mb86960.c revision 1.91 1 /* $NetBSD: mb86960.c,v 1.91 2019/05/23 10:57:28 msaitoh Exp $ */
2
3 /*
4 * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
5 *
6 * This software may be used, modified, copied, distributed, and sold, in
7 * both source and binary form provided that the above copyright, these
8 * terms and the following disclaimer are retained. The name of the author
9 * and/or the contributor may not be used to endorse or promote products
10 * derived from this software without specific prior written permission.
11 *
12 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
13 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
16 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
17 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
19 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
21 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
22 * SUCH DAMAGE.
23 */
24
25 /*
26 * Portions copyright (C) 1993, David Greenman. This software may be used,
27 * modified, copied, distributed, and sold, in both source and binary form
28 * provided that the above copyright and these terms are retained. Under no
29 * circumstances is the author responsible for the proper functioning of this
30 * software, nor does the author assume any responsibility for damages
31 * incurred with its use.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: mb86960.c,v 1.91 2019/05/23 10:57:28 msaitoh Exp $");
36
37 /*
38 * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
39 * Contributed by M.S. <seki (at) sysrap.cs.fujitsu.co.jp>
40 *
41 * This version is intended to be a generic template for various
42 * MB86960A/MB86965A based Ethernet cards. It currently supports
43 * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
44 * Telesis AT1700 series and RE2000 series. There are some
45 * unnecessary hooks embedded, which are primarily intended to support
46 * other types of Ethernet cards, but the author is not sure whether
47 * they are useful.
48 */
49
50 #include "opt_inet.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/mbuf.h>
57 #include <sys/socket.h>
58 #include <sys/syslog.h>
59 #include <sys/device.h>
60 #include <sys/rndsource.h>
61 #include <sys/bus.h>
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68 #include <net/bpf.h>
69
70 #ifdef INET
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip.h>
75 #include <netinet/if_inarp.h>
76 #endif
77
78 #include <dev/ic/mb86960reg.h>
79 #include <dev/ic/mb86960var.h>
80
81 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
82 #define bus_space_write_stream_2 bus_space_write_2
83 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
84 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
85 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
86
87 /* Standard driver entry points. These can be static. */
88 void mb86960_init(struct mb86960_softc *);
89 int mb86960_ioctl(struct ifnet *, u_long, void *);
90 void mb86960_start(struct ifnet *);
91 void mb86960_reset(struct mb86960_softc *);
92 void mb86960_watchdog(struct ifnet *);
93
94 /* Local functions. Order of declaration is confused. FIXME. */
95 int mb86960_get_packet(struct mb86960_softc *, u_int);
96 void mb86960_stop(struct mb86960_softc *);
97 void mb86960_tint(struct mb86960_softc *, uint8_t);
98 void mb86960_rint(struct mb86960_softc *, uint8_t);
99 static inline
100 void mb86960_xmit(struct mb86960_softc *);
101 void mb86960_write_mbufs(struct mb86960_softc *, struct mbuf *);
102 static inline
103 void mb86960_droppacket(struct mb86960_softc *);
104 void mb86960_getmcaf(struct ethercom *, uint8_t *);
105 void mb86960_setmode(struct mb86960_softc *);
106 void mb86960_loadmar(struct mb86960_softc *);
107
108 int mb86960_mediachange(struct ifnet *);
109 void mb86960_mediastatus(struct ifnet *, struct ifmediareq *);
110
111 #if FE_DEBUG >= 1
112 void mb86960_dump(int, struct mb86960_softc *);
113 #endif
114
115 void
116 mb86960_attach(struct mb86960_softc *sc, uint8_t *myea)
117 {
118 bus_space_tag_t bst = sc->sc_bst;
119 bus_space_handle_t bsh = sc->sc_bsh;
120
121 /* Register values which depend on board design. */
122 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
123 sc->proto_dlcr5 = 0;
124 sc->proto_dlcr7 = FE_D7_BYTSWP_LH;
125 if ((sc->sc_flags & FE_FLAGS_MB86960) != 0)
126 sc->proto_dlcr7 |= FE_D7_ED_TEST; /* XXX */
127 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
128
129 /*
130 * Program the 86960 as following defaults:
131 * SRAM: 32KB, 100ns, byte-wide access.
132 * Transmission buffer: 4KB x 2.
133 * System bus interface: 16 bits.
134 * These values except TXBSIZE should be modified as per
135 * sc_flags which is set in MD attachments, because they
136 * are hard-wired on the board. Modifying TXBSIZE will affect
137 * the driver performance.
138 */
139 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB |
140 FE_D6_BBW_BYTE | FE_D6_SRAM_100ns;
141 if (sc->sc_flags & FE_FLAGS_SBW_BYTE)
142 sc->proto_dlcr6 |= FE_D6_SBW_BYTE;
143 if (sc->sc_flags & FE_FLAGS_SRAM_150ns)
144 sc->proto_dlcr6 &= ~FE_D6_SRAM_100ns;
145
146 /*
147 * Minimum initialization of the hardware.
148 * We write into registers; hope I/O ports have no
149 * overlap with other boards.
