isp_target.c revision 1.6 1 1.6 mjacob /* $NetBSD: isp_target.c,v 1.6 2000/07/19 22:19:00 mjacob Exp $ */
2 1.1 mjacob /*
3 1.1 mjacob * Machine and OS Independent Target Mode Code for the Qlogic SCSI/FC adapters.
4 1.1 mjacob *
5 1.1 mjacob * Copyright (c) 1999 by Matthew Jacob
6 1.1 mjacob * All rights reserved.
7 1.1 mjacob * mjacob (at) feral.com
8 1.1 mjacob *
9 1.1 mjacob * Redistribution and use in source and binary forms, with or without
10 1.1 mjacob * modification, are permitted provided that the following conditions
11 1.1 mjacob * are met:
12 1.1 mjacob * 1. Redistributions of source code must retain the above copyright
13 1.1 mjacob * notice immediately at the beginning of the file, without modification,
14 1.1 mjacob * this list of conditions, and the following disclaimer.
15 1.1 mjacob * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 mjacob * notice, this list of conditions and the following disclaimer in the
17 1.1 mjacob * documentation and/or other materials provided with the distribution.
18 1.1 mjacob * 3. The name of the author may not be used to endorse or promote products
19 1.1 mjacob * derived from this software without specific prior written permission.
20 1.1 mjacob *
21 1.1 mjacob * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 1.1 mjacob * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 mjacob * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 mjacob * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
25 1.1 mjacob * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 mjacob * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 mjacob * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 mjacob * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 mjacob * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 mjacob * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 mjacob * SUCH DAMAGE.
32 1.1 mjacob */
33 1.1 mjacob
34 1.1 mjacob /*
35 1.1 mjacob * Include header file appropriate for platform we're building on.
36 1.1 mjacob */
37 1.1 mjacob
38 1.1 mjacob #ifdef __NetBSD__
39 1.1 mjacob #include <dev/ic/isp_netbsd.h>
40 1.1 mjacob #endif
41 1.1 mjacob #ifdef __FreeBSD__
42 1.1 mjacob #include <dev/isp/isp_freebsd.h>
43 1.1 mjacob #endif
44 1.1 mjacob #ifdef __OpenBSD__
45 1.1 mjacob #include <dev/ic/isp_openbsd.h>
46 1.1 mjacob #endif
47 1.1 mjacob #ifdef __linux__
48 1.1 mjacob #include "isp_linux.h"
49 1.1 mjacob #endif
50 1.1 mjacob
51 1.1 mjacob #ifdef ISP_TARGET_MODE
52 1.1 mjacob int isp_tdebug = 0;
53 1.1 mjacob
54 1.1 mjacob static void isp_got_msg __P((struct ispsoftc *, int, in_entry_t *));
55 1.1 mjacob static void isp_got_msg_fc __P((struct ispsoftc *, int, in_fcentry_t *));
56 1.1 mjacob static void isp_notify_ack __P((struct ispsoftc *, void *));
57 1.1 mjacob static void isp_handle_atio(struct ispsoftc *, at_entry_t *);
58 1.1 mjacob static void isp_handle_atio2(struct ispsoftc *, at2_entry_t *);
59 1.1 mjacob static void isp_handle_ctio(struct ispsoftc *, ct_entry_t *);
60 1.1 mjacob static void isp_handle_ctio2(struct ispsoftc *, ct2_entry_t *);
61 1.1 mjacob
62 1.1 mjacob /*
63 1.1 mjacob * The Qlogic driver gets an interrupt to look at response queue entries.
64 1.1 mjacob * Some of these are status completions for initiatior mode commands, but
65 1.1 mjacob * if target mode is enabled, we get a whole wad of response queue entries
66 1.1 mjacob * to be handled here.
67 1.1 mjacob *
68 1.1 mjacob * Basically the split into 3 main groups: Lun Enable/Modification responses,
69 1.1 mjacob * SCSI Command processing, and Immediate Notification events.
70 1.1 mjacob *
71 1.1 mjacob * You start by writing a request queue entry to enable target mode (and
72 1.1 mjacob * establish some resource limitations which you can modify later).
73 1.1 mjacob * The f/w responds with a LUN ENABLE or LUN MODIFY response with
74 1.1 mjacob * the status of this action. If the enable was successful, you can expect...
75 1.1 mjacob *
76 1.1 mjacob * Response queue entries with SCSI commands encapsulate show up in an ATIO
77 1.1 mjacob * (Accept Target IO) type- sometimes with enough info to stop the command at
78 1.1 mjacob * this level. Ultimately the driver has to feed back to the f/w's request
79 1.1 mjacob * queue a sequence of CTIOs (continue target I/O) that describe data to
80 1.1 mjacob * be moved and/or status to be sent) and finally finishing with sending
81 1.1 mjacob * to the f/w's response queue an ATIO which then completes the handshake
82 1.1 mjacob * with the f/w for that command. There's a lot of variations on this theme,
83 1.1 mjacob * including flags you can set in the CTIO for the Qlogic 2X00 fibre channel
84 1.1 mjacob * cards that 'auto-replenish' the f/w's ATIO count, but this is the basic
85 1.1 mjacob * gist of it.
86 1.1 mjacob *
87 1.1 mjacob * The third group that can show up in the response queue are Immediate
88 1.1 mjacob * Notification events. These include things like notifications of SCSI bus
89 1.1 mjacob * resets, or Bus Device Reset messages or other messages received. This
90 1.1 mjacob * a classic oddbins area. It can get a little wierd because you then turn
91 1.1 mjacob * around and acknowledge the Immediate Notify by writing an entry onto the
92 1.1 mjacob * request queue and then the f/w turns around and gives you an acknowledgement
93 1.1 mjacob * to *your* acknowledgement on the response queue (the idea being to let
94 1.1 mjacob * the f/w tell you when the event is *really* over I guess).
95 1.1 mjacob *
96 1.1 mjacob */
97 1.1 mjacob
98 1.1 mjacob
99 1.1 mjacob /*
100 1.1 mjacob * A new response queue entry has arrived. The interrupt service code
101 1.1 mjacob * has already swizzled it into the platform dependent from canonical form.
102 1.1 mjacob *
103 1.1 mjacob * Because of the way this driver is designed, unfortunately most of the
104 1.1 mjacob * actual synchronization work has to be done in the platform specific
105 1.1 mjacob * code- we have no synchroniation primitives in the common code.
106 1.1 mjacob */
107 1.1 mjacob
108 1.1 mjacob int
109 1.1 mjacob isp_target_notify(isp, vptr, optrp)
110 1.1 mjacob struct ispsoftc *isp;
111 1.1 mjacob void *vptr;
112 1.1 mjacob u_int16_t *optrp;
113 1.1 mjacob {
114 1.1 mjacob u_int16_t status, seqid;
115 1.1 mjacob union {
116 1.1 mjacob at_entry_t *atiop;
117 1.1 mjacob at2_entry_t *at2iop;
118 1.1 mjacob ct_entry_t *ctiop;
119 1.1 mjacob ct2_entry_t *ct2iop;
120 1.1 mjacob lun_entry_t *lunenp;
121 1.1 mjacob in_entry_t *inotp;
122 1.1 mjacob in_fcentry_t *inot_fcp;
123 1.1 mjacob na_entry_t *nackp;
124 1.1 mjacob na_fcentry_t *nack_fcp;
125 1.1 mjacob isphdr_t *hp;
126 1.1 mjacob void * *vp;
127 1.1 mjacob #define atiop unp.atiop
128 1.1 mjacob #define at2iop unp.at2iop
129 1.1 mjacob #define ctiop unp.ctiop
130 1.1 mjacob #define ct2iop unp.ct2iop
131 1.1 mjacob #define lunenp unp.lunenp
132 1.1 mjacob #define inotp unp.inotp
133 1.1 mjacob #define inot_fcp unp.inot_fcp
134 1.1 mjacob #define nackp unp.nackp
135 1.1 mjacob #define nack_fcp unp.nack_fcp
136 1.1 mjacob #define hdrp unp.hp
137 1.1 mjacob } unp;
138 1.1 mjacob int bus, rval = 0;
139 1.1 mjacob
140 1.1 mjacob unp.vp = vptr;
141 1.1 mjacob
142 1.1 mjacob ISP_TDQE(isp, "isp_target_notify", (int) *optrp, vptr);
143 1.1 mjacob
144 1.1 mjacob switch(hdrp->rqs_entry_type) {
145 1.1 mjacob case RQSTYPE_ATIO:
146 1.1 mjacob isp_handle_atio(isp, atiop);
147 1.1 mjacob break;
148 1.1 mjacob case RQSTYPE_CTIO:
149 1.1 mjacob isp_handle_ctio(isp, ctiop);
150 1.1 mjacob break;
151 1.1 mjacob case RQSTYPE_ATIO2:
152 1.1 mjacob isp_handle_atio2(isp, at2iop);
153 1.1 mjacob break;
154 1.1 mjacob case RQSTYPE_CTIO2:
155 1.1 mjacob isp_handle_ctio2(isp, ct2iop);
156 1.1 mjacob break;
157 1.1 mjacob case RQSTYPE_ENABLE_LUN:
158 1.1 mjacob case RQSTYPE_MODIFY_LUN:
159 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_ACTION, vptr);
160 1.1 mjacob break;
161 1.1 mjacob
162 1.1 mjacob case RQSTYPE_NOTIFY:
163 1.1 mjacob /*
164 1.1 mjacob * Either the ISP received a SCSI message it can't
165 1.1 mjacob * handle, or it's returning an Immed. Notify entry
166 1.1 mjacob * we sent. We can send Immed. Notify entries to
167 1.1 mjacob * increment the firmware's resource count for them
168 1.1 mjacob * (we set this initially in the Enable Lun entry).
