d\n", outputs, iw_ints);
1099 outputs++;
1100 #endif
1101 return 0;
1102 }
1103
1104
1105 int
1106 iw_start_input(addr, p, cc, intr, arg)
1107 void *addr;
1108 void *p;
1109 int cc;
1110 void (*intr)__P((void *));
1111 void *arg;
1112 {
1113 struct iw_softc *sc = addr;
1114 int counter;
1115
1116 #if AUDIO_DEBUG
1117 if (sc->sc_reclocked) {
1118 DPRINTF(("iw_start_input: record dma already going on\n"));
1119 /* return 0; */
1120 }
1121 #endif
1122
1123 sc->sc_reclocked = 1;
1124 #ifdef DIAGNOSTIC
1125 if (!intr) {
1126 printf("iw_start_input: no callback!\n");
1127 return 1;
1128 }
1129 #endif
1130
1131
1132 sc->sc_recintr = intr;
1133 sc->sc_recarg = arg;
1134 sc->sc_dma_flags |= DMAMODE_READ;
1135 sc->sc_recdma_bp = p;
1136
1137 counter = 0;
1138
1139 isa_dmastart(sc->sc_ic, sc->sc_recdrq, sc->sc_recdma_bp,
1140 cc, NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
1141
1142
1143 if (sc->rec_encoding == AUDIO_ENCODING_ADPCM) {
1144 cc >>= 2;
1145 }
1146 if (sc->rec_precision == 16)
1147 cc >>= 1;
1148
1149 if (sc->rec_channels == 2 && sc->rec_encoding != AUDIO_ENCODING_ADPCM)
1150 cc >>= 1;
1151
1152 cc -= iw_cc;
1153
1154 /* iw_dma_access(sc,0); */
1155 if (sc->sc_recdma_cnt != cc) {
1156 iw_dma_count(sc, (u_short) cc, IW_DMA_RECORD);
1157 sc->sc_recdma_cnt = cc;
1158 /* iw_dma_ctrl(sc, IW_DMA_RECORD); */
1159 iw_trigger_dma(sc, IW_DMA_RECORD);
1160 }
1161
1162 #ifdef DIAGNOSTIC
1163 if ((inputs != iw_inints))
1164 printf("iw_start_input: in %d, inints %d\n", inputs, iw_inints);
1165 inputs++;
1166 #endif
1167
1168 return 0;
1169 }
1170
1171
1172 int
1173 iw_halt_output(addr)
1174 void *addr;
1175 {
1176 struct iw_softc *sc = addr;
1177 iw_stop_dma(sc, IW_DMA_PLAYBACK, 0);
1178 /* sc->sc_playlocked = 0; */
1179 return 0;
1180 }
1181
1182
1183 int
1184 iw_halt_input(addr)
1185 void *addr;
1186 {
1187 struct iw_softc *sc = addr;
1188 iw_stop_dma(sc, IW_DMA_RECORD, 0);
1189 /* sc->sc_reclocked = 0; */
1190 return 0;
1191 }
1192
1193
1194 int
1195 iw_speaker_ctl(addr, newstate)
1196 void *addr;
1197 int newstate;
1198 {
1199 struct iw_softc *sc = addr;
1200 u_char reg;
1201 if (newstate == SPKR_ON) {
1202 sc->sc_dac.off = 0;
1203 IW_READ_CODEC_1(CLDACI, reg);
1204 IW_WRITE_CODEC_1(CLDACI, reg & 0x7f);
1205 IW_READ_CODEC_1(CRDACI, reg);
1206 IW_WRITE_CODEC_1(CRDACI, reg & 0x7f);
1207 } else {
1208 /* SPKR_OFF */
1209 sc->sc_dac.off = 1;
1210 IW_READ_CODEC_1(CLDACI, reg);
1211 IW_WRITE_CODEC_1(CLDACI, reg | 0x80);
1212 IW_READ_CODEC_1(CRDACI, reg);
1213 IW_WRITE_CODEC_1(CRDACI, reg | 0x80);
1214 }
1215 return 0;
1216 }
1217
1218
1219 int
1220 iw_getdev(addr, retp)
1221 void *addr;
1222 struct audio_device *retp;
1223 {
1224 *retp = iw_device;
1225 return 0;
1226 }
1227
1228
1229 int
1230 iw_setfd(addr, flag)
1231 void *addr;
1232 int flag;
1233 {
1234 return 0;
1235 }
1236
1237
1238 /* Mixer (in/out ports) */
1239 int
