mb86960.c revision 1.87 1 /* $NetBSD: mb86960.c,v 1.87 2018/06/26 06:48:00 msaitoh Exp $ */
2
3 /*
4 * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
5 *
6 * This software may be used, modified, copied, distributed, and sold, in
7 * both source and binary form provided that the above copyright, these
8 * terms and the following disclaimer are retained. The name of the author
9 * and/or the contributor may not be used to endorse or promote products
10 * derived from this software without specific prior written permission.
11 *
12 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
13 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
16 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
17 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
19 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
21 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
22 * SUCH DAMAGE.
23 */
24
25 /*
26 * Portions copyright (C) 1993, David Greenman. This software may be used,
27 * modified, copied, distributed, and sold, in both source and binary form
28 * provided that the above copyright and these terms are retained. Under no
29 * circumstances is the author responsible for the proper functioning of this
30 * software, nor does the author assume any responsibility for damages
31 * incurred with its use.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: mb86960.c,v 1.87 2018/06/26 06:48:00 msaitoh Exp $");
36
37 /*
38 * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
39 * Contributed by M.S. <seki (at) sysrap.cs.fujitsu.co.jp>
40 *
41 * This version is intended to be a generic template for various
42 * MB86960A/MB86965A based Ethernet cards. It currently supports
43 * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
44 * Telesis AT1700 series and RE2000 series. There are some
45 * unnecessary hooks embedded, which are primarily intended to support
46 * other types of Ethernet cards, but the author is not sure whether
47 * they are useful.
48 */
49
50 #include "opt_inet.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/mbuf.h>
57 #include <sys/socket.h>
58 #include <sys/syslog.h>
59 #include <sys/device.h>
60 #include <sys/rndsource.h>
61
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_types.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67 #include <net/bpf.h>
68
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/if_inarp.h>
75 #endif
76
77 #include <sys/bus.h>
78
79 #include <dev/ic/mb86960reg.h>
80 #include <dev/ic/mb86960var.h>
81
82 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
83 #define bus_space_write_stream_2 bus_space_write_2
84 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
85 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
86 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
87
88 /* Standard driver entry points. These can be static. */
89 void mb86960_init(struct mb86960_softc *);
90 int mb86960_ioctl(struct ifnet *, u_long, void *);
91 void mb86960_start(struct ifnet *);
92 void mb86960_reset(struct mb86960_softc *);
93 void mb86960_watchdog(struct ifnet *);
94
95 /* Local functions. Order of declaration is confused. FIXME. */
96 int mb86960_get_packet(struct mb86960_softc *, u_int);
97 void mb86960_stop(struct mb86960_softc *);
98 void mb86960_tint(struct mb86960_softc *, uint8_t);
99 void mb86960_rint(struct mb86960_softc *, uint8_t);
100 static inline
101 void mb86960_xmit(struct mb86960_softc *);
102 void mb86960_write_mbufs(struct mb86960_softc *, struct mbuf *);
103 static inline
104 void mb86960_droppacket(struct mb86960_softc *);
105 void mb86960_getmcaf(struct ethercom *, uint8_t *);
106 void mb86960_setmode(struct mb86960_softc *);
107 void mb86960_loadmar(struct mb86960_softc *);
108
109 int mb86960_mediachange(struct ifnet *);
110 void mb86960_mediastatus(struct ifnet *, struct ifmediareq *);
111
112 #if FE_DEBUG >= 1
113 void mb86960_dump(int, struct mb86960_softc *);
114 #endif
115
116 void
117 mb86960_attach(struct mb86960_softc *sc, uint8_t *myea)
118 {
119 bus_space_tag_t bst = sc->sc_bst;
120 bus_space_handle_t bsh = sc->sc_bsh;
121
122 /* Register values which depend on board design. */
123 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
124 sc->proto_dlcr5 = 0;
125 sc->proto_dlcr7 = FE_D7_BYTSWP_LH;
126 if ((sc->sc_flags & FE_FLAGS_MB86960) != 0)
127 sc->proto_dlcr7 |= FE_D7_ED_TEST; /* XXX */
128 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
129
130 /*
131 * Program the 86960 as following defaults:
132 * SRAM: 32KB, 100ns, byte-wide access.
133 * Transmission buffer: 4KB x 2.
134 * System bus interface: 16 bits.
135 * These values except TXBSIZE should be modified as per
136 * sc_flags which is set in MD attachments, because they
137 * are hard-wired on the board. Modifying TXBSIZE will affect
138 * the driver performance.
139 */
140 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB |
141 FE_D6_BBW_BYTE | FE_D6_SRAM_100ns;
142 if (sc->sc_flags & FE_FLAGS_SBW_BYTE)
143 sc->proto_dlcr6 |= FE_D6_SBW_BYTE;
144 if (sc->sc_flags & FE_FLAGS_SRAM_150ns)
145 sc->proto_dlcr6 &= ~FE_D6_SRAM_100ns;
146
147 /*
148 * Minimum initialization of the hardware.
149 * We write into registers; hope I/O ports have no
150 * overlap with other boards.
151 */
152
153 /* Initialize 86960. */
154 bus_space_write_1(bst, bsh, FE_DLCR6,
155 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
156 delay(200);
157
158 #ifdef DIAGNOSTIC
159 if (myea == NULL) {
160 aprint_error_dev(sc->sc_dev,
161 "ethernet address shouldn't be NULL\n");
162 panic("NULL ethernet address");
163 }
164 #endif
165 memcpy(sc->sc_enaddr, myea, sizeof(sc->sc_enaddr));
166
167 /* Disable all interrupts. */
168 bus_space_write_1(bst, bsh, FE_DLCR2, 0);
169 bus_space_write_1(bst, bsh, FE_DLCR3, 0);
170 }
171
172 /*
173 * Install interface into kernel networking data structures
174 */
175 void
176 mb86960_config(struct mb86960_softc *sc, int *media, int nmedia, int defmedia)
177 {
178 cfdata_t cf = device_cfdata(sc->sc_dev);
179 struct ifnet *ifp = &sc->sc_ec.ec_if;
180 int i;
181
182 /* Stop the 86960. */
183 mb86960_stop(sc);
184
185 /* Initialize ifnet structure. */
186 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
187 ifp->if_softc = sc;
188 ifp->if_start = mb86960_start;
189 ifp->if_ioctl = mb86960_ioctl;
190 ifp->if_watchdog = mb86960_watchdog;
191 ifp->if_flags =
192 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
193 IFQ_SET_READY(&ifp->if_snd);
194
195 #if FE_DEBUG >= 3
196 log(LOG_INFO, "%s: mb86960_config()\n", device_xname(sc->sc_dev));
197 mb86960_dump(LOG_INFO, sc);
198 #endif
199
200 #if FE_SINGLE_TRANSMISSION
201 /* Override txb config to allocate minimum. */
202 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
203 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
204 #endif
205
206 /* Modify hardware config if it is requested. */
207 if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
208 sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
209
210 /* Find TX buffer size, based on the hardware dependent proto. */
211 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
212 case FE_D6_TXBSIZ_2x2KB:
213 sc->txb_size = 2048;
214 break;
215 case FE_D6_TXBSIZ_2x4KB:
216 sc->txb_size = 4096;
217 break;
218 case FE_D6_TXBSIZ_2x8KB:
219 sc->txb_size = 8192;
220 break;
221 default:
222 /* Oops, we can't work with single buffer configuration. */
223 #if FE_DEBUG >= 2
224 log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
225 device_xname(sc->sc_dev));
226 #endif
227 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
228 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
229 sc->txb_size = 2048;
230 break;
231 }
232
233 /* Initialize media goo. */
234 ifmedia_init(&sc->sc_media, 0, mb86960_mediachange,
235 mb86960_mediastatus);
236 if (media != NULL) {
237 for (i = 0; i < nmedia; i++)
238 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
239 ifmedia_set(&sc->sc_media, defmedia);
240 } else {
241 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
242 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
243 }
244
245 /* Attach the interface. */
246 if_attach(ifp);
247 if_deferred_start_init(ifp, NULL);
248 ether_ifattach(ifp, sc->sc_enaddr);
249
250 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
251 RND_TYPE_NET, RND_FLAG_DEFAULT);
252
253 /* Print additional info when attached. */
254 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
255 ether_sprintf(sc->sc_enaddr));
256
257 #if FE_DEBUG >= 3
258 {
259 int buf, txb, bbw, sbw, ram;
260
261 buf = txb = bbw = sbw = ram = -1;
262 switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
263 case FE_D6_BUFSIZ_8KB:
264 buf = 8;
265 break;
266 case FE_D6_BUFSIZ_16KB:
267 buf = 16;
268 break;
269 case FE_D6_BUFSIZ_32KB:
270 buf = 32;
271 break;
272 case FE_D6_BUFSIZ_64KB:
273 buf = 64;
274 break;
275 }
276 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
277 case FE_D6_TXBSIZ_2x2KB:
278 txb = 2;
279 break;
280 case FE_D6_TXBSIZ_2x4KB:
281 txb = 4;
282 break;
283 case FE_D6_TXBSIZ_2x8KB:
284 txb = 8;
285 break;
286 }
287 switch (sc->proto_dlcr6 & FE_D6_BBW) {
288 case FE_D6_BBW_BYTE:
289 bbw = 8;
290 break;
291 case FE_D6_BBW_WORD:
292 bbw = 16;
293 break;
294 }
295 switch (sc->proto_dlcr6 & FE_D6_SBW) {
296 case FE_D6_SBW_BYTE:
297 sbw = 8;
298 break;
299 case FE_D6_SBW_WORD:
300 sbw = 16;
301 break;
302 }
303 switch (sc->proto_dlcr6 & FE_D6_SRAM) {
304 case FE_D6_SRAM_100ns:
305 ram = 100;
306 break;
307 case FE_D6_SRAM_150ns:
308 ram = 150;
309 break;
310 }
311 aprint_debug_dev(sc->sc_dev,
312 "SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
313 buf, bbw, ram, txb, sbw);
314 }
315 #endif
316
317 /* The attach is successful. */
318 sc->sc_stat |= FE_STAT_ATTACHED;
319 }
320
321 /*
322 * Media change callback.