169 1.1 mjacob */
170 1.3 mjacob bus = 0;
171 1.1 mjacob if (IS_FC(isp)) {
172 1.1 mjacob status = inot_fcp->in_status;
173 1.1 mjacob seqid = inot_fcp->in_seqid;
174 1.1 mjacob } else {
175 1.1 mjacob status = inotp->in_status & 0xff;
176 1.1 mjacob seqid = inotp->in_seqid;
177 1.3 mjacob if (IS_DUALBUS(isp)) {
178 1.3 mjacob bus = (inotp->in_iid & 0x80) >> 7;
179 1.3 mjacob inotp->in_iid &= ~0x80;
180 1.3 mjacob }
181 1.1 mjacob }
182 1.1 mjacob ITDEBUG(2, ("isp_target_notify: Immediate Notify, "
183 1.1 mjacob "status=0x%x seqid=0x%x\n", status, seqid));
184 1.1 mjacob switch (status) {
185 1.1 mjacob case IN_RESET:
186 1.1 mjacob (void) isp_async(isp, ISPASYNC_BUS_RESET, &bus);
187 1.1 mjacob break;
188 1.1 mjacob case IN_MSG_RECEIVED:
189 1.1 mjacob case IN_IDE_RECEIVED:
190 1.1 mjacob if (IS_FC(isp)) {
191 1.1 mjacob isp_got_msg_fc(isp, bus, vptr);
192 1.1 mjacob } else {
193 1.1 mjacob isp_got_msg(isp, bus, vptr);
194 1.1 mjacob }
195 1.1 mjacob break;
196 1.1 mjacob case IN_RSRC_UNAVAIL:
197 1.1 mjacob PRINTF("%s: Firmware out of ATIOs\n", isp->isp_name);
198 1.1 mjacob break;
199 1.1 mjacob case IN_ABORT_TASK:
200 1.1 mjacob PRINTF("%s: Abort Task for Initiator %d RX_ID 0x%x\n",
201 1.1 mjacob isp->isp_name, inot_fcp->in_iid, seqid);
202 1.1 mjacob break;
203 1.1 mjacob case IN_PORT_LOGOUT:
204 1.1 mjacob PRINTF("%s: Port Logout for Initiator %d RX_ID 0x%x\n",
205 1.1 mjacob isp->isp_name, inot_fcp->in_iid, seqid);
206 1.1 mjacob break;
207 1.1 mjacob case IN_PORT_CHANGED:
208 1.1 mjacob PRINTF("%s: Port Changed for Initiator %d RX_ID 0x%x\n",
209 1.1 mjacob isp->isp_name, inot_fcp->in_iid, seqid);
210 1.1 mjacob break;
211 1.1 mjacob case IN_GLOBAL_LOGO:
212 1.1 mjacob PRINTF("%s: All ports logged out\n", isp->isp_name);
213 1.1 mjacob break;
214 1.1 mjacob default:
215 1.1 mjacob PRINTF("%s: bad status (0x%x) in isp_target_notify\n",
216 1.1 mjacob isp->isp_name, status);
217 1.1 mjacob break;
218 1.1 mjacob }
219 1.1 mjacob isp_notify_ack(isp, vptr);
220 1.1 mjacob break;
221 1.1 mjacob
222 1.1 mjacob case RQSTYPE_NOTIFY_ACK:
223 1.1 mjacob /*
224 1.1 mjacob * The ISP is acknowledging our acknowledgement of an
225 1.1 mjacob * Immediate Notify entry for some asynchronous event.
226 1.1 mjacob */
227 1.1 mjacob if (IS_FC(isp)) {
228 1.1 mjacob ITDEBUG(2, ("%s: Notify Ack status=0x%x seqid 0x%x\n",
229 1.1 mjacob isp->isp_name, nack_fcp->na_status,
230 1.1 mjacob nack_fcp->na_seqid));
231 1.1 mjacob } else {
232 1.1 mjacob ITDEBUG(2, ("%s: Notify Ack event 0x%x status=0x%x "
233 1.1 mjacob "seqid 0x%x\n", isp->isp_name, nackp->na_event,
234 1.1 mjacob nackp->na_status, nackp->na_seqid));
235 1.1 mjacob }
236 1.1 mjacob break;
237 1.1 mjacob default:
238 1.1 mjacob PRINTF("%s: Unknown entry type 0x%x in isp_target_notify",
239 1.1 mjacob isp->isp_name, hdrp->rqs_entry_type);
240 1.1 mjacob rval = -1;
241 1.1 mjacob break;
242 1.1 mjacob }
243 1.6 mjacob if (isp_tdebug) {
244 1.6 mjacob MEMZERO(vptr, QENTRY_LEN);
245 1.6 mjacob }
246 1.1 mjacob #undef atiop
247 1.1 mjacob #undef at2iop
248 1.1 mjacob #undef ctiop
249 1.1 mjacob #undef ct2iop
250 1.1 mjacob #undef lunenp
251 1.1 mjacob #undef inotp
252 1.1 mjacob #undef inot_fcp
253 1.1 mjacob #undef nackp
254 1.1 mjacob #undef nack_fcp
255 1.1 mjacob #undef hdrp
256 1.1 mjacob return (rval);
257 1.1 mjacob }
258 1.1 mjacob
259 1.1 mjacob
260 1.1 mjacob /*
261 1.1 mjacob * Toggle (on/off) target mode for bus/target/lun
262 1.1 mjacob *
263 1.1 mjacob * The caller has checked for overlap and legality.
264 1.1 mjacob *
265 1.1 mjacob * Note that not all of bus, target or lun can be paid attention to.
266 1.1 mjacob * Note also that this action will not be complete until the f/w writes
267 1.1 mjacob * response entry. The caller is responsible for synchronizing this.
