isp_target.c revision 1.9 1 /* $NetBSD: isp_target.c,v 1.9 2000/08/14 07:11:14 mjacob Exp $ */
2 /*
3 * This driver, which is contained in NetBSD in the files:
4 *
5 * sys/dev/ic/isp.c
6 * sys/dev/ic/ic/isp.c
7 * sys/dev/ic/ic/isp_inline.h
8 * sys/dev/ic/ic/isp_netbsd.c
9 * sys/dev/ic/ic/isp_netbsd.h
10 * sys/dev/ic/ic/isp_target.c
11 * sys/dev/ic/ic/isp_target.h
12 * sys/dev/ic/ic/isp_tpublic.h
13 * sys/dev/ic/ic/ispmbox.h
14 * sys/dev/ic/ic/ispreg.h
15 * sys/dev/ic/ic/ispvar.h
16 * sys/microcode/isp/asm_sbus.h
17 * sys/microcode/isp/asm_1040.h
18 * sys/microcode/isp/asm_1080.h
19 * sys/microcode/isp/asm_12160.h
20 * sys/microcode/isp/asm_2100.h
21 * sys/microcode/isp/asm_2200.h
22 * sys/pci/isp_pci.c
23 * sys/sbus/isp_sbus.c
24 *
25 * Is being actively maintained by Matthew Jacob (mjacob (at) netbsd.org).
26 * This driver also is shared source with FreeBSD, OpenBSD, Linux, Solaris,
27 * Linux versions. This tends to be an interesting maintenance problem.
28 *
29 * Please coordinate with Matthew Jacob on changes you wish to make here.
30 */
31 /*
32 * Machine and OS Independent Target Mode Code for the Qlogic SCSI/FC adapters.
33 *
34 * Copyright (c) 1999 by Matthew Jacob
35 * All rights reserved.
36 * mjacob (at) feral.com
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice immediately at the beginning of the file, without modification,
43 * this list of conditions, and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. The name of the author may not be used to endorse or promote products
48 * derived from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
54 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 */
62
63 /*
64 * Include header file appropriate for platform we're building on.
65 */
66
67 #ifdef __NetBSD__
68 #include <dev/ic/isp_netbsd.h>
69 #endif
70 #ifdef __FreeBSD__
71 #include <dev/isp/isp_freebsd.h>
72 #endif
73 #ifdef __OpenBSD__
74 #include <dev/ic/isp_openbsd.h>
75 #endif
76 #ifdef __linux__
77 #include "isp_linux.h"
78 #endif
79
80 #ifdef ISP_TARGET_MODE
81 static char *atiocope =
82 "ATIO returned for lun %d because it was in the middle of Bus Device Reset";
83 static char *atior =
84 "ATIO returned for lun %d from initiator %d because a Bus Reset occurred";
85
86 static void isp_got_msg __P((struct ispsoftc *, int, in_entry_t *));
87 static void isp_got_msg_fc __P((struct ispsoftc *, int, in_fcentry_t *));
88 static void isp_notify_ack __P((struct ispsoftc *, void *));
89 static void isp_handle_atio(struct ispsoftc *, at_entry_t *);
90 static void isp_handle_atio2(struct ispsoftc *, at2_entry_t *);
91 static void isp_handle_ctio(struct ispsoftc *, ct_entry_t *);
92 static void isp_handle_ctio2(struct ispsoftc *, ct2_entry_t *);
93
94 /*
95 * The Qlogic driver gets an interrupt to look at response queue entries.
96 * Some of these are status completions for initiatior mode commands, but
97 * if target mode is enabled, we get a whole wad of response queue entries
98 * to be handled here.
99 *
100 * Basically the split into 3 main groups: Lun Enable/Modification responses,
101 * SCSI Command processing, and Immediate Notification events.
102 *
103 * You start by writing a request queue entry to enable target mode (and
104 * establish some resource limitations which you can modify later).
105 * The f/w responds with a LUN ENABLE or LUN MODIFY response with
106 * the status of this action. If the enable was successful, you can expect...
107 *
108 * Response queue entries with SCSI commands encapsulate show up in an ATIO
109 * (Accept Target IO) type- sometimes with enough info to stop the command at
110 * this level. Ultimately the driver has to feed back to the f/w's request
111 * queue a sequence of CTIOs (continue target I/O) that describe data to
112 * be moved and/or status to be sent) and finally finishing with sending
113 * to the f/w's response queue an ATIO which then completes the handshake
114 * with the f/w for that command. There's a lot of variations on this theme,
115 * including flags you can set in the CTIO for the Qlogic 2X00 fibre channel
116 * cards that 'auto-replenish' the f/w's ATIO count, but this is the basic
117 * gist of it.
118 *
119 * The third group that can show up in the response queue are Immediate
120 * Notification events. These include things like notifications of SCSI bus
121 * resets, or Bus Device Reset messages or other messages received. This
122 * a classic oddbins area. It can get a little wierd because you then turn
123 * around and acknowledge the Immediate Notify by writing an entry onto the
124 * request queue and then the f/w turns around and gives you an acknowledgement
125 * to *your* acknowledgement on the response queue (the idea being to let
126 * the f/w tell you when the event is *really* over I guess).
127 *
128 */
129
130
131 /*
132 * A new response queue entry has arrived. The interrupt service code
133 * has already swizzled it into the platform dependent from canonical form.
134 *
135 * Because of the way this driver is designed, unfortunately most of the
136 * actual synchronization work has to be done in the platform specific
137 * code- we have no synchroniation primitives in the common code.