323 */
324 int
325 mb86960_mediachange(struct ifnet *ifp)
326 {
327 struct mb86960_softc *sc = ifp->if_softc;
328
329 if (sc->sc_mediachange)
330 return (*sc->sc_mediachange)(sc);
331 return 0;
332 }
333
334 /*
335 * Media status callback.
336 */
337 void
338 mb86960_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
339 {
340 struct mb86960_softc *sc = ifp->if_softc;
341
342 if ((sc->sc_stat & FE_STAT_ENABLED) == 0) {
343 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
344 ifmr->ifm_status = 0;
345 return;
346 }
347
348 if (sc->sc_mediastatus)
349 (*sc->sc_mediastatus)(sc, ifmr);
350 }
351
352 /*
353 * Reset interface.
354 */
355 void
356 mb86960_reset(struct mb86960_softc *sc)
357 {
358 int s;
359
360 s = splnet();
361 mb86960_stop(sc);
362 mb86960_init(sc);
363 splx(s);
364 }
365
366 /*
367 * Stop everything on the interface.
368 *
369 * All buffered packets, both transmitting and receiving,
370 * if any, will be lost by stopping the interface.
371 */
372 void
373 mb86960_stop(struct mb86960_softc *sc)
374 {
375 bus_space_tag_t bst = sc->sc_bst;
376 bus_space_handle_t bsh = sc->sc_bsh;
377
378 #if FE_DEBUG >= 3
379 log(LOG_INFO, "%s: top of mb86960_stop()\n", device_xname(sc->sc_dev));
380 mb86960_dump(LOG_INFO, sc);
381 #endif
382
383 /* Disable interrupts. */
384 bus_space_write_1(bst, bsh, FE_DLCR2, 0x00);
385 bus_space_write_1(bst, bsh, FE_DLCR3, 0x00);
386
387 /* Stop interface hardware. */
388 delay(200);
389 bus_space_write_1(bst, bsh, FE_DLCR6,
390 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
391 delay(200);
392
393 /* Clear all interrupt status. */
394 bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF);
395 bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF);
396
397 /* Put the chip in stand-by mode. */
398 delay(200);
399 bus_space_write_1(bst, bsh, FE_DLCR7,
400 sc->proto_dlcr7 | FE_D7_POWER_DOWN);
401 delay(200);
402
403 /* MAR loading can be delayed. */
404 sc->filter_change = 0;
405
406 /* Call a hook. */
407 if (sc->stop_card)
408 (*sc->stop_card)(sc);
409
410 #if FE_DEBUG >= 3
411 log(LOG_INFO, "%s: end of mb86960_stop()\n", device_xname(sc->sc_dev));
412 mb86960_dump(LOG_INFO, sc);
413 #endif
414 }
415
416 /*
417 * Device timeout/watchdog routine. Entered if the device neglects to
418 * generate an interrupt after a transmit has been started on it.
419 */
420 void
421 mb86960_watchdog(struct ifnet *ifp)
422 {
423 struct mb86960_softc *sc = ifp->if_softc;
424
425 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
426 #if FE_DEBUG >= 3
427 mb86960_dump(LOG_INFO, sc);
428 #endif
429
430 /* Record how many packets are lost by this accident. */
431 sc->sc_ec.ec_if.if_oerrors += sc->txb_sched + sc->txb_count;
432
433 mb86960_reset(sc);
434 }
435
436 /*
437 * Drop (skip) a packet from receive buffer in 86960 memory.
438 */
439 static inline void
440 mb86960_droppacket(struct mb86960_softc *sc)
441 {
442 bus_space_tag_t bst = sc->sc_bst;
443 bus_space_handle_t bsh = sc->sc_bsh;
444
445 bus_space_write_1(bst, bsh, FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
446 }
447
448 /*
449 * Initialize device.
450 */
451 void
452 mb86960_init(struct mb86960_softc *sc)
453 {
454 bus_space_tag_t bst = sc->sc_bst;
455 bus_space_handle_t bsh = sc->sc_bsh;
456 struct ifnet *ifp = &sc->sc_ec.ec_if;
457 int i;
458
459 #if FE_DEBUG >= 3
460 log(LOG_INFO, "%s: top of mb86960_init()\n", device_xname(sc->sc_dev));
461 mb86960_dump(LOG_INFO, sc);
462 #endif
463
464 /* Reset transmitter flags. */
465 ifp->if_flags &= ~IFF_OACTIVE;
466 ifp->if_timer = 0;
467
468 sc->txb_free = sc->txb_size;
469 sc->txb_count = 0;
470 sc->txb_sched = 0;
471
472 /* Do any card-specific initialization, if applicable. */
473 if (sc->init_card)
474 (*sc->init_card)(sc);
475
476 #if FE_DEBUG >= 3
477 log(LOG_INFO, "%s: after init hook\n", device_xname(sc->sc_dev));
478 mb86960_dump(LOG_INFO, sc);
479 #endif
480
481 /*
482 * Make sure to disable the chip, also.
483 * This may also help re-programming the chip after
484 * hot insertion of PCMCIAs.
485 */
486 bus_space_write_1(bst, bsh, FE_DLCR6,
487 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
488 delay(200);
489
490 /* Power up the chip and select register bank for DLCRs. */
491 bus_space_write_1(bst, bsh, FE_DLCR7,
492 sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
493 delay(200);
494
495 /* Feed the station address. */
496 bus_space_write_region_1(bst, bsh, FE_DLCR8,
497 sc->sc_enaddr, ETHER_ADDR_LEN);
498
499 /* Select the BMPR bank for runtime register access. */
500 bus_space_write_1(bst, bsh, FE_DLCR7,
501 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
502
503 /* Initialize registers. */
504 bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF); /* Clear all bits. */
505 bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF); /* ditto. */
506 bus_space_write_1(bst, bsh, FE_DLCR2, 0x00);
507 bus_space_write_1(bst, bsh, FE_DLCR3, 0x00);
508 bus_space_write_1(bst, bsh, FE_DLCR4, sc->proto_dlcr4);
509 bus_space_write_1(bst, bsh, FE_DLCR5, sc->proto_dlcr5);
510 bus_space_write_1(bst, bsh, FE_BMPR10, 0x00);
511 bus_space_write_1(bst, bsh, FE_BMPR11, FE_B11_CTRL_SKIP);
512 bus_space_write_1(bst, bsh, FE_BMPR12, 0x00);
513 bus_space_write_1(bst, bsh, FE_BMPR13, sc->proto_bmpr13);
514 bus_space_write_1(bst, bsh, FE_BMPR14, FE_B14_FILTER);
515 bus_space_write_1(bst, bsh, FE_BMPR15, 0x00);
516
517 #if FE_DEBUG >= 3
518 log(LOG_INFO, "%s: just before enabling DLC\n",
519 device_xname(sc->sc_dev));
520 mb86960_dump(LOG_INFO, sc);
521 #endif
522
523 /* Enable interrupts. */
524 bus_space_write_1(bst, bsh, FE_DLCR2, FE_TMASK);
525 bus_space_write_1(bst, bsh, FE_DLCR3, FE_RMASK);
526
527 /* Enable transmitter and receiver. */
528 delay(200);
529 bus_space_write_1(bst, bsh, FE_DLCR6,
530 sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
531 delay(200);
532
533 #if FE_DEBUG >= 3
534 log(LOG_INFO, "%s: just after enabling DLC\n",
535 device_xname(sc->sc_dev));
536 mb86960_dump(LOG_INFO, sc);
537 #endif
538
539 /*
540 * Make sure to empty the receive buffer.