268 1.1 mjacob */
269 1.1 mjacob int
270 1.1 mjacob isp_lun_cmd(isp, cmd, bus, tgt, lun, opaque)
271 1.1 mjacob struct ispsoftc *isp;
272 1.1 mjacob int cmd;
273 1.1 mjacob int bus;
274 1.1 mjacob int tgt;
275 1.1 mjacob int lun;
276 1.1 mjacob u_int32_t opaque;
277 1.1 mjacob {
278 1.1 mjacob lun_entry_t el;
279 1.1 mjacob u_int16_t iptr, optr;
280 1.1 mjacob void *outp;
281 1.1 mjacob
282 1.1 mjacob
283 1.1 mjacob MEMZERO(&el, sizeof (el));
284 1.3 mjacob if (IS_DUALBUS(isp)) {
285 1.3 mjacob el.le_rsvd = (bus & 0x1) << 7;
286 1.3 mjacob }
287 1.1 mjacob el.le_cmd_count = DFLT_CMD_CNT;
288 1.1 mjacob el.le_in_count = DFLT_INOTIFY;
289 1.1 mjacob if (cmd == RQSTYPE_ENABLE_LUN) {
290 1.1 mjacob if (IS_SCSI(isp)) {
291 1.5 mjacob el.le_flags = LUN_TQAE|LUN_DISAD;
292 1.1 mjacob el.le_cdb6len = 12;
293 1.1 mjacob el.le_cdb7len = 12;
294 1.1 mjacob }
295 1.1 mjacob } else if (cmd == -RQSTYPE_ENABLE_LUN) {
296 1.1 mjacob cmd = RQSTYPE_ENABLE_LUN;
297 1.1 mjacob el.le_cmd_count = 0;
298 1.1 mjacob el.le_in_count = 0;
299 1.1 mjacob } else if (cmd == -RQSTYPE_MODIFY_LUN) {
300 1.1 mjacob cmd = RQSTYPE_MODIFY_LUN;
301 1.1 mjacob el.le_ops = LUN_CCDECR | LUN_INDECR;
302 1.1 mjacob } else {
303 1.1 mjacob el.le_ops = LUN_CCINCR | LUN_ININCR;
304 1.1 mjacob }
305 1.1 mjacob el.le_header.rqs_entry_type = cmd;
306 1.1 mjacob el.le_header.rqs_entry_count = 1;
307 1.1 mjacob el.le_reserved = opaque;
308 1.1 mjacob if (IS_SCSI(isp)) {
309 1.1 mjacob el.le_tgt = tgt;
310 1.1 mjacob el.le_lun = lun;
311 1.5 mjacob } else if (isp->isp_maxluns <= 16) {
312 1.1 mjacob el.le_lun = lun;
313 1.1 mjacob }
314 1.1 mjacob
315 1.1 mjacob if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
316 1.1 mjacob PRINTF("%s: Request Queue Overflow in isp_lun_cmd\n",
317 1.1 mjacob isp->isp_name);
318 1.1 mjacob return (-1);
319 1.1 mjacob }
320 1.1 mjacob ISP_SWIZ_ENABLE_LUN(isp, outp, &el);
321 1.1 mjacob ISP_TDQE(isp, "isp_lun_cmd", (int) optr, &el);
322 1.1 mjacob ISP_ADD_REQUEST(isp, iptr);
323 1.1 mjacob return (0);
324 1.1 mjacob }
325 1.1 mjacob
326 1.1 mjacob
327 1.1 mjacob int
328 1.1 mjacob isp_target_put_entry(isp, ap)
329 1.1 mjacob struct ispsoftc *isp;
330 1.1 mjacob void *ap;
331 1.1 mjacob {
332 1.1 mjacob void *outp;
333 1.1 mjacob u_int16_t iptr, optr;
334 1.1 mjacob u_int8_t etype = ((isphdr_t *) ap)->rqs_entry_type;
335 1.1 mjacob
336 1.1 mjacob if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
337 1.1 mjacob PRINTF("%s: Request Queue Overflow in isp_target_put_entry "
338 1.1 mjacob "for type 0x%x\n", isp->isp_name, etype);
339 1.1 mjacob return (-1);
340 1.1 mjacob }
341 1.1 mjacob switch (etype) {
342 1.1 mjacob case RQSTYPE_ATIO:
343 1.1 mjacob ISP_SWIZ_ATIO(isp, outp, ap);
344 1.1 mjacob break;
345 1.1 mjacob case RQSTYPE_ATIO2:
346 1.1 mjacob ISP_SWIZ_ATIO2(isp, outp, ap);
347 1.1 mjacob break;
348 1.1 mjacob case RQSTYPE_CTIO:
349 1.1 mjacob ISP_SWIZ_CTIO(isp, outp, ap);
350 1.1 mjacob break;
351 1.1 mjacob case RQSTYPE_CTIO2:
352 1.1 mjacob ISP_SWIZ_CTIO2(isp, outp, ap);
353 1.1 mjacob break;
354 1.1 mjacob default:
355 1.1 mjacob PRINTF("%s: Unknown type 0x%x in isp_put_entry\n",
356 1.1 mjacob isp->isp_name, etype);
357 1.1 mjacob return (-1);
358 1.1 mjacob }
359 1.1 mjacob
360 1.1 mjacob ISP_TDQE(isp, "isp_target_put_entry", (int) optr, ap);;
361 1.1 mjacob
362 1.1 mjacob ISP_ADD_REQUEST(isp, iptr);
363 1.1 mjacob return (0);
364 1.1 mjacob }
365 1.1 mjacob
366 1.1 mjacob int
367 1.1 mjacob isp_target_put_atio(isp, iid, tgt, lun, ttype, tval)
368 1.1 mjacob struct ispsoftc *isp;
369 1.1 mjacob int iid;
370 1.1 mjacob int tgt;
371 1.1 mjacob int lun;
372 1.1 mjacob int ttype;
373 1.1 mjacob int tval;
374 1.1 mjacob {
375 1.1 mjacob union {
376 1.1 mjacob at_entry_t _atio;
377 1.1 mjacob at2_entry_t _atio2;
378 1.1 mjacob } atun;
379 1.1 mjacob
380 1.1 mjacob MEMZERO(&atun, sizeof atun);
381 1.1 mjacob if (IS_FC(isp)) {
382 1.1 mjacob atun._atio2.at_header.rqs_entry_type = RQSTYPE_ATIO2;
383 1.1 mjacob atun._atio2.at_header.rqs_entry_count = 1;
384 1.5 mjacob if (isp->isp_maxluns > 16) {
385 1.5 mjacob atun._atio2.at_scclun = (u_int16_t) lun;
386 1.5 mjacob } else {
387 1.5 mjacob atun._atio2.at_lun = (u_int8_t) lun;
388 1.5 mjacob }
389 1.1 mjacob atun._atio2.at_status = CT_OK;
390 1.1 mjacob } else {
391 1.1 mjacob atun._atio.at_header.rqs_entry_type = RQSTYPE_ATIO;
392 1.1 mjacob atun._atio.at_header.rqs_entry_count = 1;
393 1.1 mjacob atun._atio.at_iid = iid;
394 1.1 mjacob atun._atio.at_tgt = tgt;
395 1.1 mjacob atun._atio.at_lun = lun;
396 1.1 mjacob atun._atio.at_tag_type = ttype;
397 1.1 mjacob atun._atio.at_tag_val = tval;
398 1.1 mjacob atun._atio.at_status = CT_OK;
399 1.1 mjacob }
400 1.1 mjacob return (isp_target_put_entry(isp, &atun));
401 1.1 mjacob }
402 1.1 mjacob
403 1.1 mjacob /*
404 1.1 mjacob * Command completion- both for handling cases of no resources or
405 1.1 mjacob * no blackhole driver, or other cases where we have to, inline,
406 1.1 mjacob * finish the command sanely, or for normal command completion.
407 1.1 mjacob *
408 1.1 mjacob * The 'completion' code value has the scsi status byte in the low 8 bits.
409 1.1 mjacob * If status is a CHECK CONDITION and bit 8 is nonzero, then bits 12..15 have
410 1.1 mjacob * the sense key and bits 16..23 have the ASCQ and bits 24..31 have the ASC
411 1.1 mjacob * values.
412 1.1 mjacob *
413 1.1 mjacob * NB: the key, asc, ascq, cannot be used for parallel SCSI as it doesn't
414 1.1 mjacob * NB: inline SCSI sense reporting.
415 1.1 mjacob *
416 1.1 mjacob * For both parallel && fibre channel, we use the feature that does
417 1.1 mjacob * an automatic resource autoreplenish so we don't have then later do
418 1.1 mjacob * put of an atio to replenish the f/w's resource count.