138 */
139
140 int
141 isp_target_notify(isp, vptr, optrp)
142 struct ispsoftc *isp;
143 void *vptr;
144 u_int16_t *optrp;
145 {
146 u_int16_t status, seqid;
147 union {
148 at_entry_t *atiop;
149 at2_entry_t *at2iop;
150 ct_entry_t *ctiop;
151 ct2_entry_t *ct2iop;
152 lun_entry_t *lunenp;
153 in_entry_t *inotp;
154 in_fcentry_t *inot_fcp;
155 na_entry_t *nackp;
156 na_fcentry_t *nack_fcp;
157 isphdr_t *hp;
158 void * *vp;
159 #define atiop unp.atiop
160 #define at2iop unp.at2iop
161 #define ctiop unp.ctiop
162 #define ct2iop unp.ct2iop
163 #define lunenp unp.lunenp
164 #define inotp unp.inotp
165 #define inot_fcp unp.inot_fcp
166 #define nackp unp.nackp
167 #define nack_fcp unp.nack_fcp
168 #define hdrp unp.hp
169 } unp;
170 int bus, rval = 0;
171
172 unp.vp = vptr;
173
174 ISP_TDQE(isp, "isp_target_notify", (int) *optrp, vptr);
175
176 switch(hdrp->rqs_entry_type) {
177 case RQSTYPE_ATIO:
178 isp_handle_atio(isp, atiop);
179 break;
180 case RQSTYPE_CTIO:
181 isp_handle_ctio(isp, ctiop);
182 break;
183 case RQSTYPE_ATIO2:
184 isp_handle_atio2(isp, at2iop);
185 break;
186 case RQSTYPE_CTIO2:
187 isp_handle_ctio2(isp, ct2iop);
188 break;
189 case RQSTYPE_ENABLE_LUN:
190 case RQSTYPE_MODIFY_LUN:
191 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, vptr);
192 break;
193
194 case RQSTYPE_NOTIFY:
195 /*
196 * Either the ISP received a SCSI message it can't
197 * handle, or it's returning an Immed. Notify entry
198 * we sent. We can send Immed. Notify entries to
199 * increment the firmware's resource count for them
200 * (we set this initially in the Enable Lun entry).
201 */
202 bus = 0;
203 if (IS_FC(isp)) {
204 status = inot_fcp->in_status;
205 seqid = inot_fcp->in_seqid;
206 } else {
207 status = inotp->in_status & 0xff;
208 seqid = inotp->in_seqid;
209 if (IS_DUALBUS(isp)) {
210 bus = (inotp->in_iid & 0x80) >> 7;
211 inotp->in_iid &= ~0x80;
212 }
213 }
214 isp_prt(isp, ISP_LOGTDEBUG1,
215 "Immediate Notify, status=0x%x seqid=0x%x", status, seqid);
216 switch (status) {
217 case IN_RESET:
218 (void) isp_async(isp, ISPASYNC_BUS_RESET, &bus);
219 break;
220 case IN_MSG_RECEIVED:
221 case IN_IDE_RECEIVED:
222 if (IS_FC(isp)) {
223 isp_got_msg_fc(isp, bus, vptr);
224 } else {
225 isp_got_msg(isp, bus, vptr);
226 }
227 break;
228 case IN_RSRC_UNAVAIL:
229 isp_prt(isp, ISP_LOGWARN, "Firmware out of ATIOs");
230 break;
231 case IN_ABORT_TASK:
232 isp_prt(isp, ISP_LOGWARN,
233 "Abort Task for Initiator %d RX_ID 0x%x",
234 inot_fcp->in_iid, seqid);
235 break;
236 case IN_PORT_LOGOUT:
237 isp_prt(isp, ISP_LOGWARN,
238 "Port Logout for Initiator %d RX_ID 0x%x",
239 inot_fcp->in_iid, seqid);
240 break;
241 case IN_PORT_CHANGED:
242 isp_prt(isp, ISP_LOGWARN,
243 "Port Changed for Initiator %d RX_ID 0x%x",
244 inot_fcp->in_iid, seqid);
245 break;
246 case IN_GLOBAL_LOGO:
247 isp_prt(isp, ISP_LOGWARN, "All ports logged out");
248 break;
249 default:
250 isp_prt(isp, ISP_LOGERR,
251 "bad status (0x%x) in isp_target_notify", status);
252 break;
253 }
254 isp_notify_ack(isp, vptr);
255 break;
256
257 case RQSTYPE_NOTIFY_ACK:
258 /*
259 * The ISP is acknowledging our acknowledgement of an
260 * Immediate Notify entry for some asynchronous event.
261 */
262 if (IS_FC(isp)) {
263 isp_prt(isp, ISP_LOGTDEBUG1,
264 "Notify Ack status=0x%x seqid 0x%x",
265 nack_fcp->na_status, nack_fcp->na_seqid);
266 } else {
267 isp_prt(isp, ISP_LOGTDEBUG1,
268 "Notify Ack event 0x%x status=0x%x seqid 0x%x",
269 nackp->na_event, nackp->na_status, nackp->na_seqid);
270 }
271 break;
272 default:
273 isp_prt(isp, ISP_LOGERR,
274 "Unknown entry type 0x%x in isp_target_notify",
275 hdrp->rqs_entry_type);
276 rval = -1;
277 break;
278 }
279 #undef atiop
280 #undef at2iop
281 #undef ctiop
282 #undef ct2iop
283 #undef lunenp
284 #undef inotp
285 #undef inot_fcp
286 #undef nackp
287 #undef nack_fcp
288 #undef hdrp
289 return (rval);
290 }
291
292
293 /*
294 * Toggle (on/off) target mode for bus/target/lun
295 *
296 * The caller has checked for overlap and legality.
297 *
298 * Note that not all of bus, target or lun can be paid attention to.
299 * Note also that this action will not be complete until the f/w writes
300 * response entry. The caller is responsible for synchronizing this.