541 *
542 * This may be redundant, but *if* the receive buffer were full
543 * at this point, the driver would hang. I have experienced
544 * some strange hangups just after UP. I hope the following
545 * code solve the problem.
546 *
547 * I have changed the order of hardware initialization.
548 * I think the receive buffer cannot have any packets at this
549 * point in this version. The following code *must* be
550 * redundant now. FIXME.
551 */
552 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
553 if (bus_space_read_1(bst, bsh, FE_DLCR5) & FE_D5_BUFEMP)
554 break;
555 mb86960_droppacket(sc);
556 }
557 #if FE_DEBUG >= 1
558 if (i >= FE_MAX_RECV_COUNT)
559 log(LOG_ERR, "%s: cannot empty receive buffer\n",
560 device_xname(sc->sc_dev));
561 #endif
562 #if FE_DEBUG >= 3
563 if (i < FE_MAX_RECV_COUNT)
564 log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
565 device_xname(sc->sc_dev), i);
566 #endif
567
568 #if FE_DEBUG >= 3
569 log(LOG_INFO, "%s: after ERB loop\n", device_xname(sc->sc_dev));
570 mb86960_dump(LOG_INFO, sc);
571 #endif
572
573 /* Do we need this here? */
574 bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF); /* Clear all bits. */
575 bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF); /* ditto. */
576
577 #if FE_DEBUG >= 3
578 log(LOG_INFO, "%s: after FIXME\n", device_xname(sc->sc_dev));
579 mb86960_dump(LOG_INFO, sc);
580 #endif
581
582 /* Set 'running' flag. */
583 ifp->if_flags |= IFF_RUNNING;
584
585 /*
586 * At this point, the interface is runnung properly,
587 * except that it receives *no* packets. we then call
588 * mb86960_setmode() to tell the chip what packets to be
589 * received, based on the if_flags and multicast group
590 * list. It completes the initialization process.
591 */
592 mb86960_setmode(sc);
593
594 #if FE_DEBUG >= 3
595 log(LOG_INFO, "%s: after setmode\n", device_xname(sc->sc_dev));
596 mb86960_dump(LOG_INFO, sc);
597 #endif
598
599 /* ...and attempt to start output. */
600 mb86960_start(ifp);
601
602 #if FE_DEBUG >= 3
603 log(LOG_INFO, "%s: end of mb86960_init()\n", device_xname(sc->sc_dev));
604 mb86960_dump(LOG_INFO, sc);
605 #endif
606 }
607
608 /*
609 * This routine actually starts the transmission on the interface
610 */
611 static inline void
612 mb86960_xmit(struct mb86960_softc *sc)
613 {
614 bus_space_tag_t bst = sc->sc_bst;
615 bus_space_handle_t bsh = sc->sc_bsh;
616
617 /*
618 * Set a timer just in case we never hear from the board again.
619 * We use longer timeout for multiple packet transmission.
620 * I'm not sure this timer value is appropriate. FIXME.
621 */
622 sc->sc_ec.ec_if.if_timer = 1 + sc->txb_count;
623
624 /* Update txb variables. */
625 sc->txb_sched = sc->txb_count;
626 sc->txb_count = 0;
627 sc->txb_free = sc->txb_size;
628
629 #if FE_DELAYED_PADDING
630 /* Omit the postponed padding process. */
631 sc->txb_padding = 0;
632 #endif
633
634 /* Start transmitter, passing packets in TX buffer. */
635 bus_space_write_1(bst, bsh, FE_BMPR10, sc->txb_sched | FE_B10_START);
636 }
637
638 /*
639 * Start output on interface.
640 * We make two assumptions here:
641 * 1) that the current priority is set to splnet _before_ this code
642 * is called *and* is returned to the appropriate priority after
643 * return
644 * 2) that the IFF_OACTIVE flag is checked before this code is called
645 * (i.e. that the output part of the interface is idle)
646 */
647 void
648 mb86960_start(struct ifnet *ifp)
649 {
650 struct mb86960_softc *sc = ifp->if_softc;
651 struct mbuf *m;
652
653 #if FE_DEBUG >= 1
654 /* Just a sanity check. */
655 if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
656 /*
657 * Txb_count and txb_free co-works to manage the
658 * transmission buffer. Txb_count keeps track of the
659 * used potion of the buffer, while txb_free does unused
660 * potion. So, as long as the driver runs properly,
661 * txb_count is zero if and only if txb_free is same
662 * as txb_size (which represents whole buffer.)
663 */
664 log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
665 device_xname(sc->sc_dev), sc->txb_count, sc->txb_free);
666 /*
667 * So, what should I do, then?
668 *
669 * We now know txb_count and txb_free contradicts. We
670 * cannot, however, tell which is wrong. More
671 * over, we cannot peek 86960 transmission buffer or
672 * reset the transmission buffer. (In fact, we can
673 * reset the entire interface. I don't want to do it.)
674 *
675 * If txb_count is incorrect, leaving it as is will cause
676 * sending of garbage after the next interrupt. We have to
677 * avoid it. Hence, we reset the txb_count here. If
678 * txb_free was incorrect, resetting txb_count just loose
679 * some packets. We can live with it.
680 */
681 sc->txb_count = 0;
682 }
683 #endif
684
685 #if FE_DEBUG >= 1
686 /*
687 * First, see if there are buffered packets and an idle
688 * transmitter - should never happen at this point.
689 */
690 if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
691 log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
692 device_xname(sc->sc_dev), sc->txb_count);
693 mb86960_xmit(sc);
694 }
695 #endif
696
697 /*
698 * Stop accepting more transmission packets temporarily, when
699 * a filter change request is delayed. Updating the MARs on
700 * 86960 flushes the transmisstion buffer, so it is delayed
701 * until all buffered transmission packets have been sent
702 * out.
703 */
704 if (sc->filter_change) {
705 /*
706 * Filter change request is delayed only when the DLC is
707 * working. DLC soon raise an interrupt after finishing
708 * the work.
709 */
710 goto indicate_active;
711 }
712
713 for (;;) {
714 /*
715 * See if there is room to put another packet in the buffer.
716 * We *could* do better job by peeking the send queue to
717 * know the length of the next packet. Current version just
718 * tests against the worst case (i.e., longest packet). FIXME.
719 *
720 * When adding the packet-peek feature, don't forget adding a
721 * test on txb_count against QUEUEING_MAX.
722 * There is a little chance the packet count exceeds
723 * the limit. Assume transmission buffer is 8KB (2x8KB
724 * configuration) and an application sends a bunch of small
725 * (i.e., minimum packet sized) packets rapidly. An 8KB
726 * buffer can hold 130 blocks of 62 bytes long...
727 */
728 if (sc->txb_free <
729 (ETHER_MAX_LEN - ETHER_CRC_LEN) + FE_TXLEN_SIZE) {
730 /* No room. */
731 goto indicate_active;
732 }
733
734 #if FE_SINGLE_TRANSMISSION
735 if (sc->txb_count > 0) {
736 /* Just one packet per a transmission buffer. */
737 goto indicate_active;
738 }
739 #endif
740
741 /*
742 * Get the next mbuf chain for a packet to send.
743 */
744 IFQ_DEQUEUE(&ifp->if_snd, m);
745 if (m == 0) {
746 /* No more packets to send. */
747 goto indicate_inactive;
748 }
749
750 /* Tap off here if there is a BPF listener. */
751 bpf_mtap(ifp, m, BPF_D_OUT);
752
753 /*
754 * Copy the mbuf chain into the transmission buffer.
755 * txb_* variables are updated as necessary.
756 */
757 mb86960_write_mbufs(sc, m);
758
759 m_freem(m);
760
761 /* Start transmitter if it's idle. */
762 if (sc->txb_sched == 0)
763 mb86960_xmit(sc);
764 }
765
766 indicate_inactive:
767 /*
768 * We are using the !OACTIVE flag to indicate to
769 * the outside world that we can accept an
770 * additional packet rather than that the
771 * transmitter is _actually_ active. Indeed, the
772 * transmitter may be active, but if we haven't
773 * filled all the buffers with data then we still
774 * want to accept more.