419 1.1 mjacob */
420 1.1 mjacob
421 1.1 mjacob int
422 1.1 mjacob isp_endcmd(struct ispsoftc *isp, void *arg, u_int32_t code, u_int32_t hdl)
423 1.1 mjacob {
424 1.1 mjacob int sts;
425 1.1 mjacob union {
426 1.1 mjacob ct_entry_t _ctio;
427 1.1 mjacob ct2_entry_t _ctio2;
428 1.1 mjacob } un;
429 1.1 mjacob
430 1.1 mjacob MEMZERO(&un, sizeof un);
431 1.1 mjacob sts = code & 0xff;
432 1.1 mjacob
433 1.1 mjacob if (IS_FC(isp)) {
434 1.1 mjacob at2_entry_t *aep = arg;
435 1.1 mjacob ct2_entry_t *cto = &un._ctio2;
436 1.1 mjacob
437 1.1 mjacob cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
438 1.1 mjacob cto->ct_header.rqs_entry_count = 1;
439 1.1 mjacob cto->ct_iid = aep->at_iid;
440 1.5 mjacob if (isp->isp_maxluns <= 16) {
441 1.5 mjacob cto->ct_lun = aep->at_lun;
442 1.5 mjacob }
443 1.1 mjacob cto->ct_rxid = aep->at_rxid;
444 1.2 mjacob cto->rsp.m1.ct_scsi_status = sts & 0xff;
445 1.1 mjacob cto->ct_flags = CT2_SENDSTATUS | CT2_NO_DATA | CT2_FLAG_MODE1;
446 1.1 mjacob if (hdl == 0) {
447 1.1 mjacob cto->ct_flags |= CT2_CCINCR;
448 1.1 mjacob }
449 1.1 mjacob if (aep->at_datalen) {
450 1.1 mjacob cto->ct_resid = aep->at_datalen;
451 1.1 mjacob cto->ct_flags |= CT2_DATA_UNDER;
452 1.1 mjacob }
453 1.2 mjacob if ((sts & 0xff) == SCSI_CHECK && (sts & ECMD_SVALID)) {
454 1.1 mjacob cto->rsp.m1.ct_resp[0] = 0xf0;
455 1.1 mjacob cto->rsp.m1.ct_resp[2] = (code >> 12) & 0xf;
456 1.1 mjacob cto->rsp.m1.ct_resp[7] = 8;
457 1.1 mjacob cto->rsp.m1.ct_resp[12] = (code >> 24) & 0xff;
458 1.1 mjacob cto->rsp.m1.ct_resp[13] = (code >> 16) & 0xff;
459 1.1 mjacob cto->rsp.m1.ct_senselen = 16;
460 1.1 mjacob cto->ct_flags |= CT2_SNSLEN_VALID;
461 1.1 mjacob }
462 1.1 mjacob cto->ct_reserved = hdl;
463 1.1 mjacob } else {
464 1.1 mjacob at_entry_t *aep = arg;
465 1.1 mjacob ct_entry_t *cto = &un._ctio;
466 1.1 mjacob
467 1.1 mjacob cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
468 1.1 mjacob cto->ct_header.rqs_entry_count = 1;
469 1.1 mjacob cto->ct_iid = aep->at_iid;
470 1.1 mjacob cto->ct_tgt = aep->at_tgt;
471 1.1 mjacob cto->ct_lun = aep->at_lun;
472 1.1 mjacob cto->ct_tag_type = aep->at_tag_type;
473 1.1 mjacob cto->ct_tag_val = aep->at_tag_val;
474 1.1 mjacob cto->ct_flags = CT_SENDSTATUS | CT_NO_DATA;
475 1.1 mjacob if (hdl == 0) {
476 1.1 mjacob cto->ct_flags |= CT_CCINCR;
477 1.1 mjacob }
478 1.1 mjacob cto->ct_scsi_status = sts;
479 1.1 mjacob cto->ct_reserved = hdl;
480 1.1 mjacob }
481 1.1 mjacob return (isp_target_put_entry(isp, &un));
482 1.1 mjacob }
483 1.1 mjacob
484 1.1 mjacob void
485 1.1 mjacob isp_target_async(isp, bus, event)
486 1.1 mjacob struct ispsoftc *isp;
487 1.1 mjacob int bus;
488 1.1 mjacob int event;
489 1.1 mjacob {
490 1.1 mjacob tmd_event_t evt;
491 1.1 mjacob tmd_msg_t msg;
492 1.1 mjacob
493 1.1 mjacob switch (event) {
494 1.1 mjacob /*
495 1.1 mjacob * These three we handle here to propagate an effective bus reset
496 1.1 mjacob * upstream, but these do not require any immediate notify actions
497 1.1 mjacob * so we return when done.
498 1.1 mjacob */
499 1.1 mjacob case ASYNC_LIP_OCCURRED:
500 1.1 mjacob case ASYNC_LOOP_UP:
501 1.1 mjacob case ASYNC_LOOP_DOWN:
502 1.1 mjacob evt.ev_bus = bus;
503 1.1 mjacob evt.ev_event = event;
504 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
505 1.1 mjacob return;
506 1.1 mjacob
507 1.1 mjacob case ASYNC_LOOP_RESET:
508 1.1 mjacob case ASYNC_BUS_RESET:
509 1.1 mjacob case ASYNC_TIMEOUT_RESET:
510 1.1 mjacob if (IS_FC(isp)) {
511 1.1 mjacob return; /* we'll be getting an inotify instead */
512 1.1 mjacob }
513 1.1 mjacob evt.ev_bus = bus;
514 1.1 mjacob evt.ev_event = event;
515 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
516 1.1 mjacob break;
517 1.1 mjacob case ASYNC_DEVICE_RESET:
518 1.1 mjacob /*
519 1.1 mjacob * Bus Device Reset resets a specific target, so
520 1.1 mjacob * we pass this as a synthesized message.
521 1.1 mjacob */
522 1.1 mjacob MEMZERO(&msg, sizeof msg);
523 1.1 mjacob if (IS_FC(isp)) {
524 1.1 mjacob msg.nt_iid =
525 1.1 mjacob ((fcparam *)isp->isp_param)->isp_loopid;
526 1.1 mjacob } else {
527 1.1 mjacob msg.nt_iid =
528 1.1 mjacob ((sdparam *)isp->isp_param)->isp_initiator_id;
529 1.1 mjacob }
530 1.1 mjacob msg.nt_bus = bus;
531 1.1 mjacob msg.nt_msg[0] = MSG_BUS_DEV_RESET;
532 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
533 1.1 mjacob break;
534 1.1 mjacob default:
535 1.1 mjacob PRINTF("%s: isp_target_async: unknown event 0x%x\n",
536 1.1 mjacob isp->isp_name, event);
537 1.1 mjacob break;
538 1.1 mjacob }
539 1.6 mjacob if (isp->isp_state == ISP_RUNSTATE)
540 1.6 mjacob isp_notify_ack(isp, NULL);
541 1.1 mjacob }
542 1.1 mjacob
543 1.1 mjacob
544 1.1 mjacob /*
545 1.1 mjacob * Process a received message.
546 1.1 mjacob * The ISP firmware can handle most messages, there are only
547 1.1 mjacob * a few that we need to deal with:
548 1.1 mjacob * - abort: clean up the current command
549 1.1 mjacob * - abort tag and clear queue
550 1.1 mjacob */
551 1.1 mjacob
552 1.1 mjacob static void
553 1.1 mjacob isp_got_msg(isp, bus, inp)
554 1.1 mjacob struct ispsoftc *isp;
555 1.1 mjacob int bus;
556 1.1 mjacob in_entry_t *inp;
557 1.1 mjacob {
558 1.1 mjacob u_int8_t status = inp->in_status & ~QLTM_SVALID;
559 1.1 mjacob
560 1.1 mjacob if (status == IN_IDE_RECEIVED || status == IN_MSG_RECEIVED) {
561 1.1 mjacob tmd_msg_t msg;
562 1.1 mjacob
563 1.1 mjacob MEMZERO(&msg, sizeof (msg));
564 1.1 mjacob msg.nt_bus = bus;
565 1.1 mjacob msg.nt_iid = inp->in_iid;
566 1.1 mjacob msg.nt_tgt = inp->in_tgt;
567 1.1 mjacob msg.nt_lun = inp->in_lun;
568 1.1 mjacob msg.nt_tagtype = inp->in_tag_type;
569 1.1 mjacob msg.nt_tagval = inp->in_tag_val;
570 1.1 mjacob MEMCPY(msg.nt_msg, inp->in_msg, IN_MSGLEN);
571 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
572 1.1 mjacob } else {
573 1.1 mjacob PRINTF("%s: unknown immediate notify status 0x%x\n",
574 1.1 mjacob isp->isp_name, inp->in_status);
575 1.1 mjacob }
576 1.1 mjacob }
577 1.1 mjacob
578 1.1 mjacob /*
579 1.1 mjacob * Synthesize a message from the task management flags in a FCP_CMND_IU.