301 */
302 int
303 isp_lun_cmd(isp, cmd, bus, tgt, lun, opaque)
304 struct ispsoftc *isp;
305 int cmd;
306 int bus;
307 int tgt;
308 int lun;
309 u_int32_t opaque;
310 {
311 lun_entry_t el;
312 u_int16_t iptr, optr;
313 void *outp;
314
315
316 MEMZERO(&el, sizeof (el));
317 if (IS_DUALBUS(isp)) {
318 el.le_rsvd = (bus & 0x1) << 7;
319 }
320 el.le_cmd_count = DFLT_CMD_CNT;
321 el.le_in_count = DFLT_INOTIFY;
322 if (cmd == RQSTYPE_ENABLE_LUN) {
323 if (IS_SCSI(isp)) {
324 el.le_flags = LUN_TQAE|LUN_DISAD;
325 el.le_cdb6len = 12;
326 el.le_cdb7len = 12;
327 }
328 } else if (cmd == -RQSTYPE_ENABLE_LUN) {
329 cmd = RQSTYPE_ENABLE_LUN;
330 el.le_cmd_count = 0;
331 el.le_in_count = 0;
332 } else if (cmd == -RQSTYPE_MODIFY_LUN) {
333 cmd = RQSTYPE_MODIFY_LUN;
334 el.le_ops = LUN_CCDECR | LUN_INDECR;
335 } else {
336 el.le_ops = LUN_CCINCR | LUN_ININCR;
337 }
338 el.le_header.rqs_entry_type = cmd;
339 el.le_header.rqs_entry_count = 1;
340 el.le_reserved = opaque;
341 if (IS_SCSI(isp)) {
342 el.le_tgt = tgt;
343 el.le_lun = lun;
344 } else if (isp->isp_maxluns <= 16) {
345 el.le_lun = lun;
346 }
347
348 if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
349 isp_prt(isp, ISP_LOGWARN,
350 "Request Queue Overflow in isp_lun_cmd");
351 return (-1);
352 }
353 ISP_SWIZ_ENABLE_LUN(isp, outp, &el);
354 ISP_TDQE(isp, "isp_lun_cmd", (int) optr, &el);
355 ISP_ADD_REQUEST(isp, iptr);
356 return (0);
357 }
358
359
360 int
361 isp_target_put_entry(isp, ap)
362 struct ispsoftc *isp;
363 void *ap;
364 {
365 void *outp;
366 u_int16_t iptr, optr;
367 u_int8_t etype = ((isphdr_t *) ap)->rqs_entry_type;
368
369 if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
370 isp_prt(isp, ISP_LOGWARN,
371 "Request Queue Overflow in isp_target_put_entry");
372 return (-1);
373 }
374 switch (etype) {
375 case RQSTYPE_ATIO:
376 ISP_SWIZ_ATIO(isp, outp, ap);
377 break;
378 case RQSTYPE_ATIO2:
379 ISP_SWIZ_ATIO2(isp, outp, ap);
380 break;
381 case RQSTYPE_CTIO:
382 ISP_SWIZ_CTIO(isp, outp, ap);
383 break;
384 case RQSTYPE_CTIO2:
385 ISP_SWIZ_CTIO2(isp, outp, ap);
386 break;
387 default:
388 isp_prt(isp, ISP_LOGERR,
389 "Unknown type 0x%x in isp_put_entry", etype);
390 return (-1);
391 }
392
393 ISP_TDQE(isp, "isp_target_put_entry", (int) optr, ap);;
394
395 ISP_ADD_REQUEST(isp, iptr);
396 return (0);
397 }
398
399 int
400 isp_target_put_atio(isp, iid, tgt, lun, ttype, tval)
401 struct ispsoftc *isp;
402 int iid;
403 int tgt;
404 int lun;
405 int ttype;
406 int tval;
407 {
408 union {
409 at_entry_t _atio;
410 at2_entry_t _atio2;
411 } atun;
412
413 MEMZERO(&atun, sizeof atun);
414 if (IS_FC(isp)) {
415 atun._atio2.at_header.rqs_entry_type = RQSTYPE_ATIO2;
416 atun._atio2.at_header.rqs_entry_count = 1;
417 if (isp->isp_maxluns > 16) {
418 atun._atio2.at_scclun = (u_int16_t) lun;
419 } else {
420 atun._atio2.at_lun = (u_int8_t) lun;
421 }
422 atun._atio2.at_status = CT_OK;
423 } else {
424 atun._atio.at_header.rqs_entry_type = RQSTYPE_ATIO;
425 atun._atio.at_header.rqs_entry_count = 1;
426 atun._atio.at_iid = iid;
427 atun._atio.at_tgt = tgt;
428 atun._atio.at_lun = lun;
429 atun._atio.at_tag_type = ttype;
430 atun._atio.at_tag_val = tval;
431 atun._atio.at_status = CT_OK;
432 }
433 return (isp_target_put_entry(isp, &atun));
434 }
435
436 /*
437 * Command completion- both for handling cases of no resources or
438 * no blackhole driver, or other cases where we have to, inline,
439 * finish the command sanely, or for normal command completion.
440 *
441 * The 'completion' code value has the scsi status byte in the low 8 bits.
442 * If status is a CHECK CONDITION and bit 8 is nonzero, then bits 12..15 have
443 * the sense key and bits 16..23 have the ASCQ and bits 24..31 have the ASC
444 * values.
445 *
446 * NB: the key, asc, ascq, cannot be used for parallel SCSI as it doesn't
447 * NB: inline SCSI sense reporting.
448 *
449 * For both parallel && fibre channel, we use the feature that does
450 * an automatic resource autoreplenish so we don't have then later do
451 * put of an atio to replenish the f/w's resource count.