1240 iw_set_port(addr, cp)
1241 void *addr;
1242 mixer_ctrl_t *cp;
1243 {
1244 struct iw_softc *sc = addr;
1245 u_char vall = 0, valr = 0;
1246 int error = EINVAL;
1247
1248 switch (cp->dev) {
1249 case IW_MIC_IN_LVL:
1250 if (cp->type == AUDIO_MIXER_VALUE) {
1251 error = 0;
1252 if (cp->un.value.num_channels == 1) {
1253 vall = valr = cp->un.value.level[0];
1254 } else {
1255 vall = cp->un.value.level[0];
1256 valr = cp->un.value.level[1];
1257 }
1258 sc->sc_mic.voll = vall;
1259 sc->sc_mic.volr = valr;
1260 iw_mixer_line_level(sc, IW_MIC_IN, vall, valr);
1261 }
1262 break;
1263 case IW_AUX1_LVL:
1264 if (cp->type == AUDIO_MIXER_VALUE) {
1265 error = 0;
1266 if (cp->un.value.num_channels == 1) {
1267 vall = valr = cp->un.value.level[0];
1268 } else {
1269 vall = cp->un.value.level[0];
1270 valr = cp->un.value.level[1];
1271 }
1272 sc->sc_aux1.voll = vall;
1273 sc->sc_aux1.volr = valr;
1274 iw_mixer_line_level(sc, IW_AUX1, vall, valr);
1275 }
1276 break;
1277 case IW_AUX2_LVL:
1278 if (cp->type == AUDIO_MIXER_VALUE) {
1279 error = 0;
1280 if (cp->un.value.num_channels == 1) {
1281 vall = valr = cp->un.value.level[0];
1282 } else {
1283 vall = cp->un.value.level[0];
1284 valr = cp->un.value.level[1];
1285 }
1286 sc->sc_aux2.voll = vall;
1287 sc->sc_aux2.volr = valr;
1288 iw_mixer_line_level(sc, IW_AUX2, vall, valr);
1289 }
1290 break;
1291 case IW_LINE_IN_LVL:
1292 if (cp->type == AUDIO_MIXER_VALUE) {
1293 error = 0;
1294 if (cp->un.value.num_channels == 1) {
1295 vall = valr = cp->un.value.level[0];
1296 } else {
1297 vall = cp->un.value.level[0];
1298 valr = cp->un.value.level[1];
1299 }
1300 sc->sc_linein.voll = vall;
1301 sc->sc_linein.volr = valr;
1302 iw_mixer_line_level(sc, IW_LINE_IN, vall, valr);
1303 }
1304 break;
1305 case IW_LINE_OUT_LVL:
1306 if (cp->type == AUDIO_MIXER_VALUE) {
1307 error = 0;
1308 if (cp->un.value.num_channels == 1) {
1309 vall = valr = cp->un.value.level[0];
1310 } else {
1311 vall = cp->un.value.level[0];
1312 valr = cp->un.value.level[1];
1313 }
1314 sc->sc_lineout.voll = vall;
1315 sc->sc_lineout.volr = valr;
1316 iw_mixer_line_level(sc, IW_LINE_OUT, vall, valr);
1317 }
1318 break;
1319 case IW_REC_LVL:
1320 if (cp->type == AUDIO_MIXER_VALUE) {
1321 error = 0;
1322 if (cp->un.value.num_channels == 1) {
1323 vall = valr = cp->un.value.level[0];
1324 } else {
1325 vall = cp->un.value.level[0];
1326 valr = cp->un.value.level[1];
1327 }
1328 sc->sc_rec.voll = vall;
1329 sc->sc_rec.volr = valr;
1330 iw_mixer_line_level(sc, IW_REC, vall, valr);
1331 }
1332 break;
1333
1334 case IW_DAC_LVL:
1335 if (cp->type == AUDIO_MIXER_VALUE) {
1336 error = 0;
1337 if (cp->un.value.num_channels == 1) {
1338 vall = valr = cp->un.value.level[0];
1339 } else {
1340 vall = cp->un.value.level[0];
1341 valr = cp->un.value.level[1];
1342 }
1343 sc->sc_dac.voll = vall;
1344 sc->sc_dac.volr = valr;