150 */
151
152 /* Initialize 86960. */
153 bus_space_write_1(bst, bsh, FE_DLCR6,
154 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
155 delay(200);
156
157 #ifdef DIAGNOSTIC
158 if (myea == NULL) {
159 aprint_error_dev(sc->sc_dev,
160 "ethernet address shouldn't be NULL\n");
161 panic("NULL ethernet address");
162 }
163 #endif
164 memcpy(sc->sc_enaddr, myea, sizeof(sc->sc_enaddr));
165
166 /* Disable all interrupts. */
167 bus_space_write_1(bst, bsh, FE_DLCR2, 0);
168 bus_space_write_1(bst, bsh, FE_DLCR3, 0);
169 }
170
171 /*
172 * Install interface into kernel networking data structures
173 */
174 void
175 mb86960_config(struct mb86960_softc *sc, int *media, int nmedia, int defmedia)
176 {
177 cfdata_t cf = device_cfdata(sc->sc_dev);
178 struct ifnet *ifp = &sc->sc_ec.ec_if;
179 int i;
180
181 /* Stop the 86960. */
182 mb86960_stop(sc);
183
184 /* Initialize ifnet structure. */
185 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
186 ifp->if_softc = sc;
187 ifp->if_start = mb86960_start;
188 ifp->if_ioctl = mb86960_ioctl;
189 ifp->if_watchdog = mb86960_watchdog;
190 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
191 IFQ_SET_READY(&ifp->if_snd);
192
193 #if FE_DEBUG >= 3
194 log(LOG_INFO, "%s: mb86960_config()\n", device_xname(sc->sc_dev));
195 mb86960_dump(LOG_INFO, sc);
196 #endif
197
198 #if FE_SINGLE_TRANSMISSION
199 /* Override txb config to allocate minimum. */
200 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
201 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
202 #endif
203
204 /* Modify hardware config if it is requested. */
205 if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
206 sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
207
208 /* Find TX buffer size, based on the hardware dependent proto. */
209 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
210 case FE_D6_TXBSIZ_2x2KB:
211 sc->txb_size = 2048;
212 break;
213 case FE_D6_TXBSIZ_2x4KB:
214 sc->txb_size = 4096;
215 break;
216 case FE_D6_TXBSIZ_2x8KB:
217 sc->txb_size = 8192;
218 break;
219 default:
220 /* Oops, we can't work with single buffer configuration. */
221 #if FE_DEBUG >= 2
222 log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
223 device_xname(sc->sc_dev));
224 #endif
225 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
226 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
227 sc->txb_size = 2048;
228 break;
229 }
230
231 /* Initialize media goo. */
232 ifmedia_init(&sc->sc_media, 0, mb86960_mediachange,
233 mb86960_mediastatus);
234 if (media != NULL) {
235 for (i = 0; i < nmedia; i++)
236 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
237 ifmedia_set(&sc->sc_media, defmedia);
238 } else {
239 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
240 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
241 }
242
243 /* Attach the interface. */
244 if_attach(ifp);
245 if_deferred_start_init(ifp, NULL);
246 ether_ifattach(ifp, sc->sc_enaddr);
247
248 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
249 RND_TYPE_NET, RND_FLAG_DEFAULT);
250
251 /* Print additional info when attached. */
252 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
253 ether_sprintf(sc->sc_enaddr));
254
255 #if FE_DEBUG >= 3
256 {
257 int buf, txb, bbw, sbw, ram;
258
259 buf = txb = bbw = sbw = ram = -1;
260 switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
261 case FE_D6_BUFSIZ_8KB:
262 buf = 8;
263 break;
264 case FE_D6_BUFSIZ_16KB:
265 buf = 16;
266 break;
267 case FE_D6_BUFSIZ_32KB:
268 buf = 32;
269 break;
270 case FE_D6_BUFSIZ_64KB:
271 buf = 64;
272 break;
273 }
274 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
275 case FE_D6_TXBSIZ_2x2KB:
276 txb = 2;
277 break;
278 case FE_D6_TXBSIZ_2x4KB:
279 txb = 4;
280 break;
281 case FE_D6_TXBSIZ_2x8KB:
282 txb = 8;
283 break;
284 }
285 switch (sc->proto_dlcr6 & FE_D6_BBW) {
286 case FE_D6_BBW_BYTE:
287 bbw = 8;
288 break;
289 case FE_D6_BBW_WORD:
290 bbw = 16;
291 break;
292 }
293 switch (sc->proto_dlcr6 & FE_D6_SBW) {
294 case FE_D6_SBW_BYTE:
295 sbw = 8;
296 break;
297 case FE_D6_SBW_WORD:
298 sbw = 16;
299 break;
300 }
301 switch (sc->proto_dlcr6 & FE_D6_SRAM) {
302 case FE_D6_SRAM_100ns:
303 ram = 100;
304 break;
305 case FE_D6_SRAM_150ns:
306 ram = 150;
307 break;
308 }
309 aprint_debug_dev(sc->sc_dev,
310 "SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
311 buf, bbw, ram, txb, sbw);
312 }
313 #endif
314
315 /* The attach is successful. */
316 sc->sc_stat |= FE_STAT_ATTACHED;
317 }
318
319 /*
320 * Media change callback.
321 */
322 int
323 mb86960_mediachange(struct ifnet *ifp)
324 {
325 struct mb86960_softc *sc = ifp->if_softc;
326
327 if (sc->sc_mediachange)
328 return (*sc->sc_mediachange)(sc);
329 return 0;
330 }
331
332 /*
333 * Media status callback.
334 */
335 void
336 mb86960_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
337 {
338 struct mb86960_softc *sc = ifp->if_softc;
339
340 if ((sc->sc_stat & FE_STAT_ENABLED) == 0) {
341 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
342 ifmr->ifm_status = 0;
343 return;
344 }
345
346 if (sc->sc_mediastatus)
347 (*sc->sc_mediastatus)(sc, ifmr);
348 }
349
350 /*
351 * Reset interface.
352 */
353 void
354 mb86960_reset(struct mb86960_softc *sc)
355 {
356 int s;
357
358 s = splnet();
359 mb86960_stop(sc);
360 mb86960_init(sc);
361 splx(s);
362 }
363
364 /*
365 * Stop everything on the interface.