452 */
453
454 int
455 isp_endcmd(struct ispsoftc *isp, void *arg, u_int32_t code, u_int32_t hdl)
456 {
457 int sts;
458 union {
459 ct_entry_t _ctio;
460 ct2_entry_t _ctio2;
461 } un;
462
463 MEMZERO(&un, sizeof un);
464 sts = code & 0xff;
465
466 if (IS_FC(isp)) {
467 at2_entry_t *aep = arg;
468 ct2_entry_t *cto = &un._ctio2;
469
470 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
471 cto->ct_header.rqs_entry_count = 1;
472 cto->ct_iid = aep->at_iid;
473 if (isp->isp_maxluns <= 16) {
474 cto->ct_lun = aep->at_lun;
475 }
476 cto->ct_rxid = aep->at_rxid;
477 cto->rsp.m1.ct_scsi_status = sts & 0xff;
478 cto->ct_flags = CT2_SENDSTATUS | CT2_NO_DATA | CT2_FLAG_MODE1;
479 if (hdl == 0) {
480 cto->ct_flags |= CT2_CCINCR;
481 }
482 if (aep->at_datalen) {
483 cto->ct_resid = aep->at_datalen;
484 cto->ct_flags |= CT2_DATA_UNDER;
485 }
486 if ((sts & 0xff) == SCSI_CHECK && (sts & ECMD_SVALID)) {
487 cto->rsp.m1.ct_resp[0] = 0xf0;
488 cto->rsp.m1.ct_resp[2] = (code >> 12) & 0xf;
489 cto->rsp.m1.ct_resp[7] = 8;
490 cto->rsp.m1.ct_resp[12] = (code >> 24) & 0xff;
491 cto->rsp.m1.ct_resp[13] = (code >> 16) & 0xff;
492 cto->rsp.m1.ct_senselen = 16;
493 cto->ct_flags |= CT2_SNSLEN_VALID;
494 }
495 cto->ct_reserved = hdl;
496 } else {
497 at_entry_t *aep = arg;
498 ct_entry_t *cto = &un._ctio;
499
500 cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
501 cto->ct_header.rqs_entry_count = 1;
502 cto->ct_iid = aep->at_iid;
503 cto->ct_tgt = aep->at_tgt;
504 cto->ct_lun = aep->at_lun;
505 cto->ct_tag_type = aep->at_tag_type;
506 cto->ct_tag_val = aep->at_tag_val;
507 cto->ct_flags = CT_SENDSTATUS | CT_NO_DATA;
508 if (hdl == 0) {
509 cto->ct_flags |= CT_CCINCR;
510 }
511 cto->ct_scsi_status = sts;
512 cto->ct_reserved = hdl;
513 }
514 return (isp_target_put_entry(isp, &un));
515 }
516
517 void
518 isp_target_async(isp, bus, event)
519 struct ispsoftc *isp;
520 int bus;
521 int event;
522 {
523 tmd_event_t evt;
524 tmd_msg_t msg;
525
526 switch (event) {
527 /*
528 * These three we handle here to propagate an effective bus reset
529 * upstream, but these do not require any immediate notify actions
530 * so we return when done.
531 */
532 case ASYNC_LIP_OCCURRED:
533 case ASYNC_LOOP_UP:
534 case ASYNC_LOOP_DOWN:
535 evt.ev_bus = bus;
536 evt.ev_event = event;
537 (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
538 return;
539
540 case ASYNC_LOOP_RESET:
541 case ASYNC_BUS_RESET:
542 case ASYNC_TIMEOUT_RESET:
543 if (IS_FC(isp)) {
544 return; /* we'll be getting an inotify instead */
545 }
546 evt.ev_bus = bus;
547 evt.ev_event = event;
548 (void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
549 break;
550 case ASYNC_DEVICE_RESET:
551 /*
552 * Bus Device Reset resets a specific target, so
553 * we pass this as a synthesized message.
554 */
555 MEMZERO(&msg, sizeof msg);
556 if (IS_FC(isp)) {
557 msg.nt_iid = FCPARAM(isp)->isp_loopid;
558 } else {
559 msg.nt_iid = SDPARAM(isp)->isp_initiator_id;
560 }
561 msg.nt_bus = bus;
562 msg.nt_msg[0] = MSG_BUS_DEV_RESET;
563 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
564 break;
565 default:
566 isp_prt(isp, ISP_LOGERR,
567 "isp_target_async: unknown event 0x%x", event);
568 break;
569 }
570 if (isp->isp_state == ISP_RUNSTATE)
571 isp_notify_ack(isp, NULL);
572 }
573
574
575 /*
576 * Process a received message.
577 * The ISP firmware can handle most messages, there are only
578 * a few that we need to deal with:
579 * - abort: clean up the current command
580 * - abort tag and clear queue
581 */
582
583 static void
584 isp_got_msg(isp, bus, inp)
585 struct ispsoftc *isp;
586 int bus;
587 in_entry_t *inp;
588 {
589 u_int8_t status = inp->in_status & ~QLTM_SVALID;
590
591 if (status == IN_IDE_RECEIVED || status == IN_MSG_RECEIVED) {
592 tmd_msg_t msg;
593
594 MEMZERO(&msg, sizeof (msg));
595 msg.nt_bus = bus;
596 msg.nt_iid = inp->in_iid;
597 msg.nt_tgt = inp->in_tgt;
598 msg.nt_lun = inp->in_lun;
599 msg.nt_tagtype = inp->in_tag_type;
600 msg.nt_tagval = inp->in_tag_val;
601 MEMCPY(msg.nt_msg, inp->in_msg, IN_MSGLEN);
602 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
603 } else {
604 isp_prt(isp, ISP_LOGERR,
605 "unknown immediate notify status 0x%x", inp->in_status);
606 }
607 }
608
609 /*
610 * Synthesize a message from the task management flags in a FCP_CMND_IU.