1345 iw_mixer_line_level(sc, IW_DAC, vall, valr);
1346 }
1347 break;
1348
1349 case IW_LOOPBACK_LVL:
1350 if (cp->type == AUDIO_MIXER_VALUE) {
1351 error = 0;
1352 if (cp->un.value.num_channels != 1) {
1353 return EINVAL;
1354 } else {
1355 valr = vall = cp->un.value.level[0];
1356 }
1357 sc->sc_loopback.voll = vall;
1358 sc->sc_loopback.volr = valr;
1359 iw_mixer_line_level(sc, IW_LOOPBACK, vall, valr);
1360 }
1361 break;
1362
1363 case IW_MONO_IN_LVL:
1364 if (cp->type == AUDIO_MIXER_VALUE) {
1365 error = 0;
1366 if (cp->un.value.num_channels != 1) {
1367 return EINVAL;
1368 } else {
1369 valr = vall = cp->un.value.level[0];
1370 }
1371 sc->sc_monoin.voll = vall;
1372 sc->sc_monoin.volr = valr;
1373 iw_mixer_line_level(sc, IW_MONO_IN, vall, valr);
1374 }
1375 break;
1376 case IW_RECORD_SOURCE:
1377 error = 0;
1378 sc->sc_recsrcbits = cp->un.ord << 6;
1379 DPRINTF(("record source %d bits %x\n", cp->un.ord, sc->sc_recsrcbits));
1380 iw_mixer_line_level(sc, IW_REC, sc->sc_rec.voll, sc->sc_rec.volr);
1381 break;
1382 }
1383
1384 return error;
1385 }
1386
1387
1388 int
1389 iw_get_port(addr, cp)
1390 void *addr;
1391 mixer_ctrl_t *cp;
1392 {
1393 struct iw_softc *sc = addr;
1394
1395 int error = EINVAL;
1396
1397 switch (cp->dev) {
1398 case IW_MIC_IN_LVL:
1399 if (cp->type == AUDIO_MIXER_VALUE) {
1400 cp->un.value.num_channels = 2;
1401 cp->un.value.level[0] = sc->sc_mic.voll;
1402 cp->un.value.level[1] = sc->sc_mic.volr;
1403 error = 0;
1404 }
1405 break;
1406 case IW_AUX1_LVL:
1407 if (cp->type == AUDIO_MIXER_VALUE) {
1408 cp->un.value.num_channels = 2;
1409 cp->un.value.level[0] = sc->sc_aux1.voll;
1410 cp->un.value.level[1] = sc->sc_aux1.volr;
1411 error = 0;
1412 }
1413 break;
1414 case IW_AUX2_LVL:
1415 if (cp->type == AUDIO_MIXER_VALUE) {
1416 cp->un.value.num_channels = 2;
1417 cp->un.value.level[0] = sc->sc_aux2.voll;
1418 cp->un.value.level[1] = sc->sc_aux2.volr;
1419 error = 0;
1420 }
1421 break;
1422 case IW_LINE_OUT_LVL:
1423 if (cp->type == AUDIO_MIXER_VALUE) {
1424 cp->un.value.num_channels = 2;
1425 cp->un.value.level[0] = sc->sc_lineout.voll;
1426 cp->un.value.level[1] = sc->sc_lineout.volr;
1427 error = 0;
1428 }
1429 break;
1430 case IW_LINE_IN_LVL:
1431 if (cp->type == AUDIO_MIXER_VALUE) {
1432 cp->un.value.num_channels = 2;
1433 cp->un.value.level[0] = sc->sc_linein.voll;
1434 cp->un.value.level[1] = sc->sc_linein.volr;
1435 error = 0;
1436 }
1437 case IW_REC_LVL:
1438 if (cp->type == AUDIO_MIXER_VALUE) {
1439 cp->un.value.num_channels = 2;
1440 cp->un.value.level[0] = sc->sc_rec.voll;
1441 cp->un.value.level[1] = sc->sc_rec.volr;
1442 error = 0;
1443 }
1444 break;
1445
1446 case IW_DAC_LVL:
1447 if (cp->type == AUDIO_MIXER_VALUE) {
1448 cp->un.value.num_channels = 2;
1449 cp->un.value.level[0] = sc->sc_dac.voll;
1450 cp->un.value.level[1] = sc->sc_dac.volr;
1451 error = 0;
1452 }
1453 break;
1454
1455 case IW_LOOPBACK_LVL:
1456 if (cp->type == AUDIO_MIXER_VALUE) {
1457 cp->un.value.num_channels = 1;
1458 cp->un.value.level[0] = sc->sc_loopback.voll;
1459 error = 0;
1460 }
1461 break;
1462
1463 case IW_MONO_IN_LVL:
1464 if (cp->type == AUDIO_MIXER_VALUE) {
1465 cp->un.value.num_channels = 1;
1466 cp->un.value.level[0] = sc->sc_monoin.voll;
1467 error = 0;
1468 }
1469 break;
1470 case IW_RECORD_SOURCE:
1471 cp->un.ord = sc->sc_recsrcbits >> 6;
1472 error = 0;
1473 break;
1474 }
1475
1476 return error;
1477 }
1478
1479
1480
1481 int
1482 iw_query_devinfo(addr, dip)
1483 void *addr;
1484 mixer_devinfo_t *dip;
1485 {
1486
1487 switch (dip->index) {
1488 case IW_MIC_IN_LVL: /* Microphone */
1489 dip->type = AUDIO_MIXER_VALUE;
1490 dip->mixer_class = IW_INPUT_CLASS;
1491 dip->prev = AUDIO_MIXER_LAST;
1492 dip->next = AUDIO_MIXER_LAST;
1493 strcpy(dip->label.name, AudioNmicrophone);
1494 dip->un.v.num_channels = 2;
1495 strcpy(dip->un.v.units.name, AudioNvolume);
1496 break;
1497 case IW_AUX1_LVL:
1498 dip->type = AUDIO_MIXER_VALUE;
1499 dip->mixer_class = IW_INPUT_CLASS;
1500 dip->prev = AUDIO_MIXER_LAST;
1501 dip->next = AUDIO_MIXER_LAST;
1502 strcpy(dip->label.name, AudioNline);
1503 dip->un.v.num_channels = 2;
1504 strcpy(dip->un.v.units.name, AudioNvolume);
1505 break;
1506 case IW_AUX2_LVL:
1507 dip->type = AUDIO_MIXER_VALUE;
1508 dip->mixer_class = IW_INPUT_CLASS;
1509 dip->prev = AUDIO_MIXER_LAST;
1510 dip->next = AUDIO_MIXER_LAST;
1511 strcpy(dip->label.name, AudioNcd);
1512 dip->un.v.num_channels = 2;
1513 strcpy(dip->un.v.units.name, AudioNvolume);
1514 break;
1515 case IW_LINE_OUT_LVL:
1516 dip->type = AUDIO_MIXER_VALUE;
1517 dip->mixer_class = IW_OUTPUT_CLASS;
1518 dip->prev = AUDIO_MIXER_LAST;
1519 dip->next = AUDIO_MIXER_LAST;
1520 strcpy(dip->label.name, AudioNline);
1521 dip->un.v.num_channels = 2;
1522 strcpy(dip->un.v.units.name, AudioNvolume);
1523 break;
1524 case IW_DAC_LVL:
1525 dip->type = AUDIO_MIXER_VALUE;
1526 dip->mixer_class = IW_OUTPUT_CLASS;
1527 dip->prev = AUDIO_MIXER_LAST;
1528 dip->next = AUDIO_MIXER_LAST;
1529 strcpy(dip->label.name, AudioNdac);
1530 dip->un.v.num_channels = 2;
1531 strcpy(dip->un.v.units.name, AudioNvolume);
1532 break;
1533 case IW_LINE_IN_LVL:
1534 dip->type = AUDIO_MIXER_VALUE;
1535 dip->mixer_class = IW_INPUT_CLASS;
1536 dip->prev = AUDIO_MIXER_LAST;
1537 dip->next = AUDIO_MIXER_LAST;
1538 strcpy(dip->label.name, AudioNinput);
1539 dip->un.v.num_channels = 2;
1540 strcpy(dip->un.v.units.name, AudioNvolume);
1541 break;
1542 case IW_MONO_IN_LVL:
1543 dip->type = AUDIO_MIXER_VALUE;
1544 dip->mixer_class = IW_INPUT_CLASS;
1545 dip->prev = AUDIO_MIXER_LAST;
1546 dip->next = AUDIO_MIXER_LAST;
1547 strcpy(dip->label.name, AudioNmono);
1548 dip->un.v.num_channels = 1;
1549 strcpy(dip->un.v.units.name, AudioNvolume);
1550 break;
1551
1552 case IW_REC_LVL: /* record level */