366 *
367 * All buffered packets, both transmitting and receiving,
368 * if any, will be lost by stopping the interface.
369 */
370 void
371 mb86960_stop(struct mb86960_softc *sc)
372 {
373 bus_space_tag_t bst = sc->sc_bst;
374 bus_space_handle_t bsh = sc->sc_bsh;
375
376 #if FE_DEBUG >= 3
377 log(LOG_INFO, "%s: top of mb86960_stop()\n", device_xname(sc->sc_dev));
378 mb86960_dump(LOG_INFO, sc);
379 #endif
380
381 /* Disable interrupts. */
382 bus_space_write_1(bst, bsh, FE_DLCR2, 0x00);
383 bus_space_write_1(bst, bsh, FE_DLCR3, 0x00);
384
385 /* Stop interface hardware. */
386 delay(200);
387 bus_space_write_1(bst, bsh, FE_DLCR6,
388 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
389 delay(200);
390
391 /* Clear all interrupt status. */
392 bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF);
393 bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF);
394
395 /* Put the chip in stand-by mode. */
396 delay(200);
397 bus_space_write_1(bst, bsh, FE_DLCR7,
398 sc->proto_dlcr7 | FE_D7_POWER_DOWN);
399 delay(200);
400
401 /* MAR loading can be delayed. */
402 sc->filter_change = 0;
403
404 /* Call a hook. */
405 if (sc->stop_card)
406 (*sc->stop_card)(sc);
407
408 #if FE_DEBUG >= 3
409 log(LOG_INFO, "%s: end of mb86960_stop()\n", device_xname(sc->sc_dev));
410 mb86960_dump(LOG_INFO, sc);
411 #endif
412 }
413
414 /*
415 * Device timeout/watchdog routine. Entered if the device neglects to
416 * generate an interrupt after a transmit has been started on it.
417 */
418 void
419 mb86960_watchdog(struct ifnet *ifp)
420 {
421 struct mb86960_softc *sc = ifp->if_softc;
422
423 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
424 #if FE_DEBUG >= 3
425 mb86960_dump(LOG_INFO, sc);
426 #endif
427
428 /* Record how many packets are lost by this accident. */
429 sc->sc_ec.ec_if.if_oerrors += sc->txb_sched + sc->txb_count;
430
431 mb86960_reset(sc);
432 }
433
434 /*
435 * Drop (skip) a packet from receive buffer in 86960 memory.
436 */
437 static inline void
438 mb86960_droppacket(struct mb86960_softc *sc)
439 {
440 bus_space_tag_t bst = sc->sc_bst;
441 bus_space_handle_t bsh = sc->sc_bsh;
442
443 bus_space_write_1(bst, bsh, FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
444 }
445
446 /*
447 * Initialize device.
448 */
449 void
450 mb86960_init(struct mb86960_softc *sc)
451 {
452 bus_space_tag_t bst = sc->sc_bst;
453 bus_space_handle_t bsh = sc->sc_bsh;
454 struct ifnet *ifp = &sc->sc_ec.ec_if;
455 int i;
456
457 #if FE_DEBUG >= 3
458 log(LOG_INFO, "%s: top of mb86960_init()\n", device_xname(sc->sc_dev));
459 mb86960_dump(LOG_INFO, sc);
460 #endif
461
462 /* Reset transmitter flags. */
463 ifp->if_flags &= ~IFF_OACTIVE;
464 ifp->if_timer = 0;
465
466 sc->txb_free = sc->txb_size;
467 sc->txb_count = 0;
468 sc->txb_sched = 0;
469
470 /* Do any card-specific initialization, if applicable. */
471 if (sc->init_card)
472 (*sc->init_card)(sc);
473
474 #if FE_DEBUG >= 3
475 log(LOG_INFO, "%s: after init hook\n", device_xname(sc->sc_dev));
476 mb86960_dump(LOG_INFO, sc);
477 #endif
478
479 /*
480 * Make sure to disable the chip, also.
481 * This may also help re-programming the chip after
482 * hot insertion of PCMCIAs.
483 */
484 bus_space_write_1(bst, bsh, FE_DLCR6,
485 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
486 delay(200);
487
488 /* Power up the chip and select register bank for DLCRs. */
489 bus_space_write_1(bst, bsh, FE_DLCR7,
490 sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
491 delay(200);
492
493 /* Feed the station address. */
494 bus_space_write_region_1(bst, bsh, FE_DLCR8,
495 sc->sc_enaddr, ETHER_ADDR_LEN);
496
497 /* Select the BMPR bank for runtime register access. */
498 bus_space_write_1(bst, bsh, FE_DLCR7,
499 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
500
501 /* Initialize registers. */
502 bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF); /* Clear all bits. */
503 bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF); /* ditto. */
504 bus_space_write_1(bst, bsh, FE_DLCR2, 0x00);
505 bus_space_write_1(bst, bsh, FE_DLCR3, 0x00);
506 bus_space_write_1(bst, bsh, FE_DLCR4, sc->proto_dlcr4);
507 bus_space_write_1(bst, bsh, FE_DLCR5, sc->proto_dlcr5);
508 bus_space_write_1(bst, bsh, FE_BMPR10, 0x00);
509 bus_space_write_1(bst, bsh, FE_BMPR11, FE_B11_CTRL_SKIP);
510 bus_space_write_1(bst, bsh, FE_BMPR12, 0x00);
511 bus_space_write_1(bst, bsh, FE_BMPR13, sc->proto_bmpr13);
512 bus_space_write_1(bst, bsh, FE_BMPR14, FE_B14_FILTER);
513 bus_space_write_1(bst, bsh, FE_BMPR15, 0x00);
514
515 #if FE_DEBUG >= 3
516 log(LOG_INFO, "%s: just before enabling DLC\n",
517 device_xname(sc->sc_dev));
518 mb86960_dump(LOG_INFO, sc);
519 #endif
520
521 /* Enable interrupts. */
522 bus_space_write_1(bst, bsh, FE_DLCR2, FE_TMASK);
523 bus_space_write_1(bst, bsh, FE_DLCR3, FE_RMASK);
524
525 /* Enable transmitter and receiver. */
526 delay(200);
527 bus_space_write_1(bst, bsh, FE_DLCR6,
528 sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
529 delay(200);
530
531 #if FE_DEBUG >= 3
532 log(LOG_INFO, "%s: just after enabling DLC\n",
533 device_xname(sc->sc_dev));
534 mb86960_dump(LOG_INFO, sc);
535 #endif
536
537 /*
538 * Make sure to empty the receive buffer.