775 */
776 ifp->if_flags &= ~IFF_OACTIVE;
777 return;
778
779 indicate_active:
780 /*
781 * The transmitter is active, and there are no room for
782 * more outgoing packets in the transmission buffer.
783 */
784 ifp->if_flags |= IFF_OACTIVE;
785 return;
786 }
787
788 /*
789 * Transmission interrupt handler
790 * The control flow of this function looks silly. FIXME.
791 */
792 void
793 mb86960_tint(struct mb86960_softc *sc, uint8_t tstat)
794 {
795 bus_space_tag_t bst = sc->sc_bst;
796 bus_space_handle_t bsh = sc->sc_bsh;
797 struct ifnet *ifp = &sc->sc_ec.ec_if;
798 int left;
799 int col;
800
801 /*
802 * Handle "excessive collision" interrupt.
803 */
804 if (tstat & FE_D0_COLL16) {
805 /*
806 * Find how many packets (including this collided one)
807 * are left unsent in transmission buffer.
808 */
809 left = bus_space_read_1(bst, bsh, FE_BMPR10);
810
811 #if FE_DEBUG >= 2
812 log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
813 device_xname(sc->sc_dev), left, sc->txb_sched);
814 #endif
815 #if FE_DEBUG >= 3
816 mb86960_dump(LOG_INFO, sc);
817 #endif
818
819 /*
820 * Update statistics.
821 */
822 ifp->if_collisions += 16;
823 ifp->if_oerrors++;
824 ifp->if_opackets += sc->txb_sched - left;
825
826 /*
827 * Collision statistics has been updated.
828 * Clear the collision flag on 86960 now to avoid confusion.
829 */
830 bus_space_write_1(bst, bsh, FE_DLCR0, FE_D0_COLLID);
831
832 /*
833 * Restart transmitter, skipping the
834 * collided packet.
835 *
836 * We *must* skip the packet to keep network running
837 * properly. Excessive collision error is an
838 * indication of the network overload. If we
839 * tried sending the same packet after excessive
840 * collision, the network would be filled with
841 * out-of-time packets. Packets belonging
842 * to reliable transport (such as TCP) are resent
843 * by some upper layer.
844 */
845 bus_space_write_1(bst, bsh, FE_BMPR11,
846 FE_B11_CTRL_SKIP | FE_B11_MODE1);
847 sc->txb_sched = left - 1;
848 }
849
850 /*
851 * Handle "transmission complete" interrupt.
852 */
853 if (tstat & FE_D0_TXDONE) {
854 /*
855 * Add in total number of collisions on last
856 * transmission. We also clear "collision occurred" flag
857 * here.
858 *
859 * 86960 has a design flow on collision count on multiple
860 * packet transmission. When we send two or more packets
861 * with one start command (that's what we do when the
862 * transmission queue is clauded), 86960 informs us number
863 * of collisions occurred on the last packet on the
864 * transmission only. Number of collisions on previous
865 * packets are lost. I have told that the fact is clearly
866 * stated in the Fujitsu document.
867 *
868 * I considered not to mind it seriously. Collision
869 * count is not so important, anyway. Any comments? FIXME.
870 */
871
872 if (bus_space_read_1(bst, bsh, FE_DLCR0) & FE_D0_COLLID) {
873 /* Clear collision flag. */
874 bus_space_write_1(bst, bsh, FE_DLCR0, FE_D0_COLLID);
875
876 /* Extract collision count from 86960. */
877 col = bus_space_read_1(bst, bsh, FE_DLCR4) & FE_D4_COL;
878 if (col == 0) {
879 /*
880 * Status register indicates collisions,
881 * while the collision count is zero.
882 * This can happen after multiple packet
883 * transmission, indicating that one or more
884 * previous packet(s) had been collided.
885 *
886 * Since the accurate number of collisions
887 * has been lost, we just guess it as 1;
888 * Am I too optimistic? FIXME.
889 */
890 col = 1;
891 } else
892 col >>= FE_D4_COL_SHIFT;
893 ifp->if_collisions += col;
894 #if FE_DEBUG >= 4
895 log(LOG_WARNING, "%s: %d collision%s (%d)\n",
896 device_xname(sc->sc_dev), col, col == 1 ? "" : "s",
897 sc->txb_sched);
898 #endif
899 }
900
901 /*
902 * Update total number of successfully
903 * transmitted packets.
904 */
905 ifp->if_opackets += sc->txb_sched;
906 sc->txb_sched = 0;
907 }
908
909 if (sc->txb_sched == 0) {
910 /*
911 * The transmitter is no more active.
912 * Reset output active flag and watchdog timer.
913 */
914 ifp->if_flags &= ~IFF_OACTIVE;
915 ifp->if_timer = 0;
916
917 /*
918 * If more data is ready to transmit in the buffer, start
919 * transmitting them. Otherwise keep transmitter idle,
920 * even if more data is queued. This gives receive
921 * process a slight priority.
922 */
923 if (sc->txb_count > 0)
924 mb86960_xmit(sc);
925 }
926 }
927
928 /*
929 * Ethernet interface receiver interrupt.
930 */
931 void
932 mb86960_rint(struct mb86960_softc *sc, uint8_t rstat)
933 {
934 bus_space_tag_t bst = sc->sc_bst;
935 bus_space_handle_t bsh = sc->sc_bsh;
936 struct ifnet *ifp = &sc->sc_ec.ec_if;
937 u_int status, len;
938 int i;
939
940 /*
941 * Update statistics if this interrupt is caused by an error.
942 */
943 if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR | FE_D1_ALGERR |
944 FE_D1_SRTPKT)) {
945 #if FE_DEBUG >= 3
946 char sbuf[sizeof(FE_D1_ERRBITS) + 64];
947
948 snprintb(sbuf, sizeof(sbuf), FE_D1_ERRBITS, rstat);
949 log(LOG_WARNING, "%s: receive error: %s\n",
950 device_xname(sc->sc_dev), sbuf);
951 #endif
952 ifp->if_ierrors++;
953 }
954
955 /*
956 * MB86960 has a flag indicating "receive queue empty."
957 * We just loop checking the flag to pull out all received
958 * packets.
959 *
960 * We limit the number of iterrations to avoid infinite loop.
961 * It can be caused by a very slow CPU (some broken
962 * peripheral may insert incredible number of wait cycles)
963 * or, worse, by a broken MB86960 chip.
964 */
965 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
966 /* Stop the iterration if 86960 indicates no packets. */
967 if (bus_space_read_1(bst, bsh, FE_DLCR5) & FE_D5_BUFEMP)
968 break;
969
970 /*
971 * Extract receive packet status from the receive
972 * packet header.
973 */
974 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
975 status = bus_space_read_1(bst, bsh, FE_BMPR8);
976 (void)bus_space_read_1(bst, bsh, FE_BMPR8);
977 } else
978 status = bus_space_read_2(bst, bsh, FE_BMPR8);
979
980 #if FE_DEBUG >= 4
981 log(LOG_INFO, "%s: receive status = %02x\n",
982 device_xname(sc->sc_dev), status);
983 #endif
984
985 /*
986 * If there was an error, update statistics and drop
987 * the packet, unless the interface is in promiscuous
988 * mode.
989 */
990 if ((status & FE_RXSTAT_GOODPKT) == 0) {
991 if ((ifp->if_flags & IFF_PROMISC) == 0) {
992 ifp->if_ierrors++;
993 mb86960_droppacket(sc);
994 continue;
995 }
996 }
997
998 /*
999 * Extract the packet length from the receive packet header.
1000 * It is a sum of a header (14 bytes) and a payload.
1001 * CRC has been stripped off by the 86960.
1002 */
1003 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1004 len = bus_space_read_1(bst, bsh, FE_BMPR8);
1005 len |= bus_space_read_1(bst, bsh, FE_BMPR8) << 8;
1006 } else
1007 len = bus_space_read_2(bst, bsh, FE_BMPR8);
1008
1009 /*
1010 * MB86965 checks the packet length and drop big packet
1011 * before passing it to us. There are no chance we can
1012 * get [crufty] packets. Hence, if the length exceeds
1013 * the specified limit, it means some serious failure,
1014 * such as out-of-sync on receive buffer management.
1015 *
1016 * Is this statement true? FIXME.
1017 */
1018 if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN) ||
1019 len < ETHER_HDR_LEN) {
1020 #if FE_DEBUG >= 2
1021 log(LOG_WARNING,
1022 "%s: received a %s packet? (%u bytes)\n",
1023 device_xname(sc->sc_dev),
1024 len < ETHER_HDR_LEN ? "partial" : "big", len);
1025 #endif
1026 ifp->if_ierrors++;
1027 mb86960_droppacket(sc);
1028 continue;
1029 }
1030
1031 /*
1032 * Check for a short (RUNT) packet. We *do* check
1033 * but do nothing other than print a message.