580 1.1 mjacob */
581 1.1 mjacob static void
582 1.1 mjacob isp_got_msg_fc(isp, bus, inp)
583 1.1 mjacob struct ispsoftc *isp;
584 1.1 mjacob int bus;
585 1.1 mjacob in_fcentry_t *inp;
586 1.1 mjacob {
587 1.1 mjacob static char *f1 = "%s: %s from iid %d lun %d seq 0x%x\n";
588 1.1 mjacob static char *f2 =
589 1.1 mjacob "%s: unknown %s 0x%x lun %d iid %d task flags 0x%x seq 0x%x\n";
590 1.1 mjacob
591 1.1 mjacob if (inp->in_status != IN_MSG_RECEIVED) {
592 1.1 mjacob PRINTF(f2, isp->isp_name, "immediate notify status",
593 1.1 mjacob inp->in_status, inp->in_lun, inp->in_iid,
594 1.1 mjacob inp->in_task_flags, inp->in_seqid);
595 1.1 mjacob } else {
596 1.1 mjacob tmd_msg_t msg;
597 1.1 mjacob
598 1.1 mjacob MEMZERO(&msg, sizeof (msg));
599 1.1 mjacob msg.nt_bus = bus;
600 1.1 mjacob msg.nt_iid = inp->in_iid;
601 1.5 mjacob if (isp->isp_maxluns > 16) {
602 1.5 mjacob msg.nt_lun = inp->in_scclun;
603 1.5 mjacob } else {
604 1.5 mjacob msg.nt_lun = inp->in_lun;
605 1.5 mjacob }
606 1.1 mjacob msg.nt_tagval = inp->in_seqid;
607 1.1 mjacob
608 1.1 mjacob if (inp->in_task_flags & TASK_FLAGS_ABORT_TASK) {
609 1.1 mjacob PRINTF(f1, isp->isp_name, "ABORT TASK",
610 1.1 mjacob inp->in_iid, inp->in_lun, inp->in_seqid);
611 1.1 mjacob msg.nt_msg[0] = MSG_ABORT_TAG;
612 1.1 mjacob } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_TASK_SET) {
613 1.1 mjacob PRINTF(f1, isp->isp_name, "CLEAR TASK SET",
614 1.1 mjacob inp->in_iid, inp->in_lun, inp->in_seqid);
615 1.1 mjacob msg.nt_msg[0] = MSG_CLEAR_QUEUE;
616 1.1 mjacob } else if (inp->in_task_flags & TASK_FLAGS_TARGET_RESET) {
617 1.1 mjacob PRINTF(f1, isp->isp_name, "TARGET RESET",
618 1.1 mjacob inp->in_iid, inp->in_lun, inp->in_seqid);
619 1.1 mjacob msg.nt_msg[0] = MSG_BUS_DEV_RESET;
620 1.1 mjacob } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_ACA) {
621 1.1 mjacob PRINTF(f1, isp->isp_name, "CLEAR ACA",
622 1.1 mjacob inp->in_iid, inp->in_lun, inp->in_seqid);
623 1.1 mjacob /* ???? */
624 1.1 mjacob msg.nt_msg[0] = MSG_REL_RECOVERY;
625 1.1 mjacob } else if (inp->in_task_flags & TASK_FLAGS_TERMINATE_TASK) {
626 1.1 mjacob PRINTF(f1, isp->isp_name, "TERMINATE TASK",
627 1.1 mjacob inp->in_iid, inp->in_lun, inp->in_seqid);
628 1.1 mjacob msg.nt_msg[0] = MSG_TERM_IO_PROC;
629 1.1 mjacob } else {
630 1.1 mjacob PRINTF(f2, isp->isp_name, "task flag",
631 1.1 mjacob inp->in_status, inp->in_lun, inp->in_iid,
632 1.1 mjacob inp->in_task_flags, inp->in_seqid);
633 1.1 mjacob }
634 1.1 mjacob if (msg.nt_msg[0]) {
635 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
636 1.1 mjacob }
637 1.1 mjacob }
638 1.1 mjacob }
639 1.1 mjacob
640 1.1 mjacob static void
641 1.1 mjacob isp_notify_ack(isp, arg)
642 1.1 mjacob struct ispsoftc *isp;
643 1.1 mjacob void *arg;
644 1.1 mjacob {
645 1.1 mjacob char storage[QENTRY_LEN];
646 1.1 mjacob u_int16_t iptr, optr;
647 1.1 mjacob void *outp;
648 1.1 mjacob
649 1.1 mjacob if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
650 1.1 mjacob PRINTF("%s: Request Queue Overflow For isp_notify_ack\n",
651 1.1 mjacob isp->isp_name);
652 1.1 mjacob return;
653 1.1 mjacob }
654 1.1 mjacob
655 1.2 mjacob MEMZERO(storage, QENTRY_LEN);
656 1.1 mjacob
657 1.1 mjacob if (IS_FC(isp)) {
658 1.1 mjacob na_fcentry_t *na = (na_fcentry_t *) storage;
659 1.1 mjacob if (arg) {
660 1.1 mjacob in_fcentry_t *inp = arg;
661 1.2 mjacob MEMCPY(storage, arg, sizeof (isphdr_t));
662 1.1 mjacob na->na_iid = inp->in_iid;
663 1.5 mjacob if (isp->isp_maxluns > 16) {
664 1.5 mjacob na->na_lun = inp->in_scclun;
665 1.5 mjacob } else {
666 1.5 mjacob na->na_lun = inp->in_lun;
667 1.5 mjacob }
668 1.1 mjacob na->na_task_flags = inp->in_task_flags;
669 1.1 mjacob na->na_seqid = inp->in_seqid;
670 1.1 mjacob na->na_flags = NAFC_RCOUNT;
671 1.1 mjacob if (inp->in_status == IN_RESET) {
672 1.1 mjacob na->na_flags |= NAFC_RST_CLRD;
673 1.1 mjacob }
674 1.1 mjacob } else {
675 1.1 mjacob na->na_flags = NAFC_RST_CLRD;
676 1.1 mjacob }
677 1.4 he na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
678 1.4 he na->na_header.rqs_entry_count = 1;
679 1.1 mjacob ISP_SWIZ_NOT_ACK_FC(isp, outp, na);
680 1.1 mjacob } else {
681 1.1 mjacob na_entry_t *na = (na_entry_t *) storage;
682 1.1 mjacob if (arg) {
683 1.1 mjacob in_entry_t *inp = arg;
684 1.2 mjacob MEMCPY(storage, arg, sizeof (isphdr_t));
685 1.1 mjacob na->na_iid = inp->in_iid;
686 1.1 mjacob na->na_lun = inp->in_lun;
687 1.1 mjacob na->na_tgt = inp->in_tgt;
688 1.1 mjacob na->na_seqid = inp->in_seqid;
689 1.1 mjacob if (inp->in_status == IN_RESET) {
690 1.4 he na->na_event = NA_RST_CLRD;
691 1.1 mjacob }
692 1.1 mjacob } else {
693 1.4 he na->na_event = NA_RST_CLRD;
694 1.1 mjacob }
695 1.4 he na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
696 1.4 he na->na_header.rqs_entry_count = 1;
697 1.1 mjacob ISP_SWIZ_NOT_ACK(isp, outp, na);
698 1.1 mjacob }
699 1.1 mjacob ISP_TDQE(isp, "isp_notify_ack", (int) optr, storage);
700 1.1 mjacob ISP_ADD_REQUEST(isp, iptr);
701 1.1 mjacob }
702 1.1 mjacob
703 1.1 mjacob static void
704 1.1 mjacob isp_handle_atio(isp, aep)
705 1.1 mjacob struct ispsoftc *isp;
706 1.1 mjacob at_entry_t *aep;
707 1.1 mjacob {
708 1.1 mjacob int lun;
709 1.1 mjacob lun = aep->at_lun;
710 1.1 mjacob /*
711 1.1 mjacob * The firmware status (except for the QLTM_SVALID bit) indicates
712 1.1 mjacob * why this ATIO was sent to us.
713 1.1 mjacob *
714 1.1 mjacob * If QLTM_SVALID is set, the firware has recommended Sense Data.
715 1.1 mjacob *
716 1.1 mjacob * If the DISCONNECTS DISABLED bit is set in the flags field,
717 1.1 mjacob * we're still connected on the SCSI bus - i.e. the initiator
718 1.1 mjacob * did not set DiscPriv in the identify message. We don't care
719 1.1 mjacob * about this so it's ignored.
720 1.1 mjacob */
721 1.1 mjacob
722 1.1 mjacob switch(aep->at_status & ~QLTM_SVALID) {
723 1.1 mjacob case AT_PATH_INVALID:
724 1.1 mjacob /*
725 1.1 mjacob * ATIO rejected by the firmware due to disabled lun.
726 1.1 mjacob */
727 1.2 mjacob PRINTF("%s: rejected ATIO for disabled lun %d\n",
728 1.1 mjacob isp->isp_name, lun);
729 1.1 mjacob break;
730 1.1 mjacob case AT_NOCAP:
731 1.1 mjacob /*
732 1.1 mjacob * Requested Capability not available
733 1.1 mjacob * We sent an ATIO that overflowed the firmware's
734 1.1 mjacob * command resource count.
735 1.1 mjacob */
736 1.1 mjacob PRINTF("%s: rejected ATIO for lun %d because of command count"
737 1.1 mjacob " overflow\n", isp->isp_name, lun);
738 1.1 mjacob break;
739 1.1 mjacob
740 1.1 mjacob case AT_BDR_MSG:
741 1.1 mjacob /*
742 1.1 mjacob * If we send an ATIO to the firmware to increment
743 1.1 mjacob * its command resource count, and the firmware is
744 1.1 mjacob * recovering from a Bus Device Reset, it returns
745 1.1 mjacob * the ATIO with this status. We set the command
746 1.1 mjacob * resource count in the Enable Lun entry and no
747 1.1 mjacob * not increment it. Therefore we should never get
748 1.1 mjacob * this status here.