611 */
612 static void
613 isp_got_msg_fc(isp, bus, inp)
614 struct ispsoftc *isp;
615 int bus;
616 in_fcentry_t *inp;
617 {
618 static char *f1 = "%s from iid %d lun %d seq 0x%x";
619 static char *f2 =
620 "unknown %s 0x%x lun %d iid %d task flags 0x%x seq 0x%x\n";
621
622 if (inp->in_status != IN_MSG_RECEIVED) {
623 isp_prt(isp, ISP_LOGINFO, f2, "immediate notify status",
624 inp->in_status, inp->in_lun, inp->in_iid,
625 inp->in_task_flags, inp->in_seqid);
626 } else {
627 tmd_msg_t msg;
628
629 MEMZERO(&msg, sizeof (msg));
630 msg.nt_bus = bus;
631 msg.nt_iid = inp->in_iid;
632 if (isp->isp_maxluns > 16) {
633 msg.nt_lun = inp->in_scclun;
634 } else {
635 msg.nt_lun = inp->in_lun;
636 }
637 msg.nt_tagval = inp->in_seqid;
638
639 if (inp->in_task_flags & TASK_FLAGS_ABORT_TASK) {
640 isp_prt(isp, ISP_LOGINFO, f1, "ABORT TASK",
641 inp->in_iid, inp->in_lun, inp->in_seqid);
642 msg.nt_msg[0] = MSG_ABORT_TAG;
643 } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_TASK_SET) {
644 isp_prt(isp, ISP_LOGINFO, f1, "CLEAR TASK SET",
645 inp->in_iid, inp->in_lun, inp->in_seqid);
646 msg.nt_msg[0] = MSG_CLEAR_QUEUE;
647 } else if (inp->in_task_flags & TASK_FLAGS_TARGET_RESET) {
648 isp_prt(isp, ISP_LOGINFO, f1, "TARGET RESET",
649 inp->in_iid, inp->in_lun, inp->in_seqid);
650 msg.nt_msg[0] = MSG_BUS_DEV_RESET;
651 } else if (inp->in_task_flags & TASK_FLAGS_CLEAR_ACA) {
652 isp_prt(isp, ISP_LOGINFO, f1, "CLEAR ACA",
653 inp->in_iid, inp->in_lun, inp->in_seqid);
654 /* ???? */
655 msg.nt_msg[0] = MSG_REL_RECOVERY;
656 } else if (inp->in_task_flags & TASK_FLAGS_TERMINATE_TASK) {
657 isp_prt(isp, ISP_LOGINFO, f1, "TERMINATE TASK",
658 inp->in_iid, inp->in_lun, inp->in_seqid);
659 msg.nt_msg[0] = MSG_TERM_IO_PROC;
660 } else {
661 isp_prt(isp, ISP_LOGWARN, f2, "task flag",
662 inp->in_status, inp->in_lun, inp->in_iid,
663 inp->in_task_flags, inp->in_seqid);
664 }
665 if (msg.nt_msg[0]) {
666 (void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
667 }
668 }
669 }
670
671 static void
672 isp_notify_ack(isp, arg)
673 struct ispsoftc *isp;
674 void *arg;
675 {
676 char storage[QENTRY_LEN];
677 u_int16_t iptr, optr;
678 void *outp;
679
680 if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
681 isp_prt(isp, ISP_LOGWARN,
682 "Request Queue Overflow For isp_notify_ack");
683 return;
684 }
685
686 MEMZERO(storage, QENTRY_LEN);
687
688 if (IS_FC(isp)) {
689 na_fcentry_t *na = (na_fcentry_t *) storage;
690 if (arg) {
691 in_fcentry_t *inp = arg;
692 MEMCPY(storage, arg, sizeof (isphdr_t));
693 na->na_iid = inp->in_iid;
694 if (isp->isp_maxluns > 16) {
695 na->na_lun = inp->in_scclun;
696 } else {
697 na->na_lun = inp->in_lun;
698 }
699 na->na_task_flags = inp->in_task_flags;
700 na->na_seqid = inp->in_seqid;
701 na->na_flags = NAFC_RCOUNT;
702 if (inp->in_status == IN_RESET) {
703 na->na_flags |= NAFC_RST_CLRD;
704 }
705 } else {
706 na->na_flags = NAFC_RST_CLRD;
707 }
708 na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
709 na->na_header.rqs_entry_count = 1;
710 ISP_SWIZ_NOT_ACK_FC(isp, outp, na);
711 } else {
712 na_entry_t *na = (na_entry_t *) storage;
713 if (arg) {
714 in_entry_t *inp = arg;
715 MEMCPY(storage, arg, sizeof (isphdr_t));
716 na->na_iid = inp->in_iid;
717 na->na_lun = inp->in_lun;
718 na->na_tgt = inp->in_tgt;
719 na->na_seqid = inp->in_seqid;
720 if (inp->in_status == IN_RESET) {
721 na->na_event = NA_RST_CLRD;
722 }
723 } else {
724 na->na_event = NA_RST_CLRD;
725 }
726 na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
727 na->na_header.rqs_entry_count = 1;
728 ISP_SWIZ_NOT_ACK(isp, outp, na);
729 }
730 ISP_TDQE(isp, "isp_notify_ack", (int) optr, storage);
731 ISP_ADD_REQUEST(isp, iptr);
732 }
733
734 static void
735 isp_handle_atio(isp, aep)
736 struct ispsoftc *isp;
737 at_entry_t *aep;
738 {
739 int lun;
740 lun = aep->at_lun;
741 /*
742 * The firmware status (except for the QLTM_SVALID bit) indicates
743 * why this ATIO was sent to us.
744 *
745 * If QLTM_SVALID is set, the firware has recommended Sense Data.
746 *
747 * If the DISCONNECTS DISABLED bit is set in the flags field,
748 * we're still connected on the SCSI bus - i.e. the initiator
749 * did not set DiscPriv in the identify message. We don't care
750 * about this so it's ignored.