539 *
540 * This may be redundant, but *if* the receive buffer were full
541 * at this point, the driver would hang. I have experienced
542 * some strange hangups just after UP. I hope the following
543 * code solve the problem.
544 *
545 * I have changed the order of hardware initialization.
546 * I think the receive buffer cannot have any packets at this
547 * point in this version. The following code *must* be
548 * redundant now. FIXME.
549 */
550 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
551 if (bus_space_read_1(bst, bsh, FE_DLCR5) & FE_D5_BUFEMP)
552 break;
553 mb86960_droppacket(sc);
554 }
555 #if FE_DEBUG >= 1
556 if (i >= FE_MAX_RECV_COUNT)
557 log(LOG_ERR, "%s: cannot empty receive buffer\n",
558 device_xname(sc->sc_dev));
559 #endif
560 #if FE_DEBUG >= 3
561 if (i < FE_MAX_RECV_COUNT)
562 log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
563 device_xname(sc->sc_dev), i);
564 #endif
565
566 #if FE_DEBUG >= 3
567 log(LOG_INFO, "%s: after ERB loop\n", device_xname(sc->sc_dev));
568 mb86960_dump(LOG_INFO, sc);
569 #endif
570
571 /* Do we need this here? */
572 bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF); /* Clear all bits. */
573 bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF); /* ditto. */
574
575 #if FE_DEBUG >= 3
576 log(LOG_INFO, "%s: after FIXME\n", device_xname(sc->sc_dev));
577 mb86960_dump(LOG_INFO, sc);
578 #endif
579
580 /* Set 'running' flag. */
581 ifp->if_flags |= IFF_RUNNING;
582
583 /*
584 * At this point, the interface is runnung properly,
585 * except that it receives *no* packets. we then call
586 * mb86960_setmode() to tell the chip what packets to be
587 * received, based on the if_flags and multicast group
588 * list. It completes the initialization process.
589 */
590 mb86960_setmode(sc);
591
592 #if FE_DEBUG >= 3
593 log(LOG_INFO, "%s: after setmode\n", device_xname(sc->sc_dev));
594 mb86960_dump(LOG_INFO, sc);
595 #endif
596
597 /* ...and attempt to start output. */
598 mb86960_start(ifp);
599
600 #if FE_DEBUG >= 3
601 log(LOG_INFO, "%s: end of mb86960_init()\n", device_xname(sc->sc_dev));
602 mb86960_dump(LOG_INFO, sc);
603 #endif
604 }
605
606 /*
607 * This routine actually starts the transmission on the interface
608 */
609 static inline void
610 mb86960_xmit(struct mb86960_softc *sc)
611 {
612 bus_space_tag_t bst = sc->sc_bst;
613 bus_space_handle_t bsh = sc->sc_bsh;
614
615 /*
616 * Set a timer just in case we never hear from the board again.
617 * We use longer timeout for multiple packet transmission.
618 * I'm not sure this timer value is appropriate. FIXME.
619 */
620 sc->sc_ec.ec_if.if_timer = 1 + sc->txb_count;
621
622 /* Update txb variables. */
623 sc->txb_sched = sc->txb_count;
624 sc->txb_count = 0;
625 sc->txb_free = sc->txb_size;
626
627 #if FE_DELAYED_PADDING
628 /* Omit the postponed padding process. */
629 sc->txb_padding = 0;
630 #endif
631
632 /* Start transmitter, passing packets in TX buffer. */
633 bus_space_write_1(bst, bsh, FE_BMPR10, sc->txb_sched | FE_B10_START);
634 }
635
636 /*
637 * Start output on interface.
638 * We make two assumptions here:
639 * 1) that the current priority is set to splnet _before_ this code
640 * is called *and* is returned to the appropriate priority after
641 * return
642 * 2) that the IFF_OACTIVE flag is checked before this code is called
643 * (i.e. that the output part of the interface is idle)
644 */
645 void
646 mb86960_start(struct ifnet *ifp)
647 {
648 struct mb86960_softc *sc = ifp->if_softc;
649 struct mbuf *m;
650
651 #if FE_DEBUG >= 1
652 /* Just a sanity check. */
653 if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
654 /*
655 * Txb_count and txb_free co-works to manage the
656 * transmission buffer. Txb_count keeps track of the
657 * used potion of the buffer, while txb_free does unused
658 * potion. So, as long as the driver runs properly,
659 * txb_count is zero if and only if txb_free is same
660 * as txb_size (which represents whole buffer.)
661 */
662 log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
663 device_xname(sc->sc_dev), sc->txb_count, sc->txb_free);
664 /*
665 * So, what should I do, then?
666 *
667 * We now know txb_count and txb_free contradicts. We
668 * cannot, however, tell which is wrong. More
669 * over, we cannot peek 86960 transmission buffer or
670 * reset the transmission buffer. (In fact, we can
671 * reset the entire interface. I don't want to do it.)