1034 * Short packets are illegal, but does nothing bad
1035 * if it carries data for upper layer.
1036 */
1037 #if FE_DEBUG >= 2
1038 if (len < (ETHER_MIN_LEN - ETHER_CRC_LEN)) {
1039 log(LOG_WARNING,
1040 "%s: received a short packet? (%u bytes)\n",
1041 device_xname(sc->sc_dev), len);
1042 }
1043 #endif
1044
1045 /*
1046 * Go get a packet.
1047 */
1048 if (mb86960_get_packet(sc, len) == 0) {
1049 /* Skip a packet, updating statistics. */
1050 #if FE_DEBUG >= 2
1051 log(LOG_WARNING,
1052 "%s: out of mbufs; dropping packet (%u bytes)\n",
1053 device_xname(sc->sc_dev), len);
1054 #endif
1055 ifp->if_ierrors++;
1056 mb86960_droppacket(sc);
1057
1058 /*
1059 * We stop receiving packets, even if there are
1060 * more in the buffer. We hope we can get more
1061 * mbufs next time.
1062 */
1063 return;
1064 }
1065 }
1066 }
1067
1068 /*
1069 * Ethernet interface interrupt processor
1070 */
1071 int
1072 mb86960_intr(void *arg)
1073 {
1074 struct mb86960_softc *sc = arg;
1075 bus_space_tag_t bst = sc->sc_bst;
1076 bus_space_handle_t bsh = sc->sc_bsh;
1077 struct ifnet *ifp = &sc->sc_ec.ec_if;
1078 uint8_t tstat, rstat;
1079
1080 if ((sc->sc_stat & FE_STAT_ENABLED) == 0 ||
1081 !device_is_active(sc->sc_dev))
1082 return 0;
1083
1084 #if FE_DEBUG >= 4
1085 log(LOG_INFO, "%s: mb86960_intr()\n", device_xname(sc->sc_dev));
1086 mb86960_dump(LOG_INFO, sc);
1087 #endif
1088
1089 /*
1090 * Get interrupt conditions, masking unneeded flags.
1091 */
1092 tstat = bus_space_read_1(bst, bsh, FE_DLCR0) & FE_TMASK;
1093 rstat = bus_space_read_1(bst, bsh, FE_DLCR1) & FE_RMASK;
1094 if (tstat == 0 && rstat == 0)
1095 return 0;
1096
1097 /*
1098 * Loop until there are no more new interrupt conditions.
1099 */
1100 for (;;) {
1101 /*
1102 * Reset the conditions we are acknowledging.
1103 */
1104 bus_space_write_1(bst, bsh, FE_DLCR0, tstat);
1105 bus_space_write_1(bst, bsh, FE_DLCR1, rstat);
1106
1107 /*
1108 * Handle transmitter interrupts. Handle these first because
1109 * the receiver will reset the board under some conditions.
1110 */
1111 if (tstat != 0)
1112 mb86960_tint(sc, tstat);
1113
1114 /*
1115 * Handle receiver interrupts.
1116 */
1117 if (rstat != 0)
1118 mb86960_rint(sc, rstat);
1119
1120 /*
1121 * Update the multicast address filter if it is
1122 * needed and possible. We do it now, because
1123 * we can make sure the transmission buffer is empty,
1124 * and there is a good chance that the receive queue
1125 * is empty. It will minimize the possibility of
1126 * packet lossage.
1127 */
1128 if (sc->filter_change &&
1129 sc->txb_count == 0 && sc->txb_sched == 0) {
1130 mb86960_loadmar(sc);
1131 ifp->if_flags &= ~IFF_OACTIVE;
1132 }
1133
1134 /*
1135 * If it looks like the transmitter can take more data,
1136 * attempt to start output on the interface. This is done
1137 * after handling the receiver interrupt to give the
1138 * receive operation priority.
1139 */
1140 if ((ifp->if_flags & IFF_OACTIVE) == 0)
1141 if_schedule_deferred_start(ifp);
1142
1143 if (rstat != 0 || tstat != 0)
1144 rnd_add_uint32(&sc->rnd_source, rstat + tstat);
1145
1146 /*
1147 * Get interrupt conditions, masking unneeded flags.
1148 */
1149 tstat = bus_space_read_1(bst, bsh, FE_DLCR0) & FE_TMASK;
1150 rstat = bus_space_read_1(bst, bsh, FE_DLCR1) & FE_RMASK;
1151 if (tstat == 0 && rstat == 0)
1152 return 1;
1153 }
1154 }
1155
1156 /*
1157 * Process an ioctl request. This code needs some work - it looks pretty ugly.
1158 */
1159 int
1160 mb86960_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1161 {
1162 struct mb86960_softc *sc = ifp->if_softc;
1163 struct ifaddr *ifa = (struct ifaddr *)data;
1164 struct ifreq *ifr = (struct ifreq *)data;
1165 int s, error = 0;
1166
1167 #if FE_DEBUG >= 3
1168 log(LOG_INFO, "%s: ioctl(%lx)\n", device_xname(sc->sc_dev), cmd);
1169 #endif
1170
1171 s = splnet();
1172
1173 switch (cmd) {
1174 case SIOCINITIFADDR:
1175 if ((error = mb86960_enable(sc)) != 0)
1176 break;
1177 ifp->if_flags |= IFF_UP;
1178
1179 mb86960_init(sc);
1180 switch (ifa->ifa_addr->sa_family) {
1181 #ifdef INET
1182 case AF_INET:
1183 arp_ifinit(ifp, ifa);
1184 break;
1185 #endif
1186 default:
1187 break;
1188 }
1189 break;
1190
1191 case SIOCSIFFLAGS:
1192 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1193 break;
1194 /* XXX re-use ether_ioctl() */
1195 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1196 case IFF_RUNNING:
1197 /*
1198 * If interface is marked down and it is running, then
1199 * stop it.
1200 */
1201 mb86960_stop(sc);
1202 ifp->if_flags &= ~IFF_RUNNING;
1203 mb86960_disable(sc);
1204 break;
1205 case IFF_UP:
1206 /*
1207 * If interface is marked up and it is stopped, then
1208 * start it.
1209 */
1210 if ((error = mb86960_enable(sc)) != 0)
1211 break;
1212 mb86960_init(sc);
1213 break;
1214 case IFF_UP|IFF_RUNNING:
1215 /*
1216 * Reset the interface to pick up changes in any other
1217 * flags that affect hardware registers.
1218 */
1219 mb86960_setmode(sc);
1220 break;
1221 case 0:
1222 break;
1223 }
1224 #if FE_DEBUG >= 1
1225 /* "ifconfig fe0 debug" to print register dump. */
1226 if (ifp->if_flags & IFF_DEBUG) {
1227 log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n",
1228 device_xname(sc->sc_dev));
1229 mb86960_dump(LOG_DEBUG, sc);
1230 }
1231 #endif
1232 break;
1233
1234 case SIOCADDMULTI:
1235 case SIOCDELMULTI:
1236 if ((sc->sc_stat & FE_STAT_ENABLED) == 0) {
1237 error = EIO;
1238 break;
1239 }
1240
1241 /* Update our multicast list. */
1242 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1243 /*
1244 * Multicast list has changed; set the hardware filter
1245 * accordingly.
1246 */
1247 if (ifp->if_flags & IFF_RUNNING)
1248 mb86960_setmode(sc);
1249 error = 0;
1250 }
1251 break;
1252
1253 case SIOCGIFMEDIA:
1254 case SIOCSIFMEDIA:
1255 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1256 break;
1257
1258 default:
1259 error = ether_ioctl(ifp, cmd, data);
1260 break;
1261 }
1262
1263 splx(s);
1264 return error;
1265 }
1266
1267 /*
1268 * Retrieve packet from receive buffer and send to the next level up via
1269 * ether_input(). If there is a BPF listener, give a copy to BPF, too.
1270 * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
1271 */
1272 int
1273 mb86960_get_packet(struct mb86960_softc *sc, u_int len)
1274 {
1275 bus_space_tag_t bst = sc->sc_bst;
1276 bus_space_handle_t bsh = sc->sc_bsh;
1277 struct ifnet *ifp = &sc->sc_ec.ec_if;
1278 struct mbuf *m;
1279
1280 /* Allocate a header mbuf. */
1281 MGETHDR(m, M_DONTWAIT, MT_DATA);
1282 if (m == 0)
1283 return 0;
1284 m_set_rcvif(m, ifp);
1285 m->m_pkthdr.len = len;
1286
1287 /* The following silliness is to make NFS happy. */
1288 #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
1289 #define EOFF (EROUND - sizeof(struct ether_header))
1290
1291 /*
1292 * Our strategy has one more problem. There is a policy on
1293 * mbuf cluster allocation. It says that we must have at
1294 * least MINCLSIZE (208 bytes) to allocate a cluster. For a
1295 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
1296 * our code violates the rule...