749 1.1 mjacob */
750 1.2 mjacob PRINTF("%s: ATIO returned for lun %d because it was in the "
751 1.1 mjacob " middle of coping with a Bus Device Reset\n",
752 1.1 mjacob isp->isp_name, lun);
753 1.1 mjacob break;
754 1.1 mjacob
755 1.1 mjacob case AT_CDB: /* Got a CDB */
756 1.1 mjacob case AT_PHASE_ERROR: /* Bus Phase Sequence Error */
757 1.1 mjacob /*
758 1.1 mjacob * Punt to platform specific layer.
759 1.1 mjacob */
760 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
761 1.1 mjacob break;
762 1.1 mjacob
763 1.1 mjacob case AT_RESET:
764 1.1 mjacob /*
765 1.1 mjacob * A bus reset came along an blew away this command. Why
766 1.1 mjacob * they do this in addition the async event code stuff,
767 1.1 mjacob * I dunno.
768 1.1 mjacob *
769 1.1 mjacob * Ignore it because the async event will clear things
770 1.1 mjacob * up for us.
771 1.1 mjacob */
772 1.1 mjacob PRINTF("%s: ATIO returned for lun %d from initiator %d because"
773 1.1 mjacob " a Bus Reset occurred\n", isp->isp_name, lun,
774 1.1 mjacob aep->at_iid);
775 1.1 mjacob break;
776 1.1 mjacob
777 1.1 mjacob
778 1.1 mjacob default:
779 1.1 mjacob PRINTF("%s: Unknown ATIO status 0x%x from initiator %d for lun"
780 1.1 mjacob " %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun);
781 1.1 mjacob (void) isp_target_put_atio(isp, aep->at_iid, aep->at_tgt,
782 1.1 mjacob lun, aep->at_tag_type, aep->at_tag_val);
783 1.1 mjacob break;
784 1.1 mjacob }
785 1.1 mjacob }
786 1.1 mjacob
787 1.1 mjacob static void
788 1.1 mjacob isp_handle_atio2(isp, aep)
789 1.1 mjacob struct ispsoftc *isp;
790 1.1 mjacob at2_entry_t *aep;
791 1.1 mjacob {
792 1.1 mjacob int lun;
793 1.5 mjacob
794 1.5 mjacob if (isp->isp_maxluns > 16) {
795 1.5 mjacob lun = aep->at_scclun;
796 1.5 mjacob } else {
797 1.5 mjacob lun = aep->at_lun;
798 1.5 mjacob }
799 1.5 mjacob
800 1.1 mjacob /*
801 1.1 mjacob * The firmware status (except for the QLTM_SVALID bit) indicates
802 1.1 mjacob * why this ATIO was sent to us.
803 1.1 mjacob *
804 1.1 mjacob * If QLTM_SVALID is set, the firware has recommended Sense Data.
805 1.1 mjacob *
806 1.1 mjacob * If the DISCONNECTS DISABLED bit is set in the flags field,
807 1.1 mjacob * we're still connected on the SCSI bus - i.e. the initiator
808 1.1 mjacob * did not set DiscPriv in the identify message. We don't care
809 1.1 mjacob * about this so it's ignored.
810 1.1 mjacob */
811 1.1 mjacob
812 1.1 mjacob switch(aep->at_status & ~QLTM_SVALID) {
813 1.1 mjacob case AT_PATH_INVALID:
814 1.1 mjacob /*
815 1.1 mjacob * ATIO rejected by the firmware due to disabled lun.
816 1.1 mjacob */
817 1.2 mjacob PRINTF("%s: rejected ATIO2 for disabled lun %d\n",
818 1.1 mjacob isp->isp_name, lun);
819 1.1 mjacob break;
820 1.1 mjacob case AT_NOCAP:
821 1.1 mjacob /*
822 1.1 mjacob * Requested Capability not available
823 1.1 mjacob * We sent an ATIO that overflowed the firmware's
824 1.1 mjacob * command resource count.
825 1.1 mjacob */
826 1.1 mjacob PRINTF("%s: rejected ATIO2 for lun %d because of command count"
827 1.1 mjacob " overflow\n", isp->isp_name, lun);
828 1.1 mjacob break;
829 1.1 mjacob
830 1.1 mjacob case AT_BDR_MSG:
831 1.1 mjacob /*
832 1.1 mjacob * If we send an ATIO to the firmware to increment
833 1.1 mjacob * its command resource count, and the firmware is
834 1.1 mjacob * recovering from a Bus Device Reset, it returns
835 1.1 mjacob * the ATIO with this status. We set the command
836 1.1 mjacob * resource count in the Enable Lun entry and no
837 1.1 mjacob * not increment it. Therefore we should never get
838 1.1 mjacob * this status here.
839 1.1 mjacob */
840 1.2 mjacob PRINTF("%s: ATIO2 returned for lun %d because it was in the "
841 1.1 mjacob " middle of coping with a Bus Device Reset\n",
842 1.1 mjacob isp->isp_name, lun);
843 1.1 mjacob break;
844 1.1 mjacob
845 1.1 mjacob case AT_CDB: /* Got a CDB */
846 1.1 mjacob /*
847 1.1 mjacob * Punt to platform specific layer.
848 1.1 mjacob */
849 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
850 1.1 mjacob break;
851 1.1 mjacob
852 1.1 mjacob case AT_RESET:
853 1.1 mjacob /*
854 1.1 mjacob * A bus reset came along an blew away this command. Why
855 1.1 mjacob * they do this in addition the async event code stuff,
856 1.1 mjacob * I dunno.
857 1.1 mjacob *
858 1.1 mjacob * Ignore it because the async event will clear things
859 1.1 mjacob * up for us.
860 1.1 mjacob */
861 1.1 mjacob PRINTF("%s: ATIO2 returned for lun %d from initiator %d because"
862 1.1 mjacob " a Bus Reset occurred\n", isp->isp_name, lun,
863 1.1 mjacob aep->at_iid);
864 1.1 mjacob break;
865 1.1 mjacob
866 1.1 mjacob
867 1.1 mjacob default:
868 1.1 mjacob PRINTF("%s: Unknown ATIO2 status 0x%x from initiator %d for lun"
869 1.1 mjacob " %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun);
870 1.1 mjacob (void) isp_target_put_atio(isp, aep->at_iid, 0, lun, 0, 0);
871 1.1 mjacob break;
872 1.1 mjacob }
873 1.1 mjacob }
874 1.1 mjacob
875 1.1 mjacob static void
876 1.1 mjacob isp_handle_ctio(isp, ct)
877 1.1 mjacob struct ispsoftc *isp;
878 1.1 mjacob ct_entry_t *ct;
879 1.1 mjacob {
880 1.1 mjacob ISP_SCSI_XFER_T *xs;
881 1.1 mjacob int pl = 0;
882 1.1 mjacob char *fmsg = NULL;
883 1.1 mjacob
884 1.1 mjacob if (ct->ct_reserved) {
885 1.1 mjacob xs = isp_find_xs(isp, ct->ct_reserved);
886 1.1 mjacob if (xs == NULL)
887 1.1 mjacob pl = 0;
888 1.1 mjacob } else {
889 1.1 mjacob pl = 2;
890 1.1 mjacob xs = NULL;
891 1.1 mjacob }
892 1.1 mjacob
893 1.1 mjacob switch(ct->ct_status & ~QLTM_SVALID) {
894 1.1 mjacob case CT_OK:
895 1.1 mjacob /*
896 1.1 mjacob * There are generally 3 possibilities as to why we'd get
897 1.1 mjacob * this condition:
898 1.1 mjacob * We disconnected after receiving a CDB.
899 1.1 mjacob * We sent or received data.
900 1.1 mjacob * We sent status & command complete.
901 1.1 mjacob */
902 1.1 mjacob
903 1.4 he if (ct->ct_flags & CT_SENDSTATUS) {
904 1.4 he break;
905 1.4 he } else if ((ct->ct_flags & CT_DATAMASK) == CT_NO_DATA) {
906 1.1 mjacob /*
907 1.1 mjacob * Nothing to do in this case.
908 1.1 mjacob */
909 1.4 he IDPRINTF(pl, ("%s:CTIO- iid %d disconnected OK\n",
910 1.4 he isp->isp_name, ct->ct_iid));
911 1.1 mjacob return;
912 1.1 mjacob }
913 1.1 mjacob break;
914 1.1 mjacob
915 1.1 mjacob case CT_BDR_MSG:
916 1.1 mjacob /*
917 1.1 mjacob * Bus Device Reset message received or the SCSI Bus has
918 1.1 mjacob * been Reset; the firmware has gone to Bus Free.