672 *
673 * If txb_count is incorrect, leaving it as is will cause
674 * sending of garbage after the next interrupt. We have to
675 * avoid it. Hence, we reset the txb_count here. If
676 * txb_free was incorrect, resetting txb_count just loose
677 * some packets. We can live with it.
678 */
679 sc->txb_count = 0;
680 }
681 #endif
682
683 #if FE_DEBUG >= 1
684 /*
685 * First, see if there are buffered packets and an idle
686 * transmitter - should never happen at this point.
687 */
688 if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
689 log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
690 device_xname(sc->sc_dev), sc->txb_count);
691 mb86960_xmit(sc);
692 }
693 #endif
694
695 /*
696 * Stop accepting more transmission packets temporarily, when
697 * a filter change request is delayed. Updating the MARs on
698 * 86960 flushes the transmisstion buffer, so it is delayed
699 * until all buffered transmission packets have been sent
700 * out.
701 */
702 if (sc->filter_change) {
703 /*
704 * Filter change request is delayed only when the DLC is
705 * working. DLC soon raise an interrupt after finishing
706 * the work.
707 */
708 goto indicate_active;
709 }
710
711 for (;;) {
712 /*
713 * See if there is room to put another packet in the buffer.
714 * We *could* do better job by peeking the send queue to
715 * know the length of the next packet. Current version just
716 * tests against the worst case (i.e., longest packet). FIXME.
717 *
718 * When adding the packet-peek feature, don't forget adding a
719 * test on txb_count against QUEUEING_MAX.
720 * There is a little chance the packet count exceeds
721 * the limit. Assume transmission buffer is 8KB (2x8KB
722 * configuration) and an application sends a bunch of small
723 * (i.e., minimum packet sized) packets rapidly. An 8KB
724 * buffer can hold 130 blocks of 62 bytes long...
725 */
726 if (sc->txb_free <
727 (ETHER_MAX_LEN - ETHER_CRC_LEN) + FE_TXLEN_SIZE) {
728 /* No room. */
729 goto indicate_active;
730 }
731
732 #if FE_SINGLE_TRANSMISSION
733 if (sc->txb_count > 0) {
734 /* Just one packet per a transmission buffer. */
735 goto indicate_active;
736 }
737 #endif
738
739 /*
740 * Get the next mbuf chain for a packet to send.
741 */
742 IFQ_DEQUEUE(&ifp->if_snd, m);
743 if (m == 0) {
744 /* No more packets to send. */
745 goto indicate_inactive;
746 }
747
748 /* Tap off here if there is a BPF listener. */
749 bpf_mtap(ifp, m, BPF_D_OUT);
750
751 /*
752 * Copy the mbuf chain into the transmission buffer.
753 * txb_* variables are updated as necessary.
754 */
755 mb86960_write_mbufs(sc, m);
756
757 m_freem(m);
758
759 /* Start transmitter if it's idle. */
760 if (sc->txb_sched == 0)
761 mb86960_xmit(sc);
762 }
763
764 indicate_inactive:
765 /*
766 * We are using the !OACTIVE flag to indicate to
767 * the outside world that we can accept an
768 * additional packet rather than that the
769 * transmitter is _actually_ active. Indeed, the
770 * transmitter may be active, but if we haven't
771 * filled all the buffers with data then we still
772 * want to accept more.
773 */
774 ifp->if_flags &= ~IFF_OACTIVE;
775 return;
776
777 indicate_active:
778 /*
779 * The transmitter is active, and there are no room for
780 * more outgoing packets in the transmission buffer.
781 */
782 ifp->if_flags |= IFF_OACTIVE;
783 return;
784 }
785
786 /*
787 * Transmission interrupt handler
788 * The control flow of this function looks silly. FIXME.
789 */
790 void
791 mb86960_tint(struct mb86960_softc *sc, uint8_t tstat)
792 {
793 bus_space_tag_t bst = sc->sc_bst;
794 bus_space_handle_t bsh = sc->sc_bsh;
795 struct ifnet *ifp = &sc->sc_ec.ec_if;
796 int left;
797 int col;
798
799 /*
800 * Handle "excessive collision" interrupt.
801 */
802 if (tstat & FE_D0_COLL16) {
803 /*
804 * Find how many packets (including this collided one)
805 * are left unsent in transmission buffer.
806 */
807 left = bus_space_read_1(bst, bsh, FE_BMPR10);
808
809 #if FE_DEBUG >= 2
810 log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
811 device_xname(sc->sc_dev), left, sc->txb_sched);
812 #endif
813 #if FE_DEBUG >= 3
814 mb86960_dump(LOG_INFO, sc);
815 #endif
816
817 /*
818 * Update statistics.
819 */
820 ifp->if_collisions += 16;
821 ifp->if_oerrors++;
822 ifp->if_opackets += sc->txb_sched - left;
823
824 /*
825 * Collision statistics has been updated.
826 * Clear the collision flag on 86960 now to avoid confusion.
827 */
828 bus_space_write_1(bst, bsh, FE_DLCR0, FE_D0_COLLID);
829
830 /*
831 * Restart transmitter, skipping the
832 * collided packet.
833 *
834 * We *must* skip the packet to keep network running
835 * properly. Excessive collision error is an
836 * indication of the network overload. If we
837 * tried sending the same packet after excessive
838 * collision, the network would be filled with
839 * out-of-time packets. Packets belonging
840 * to reliable transport (such as TCP) are resent
841 * by some upper layer.
842 */
843 bus_space_write_1(bst, bsh, FE_BMPR11,
844 FE_B11_CTRL_SKIP | FE_B11_MODE1);
845 sc->txb_sched = left - 1;
846 }
847
848 /*
849 * Handle "transmission complete" interrupt.