1297 * On the other hand, the current code is short, simple,
1298 * and fast, however. It does no harmful thing, just waists
1299 * some memory. Any comments? FIXME.
1300 */
1301
1302 /* Attach a cluster if this packet doesn't fit in a normal mbuf. */
1303 if (len > MHLEN - EOFF) {
1304 MCLGET(m, M_DONTWAIT);
1305 if ((m->m_flags & M_EXT) == 0) {
1306 m_freem(m);
1307 return 0;
1308 }
1309 }
1310
1311 /*
1312 * The following assumes there is room for the ether header in the
1313 * header mbuf.
1314 */
1315 m->m_data += EOFF;
1316
1317 /* Set the length of this packet. */
1318 m->m_len = len;
1319
1320 /* Get a packet. */
1321 if (sc->sc_flags & FE_FLAGS_SBW_BYTE)
1322 bus_space_read_multi_1(bst, bsh, FE_BMPR8,
1323 mtod(m, uint8_t *), len);
1324 else
1325 bus_space_read_multi_stream_2(bst, bsh, FE_BMPR8,
1326 mtod(m, uint16_t *), (len + 1) >> 1);
1327
1328 if_percpuq_enqueue(ifp->if_percpuq, m);
1329 return 1;
1330 }
1331
1332 /*
1333 * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
1334 * Returns number of bytes actually written, including length word.
1335 *
1336 * If an mbuf chain is too long for an Ethernet frame, it is not sent.
1337 * Packets shorter than Ethernet minimum are legal, and we pad them
1338 * before sending out. An exception is "partial" packets which are
1339 * shorter than mandatory Ethernet header.
1340 *
1341 * I wrote a code for an experimental "delayed padding" technique.
1342 * When employed, it postpones the padding process for short packets.
1343 * If xmit() occurred at the moment, the padding process is omitted, and
1344 * garbages are sent as pad data. If next packet is stored in the
1345 * transmission buffer before xmit(), write_mbuf() pads the previous
1346 * packet before transmitting new packet. This *may* gain the
1347 * system performance (slightly).
1348 */
1349 void
1350 mb86960_write_mbufs(struct mb86960_softc *sc, struct mbuf *m)
1351 {
1352 bus_space_tag_t bst = sc->sc_bst;
1353 bus_space_handle_t bsh = sc->sc_bsh;
1354 int totlen, len;
1355 #if FE_DEBUG >= 2
1356 struct mbuf *mp;
1357 #endif
1358
1359 #if FE_DELAYED_PADDING
1360 /* Do the "delayed padding." */
1361 if (sc->txb_padding > 0) {
1362 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1363 for (len = sc->txb_padding; len > 0; len--)
1364 bus_space_write_1(bst, bsh, FE_BMPR8, 0);
1365 } else {
1366 for (len = sc->txb_padding >> 1; len > 0; len--)
1367 bus_space_write_2(bst, bsh, FE_BMPR8, 0);
1368 }
1369 sc->txb_padding = 0;
1370 }
1371 #endif
1372
1373 /* We need to use m->m_pkthdr.len, so require the header */
1374 if ((m->m_flags & M_PKTHDR) == 0)
1375 panic("mb86960_write_mbufs: no header mbuf");
1376
1377 #if FE_DEBUG >= 2
1378 /* First, count up the total number of bytes to copy. */
1379 for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
1380 totlen += mp->m_len;
1381 /* Check if this matches the one in the packet header. */
1382 if (totlen != m->m_pkthdr.len)
1383 log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
1384 device_xname(sc->sc_dev), totlen, m->m_pkthdr.len);
1385 #else
1386 /* Just use the length value in the packet header. */
1387 totlen = m->m_pkthdr.len;
1388 #endif
1389
1390 #if FE_DEBUG >= 1
1391 /*
1392 * Should never send big packets. If such a packet is passed,
1393 * it should be a bug of upper layer. We just ignore it.
1394 * ... Partial (too short) packets, neither.
1395 */
1396 if (totlen > (ETHER_MAX_LEN - ETHER_CRC_LEN) ||
1397 totlen < ETHER_HDR_LEN) {
1398 log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
1399 device_xname(sc->sc_dev),
1400 totlen < ETHER_HDR_LEN ? "partial" : "big", totlen);
1401 sc->sc_ec.ec_if.if_oerrors++;
1402 return;
1403 }
1404 #endif
1405
1406 /*
1407 * Put the length word for this frame.
1408 * Does 86960 accept odd length? -- Yes.
1409 * Do we need to pad the length to minimum size by ourselves?
1410 * -- Generally yes. But for (or will be) the last
1411 * packet in the transmission buffer, we can skip the
1412 * padding process. It may gain performance slightly. FIXME.
1413 */
1414 len = max(totlen, (ETHER_MIN_LEN - ETHER_CRC_LEN));
1415 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1416 bus_space_write_1(bst, bsh, FE_BMPR8, len);
1417 bus_space_write_1(bst, bsh, FE_BMPR8, len >> 8);
1418 } else {
1419 bus_space_write_2(bst, bsh, FE_BMPR8, len);
1420 /* roundup packet length since we will use word access */
1421 totlen = (totlen + 1) & ~1;
1422 }
1423
1424 /*
1425 * Update buffer status now.
1426 * Truncate the length up to an even number
1427 * if the chip is set in SBW_WORD mode.
1428 */
1429 sc->txb_free -= FE_TXLEN_SIZE +
1430 max(totlen, (ETHER_MIN_LEN - ETHER_CRC_LEN));
1431 sc->txb_count++;
1432
1433 #if FE_DELAYED_PADDING
1434 /* Postpone the packet padding if necessary. */
1435 if (totlen < (ETHER_MIN_LEN - ETHER_CRC_LEN))
1436 sc->txb_padding = (ETHER_MIN_LEN - ETHER_CRC_LEN) - totlen;
1437 #endif
1438
1439 /*
1440 * Transfer the data from mbuf chain to the transmission buffer.
1441 * If the MB86960 is configured in word mode, data needs to be
1442 * transferred as words, and only words.
1443 * So that we require some extra code to patch over odd-length
1444 * or unaligned mbufs.
1445 */
1446 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1447 /* It's simple in byte mode. */
1448 for (; m != NULL; m = m->m_next) {
1449 if (m->m_len) {
1450 bus_space_write_multi_1(bst, bsh, FE_BMPR8,
1451 mtod(m, uint8_t *), m->m_len);
1452 }
1453 }
1454 } else {
1455 /* a bit trickier in word mode. */
1456 uint8_t *data, savebyte[2];
1457 int leftover;
1458
1459 leftover = 0;
1460 savebyte[0] = savebyte[1] = 0;
1461
1462 for (; m != NULL; m = m->m_next) {
1463 len = m->m_len;
1464 if (len == 0)
1465 continue;
1466 data = mtod(m, uint8_t *);
1467 while (len > 0) {
1468 if (leftover) {
1469 /*
1470 * Data left over (from mbuf or
1471 * realignment). Buffer the next
1472 * byte, and write it and the
1473 * leftover data out.
1474 */
1475 savebyte[1] = *data++;
1476 len--;
1477 bus_space_write_stream_2(bst, bsh,
1478 FE_BMPR8, *(uint16_t *)savebyte);
1479 leftover = 0;
1480 } else if (BUS_SPACE_ALIGNED_POINTER(data,
1481 uint16_t) == 0) {
1482 /*
1483 * Unaligned data; buffer the next byte.
1484 */
1485 savebyte[0] = *data++;
1486 len--;
1487 leftover = 1;
1488 } else {
1489 /*
1490 * Aligned data; output contiguous
1491 * words as much as we can, then
1492 * buffer the remaining byte, if any.
1493 */
1494 leftover = len & 1;
1495 len &= ~1;
1496 bus_space_write_multi_stream_2(bst, bsh,
1497 FE_BMPR8, (uint16_t *)data,
1498 len >> 1);
1499 data += len;
1500 if (leftover)
1501 savebyte[0] = *data++;
1502 len = 0;
1503 }
1504 }
1505 if (len < 0)
1506 panic("mb86960_write_mbufs: negative len");
1507 }
1508 if (leftover) {
1509 savebyte[1] = 0;
1510 bus_space_write_stream_2(bst, bsh, FE_BMPR8,
1511 *(uint16_t *)savebyte);
1512 }
1513 }
1514 #if FE_DELAYED_PADDING == 0
1515 /*
1516 * Pad the packet to the minimum length if necessary.