751 */
752
753 switch(aep->at_status & ~QLTM_SVALID) {
754 case AT_PATH_INVALID:
755 /*
756 * ATIO rejected by the firmware due to disabled lun.
757 */
758 isp_prt(isp, ISP_LOGERR,
759 "rejected ATIO for disabled lun %d", lun);
760 break;
761 case AT_NOCAP:
762 /*
763 * Requested Capability not available
764 * We sent an ATIO that overflowed the firmware's
765 * command resource count.
766 */
767 isp_prt(isp, ISP_LOGERR,
768 "rejected ATIO for lun %d because of command count"
769 " overflow", lun);
770 break;
771
772 case AT_BDR_MSG:
773 /*
774 * If we send an ATIO to the firmware to increment
775 * its command resource count, and the firmware is
776 * recovering from a Bus Device Reset, it returns
777 * the ATIO with this status. We set the command
778 * resource count in the Enable Lun entry and no
779 * not increment it. Therefore we should never get
780 * this status here.
781 */
782 isp_prt(isp, ISP_LOGERR, atiocope, lun);
783 break;
784
785 case AT_CDB: /* Got a CDB */
786 case AT_PHASE_ERROR: /* Bus Phase Sequence Error */
787 /*
788 * Punt to platform specific layer.
789 */
790 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
791 break;
792
793 case AT_RESET:
794 /*
795 * A bus reset came along an blew away this command. Why
796 * they do this in addition the async event code stuff,
797 * I dunno.
798 *
799 * Ignore it because the async event will clear things
800 * up for us.
801 */
802 isp_prt(isp, ISP_LOGWARN, atior, lun, aep->at_iid);
803 break;
804
805
806 default:
807 isp_prt(isp, ISP_LOGERR,
808 "Unknown ATIO status 0x%x from initiator %d for lun %d",
809 aep->at_status, aep->at_iid, lun);
810 (void) isp_target_put_atio(isp, aep->at_iid, aep->at_tgt,
811 lun, aep->at_tag_type, aep->at_tag_val);
812 break;
813 }
814 }
815
816 static void
817 isp_handle_atio2(isp, aep)
818 struct ispsoftc *isp;
819 at2_entry_t *aep;
820 {
821 int lun;
822
823 if (isp->isp_maxluns > 16) {
824 lun = aep->at_scclun;
825 } else {
826 lun = aep->at_lun;
827 }
828
829 /*
830 * The firmware status (except for the QLTM_SVALID bit) indicates
831 * why this ATIO was sent to us.
832 *
833 * If QLTM_SVALID is set, the firware has recommended Sense Data.
834 *
835 * If the DISCONNECTS DISABLED bit is set in the flags field,
836 * we're still connected on the SCSI bus - i.e. the initiator
837 * did not set DiscPriv in the identify message. We don't care
838 * about this so it's ignored.
839 */
840
841 switch(aep->at_status & ~QLTM_SVALID) {
842 case AT_PATH_INVALID:
843 /*
844 * ATIO rejected by the firmware due to disabled lun.
845 */
846 isp_prt(isp, ISP_LOGERR,
847 "rejected ATIO2 for disabled lun %d", lun);
848 break;
849 case AT_NOCAP:
850 /*
851 * Requested Capability not available
852 * We sent an ATIO that overflowed the firmware's
853 * command resource count.
854 */
855 isp_prt(isp, ISP_LOGERR,
856 "rejected ATIO2 for lun %d- command count overflow", lun);
857 break;
858
859 case AT_BDR_MSG:
860 /*
861 * If we send an ATIO to the firmware to increment
862 * its command resource count, and the firmware is
863 * recovering from a Bus Device Reset, it returns
864 * the ATIO with this status. We set the command
865 * resource count in the Enable Lun entry and no
866 * not increment it. Therefore we should never get
867 * this status here.
868 */
869 isp_prt(isp, ISP_LOGERR, atiocope, lun);
870 break;
871
872 case AT_CDB: /* Got a CDB */
873 /*
874 * Punt to platform specific layer.
875 */
876 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
877 break;
878
879 case AT_RESET:
880 /*
881 * A bus reset came along an blew away this command. Why
882 * they do this in addition the async event code stuff,
883 * I dunno.
884 *
885 * Ignore it because the async event will clear things
886 * up for us.
887 */
888 isp_prt(isp, ISP_LOGERR, atior, lun, aep->at_iid);
889 break;
890
891
892 default:
893 isp_prt(isp, ISP_LOGERR,
894 "Unknown ATIO2 status 0x%x from initiator %d for lun %d",
895 aep->at_status, aep->at_iid, lun);
896 (void) isp_target_put_atio(isp, aep->at_iid, 0, lun, 0, 0);
897 break;
898 }
899 }
900
901 static void
902 isp_handle_ctio(isp, ct)
903 struct ispsoftc *isp;
904 ct_entry_t *ct;
905 {
906 XS_T *xs;
907 int pl = ISP_LOGTDEBUG2;
908 char *fmsg = NULL;
909
910 if (ct->ct_reserved) {
911 xs = isp_find_xs(isp, ct->ct_reserved);
912 if (xs == NULL)
913 pl = ISP_LOGALL;
914 } else {
915 pl = ISP_LOGTDEBUG1;
916 xs = NULL;
917 }
918
919 switch(ct->ct_status & ~QLTM_SVALID) {
920 case CT_OK:
921 /*
922 * There are generally 3 possibilities as to why we'd get
923 * this condition:
924 * We disconnected after receiving a CDB.
925 * We sent or received data.
926 * We sent status & command complete.
927 */
928
929 if (ct->ct_flags & CT_SENDSTATUS) {
930 break;
931 } else if ((ct->ct_flags & CT_DATAMASK) == CT_NO_DATA) {
932 /*
933 * Nothing to do in this case.