850 */
851 if (tstat & FE_D0_TXDONE) {
852 /*
853 * Add in total number of collisions on last
854 * transmission. We also clear "collision occurred" flag
855 * here.
856 *
857 * 86960 has a design flow on collision count on multiple
858 * packet transmission. When we send two or more packets
859 * with one start command (that's what we do when the
860 * transmission queue is clauded), 86960 informs us number
861 * of collisions occurred on the last packet on the
862 * transmission only. Number of collisions on previous
863 * packets are lost. I have told that the fact is clearly
864 * stated in the Fujitsu document.
865 *
866 * I considered not to mind it seriously. Collision
867 * count is not so important, anyway. Any comments? FIXME.
868 */
869
870 if (bus_space_read_1(bst, bsh, FE_DLCR0) & FE_D0_COLLID) {
871 /* Clear collision flag. */
872 bus_space_write_1(bst, bsh, FE_DLCR0, FE_D0_COLLID);
873
874 /* Extract collision count from 86960. */
875 col = bus_space_read_1(bst, bsh, FE_DLCR4) & FE_D4_COL;
876 if (col == 0) {
877 /*
878 * Status register indicates collisions,
879 * while the collision count is zero.
880 * This can happen after multiple packet
881 * transmission, indicating that one or more
882 * previous packet(s) had been collided.
883 *
884 * Since the accurate number of collisions
885 * has been lost, we just guess it as 1;
886 * Am I too optimistic? FIXME.
887 */
888 col = 1;
889 } else
890 col >>= FE_D4_COL_SHIFT;
891 ifp->if_collisions += col;
892 #if FE_DEBUG >= 4
893 log(LOG_WARNING, "%s: %d collision%s (%d)\n",
894 device_xname(sc->sc_dev), col, col == 1 ? "" : "s",
895 sc->txb_sched);
896 #endif
897 }
898
899 /*
900 * Update total number of successfully
901 * transmitted packets.
902 */
903 ifp->if_opackets += sc->txb_sched;
904 sc->txb_sched = 0;
905 }
906
907 if (sc->txb_sched == 0) {
908 /*
909 * The transmitter is no more active.
910 * Reset output active flag and watchdog timer.
911 */
912 ifp->if_flags &= ~IFF_OACTIVE;
913 ifp->if_timer = 0;
914
915 /*
916 * If more data is ready to transmit in the buffer, start
917 * transmitting them. Otherwise keep transmitter idle,
918 * even if more data is queued. This gives receive
919 * process a slight priority.
920 */
921 if (sc->txb_count > 0)
922 mb86960_xmit(sc);
923 }
924 }
925
926 /*
927 * Ethernet interface receiver interrupt.
928 */
929 void
930 mb86960_rint(struct mb86960_softc *sc, uint8_t rstat)
931 {
932 bus_space_tag_t bst = sc->sc_bst;
933 bus_space_handle_t bsh = sc->sc_bsh;
934 struct ifnet *ifp = &sc->sc_ec.ec_if;
935 u_int status, len;
936 int i;
937
938 /*
939 * Update statistics if this interrupt is caused by an error.
940 */
941 if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR | FE_D1_ALGERR |
942 FE_D1_SRTPKT)) {
943 #if FE_DEBUG >= 3
944 char sbuf[sizeof(FE_D1_ERRBITS) + 64];
945
946 snprintb(sbuf, sizeof(sbuf), FE_D1_ERRBITS, rstat);
947 log(LOG_WARNING, "%s: receive error: %s\n",
948 device_xname(sc->sc_dev), sbuf);
949 #endif
950 ifp->if_ierrors++;
951 }
952
953 /*
954 * MB86960 has a flag indicating "receive queue empty."
955 * We just loop checking the flag to pull out all received
956 * packets.
957 *
958 * We limit the number of iterrations to avoid infinite loop.
959 * It can be caused by a very slow CPU (some broken
960 * peripheral may insert incredible number of wait cycles)
961 * or, worse, by a broken MB86960 chip.
962 */
963 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
964 /* Stop the iterration if 86960 indicates no packets. */
965 if (bus_space_read_1(bst, bsh, FE_DLCR5) & FE_D5_BUFEMP)
966 break;
967
968 /*
969 * Extract receive packet status from the receive
970 * packet header.
971 */
972 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
973 status = bus_space_read_1(bst, bsh, FE_BMPR8);
974 (void)bus_space_read_1(bst, bsh, FE_BMPR8);
975 } else
976 status = bus_space_read_2(bst, bsh, FE_BMPR8);
977
978 #if FE_DEBUG >= 4
979 log(LOG_INFO, "%s: receive status = %02x\n",
980 device_xname(sc->sc_dev), status);
981 #endif
982
983 /*
984 * If there was an error, update statistics and drop
985 * the packet, unless the interface is in promiscuous
986 * mode.
987 */
988 if ((status & FE_RXSTAT_GOODPKT) == 0) {
989 if ((ifp->if_flags & IFF_PROMISC) == 0) {
990 ifp->if_ierrors++;
991 mb86960_droppacket(sc);
992 continue;
993 }
994 }
995
996 /*
997 * Extract the packet length from the receive packet header.
998 * It is a sum of a header (14 bytes) and a payload.
999 * CRC has been stripped off by the 86960.
1000 */
1001 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1002 len = bus_space_read_1(bst, bsh, FE_BMPR8);
1003 len |= bus_space_read_1(bst, bsh, FE_BMPR8) << 8;
1004 } else
1005 len = bus_space_read_2(bst, bsh, FE_BMPR8);
1006
1007 /*
1008 * MB86965 checks the packet length and drop big packet
1009 * before passing it to us. There are no chance we can
1010 * get [crufty] packets. Hence, if the length exceeds
1011 * the specified limit, it means some serious failure,
1012 * such as out-of-sync on receive buffer management.