1517 */
1518 len = (ETHER_MIN_LEN - ETHER_CRC_LEN) - totlen;
1519 if (len > 0) {
1520 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1521 while (len-- > 0)
1522 bus_space_write_1(bst, bsh, FE_BMPR8, 0);
1523 } else {
1524 len >>= 1;
1525 while (len-- > 0)
1526 bus_space_write_2(bst, bsh, FE_BMPR8, 0);
1527 }
1528 }
1529 #endif
1530 }
1531
1532 /*
1533 * Compute the multicast address filter from the
1534 * list of multicast addresses we need to listen to.
1535 */
1536 void
1537 mb86960_getmcaf(struct ethercom *ec, uint8_t *af)
1538 {
1539 struct ifnet *ifp = &ec->ec_if;
1540 struct ether_multi *enm;
1541 uint32_t crc;
1542 struct ether_multistep step;
1543
1544 /*
1545 * Set up multicast address filter by passing all multicast addresses
1546 * through a crc generator, and then using the high order 6 bits as an
1547 * index into the 64 bit logical address filter. The high order bit
1548 * selects the word, while the rest of the bits select the bit within
1549 * the word.
1550 */
1551
1552 if ((ifp->if_flags & IFF_PROMISC) != 0)
1553 goto allmulti;
1554
1555 memset(af, 0, FE_FILTER_LEN);
1556 ETHER_FIRST_MULTI(step, ec, enm);
1557 while (enm != NULL) {
1558 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1559 sizeof(enm->enm_addrlo)) != 0) {
1560 /*
1561 * We must listen to a range of multicast addresses.
1562 * For now, just accept all multicasts, rather than
1563 * trying to set only those filter bits needed to match
1564 * the range. (At this time, the only use of address
1565 * ranges is for IP multicast routing, for which the
1566 * range is big enough to require all bits set.)
1567 */
1568 goto allmulti;
1569 }
1570
1571 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1572
1573 /* Just want the 6 most significant bits. */
1574 crc >>= 26;
1575
1576 /* Turn on the corresponding bit in the filter. */
1577 af[crc >> 3] |= 1 << (crc & 7);
1578
1579 ETHER_NEXT_MULTI(step, enm);
1580 }
1581 ifp->if_flags &= ~IFF_ALLMULTI;
1582 return;
1583
1584 allmulti:
1585 ifp->if_flags |= IFF_ALLMULTI;
1586 memset(af, 0xff, FE_FILTER_LEN);
1587 }
1588
1589 /*
1590 * Calculate a new "multicast packet filter" and put the 86960
1591 * receiver in appropriate mode.
1592 */
1593 void
1594 mb86960_setmode(struct mb86960_softc *sc)
1595 {
1596 bus_space_tag_t bst = sc->sc_bst;
1597 bus_space_handle_t bsh = sc->sc_bsh;
1598 int flags = sc->sc_ec.ec_if.if_flags;
1599
1600 /*
1601 * If the interface is not running, we postpone the update
1602 * process for receive modes and multicast address filter
1603 * until the interface is restarted. It reduces some
1604 * complicated job on maintaining chip states. (Earlier versions
1605 * of this driver had a bug on that point...)
1606 *
1607 * To complete the trick, mb86960_init() calls mb86960_setmode() after
1608 * restarting the interface.
1609 */
1610 if ((flags & IFF_RUNNING) == 0)
1611 return;
1612
1613 /*
1614 * Promiscuous mode is handled separately.
1615 */
1616 if ((flags & IFF_PROMISC) != 0) {
1617 /*
1618 * Program 86960 to receive all packets on the segment
1619 * including those directed to other stations.
1620 * Multicast filter stored in MARs are ignored
1621 * under this setting, so we don't need to update it.
1622 *
1623 * Promiscuous mode is used solely by BPF, and BPF only
1624 * listens to valid (no error) packets. So, we ignore
1625 * errornous ones even in this mode.
1626 */
1627 bus_space_write_1(bst, bsh, FE_DLCR5,
1628 sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
1629 sc->filter_change = 0;
1630
1631 #if FE_DEBUG >= 3
1632 log(LOG_INFO, "%s: promiscuous mode\n",
1633 device_xname(sc->sc_dev));
1634 #endif
1635 return;
1636 }
1637
1638 /*
1639 * Turn the chip to the normal (non-promiscuous) mode.
1640 */
1641 bus_space_write_1(bst, bsh, FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
1642
1643 /*
1644 * Find the new multicast filter value.
1645 */
1646 mb86960_getmcaf(&sc->sc_ec, sc->filter);
1647 sc->filter_change = 1;
1648
1649 #if FE_DEBUG >= 3
1650 log(LOG_INFO,
1651 "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
1652 device_xname(sc->sc_dev),
1653 sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
1654 sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
1655 #endif
1656
1657 /*
1658 * We have to update the multicast filter in the 86960, A.S.A.P.
1659 *
1660 * Note that the DLC (Data Linc Control unit, i.e. transmitter
1661 * and receiver) must be stopped when feeding the filter, and
1662 * DLC trashes all packets in both transmission and receive
1663 * buffers when stopped.
1664 *
1665 * ... Are the above sentenses correct? I have to check the
1666 * manual of the MB86960A. FIXME.
1667 *
1668 * To reduce the packet lossage, we delay the filter update
1669 * process until buffers are empty.
1670 */
1671 if (sc->txb_sched == 0 && sc->txb_count == 0 &&
1672 (bus_space_read_1(bst, bsh, FE_DLCR1) & FE_D1_PKTRDY) == 0) {
1673 /*
1674 * Buffers are (apparently) empty. Load
1675 * the new filter value into MARs now.
1676 */
1677 mb86960_loadmar(sc);
1678 } else {
1679 /*
1680 * Buffers are not empty. Mark that we have to update
1681 * the MARs. The new filter will be loaded by mb86960_intr()
1682 * later.
1683 */
1684 #if FE_DEBUG >= 4
1685 log(LOG_INFO, "%s: filter change delayed\n",
1686 device_xname(sc->sc_dev));
1687 #endif
1688 }
1689 }
1690
1691 /*
1692 * Load a new multicast address filter into MARs.
1693 *
1694 * The caller must have splnet'ed befor mb86960_loadmar.
1695 * This function starts the DLC upon return. So it can be called only
1696 * when the chip is working, i.e., from the driver's point of view, when
1697 * a device is RUNNING. (I mistook the point in previous versions.)
1698 */
1699 void
1700 mb86960_loadmar(struct mb86960_softc *sc)
1701 {
1702 bus_space_tag_t bst = sc->sc_bst;
1703 bus_space_handle_t bsh = sc->sc_bsh;
1704
1705 /* Stop the DLC (transmitter and receiver). */
1706 bus_space_write_1(bst, bsh, FE_DLCR6,
1707 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1708
1709 /* Select register bank 1 for MARs. */
1710 bus_space_write_1(bst, bsh, FE_DLCR7,
1711 sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
1712
1713 /* Copy filter value into the registers. */
1714 bus_space_write_region_1(bst, bsh, FE_MAR8, sc->filter, FE_FILTER_LEN);
1715
1716 /* Restore the bank selection for BMPRs (i.e., runtime registers). */
1717 bus_space_write_1(bst, bsh, FE_DLCR7,
1718 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1719
1720 /* Restart the DLC. */
1721 bus_space_write_1(bst, bsh, FE_DLCR6,
1722 sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1723
1724 /* We have just updated the filter. */
1725 sc->filter_change = 0;
1726
1727 #if FE_DEBUG >= 3
1728 log(LOG_INFO, "%s: address filter changed\n", device_xname(sc->sc_dev));
1729 #endif
1730 }
1731
1732 /*
1733 * Enable power on the interface.
1734 */
1735 int
1736 mb86960_enable(struct mb86960_softc *sc)
1737 {
1738
1739 #if FE_DEBUG >= 3
1740 log(LOG_INFO, "%s: mb86960_enable()\n", device_xname(sc->sc_dev));
1741 #endif
1742
1743 if ((sc->sc_stat & FE_STAT_ENABLED) == 0 && sc->sc_enable != NULL) {
1744 if ((*sc->sc_enable)(sc) != 0) {
1745 aprint_error_dev(sc->sc_dev, "device enable failed\n");
1746 return EIO;
1747 }
1748 }
1749
1750 sc->sc_stat |= FE_STAT_ENABLED;
1751 return 0;
1752 }
1753
1754 /*
1755 * Disable power on the interface.