919 1.1 mjacob *
920 1.1 mjacob * The firmware generates an async mailbox interupt to
921 1.1 mjacob * notify us of this and returns outstanding CTIOs with this
922 1.1 mjacob * status. These CTIOs are handled in that same way as
923 1.1 mjacob * CT_ABORTED ones, so just fall through here.
924 1.1 mjacob */
925 1.1 mjacob fmsg = "Bus Device Reset";
926 1.1 mjacob /*FALLTHROUGH*/
927 1.1 mjacob case CT_RESET:
928 1.1 mjacob if (fmsg == NULL)
929 1.1 mjacob fmsg = "Bus Reset";
930 1.1 mjacob /*FALLTHROUGH*/
931 1.1 mjacob case CT_ABORTED:
932 1.1 mjacob /*
933 1.1 mjacob * When an Abort message is received the firmware goes to
934 1.1 mjacob * Bus Free and returns all outstanding CTIOs with the status
935 1.1 mjacob * set, then sends us an Immediate Notify entry.
936 1.1 mjacob */
937 1.1 mjacob if (fmsg == NULL)
938 1.1 mjacob fmsg = "ABORT TASK sent by Initiator";
939 1.1 mjacob
940 1.1 mjacob PRINTF("%s: CTIO destroyed by %s\n", isp->isp_name, fmsg);
941 1.1 mjacob break;
942 1.1 mjacob
943 1.1 mjacob case CT_INVAL:
944 1.1 mjacob /*
945 1.1 mjacob * CTIO rejected by the firmware due to disabled lun.
946 1.1 mjacob * "Cannot Happen".
947 1.1 mjacob */
948 1.1 mjacob PRINTF("%s: Firmware rejected CTIO for disabled lun %d\n",
949 1.1 mjacob isp->isp_name, ct->ct_lun);
950 1.1 mjacob break;
951 1.1 mjacob
952 1.1 mjacob case CT_NOPATH:
953 1.1 mjacob /*
954 1.1 mjacob * CTIO rejected by the firmware due "no path for the
955 1.1 mjacob * nondisconnecting nexus specified". This means that
956 1.1 mjacob * we tried to access the bus while a non-disconnecting
957 1.1 mjacob * command is in process.
958 1.1 mjacob */
959 1.1 mjacob PRINTF("%s: Firmware rejected CTIO for bad nexus %d/%d/%d\n",
960 1.1 mjacob isp->isp_name, ct->ct_iid, ct->ct_tgt, ct->ct_lun);
961 1.1 mjacob break;
962 1.1 mjacob
963 1.1 mjacob case CT_RSELTMO:
964 1.1 mjacob fmsg = "Reselection";
965 1.1 mjacob /*FALLTHROUGH*/
966 1.1 mjacob case CT_TIMEOUT:
967 1.1 mjacob if (fmsg == NULL)
968 1.1 mjacob fmsg = "Command";
969 1.1 mjacob PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg);
970 1.1 mjacob break;
971 1.1 mjacob
972 1.1 mjacob case CT_ERR:
973 1.1 mjacob fmsg = "Completed with Error";
974 1.1 mjacob /*FALLTHROUGH*/
975 1.1 mjacob case CT_PHASE_ERROR:
976 1.1 mjacob if (fmsg == NULL)
977 1.1 mjacob fmsg = "Phase Sequence Error";
978 1.1 mjacob /*FALLTHROUGH*/
979 1.1 mjacob case CT_TERMINATED:
980 1.1 mjacob if (fmsg == NULL)
981 1.1 mjacob fmsg = "terminated by TERMINATE TRANSFER";
982 1.1 mjacob /*FALLTHROUGH*/
983 1.1 mjacob case CT_NOACK:
984 1.1 mjacob if (fmsg == NULL)
985 1.1 mjacob fmsg = "unacknowledged Immediate Notify pending";
986 1.1 mjacob
987 1.1 mjacob PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg);
988 1.1 mjacob #if 0
989 1.1 mjacob if (status & SENSEVALID) {
990 1.1 mjacob bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
991 1.1 mjacob (caddr_t) &cdp->cd_sensedata,
992 1.1 mjacob sizeof(scsi_sense_t));
993 1.1 mjacob cdp->cd_flags |= CDF_SENSEVALID;
994 1.1 mjacob }
995 1.1 mjacob #endif
996 1.1 mjacob break;
997 1.1 mjacob default:
998 1.1 mjacob PRINTF("%s: Unknown CTIO status 0x%x\n", isp->isp_name,
999 1.1 mjacob ct->ct_status & ~QLTM_SVALID);
1000 1.1 mjacob break;
1001 1.1 mjacob }
1002 1.1 mjacob
1003 1.1 mjacob if (xs == NULL) {
1004 1.1 mjacob /*
1005 1.1 mjacob * There may be more than one CTIO for a data transfer,
1006 1.1 mjacob * or this may be a status CTIO we're not monitoring.
1007 1.1 mjacob *
1008 1.1 mjacob * The assumption is that they'll all be returned in the
1009 1.1 mjacob * order we got them.
1010 1.1 mjacob */
1011 1.1 mjacob if (ct->ct_reserved == 0) {
1012 1.1 mjacob if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
1013 1.1 mjacob IDPRINTF(pl,
1014 1.1 mjacob ("%s: intermediate CTIO completed ok\n",
1015 1.1 mjacob isp->isp_name));
1016 1.1 mjacob } else {
1017 1.1 mjacob IDPRINTF(pl,
1018 1.1 mjacob ("%s: unmonitored CTIO completed ok\n",
1019 1.1 mjacob isp->isp_name));
1020 1.1 mjacob }
1021 1.1 mjacob } else {
1022 1.1 mjacob IDPRINTF(pl,
1023 1.1 mjacob ("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n",
1024 1.1 mjacob isp->isp_name, ct->ct_reserved,
1025 1.1 mjacob ct->ct_status & ~QLTM_SVALID));
1026 1.1 mjacob }
1027 1.1 mjacob } else {
1028 1.1 mjacob if (ct->ct_flags & CT_SENDSTATUS) {
1029 1.1 mjacob /*
1030 1.1 mjacob * Sent status and command complete.
1031 1.1 mjacob *
1032 1.1 mjacob * We're now really done with this command, so we
1033 1.1 mjacob * punt to the platform dependent layers because
1034 1.1 mjacob * only there can we do the appropriate command
1035 1.1 mjacob * complete thread synchronization.
1036 1.1 mjacob */
1037 1.1 mjacob IDPRINTF(pl,
1038 1.4 he ("%s:status CTIO complete\n", isp->isp_name));
1039 1.1 mjacob } else {
1040 1.1 mjacob /*
1041 1.1 mjacob * Final CTIO completed. Release DMA resources and
1042 1.1 mjacob * notify platform dependent layers.
1043 1.1 mjacob */
1044 1.1 mjacob IDPRINTF(pl,
1045 1.1 mjacob ("%s: data CTIO complete\n", isp->isp_name));
1046 1.1 mjacob ISP_DMAFREE(isp, xs, ct->ct_reserved);
1047 1.1 mjacob }
1048 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
1049 1.1 mjacob /*
1050 1.1 mjacob * The platform layer will destroy the handle if appropriate.
1051 1.1 mjacob */
1052 1.1 mjacob }
1053 1.1 mjacob }
1054 1.1 mjacob
1055 1.1 mjacob static void
1056 1.1 mjacob isp_handle_ctio2(isp, ct)
1057 1.1 mjacob struct ispsoftc *isp;
1058 1.1 mjacob ct2_entry_t *ct;
1059 1.1 mjacob {
1060 1.1 mjacob ISP_SCSI_XFER_T *xs;
1061 1.1 mjacob int pl = 3;
1062 1.1 mjacob char *fmsg = NULL;
1063 1.1 mjacob
1064 1.1 mjacob if (ct->ct_reserved) {
1065 1.1 mjacob xs = isp_find_xs(isp, ct->ct_reserved);
1066 1.1 mjacob if (xs == NULL)
1067 1.1 mjacob pl = 0;
1068 1.1 mjacob } else {
1069 1.1 mjacob pl = 2;
1070 1.1 mjacob xs = NULL;
1071 1.1 mjacob }
1072 1.1 mjacob
1073 1.1 mjacob switch(ct->ct_status & ~QLTM_SVALID) {
1074 1.1 mjacob case CT_OK:
1075 1.1 mjacob /*
1076 1.1 mjacob * There are generally 2 possibilities as to why we'd get
1077 1.1 mjacob * this condition:
1078 1.1 mjacob * We sent or received data.
1079 1.1 mjacob * We sent status & command complete.