1013 *
1014 * Is this statement true? FIXME.
1015 */
1016 if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN) ||
1017 len < ETHER_HDR_LEN) {
1018 #if FE_DEBUG >= 2
1019 log(LOG_WARNING,
1020 "%s: received a %s packet? (%u bytes)\n",
1021 device_xname(sc->sc_dev),
1022 len < ETHER_HDR_LEN ? "partial" : "big", len);
1023 #endif
1024 ifp->if_ierrors++;
1025 mb86960_droppacket(sc);
1026 continue;
1027 }
1028
1029 /*
1030 * Check for a short (RUNT) packet. We *do* check
1031 * but do nothing other than print a message.
1032 * Short packets are illegal, but does nothing bad
1033 * if it carries data for upper layer.
1034 */
1035 #if FE_DEBUG >= 2
1036 if (len < (ETHER_MIN_LEN - ETHER_CRC_LEN)) {
1037 log(LOG_WARNING,
1038 "%s: received a short packet? (%u bytes)\n",
1039 device_xname(sc->sc_dev), len);
1040 }
1041 #endif
1042
1043 /*
1044 * Go get a packet.
1045 */
1046 if (mb86960_get_packet(sc, len) == 0) {
1047 /* Skip a packet, updating statistics. */
1048 #if FE_DEBUG >= 2
1049 log(LOG_WARNING,
1050 "%s: out of mbufs; dropping packet (%u bytes)\n",
1051 device_xname(sc->sc_dev), len);
1052 #endif
1053 ifp->if_ierrors++;
1054 mb86960_droppacket(sc);
1055
1056 /*
1057 * We stop receiving packets, even if there are
1058 * more in the buffer. We hope we can get more
1059 * mbufs next time.
1060 */
1061 return;
1062 }
1063 }
1064 }
1065
1066 /*
1067 * Ethernet interface interrupt processor
1068 */
1069 int
1070 mb86960_intr(void *arg)
1071 {
1072 struct mb86960_softc *sc = arg;
1073 bus_space_tag_t bst = sc->sc_bst;
1074 bus_space_handle_t bsh = sc->sc_bsh;
1075 struct ifnet *ifp = &sc->sc_ec.ec_if;
1076 uint8_t tstat, rstat;
1077
1078 if ((sc->sc_stat & FE_STAT_ENABLED) == 0 ||
1079 !device_is_active(sc->sc_dev))
1080 return 0;
1081
1082 #if FE_DEBUG >= 4
1083 log(LOG_INFO, "%s: mb86960_intr()\n", device_xname(sc->sc_dev));
1084 mb86960_dump(LOG_INFO, sc);
1085 #endif
1086
1087 /*
1088 * Get interrupt conditions, masking unneeded flags.
1089 */
1090 tstat = bus_space_read_1(bst, bsh, FE_DLCR0) & FE_TMASK;
1091 rstat = bus_space_read_1(bst, bsh, FE_DLCR1) & FE_RMASK;
1092 if (tstat == 0 && rstat == 0)
1093 return 0;
1094
1095 /*
1096 * Loop until there are no more new interrupt conditions.
1097 */
1098 for (;;) {
1099 /*
1100 * Reset the conditions we are acknowledging.
1101 */
1102 bus_space_write_1(bst, bsh, FE_DLCR0, tstat);
1103 bus_space_write_1(bst, bsh, FE_DLCR1, rstat);
1104
1105 /*
1106 * Handle transmitter interrupts. Handle these first because
1107 * the receiver will reset the board under some conditions.
1108 */
1109 if (tstat != 0)
1110 mb86960_tint(sc, tstat);
1111
1112 /*
1113 * Handle receiver interrupts.
1114 */
1115 if (rstat != 0)
1116 mb86960_rint(sc, rstat);
1117
1118 /*
1119 * Update the multicast address filter if it is
1120 * needed and possible. We do it now, because
1121 * we can make sure the transmission buffer is empty,
1122 * and there is a good chance that the receive queue
1123 * is empty. It will minimize the possibility of
1124 * packet lossage.
1125 */
1126 if (sc->filter_change &&
1127 sc->txb_count == 0 && sc->txb_sched == 0) {
1128 mb86960_loadmar(sc);
1129 ifp->if_flags &= ~IFF_OACTIVE;
1130 }
1131
1132 /*
1133 * If it looks like the transmitter can take more data,
1134 * attempt to start output on the interface. This is done
1135 * after handling the receiver interrupt to give the
1136 * receive operation priority.
1137 */
1138 if ((ifp->if_flags & IFF_OACTIVE) == 0)
1139 if_schedule_deferred_start(ifp);
1140
1141 if (rstat != 0 || tstat != 0)
1142 rnd_add_uint32(&sc->rnd_source, rstat + tstat);
1143
1144 /*
1145 * Get interrupt conditions, masking unneeded flags.
1146 */
1147 tstat = bus_space_read_1(bst, bsh, FE_DLCR0) & FE_TMASK;
1148 rstat = bus_space_read_1(bst, bsh, FE_DLCR1) & FE_RMASK;
1149 if (tstat == 0 && rstat == 0)
1150 return 1;
1151 }
1152 }
1153
1154 /*
1155 * Process an ioctl request. This code needs some work - it looks pretty ugly.
