1 1.1 joff /* 2 1.1 joff * Copyright (c) 2005 Jesse Off. All rights reserved. 3 1.1 joff * 4 1.1 joff * Redistribution and use in source and binary forms, with or without 5 1.1 joff * modification, are permitted provided that the following conditions 6 1.1 joff * are met: 7 1.1 joff * 1. Redistributions of source code must retain the above copyright 8 1.1 joff * notice, this list of conditions and the following disclaimer. 9 1.1 joff * 2. Redistributions in binary form must reproduce the above copyright 10 1.1 joff * notice, this list of conditions and the following disclaimer in the 11 1.1 joff * documentation and/or other materials provided with the distribution. 12 1.1 joff * 13 1.1 joff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 1.1 joff * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 1.1 joff * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 1.1 joff * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 1.1 joff * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 1.1 joff * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 1.1 joff * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 1.1 joff * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 1.1 joff * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 1.1 joff * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 1.1 joff * SUCH DAMAGE. 24 1.1 joff * 25 1.1 joff * 26 1.1 joff * The matrix keypad is a primitive type of keying device 27 1.1 joff * commonly used in systems as a small, cheap, easy-to-build and rugged 28 1.1 joff * way to get user input in a variety of embedded environments. This 29 1.1 joff * driver can work for any size of keypad. A one key keypad (aka 30 1.1 joff * button) can also be used. The theory of operation is described 31 1.1 joff * thusly: 32 1.2 perry * 33 1.1 joff * 1) The keypad is connected to the NetBSD embedded system 34 1.1 joff * with digital I/O (DIO) pins connected to each column of 35 1.1 joff * the keypad and also to each row of the keypad. 36 1.2 perry * 37 1.1 joff * 2) When a button is pressed, a short is made between a 38 1.1 joff * column line and the intersecting row line. 39 1.2 perry * 40 1.1 joff * 3) Software is responsible to poll each row/column individually 41 1.1 joff * and also to debounce any key presses. 42 1.2 perry * 43 1.1 joff * To correctly wire up such a thing requires the input DIO 44 1.1 joff * lines to have pull-up resistors, otherwise an input may be read as a random 45 1.1 joff * value if not currently being shorted by a button press. 46 1.1 joff */ 47 1.1 joff 48 1.1 joff #include <sys/cdefs.h> 49 1.7 ad __KERNEL_RCSID(0, "$NetBSD: matrixkp_subr.c,v 1.7 2007/10/19 11:59:55 ad Exp $"); 50 1.1 joff 51 1.1 joff #include <sys/param.h> 52 1.1 joff #include <sys/systm.h> 53 1.1 joff #include <sys/proc.h> 54 1.1 joff #include <sys/callout.h> 55 1.1 joff #include <sys/conf.h> 56 1.1 joff #include <sys/kernel.h> 57 1.1 joff #include <sys/types.h> 58 1.1 joff 59 1.1 joff #include <machine/autoconf.h> 60 1.7 ad #include <sys/intr.h> 61 1.7 ad #include <sys/bus.h> 62 1.1 joff 63 1.1 joff #include <dev/wscons/wsconsio.h> 64 1.1 joff #include <dev/wscons/wskbdvar.h> 65 1.1 joff #include <dev/wscons/wsksymdef.h> 66 1.1 joff #include <dev/wscons/wsksymvar.h> 67 1.1 joff 68 1.1 joff #include <dev/ic/matrixkpvar.h> 69 1.1 joff 70 1.1 joff #define TV_ELAPSED_US(x, y) (((x).tv_sec - (y).tv_sec) * 1000000 + \ 71 1.1 joff ((x).tv_usec - (y).tv_usec)) 72 1.1 joff 73 1.1 joff const struct wskbd_accessops mxkp_accessops = { 74 1.1 joff mxkp_enable, 75 1.1 joff mxkp_set_leds, 76 1.1 joff mxkp_ioctl, 77 1.1 joff }; 78 1.1 joff 79 1.1 joff void 80 1.1 joff mxkp_attach(struct matrixkp_softc *sc) 81 1.1 joff { 82 1.1 joff u_int32_t i; 83 1.1 joff 84 1.6 ad callout_init(&sc->sc_callout, 0); 85 1.1 joff callout_setfunc(&sc->sc_callout, mxkp_poll, sc); 86 1.1 joff if (sc->poll_freq > hz || sc->poll_freq == 0) 87 1.1 joff sc->poll_freq = hz; 88 1.1 joff sc->sc_enabled = 0; 89 1.1 joff if (sc->debounce_stable_ms == 0) 90 1.1 joff sc->sc_flags |= MXKP_NODEBOUNCE; 91 1.1 joff if (sc->mxkp_event == NULL) 92 1.1 joff sc->mxkp_event = mxkp_wskbd_event; 93 1.1 joff FOR_KEYS(i, sc->mxkp_pressed[i] = 