934 */
935 isp_prt(isp, pl, "CTIO- iid %d disconnected OK",
936 ct->ct_iid);
937 return;
938 }
939 break;
940
941 case CT_BDR_MSG:
942 /*
943 * Bus Device Reset message received or the SCSI Bus has
944 * been Reset; the firmware has gone to Bus Free.
945 *
946 * The firmware generates an async mailbox interupt to
947 * notify us of this and returns outstanding CTIOs with this
948 * status. These CTIOs are handled in that same way as
949 * CT_ABORTED ones, so just fall through here.
950 */
951 fmsg = "Bus Device Reset";
952 /*FALLTHROUGH*/
953 case CT_RESET:
954 if (fmsg == NULL)
955 fmsg = "Bus Reset";
956 /*FALLTHROUGH*/
957 case CT_ABORTED:
958 /*
959 * When an Abort message is received the firmware goes to
960 * Bus Free and returns all outstanding CTIOs with the status
961 * set, then sends us an Immediate Notify entry.
962 */
963 if (fmsg == NULL)
964 fmsg = "ABORT TASK sent by Initiator";
965
966 isp_prt(isp, ISP_LOGWARN, "CTIO destroyed by %s", fmsg);
967 break;
968
969 case CT_INVAL:
970 /*
971 * CTIO rejected by the firmware due to disabled lun.
972 * "Cannot Happen".
973 */
974 isp_prt(isp, ISP_LOGERR,
975 "Firmware rejected CTIO for disabled lun %d",
976 ct->ct_lun);
977 break;
978
979 case CT_NOPATH:
980 /*
981 * CTIO rejected by the firmware due "no path for the
982 * nondisconnecting nexus specified". This means that
983 * we tried to access the bus while a non-disconnecting
984 * command is in process.
985 */
986 isp_prt(isp, ISP_LOGERR,
987 "Firmware rejected CTIO for bad nexus %d/%d/%d",
988 ct->ct_iid, ct->ct_tgt, ct->ct_lun);
989 break;
990
991 case CT_RSELTMO:
992 fmsg = "Reselection";
993 /*FALLTHROUGH*/
994 case CT_TIMEOUT:
995 if (fmsg == NULL)
996 fmsg = "Command";
997 isp_prt(isp, ISP_LOGERR, "Firmware timed out on %s", fmsg);
998 break;
999
1000 case CT_ERR:
1001 fmsg = "Completed with Error";
1002 /*FALLTHROUGH*/
1003 case CT_PHASE_ERROR:
1004 if (fmsg == NULL)
1005 fmsg = "Phase Sequence Error";
1006 /*FALLTHROUGH*/
1007 case CT_TERMINATED:
1008 if (fmsg == NULL)
1009 fmsg = "terminated by TERMINATE TRANSFER";
1010 /*FALLTHROUGH*/
1011 case CT_NOACK:
1012 if (fmsg == NULL)
1013 fmsg = "unacknowledged Immediate Notify pending";
1014
1015 isp_prt(isp, ISP_LOGERR, "CTIO returned by f/w- %s", fmsg);
1016 #if 0
1017 if (status & SENSEVALID) {
1018 bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
1019 (caddr_t) &cdp->cd_sensedata,
1020 sizeof(scsi_sense_t));
1021 cdp->cd_flags |= CDF_SENSEVALID;
1022 }
1023 #endif
1024 break;
1025 default:
1026 isp_prt(isp, ISP_LOGERR, "Unknown CTIO status 0x%x",
1027 ct->ct_status & ~QLTM_SVALID);
1028 break;
1029 }
1030
1031 if (xs == NULL) {
1032 /*
1033 * There may be more than one CTIO for a data transfer,
1034 * or this may be a status CTIO we're not monitoring.
1035 *
1036 * The assumption is that they'll all be returned in the
1037 * order we got them.
1038 */
1039 if (ct->ct_reserved == 0) {
1040 if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
1041 isp_prt(isp, pl,
1042 "intermediate CTIO completed ok");
1043 } else {
1044 isp_prt(isp, pl,
1045 "unmonitored CTIO completed ok");
1046 }
1047 } else {
1048 isp_prt(isp, pl,
1049 "NO xs for CTIO (handle 0x%x) status 0x%x",
1050 ct->ct_reserved, ct->ct_status & ~QLTM_SVALID);
1051 }
1052 } else {
1053 if (ct->ct_flags & CT_SENDSTATUS) {
1054 /*
1055 * Sent status and command complete.
1056 *
1057 * We're now really done with this command, so we
1058 * punt to the platform dependent layers because
1059 * only there can we do the appropriate command
1060 * complete thread synchronization.
1061 */
1062 isp_prt(isp, pl, "status CTIO complete");
1063 } else {
1064 /*
1065 * Final CTIO completed. Release DMA resources and
1066 * notify platform dependent layers.
1067 */
1068 isp_prt(isp, pl, "data CTIO complete");
1069 ISP_DMAFREE(isp, xs, ct->ct_reserved);
1070 }
1071 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
1072 /*
1073 * The platform layer will destroy the handle if appropriate.
1074 */
1075 }
1076 }
1077
1078 static void
1079 isp_handle_ctio2(isp, ct)
1080 struct ispsoftc *isp;
1081 ct2_entry_t *ct;
1082 {
1083 XS_T *xs;
1084 int pl = ISP_LOGTDEBUG2;
1085 char *fmsg = NULL;
1086
1087 if (ct->ct_reserved) {
1088 xs = isp_find_xs(isp, ct->ct_reserved);
1089 if (xs == NULL)
1090 pl = ISP_LOGALL;
1091 } else {
1092 pl = ISP_LOGTDEBUG1;
1093 xs = NULL;
1094 }
1095
1096 switch(ct->ct_status & ~QLTM_SVALID) {
1097 case CT_OK:
1098 /*
1099 * There are generally 2 possibilities as to why we'd get
1100 * this condition:
1101 * We sent or received data.