1756 */
1757 void
1758 mb86960_disable(struct mb86960_softc *sc)
1759 {
1760
1761 #if FE_DEBUG >= 3
1762 log(LOG_INFO, "%s: mb86960_disable()\n", device_xname(sc->sc_dev));
1763 #endif
1764
1765 if ((sc->sc_stat & FE_STAT_ENABLED) != 0 && sc->sc_disable != NULL) {
1766 (*sc->sc_disable)(sc);
1767 sc->sc_stat &= ~FE_STAT_ENABLED;
1768 }
1769 }
1770
1771 /*
1772 * mbe_activate:
1773 *
1774 * Handle device activation/deactivation requests.
1775 */
1776 int
1777 mb86960_activate(device_t self, enum devact act)
1778 {
1779 struct mb86960_softc *sc = device_private(self);
1780
1781 switch (act) {
1782 case DVACT_DEACTIVATE:
1783 if_deactivate(&sc->sc_ec.ec_if);
1784 return 0;
1785 default:
1786 return EOPNOTSUPP;
1787 }
1788 }
1789
1790 /*
1791 * mb86960_detach:
1792 *
1793 * Detach a MB86960 interface.
1794 */
1795 int
1796 mb86960_detach(struct mb86960_softc *sc)
1797 {
1798 struct ifnet *ifp = &sc->sc_ec.ec_if;
1799
1800 /* Succeed now if there's no work to do. */
1801 if ((sc->sc_stat & FE_STAT_ATTACHED) == 0)
1802 return 0;
1803
1804 /* Delete all media. */
1805 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1806
1807 /* Unhook the entropy source. */
1808 rnd_detach_source(&sc->rnd_source);
1809
1810 ether_ifdetach(ifp);
1811 if_detach(ifp);
1812
1813 mb86960_disable(sc);
1814 return 0;
1815 }
1816
1817 /*
1818 * Routines to read all bytes from the config EEPROM (93C06) through MB86965A.
1819 */
1820 void
1821 mb86965_read_eeprom(bus_space_tag_t iot, bus_space_handle_t ioh, uint8_t *data)
1822 {
1823 int addr, op, bit;
1824 uint16_t val;
1825
1826 /* Read bytes from EEPROM; two bytes per an iteration. */
1827 for (addr = 0; addr < FE_EEPROM_SIZE / 2; addr++) {
1828 /* Reset the EEPROM interface. */
1829 bus_space_write_1(iot, ioh, FE_BMPR16, 0x00);
1830 bus_space_write_1(iot, ioh, FE_BMPR17, 0x00);
1831 bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT);
1832
1833 /* Send start bit. */
1834 bus_space_write_1(iot, ioh, FE_BMPR17, FE_B17_DATA);
1835 FE_EEPROM_DELAY();
1836 bus_space_write_1(iot, ioh,
1837 FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK);
1838 FE_EEPROM_DELAY();
1839 bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT);
1840
1841 /* Send read command and read address. */
1842 op = 0x80 | addr; /* READ instruction */
1843 for (bit = 8; bit > 0; bit--) {
1844 bus_space_write_1(iot, ioh, FE_BMPR17,
1845 (op & (1 << (bit - 1))) ? FE_B17_DATA : 0);
1846 FE_EEPROM_DELAY();
1847 bus_space_write_1(iot, ioh,
1848 FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK);
1849 FE_EEPROM_DELAY();
1850 bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT);
1851 }
1852 bus_space_write_1(iot, ioh, FE_BMPR17, 0x00);
1853
1854 /* Read two bytes in each address */
1855 val = 0;
1856 for (bit = 16; bit > 0; bit--) {
1857 FE_EEPROM_DELAY();
1858 bus_space_write_1(iot, ioh,
1859 FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK);
1860 FE_EEPROM_DELAY();
1861 if (bus_space_read_1(iot, ioh, FE_BMPR17) &
1862 FE_B17_DATA)
1863 val |= 1 << (bit - 1);
1864 bus_space_write_1(iot, ioh,
1865 FE_BMPR16, FE_B16_SELECT);
1866 }
1867 data[addr * 2] = val >> 8;
1868 data[addr * 2 + 1] = val & 0xff;
1869 }
1870
1871 /* Make sure the EEPROM is turned off. */
1872 bus_space_write_1(iot, ioh, FE_BMPR16, 0);
1873 bus_space_write_1(iot, ioh, FE_BMPR17, 0);
1874
1875 #if FE_DEBUG >= 3
1876 /* Report what we got. */
1877 log(LOG_INFO, "mb86965_read_eeprom: "
1878 " %02x%02x%02x%02x %02x%02x%02x%02x -"
1879 " %02x%02x%02x%02x %02x%02x%02x%02x -"
1880 " %02x%02x%02x%02x %02x%02x%02x%02x -"
1881 " %02x%02x%02x%02x %02x%02x%02x%02x\n",
1882 data[ 0], data[ 1], data[ 2], data[ 3],
1883 data[ 4], data[ 5], data[ 6], data[ 7],
1884 data[ 8], data[ 9], data[10], data[11],
1885 data[12], data[13], data[14], data[15],
1886 data[16], data[17], data[18], data[19],
1887 data[20], data[21], data[22], data[23],
1888 data[24], data[25], data[26], data[27],
1889 data[28], data[29], data[30], data[31]);
1890 #endif
1891 }
1892
1893 #if FE_DEBUG >= 1
1894 void
1895 mb86960_dump(int level, struct mb86960_softc *sc)
1896 {
1897 bus_space_tag_t bst = sc->sc_bst;
1898 bus_space_handle_t bsh = sc->sc_bsh;
1899 uint8_t save_dlcr7;
1900
1901 save_dlcr7 = bus_space_read_1(bst, bsh, FE_DLCR7);
1902
1903 log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x\n",
1904 bus_space_read_1(bst, bsh, FE_DLCR0),
1905 bus_space_read_1(bst, bsh, FE_DLCR1),
1906 bus_space_read_1(bst, bsh, FE_DLCR2),
1907 bus_space_read_1(bst, bsh, FE_DLCR3),
1908 bus_space_read_1(bst, bsh, FE_DLCR4),
1909 bus_space_read_1(bst, bsh, FE_DLCR5),
1910 bus_space_read_1(bst, bsh, FE_DLCR6),
1911 bus_space_read_1(bst, bsh, FE_DLCR7));
1912
1913 bus_space_write_1(bst, bsh, FE_DLCR7,
1914 (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
1915 log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x\n",
1916 bus_space_read_1(bst, bsh, FE_DLCR8),
1917 bus_space_read_1(bst, bsh, FE_DLCR9),
1918 bus_space_read_1(bst, bsh, FE_DLCR10),
1919 bus_space_read_1(bst, bsh, FE_DLCR11),
1920 bus_space_read_1(bst, bsh, FE_DLCR12),
1921 bus_space_read_1(bst, bsh, FE_DLCR13),
1922 bus_space_read_1(bst, bsh, FE_DLCR14),
1923 bus_space_read_1(bst, bsh, FE_DLCR15));
1924
1925 bus_space_write_1(bst, bsh, FE_DLCR7,
1926 (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
1927 log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x\n",
1928 bus_space_read_1(bst, bsh, FE_MAR8),
1929 bus_space_read_1(bst, bsh, FE_MAR9),
1930 bus_space_read_1(bst, bsh, FE_MAR10),
1931 bus_space_read_1(bst, bsh, FE_MAR11),
1932 bus_space_read_1(bst, bsh, FE_MAR12),
1933 bus_space_read_1(bst, bsh, FE_MAR13),
1934 bus_space_read_1(bst, bsh, FE_MAR14),
1935 bus_space_read_1(bst, bsh, FE_MAR15));
1936
1937 bus_space_write_1(bst, bsh, FE_DLCR7,
1938 (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
1939 log(level,
1940 "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x\n",
1941 bus_space_read_1(bst, bsh, FE_BMPR10),
1942 bus_space_read_1(bst, bsh, FE_BMPR11),
1943 bus_space_read_1(bst, bsh, FE_BMPR12),
1944 bus_space_read_1(bst, bsh, FE_BMPR13),
1945 bus_space_read_1(bst, bsh, FE_BMPR14),
1946 bus_space_read_1(bst, bsh, FE_BMPR15),
1947 bus_space_read_1(bst, bsh, FE_BMPR16),
1948 bus_space_read_1(bst, bsh, FE_BMPR17),
1949 bus_space_read_1(bst, bsh, FE_BMPR19));
1950
1951 bus_space_write_1(bst, bsh, FE_DLCR7, save_dlcr7);
1952 }
1953 #endif
1954
1955