0); 94 1.1 joff } 95 1.1 joff 96 1.1 joff void 97 1.1 joff mxkp_poll(void *arg) 98 1.1 joff { 99 1.1 joff struct matrixkp_softc *sc = (struct matrixkp_softc *)arg; 100 1.1 joff u_int32_t i, anychanged; 101 1.1 joff u_int32_t scanned[(MAXNKEYS + 31) / 32]; 102 1.1 joff u_int32_t changed[(MAXNKEYS + 31) / 32]; 103 1.1 joff u_int32_t set[(MAXNKEYS + 31) / 32]; 104 1.1 joff u_int32_t cleared[(MAXNKEYS + 31) / 32]; 105 1.1 joff 106 1.1 joff rescan: 107 1.1 joff anychanged = 0; 108 1.1 joff FOR_KEYS(i, scanned[i] = 0); 109 1.1 joff sc->mxkp_scankeys(sc, scanned); 110 1.1 joff FOR_KEYS(i, changed[i] = sc->mxkp_pressed[i] ^ scanned[i]); 111 1.1 joff FOR_KEYS(i, anychanged |= changed[i]); 112 1.2 perry 113 1.1 joff if (!(sc->sc_flags & MXKP_NODEBOUNCE) && anychanged) { 114 1.1 joff mxkp_debounce(sc, changed, scanned); 115 1.1 joff anychanged = 0; 116 1.1 joff FOR_KEYS(i, changed[i] &= sc->mxkp_pressed[i] ^ scanned[i]); 117 1.1 joff FOR_KEYS(i, anychanged |= changed[i]); 118 1.1 joff } 119 1.1 joff if (anychanged) { 120 1.1 joff FOR_KEYS(i, set[i] = changed[i] & scanned[i]); 121 1.1 joff FOR_KEYS(i, cleared[i] = changed[i] & sc->mxkp_pressed[i]); 122 1.1 joff sc->mxkp_event(sc, set, cleared); 123 1.1 joff FOR_KEYS(i, sc->mxkp_pressed[i] &= ~cleared[i]); 124 1.1 joff FOR_KEYS(i, sc->mxkp_pressed[i] |= set[i]); 125 1.1 joff goto rescan; 126 1.1 joff } 127 1.1 joff if (sc->sc_enabled) 128 1.1 joff callout_schedule(&sc->sc_callout, hz / sc->poll_freq); 129 1.1 joff } 130 1.1 joff 131 1.1 joff /* 132 1.2 perry * debounce will return when masked keys have been stable 133 1.2 perry * for sc->debounce_stable_ms 134 1.1 joff */ 135 1.2 perry void 136 1.1 joff mxkp_debounce(struct matrixkp_softc *sc, u_int32_t *mask, u_int32_t *scan) { 137 1.1 joff struct timeval verystart, start, now; 138 1.1 joff u_int32_t last_val[(MAXNKEYS + 31) / 32]; 139 1.1 joff u_int32_t anyset, i; 140 1.2 perry 141 1.1 joff FOR_KEYS(i, last_val[i] = scan[i]); 142 1.1 joff microtime(&verystart); 143 1.1 joff start = verystart; 144 1.1 joff do { 145 1.1 joff FOR_KEYS(i, scan[i] = 0); 146 1.1 joff sc->mxkp_scankeys(sc, scan); 147 1.1 joff microtime(&now); 148 1.1 joff anyset = 0; 149 1.1 joff FOR_KEYS(i, anyset |= (scan[i] ^ last_val[i]) & mask[i]); 150 1.1 joff if (anyset) /* bounce detected */ 151 1.1 joff start = now; 152 1.1 joff FOR_KEYS(i, last_val[i] = scan[i]); 153 1.1 joff } while (TV_ELAPSED_US(now, start) <= (sc->debounce_stable_ms * 1000)); 154 1.1 joff } 155 1.1 joff 156 1.1 joff void 157 1.1 joff mxkp_wskbd_event(struct matrixkp_softc *sc, u_int32_t *on, u_int32_t *off) 158 1.1 joff { 159 1.1 joff unsigned int i; 160 1.1 joff 161 1.1 joff for(i = 0; i < sc->mxkp_nkeys; i++) { 162 1.1 joff if (off[i / 32] & (1 << (i % 32))) { 163 1.1 joff wskbd_input(sc->sc_wskbddev, WSCONS_EVENT_KEY_UP, i); 164 1.1 joff } 165 1.1 joff } 166 1.1 joff for(i = 0; i < sc->mxkp_nkeys; i++) { 167 1.1 joff if (on[i / 32] & (1 << (i % 32))) { 168 1.1 joff wskbd_input(sc->sc_wskbddev, WSCONS_EVENT_KEY_DOWN, i); 169 1.1 joff } 170 1.1 joff } 171 1.1 joff } 172 1.1 joff 173 1.1 joff int 174 1.1 joff mxkp_enable(void *v, int on) 175 1.1 joff { 176 1.1 joff struct matrixkp_softc *sc = v; 177 1.1 joff 178 1.1 joff if (on) { 179 1.1 joff if (sc->sc_enabled) 180 1.1 joff return EBUSY; 181 1.1 joff 182 1.1 joff sc->sc_enabled = 1; 183 1.1 joff callout_schedule(&sc->sc_callout, hz / sc->poll_freq); 184 1.1 joff } else { 185 1.1 joff sc->sc_enabled = 0; 186 1.1 joff } 187 1.1 joff 188 1.1 joff return 0; 189 1.1 joff } 190 1.1 joff 191 1.1 joff void 192 1.1 joff mxkp_set_leds(void *v, int leds) 193 1.1 joff { 194 1.1 joff } 195 1.1 joff 196 1.1 joff int 197 1.5 christos mxkp_ioctl(void *v, u_long cmd, void *data, int flag, struct lwp *l) 198 1.1 joff { 199 1.1 joff switch (cmd) { 200 1.1 joff case WSKBDIO_GTYPE: 201 1.1 joff *(int *)data = WSKBD_TYPE_MATRIXKP; 202 1.1 joff return 0; 203 1.1 joff case WSKBDIO_SETLEDS: 204 1.1 joff return 0; 205 1.1 joff case WSKBDIO_GETLEDS: 206 1.1 joff *(int *)data = 0; 207 1.1 joff return 0; 208 1.1 joff case WSKBDIO_COMPLEXBELL: 209 1.1 joff return 0; 210 1.1 joff } 211 1.1 joff return EPASSTHROUGH; 212 1.1 joff } 213