1102 * We sent status & command complete.
1103 */
1104
1105 break;
1106
1107 case CT_BDR_MSG:
1108 /*
1109 * Bus Device Reset message received or the SCSI Bus has
1110 * been Reset; the firmware has gone to Bus Free.
1111 *
1112 * The firmware generates an async mailbox interupt to
1113 * notify us of this and returns outstanding CTIOs with this
1114 * status. These CTIOs are handled in that same way as
1115 * CT_ABORTED ones, so just fall through here.
1116 */
1117 fmsg = "Bus Device Reset";
1118 /*FALLTHROUGH*/
1119 case CT_RESET:
1120 if (fmsg == NULL)
1121 fmsg = "Bus Reset";
1122 /*FALLTHROUGH*/
1123 case CT_ABORTED:
1124 /*
1125 * When an Abort message is received the firmware goes to
1126 * Bus Free and returns all outstanding CTIOs with the status
1127 * set, then sends us an Immediate Notify entry.
1128 */
1129 if (fmsg == NULL)
1130 fmsg = "ABORT TASK sent by Initiator";
1131
1132 isp_prt(isp, ISP_LOGERR, "CTIO2 destroyed by %s", fmsg);
1133 break;
1134
1135 case CT_INVAL:
1136 /*
1137 * CTIO rejected by the firmware - invalid data direction.
1138 */
1139 isp_prt(isp, ISP_LOGERR, "CTIO2 had wrong data directiond");
1140 break;
1141
1142 case CT_NOPATH:
1143 /*
1144 * CTIO rejected by the firmware due "no path for the
1145 * nondisconnecting nexus specified". This means that
1146 * we tried to access the bus while a non-disconnecting
1147 * command is in process.
1148 */
1149 isp_prt(isp, ISP_LOGERR,
1150 "Firmware rejected CTIO2 for bad nexus %d->%d",
1151 ct->ct_iid, ct->ct_lun);
1152 break;
1153
1154 case CT_RSELTMO:
1155 fmsg = "Reselection";
1156 /*FALLTHROUGH*/
1157 case CT_TIMEOUT:
1158 if (fmsg == NULL)
1159 fmsg = "Command";
1160 isp_prt(isp, ISP_LOGERR, "Firmware timed out on %s", fmsg);
1161 break;
1162
1163 case CT_ERR:
1164 fmsg = "Completed with Error";
1165 /*FALLTHROUGH*/
1166 case CT_PHASE_ERROR: /* Bus phase sequence error */
1167 if (fmsg == NULL)
1168 fmsg = "Phase Sequence Error";
1169 /*FALLTHROUGH*/
1170 case CT_TERMINATED:
1171 if (fmsg == NULL)
1172 fmsg = "terminated by TERMINATE TRANSFER";
1173 /*FALLTHROUGH*/
1174 case CT_LOGOUT:
1175 if (fmsg == NULL)
1176 fmsg = "Port Logout";
1177 /*FALLTHROUGH*/
1178 case CT_PORTNOTAVAIL:
1179 if (fmsg == NULL)
1180 fmsg = "Port not available";
1181 case CT_NOACK:
1182 if (fmsg == NULL)
1183 fmsg = "unacknowledged Immediate Notify pending";
1184
1185 isp_prt(isp, ISP_LOGERR, "CTIO returned by f/w- %s", fmsg);
1186 #if 0
1187 if (status & SENSEVALID) {
1188 bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
1189 (caddr_t) &cdp->cd_sensedata,
1190 sizeof(scsi_sense_t));
1191 cdp->cd_flags |= CDF_SENSEVALID;
1192 }
1193 #endif
1194 break;
1195
1196 case CT_INVRXID:
1197 /*
1198 * CTIO rejected by the firmware because an invalid RX_ID.
1199 * Just print a message.
1200 */
1201 isp_prt(isp, ISP_LOGERR,
1202 "CTIO2 completed with Invalid RX_ID 0x%x", ct->ct_rxid);
1203 break;
1204
1205 default:
1206 isp_prt(isp, ISP_LOGERR, "Unknown CTIO status 0x%x",
1207 ct->ct_status & ~QLTM_SVALID);
1208 break;
1209 }
1210
1211 if (xs == NULL) {
1212 /*
1213 * There may be more than one CTIO for a data transfer,
1214 * or this may be a status CTIO we're not monitoring.
1215 *
1216 * The assumption is that they'll all be returned in the
1217 * order we got them.
1218 */
1219 if (ct->ct_reserved == 0) {
1220 if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
1221 isp_prt(isp, pl,
1222 "intermediate CTIO completed ok");
1223 } else {
1224 isp_prt(isp, pl,
1225 "unmonitored CTIO completed ok");
1226 }
1227 } else {
1228 isp_prt(isp, pl,
1229 "NO xs for CTIO (handle 0x%x) status 0x%x",
1230 ct->ct_reserved, ct->ct_status & ~QLTM_SVALID);
1231 }
1232 } else {
1233 if (ct->ct_flags & CT_SENDSTATUS) {
1234 /*
1235 * Sent status and command complete.
1236 *
1237 * We're now really done with this command, so we
1238 * punt to the platform dependent layers because
1239 * only there can we do the appropriate command
1240 * complete thread synchronization.
1241 */
1242 isp_prt(isp, pl, "status CTIO complete");
1243 } else {
1244 /*
1245 * Final CTIO completed. Release DMA resources and
1246 * notify platform dependent layers.
1247 */
1248 isp_prt(isp, pl, "data CTIO complete");
1249 ISP_DMAFREE(isp, xs, ct->ct_reserved);
1250 }
1251 (void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
1252 /*
1253 * The platform layer will destroy the handle if appropriate.
1254 */
1255 }
1256 }
1257 #endif
1258