1080 1.1 mjacob */
1081 1.1 mjacob
1082 1.1 mjacob break;
1083 1.1 mjacob
1084 1.1 mjacob case CT_BDR_MSG:
1085 1.1 mjacob /*
1086 1.1 mjacob * Bus Device Reset message received or the SCSI Bus has
1087 1.1 mjacob * been Reset; the firmware has gone to Bus Free.
1088 1.1 mjacob *
1089 1.1 mjacob * The firmware generates an async mailbox interupt to
1090 1.1 mjacob * notify us of this and returns outstanding CTIOs with this
1091 1.1 mjacob * status. These CTIOs are handled in that same way as
1092 1.1 mjacob * CT_ABORTED ones, so just fall through here.
1093 1.1 mjacob */
1094 1.1 mjacob fmsg = "Bus Device Reset";
1095 1.1 mjacob /*FALLTHROUGH*/
1096 1.1 mjacob case CT_RESET:
1097 1.1 mjacob if (fmsg == NULL)
1098 1.1 mjacob fmsg = "Bus Reset";
1099 1.1 mjacob /*FALLTHROUGH*/
1100 1.1 mjacob case CT_ABORTED:
1101 1.1 mjacob /*
1102 1.1 mjacob * When an Abort message is received the firmware goes to
1103 1.1 mjacob * Bus Free and returns all outstanding CTIOs with the status
1104 1.1 mjacob * set, then sends us an Immediate Notify entry.
1105 1.1 mjacob */
1106 1.1 mjacob if (fmsg == NULL)
1107 1.1 mjacob fmsg = "ABORT TASK sent by Initiator";
1108 1.1 mjacob
1109 1.1 mjacob PRINTF("%s: CTIO2 destroyed by %s\n", isp->isp_name, fmsg);
1110 1.1 mjacob break;
1111 1.1 mjacob
1112 1.1 mjacob case CT_INVAL:
1113 1.1 mjacob /*
1114 1.2 mjacob * CTIO rejected by the firmware - invalid data direction.
1115 1.1 mjacob */
1116 1.2 mjacob PRINTF("%s: CTIO2 had wrong data directiond\n", isp->isp_name);
1117 1.1 mjacob break;
1118 1.1 mjacob
1119 1.1 mjacob case CT_NOPATH:
1120 1.1 mjacob /*
1121 1.1 mjacob * CTIO rejected by the firmware due "no path for the
1122 1.1 mjacob * nondisconnecting nexus specified". This means that
1123 1.1 mjacob * we tried to access the bus while a non-disconnecting
1124 1.1 mjacob * command is in process.
1125 1.1 mjacob */
1126 1.1 mjacob PRINTF("%s: Firmware rejected CTIO2 for bad nexus %d->%d\n",
1127 1.1 mjacob isp->isp_name, ct->ct_iid, ct->ct_lun);
1128 1.1 mjacob break;
1129 1.1 mjacob
1130 1.1 mjacob case CT_RSELTMO:
1131 1.1 mjacob fmsg = "Reselection";
1132 1.1 mjacob /*FALLTHROUGH*/
1133 1.1 mjacob case CT_TIMEOUT:
1134 1.1 mjacob if (fmsg == NULL)
1135 1.1 mjacob fmsg = "Command";
1136 1.1 mjacob PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg);
1137 1.1 mjacob break;
1138 1.1 mjacob
1139 1.1 mjacob case CT_ERR:
1140 1.1 mjacob fmsg = "Completed with Error";
1141 1.1 mjacob /*FALLTHROUGH*/
1142 1.1 mjacob case CT_PHASE_ERROR: /* Bus phase sequence error */
1143 1.1 mjacob if (fmsg == NULL)
1144 1.1 mjacob fmsg = "Phase Sequence Error";
1145 1.1 mjacob /*FALLTHROUGH*/
1146 1.1 mjacob case CT_TERMINATED:
1147 1.1 mjacob if (fmsg == NULL)
1148 1.1 mjacob fmsg = "terminated by TERMINATE TRANSFER";
1149 1.1 mjacob /*FALLTHROUGH*/
1150 1.1 mjacob case CT_LOGOUT:
1151 1.1 mjacob if (fmsg == NULL)
1152 1.1 mjacob fmsg = "Port Logout";
1153 1.1 mjacob /*FALLTHROUGH*/
1154 1.1 mjacob case CT_PORTNOTAVAIL:
1155 1.1 mjacob if (fmsg == NULL)
1156 1.1 mjacob fmsg = "Port not available";
1157 1.1 mjacob case CT_NOACK:
1158 1.1 mjacob if (fmsg == NULL)
1159 1.1 mjacob fmsg = "unacknowledged Immediate Notify pending";
1160 1.1 mjacob
1161 1.1 mjacob PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg);
1162 1.1 mjacob #if 0
1163 1.1 mjacob if (status & SENSEVALID) {
1164 1.1 mjacob bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
1165 1.1 mjacob (caddr_t) &cdp->cd_sensedata,
1166 1.1 mjacob sizeof(scsi_sense_t));
1167 1.1 mjacob cdp->cd_flags |= CDF_SENSEVALID;
1168 1.1 mjacob }
1169 1.1 mjacob #endif
1170 1.1 mjacob break;
1171 1.1 mjacob
1172 1.1 mjacob case CT_INVRXID:
1173 1.1 mjacob /*
1174 1.1 mjacob * CTIO rejected by the firmware because an invalid RX_ID.
1175 1.1 mjacob * Just print a message.
1176 1.1 mjacob */
1177 1.2 mjacob PRINTF("%s: CTIO2 completed with Invalid RX_ID 0x%x\n",
1178 1.1 mjacob isp->isp_name, ct->ct_rxid);
1179 1.1 mjacob break;
1180 1.1 mjacob
1181 1.1 mjacob default:
1182 1.1 mjacob IDPRINTF(pl, ("%s: Unknown CTIO status 0x%x\n", isp->isp_name,
1183 1.1 mjacob ct->ct_status & ~QLTM_SVALID));
1184 1.1 mjacob break;
1185 1.1 mjacob }
1186 1.1 mjacob
1187 1.1 mjacob if (xs == NULL) {
1188 1.1 mjacob /*
1189 1.1 mjacob * There may be more than one CTIO for a data transfer,
1190 1.1 mjacob * or this may be a status CTIO we're not monitoring.
1191 1.1 mjacob *
1192 1.1 mjacob * The assumption is that they'll all be returned in the
1193 1.1 mjacob * order we got them.
1194 1.1 mjacob */
1195 1.1 mjacob if (ct->ct_reserved == 0) {
1196 1.1 mjacob if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
1197 1.1 mjacob IDPRINTF(pl,
1198 1.1 mjacob ("%s: intermediate CTIO completed ok\n",
1199 1.1 mjacob isp->isp_name));
1200 1.1 mjacob } else {
1201 1.1 mjacob IDPRINTF(pl,
1202 1.1 mjacob ("%s: unmonitored CTIO completed ok\n",
1203 1.1 mjacob isp->isp_name));
1204 1.1 mjacob }
1205 1.1 mjacob } else {
1206 1.1 mjacob IDPRINTF(pl,
1207 1.1 mjacob ("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n",
1208 1.1 mjacob isp->isp_name, ct->ct_reserved,
1209 1.1 mjacob ct->ct_status & ~QLTM_SVALID));
1210 1.1 mjacob }
1211 1.1 mjacob } else {
1212 1.1 mjacob if (ct->ct_flags & CT_SENDSTATUS) {
1213 1.1 mjacob /*
1214 1.1 mjacob * Sent status and command complete.
1215 1.1 mjacob *
1216 1.1 mjacob * We're now really done with this command, so we
1217 1.1 mjacob * punt to the platform dependent layers because
1218 1.1 mjacob * only there can we do the appropriate command
1219 1.1 mjacob * complete thread synchronization.
1220 1.1 mjacob */
1221 1.1 mjacob IDPRINTF(pl,
1222 1.1 mjacob ("%s: status CTIO complete\n", isp->isp_name));
1223 1.1 mjacob } else {
1224 1.1 mjacob /*
1225 1.1 mjacob * Final CTIO completed. Release DMA resources and
1226 1.1 mjacob * notify platform dependent layers.
1227 1.1 mjacob */
1228 1.1 mjacob IDPRINTF(pl,
1229 1.1 mjacob ("%s: data CTIO complete\n", isp->isp_name));
1230 1.1 mjacob ISP_DMAFREE(isp, xs, ct->ct_reserved);
1231 1.1 mjacob }
1232 1.1 mjacob (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
1233 1.1 mjacob /*
1234 1.1 mjacob * The platform layer will destroy the handle if appropriate.
1235 1.1 mjacob */
1236 1.1 mjacob }
1237 1.1 mjacob }
1238 1.1 mjacob #endif
1239