1553 dip->type = AUDIO_MIXER_VALUE;
1554 dip->mixer_class = IW_RECORD_CLASS;
1555 dip->prev = AUDIO_MIXER_LAST;
1556 dip->next = AUDIO_MIXER_LAST;
1557 strcpy(dip->label.name, AudioNrecord);
1558 dip->un.v.num_channels = 2;
1559 strcpy(dip->un.v.units.name, AudioNvolume);
1560 break;
1561
1562 case IW_LOOPBACK_LVL:
1563 dip->type = AUDIO_MIXER_VALUE;
1564 dip->mixer_class = IW_RECORD_CLASS;
1565 dip->prev = AUDIO_MIXER_LAST;
1566 dip->next = AUDIO_MIXER_LAST;
1567 strcpy(dip->label.name, "filter");
1568 dip->un.v.num_channels = 1;
1569 strcpy(dip->un.v.units.name, AudioNvolume);
1570 break;
1571
1572 case IW_RECORD_SOURCE:
1573 dip->mixer_class = IW_RECORD_CLASS;
1574 dip->type = AUDIO_MIXER_ENUM;
1575 dip->prev = AUDIO_MIXER_LAST;
1576 dip->next = AUDIO_MIXER_LAST;
1577 strcpy(dip->label.name, AudioNsource);
1578 dip->un.e.num_mem = 4;
1579 strcpy(dip->un.e.member[0].label.name, AudioNline);
1580 dip->un.e.member[0].ord = IW_LINE_IN_SRC;
1581 strcpy(dip->un.e.member[1].label.name, "aux1");
1582 dip->un.e.member[1].ord = IW_AUX1_SRC;
1583 strcpy(dip->un.e.member[2].label.name, AudioNmicrophone);
1584 dip->un.e.member[2].ord = IW_MIC_IN_SRC;
1585 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1586 dip->un.e.member[3].ord = IW_MIX_OUT_SRC;
1587 break;
1588 case IW_INPUT_CLASS:
1589 dip->type = AUDIO_MIXER_CLASS;
1590 dip->mixer_class = IW_INPUT_CLASS;
1591 dip->next = dip->prev = AUDIO_MIXER_LAST;
1592 strcpy(dip->label.name, AudioCinputs);
1593 break;
1594 case IW_OUTPUT_CLASS:
1595 dip->type = AUDIO_MIXER_CLASS;
1596 dip->mixer_class = IW_OUTPUT_CLASS;
1597 dip->next = dip->prev = AUDIO_MIXER_LAST;
1598 strcpy(dip->label.name, AudioCoutputs);
1599 break;
1600 case IW_RECORD_CLASS: /* record source class */
1601 dip->type = AUDIO_MIXER_CLASS;
1602 dip->mixer_class = IW_RECORD_CLASS;
1603 dip->next = dip->prev = AUDIO_MIXER_LAST;
1604 strcpy(dip->label.name, AudioCrecord);
1605 return 0;
1606 default:
1607 return ENXIO;
1608 }
1609 return 0;
1610 }
1611
1612
1613 void *
1614 iw_malloc(addr, size, pool, flags)
1615 void *addr;
1616 u_long size;
1617 int pool;
1618 int flags;
1619 {
1620 struct iw_softc *sc = addr;
1621
1622 return isa_malloc(sc->sc_ic, 4, size, pool, flags);
1623 }
1624
1625 void
1626 iw_free(addr, ptr, pool)
1627 void *addr;
1628 void *ptr;
1629 int pool;
1630 {
1631 isa_free(ptr, pool);
1632 }
1633
1634 u_long
1635 iw_round(addr, size)
1636 void *addr;
1637 u_long size;
1638 {
1639 if (size > MAX_ISADMA)
1640 size = MAX_ISADMA;
1641 return size;
1642 }
1643
1644 int
1645 iw_mappage(addr, mem, off, prot)
1646 void *addr;
1647 void *mem;
1648 int off;
1649 int prot;
1650 {
1651 return isa_mappage(mem, off, prot);
1652 }
1653
1654 int
1655 iw_get_props(addr)
1656 void *addr;
1657 {
1658 struct iw_softc *sc = addr;
1659 return AUDIO_PROP_MMAP |
1660 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
1661 }
1662