1156 */
1157 int
1158 mb86960_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1159 {
1160 struct mb86960_softc *sc = ifp->if_softc;
1161 struct ifaddr *ifa = (struct ifaddr *)data;
1162 struct ifreq *ifr = (struct ifreq *)data;
1163 int s, error = 0;
1164
1165 #if FE_DEBUG >= 3
1166 log(LOG_INFO, "%s: ioctl(%lx)\n", device_xname(sc->sc_dev), cmd);
1167 #endif
1168
1169 s = splnet();
1170
1171 switch (cmd) {
1172 case SIOCINITIFADDR:
1173 if ((error = mb86960_enable(sc)) != 0)
1174 break;
1175 ifp->if_flags |= IFF_UP;
1176
1177 mb86960_init(sc);
1178 switch (ifa->ifa_addr->sa_family) {
1179 #ifdef INET
1180 case AF_INET:
1181 arp_ifinit(ifp, ifa);
1182 break;
1183 #endif
1184 default:
1185 break;
1186 }
1187 break;
1188
1189 case SIOCSIFFLAGS:
1190 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1191 break;
1192 /* XXX re-use ether_ioctl() */
1193 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1194 case IFF_RUNNING:
1195 /*
1196 * If interface is marked down and it is running, then
1197 * stop it.
1198 */
1199 mb86960_stop(sc);
1200 ifp->if_flags &= ~IFF_RUNNING;
1201 mb86960_disable(sc);
1202 break;
1203 case IFF_UP:
1204 /*
1205 * If interface is marked up and it is stopped, then
1206 * start it.
1207 */
1208 if ((error = mb86960_enable(sc)) != 0)
1209 break;
1210 mb86960_init(sc);
1211 break;
1212 case IFF_UP | IFF_RUNNING:
1213 /*
1214 * Reset the interface to pick up changes in any other
1215 * flags that affect hardware registers.
1216 */
1217 mb86960_setmode(sc);
1218 break;
1219 case 0:
1220 break;
1221 }
1222 #if FE_DEBUG >= 1
1223 /* "ifconfig fe0 debug" to print register dump. */
1224 if (ifp->if_flags & IFF_DEBUG) {
1225 log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n",
1226 device_xname(sc->sc_dev));
1227 mb86960_dump(LOG_DEBUG, sc);
1228 }
1229 #endif
1230 break;
1231
1232 case SIOCADDMULTI:
1233 case SIOCDELMULTI:
1234 if ((sc->sc_stat & FE_STAT_ENABLED) == 0) {
1235 error = EIO;
1236 break;
1237 }
1238
1239 /* Update our multicast list. */
1240 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1241 /*
1242 * Multicast list has changed; set the hardware filter
1243 * accordingly.
1244 */
1245 if (ifp->if_flags & IFF_RUNNING)
1246 mb86960_setmode(sc);
1247 error = 0;
1248 }
1249 break;
1250
1251 case SIOCGIFMEDIA:
1252 case SIOCSIFMEDIA:
1253 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1254 break;
1255
1256 default:
1257 error = ether_ioctl(ifp, cmd, data);
1258 break;
1259 }
1260
1261 splx(s);
1262 return error;
1263 }
1264
1265 /*
1266 * Retrieve packet from receive buffer and send to the next level up via
1267 * ether_input(). If there is a BPF listener, give a copy to BPF, too.
1268 * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
1269 */
1270 int
1271 mb86960_get_packet(struct mb86960_softc *sc, u_int len)
1272 {
1273 bus_space_tag_t bst = sc->sc_bst;
1274 bus_space_handle_t bsh = sc->sc_bsh;
1275 struct ifnet *ifp = &sc->sc_ec.ec_if;
1276 struct mbuf *m;
1277
1278 /* Allocate a header mbuf. */
1279 MGETHDR(m, M_DONTWAIT, MT_DATA);
1280 if (m == 0)
1281 return 0;
1282 m_set_rcvif(m, ifp);
1283 m->m_pkthdr.len = len;
1284
1285 /* The following silliness is to make NFS happy. */
1286 #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
1287 #define EOFF (EROUND - sizeof(struct ether_header))
1288
1289 /*
1290 * Our strategy has one more problem. There is a policy on
1291 * mbuf cluster allocation. It says that we must have at
1292 * least MINCLSIZE (208 bytes) to allocate a cluster. For a
1293 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
1294 * our code violates the rule...
1295 * On the other hand, the current code is short, simple,
1296 * and fast, however. It does no harmful thing, just waists
1297 * some memory. Any comments? FIXME.
1298 */
1299
1300 /* Attach a cluster if this packet doesn't fit in a normal mbuf. */
1301 if (len > MHLEN - EOFF) {
1302 MCLGET(m, M_DONTWAIT);
1303 if ((m->m_flags & M_EXT) == 0) {
1304 m_freem(m);
1305 return 0;
1306 }
1307 }
1308
1309 /*
1310 * The following assumes there is room for the ether header in the
1311 * header mbuf.
1312 */
1313 m->m_data += EOFF;
1314
1315 /* Set the length of this packet. */
1316 m->m_len = len;
1317
1318 /* Get a packet. */
1319 if (sc->sc_flags & FE_FLAGS_SBW_BYTE)
1320 bus_space_read_multi_1(bst, bsh, FE_BMPR8,
1321 mtod(m, uint8_t *), len);
1322 else
1323 bus_space_read_multi_stream_2(bst, bsh, FE_BMPR8,
1324 mtod(m, uint16_t *), (len + 1) >> 1);
1325
1326 if_percpuq_enqueue(ifp->if_percpuq, m);
1327 return 1;
1328 }
1329
1330 /*
1331 * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
1332 * Returns number of bytes actually written, including length word.
1333 *
1334 * If an mbuf chain is too long for an Ethernet frame, it is not sent.
1335 * Packets shorter than Ethernet minimum are legal, and we pad them
1336 * before sending out. An exception is "partial" packets which are
1337 * shorter than mandatory Ethernet header.
1338 *
1339 * I wrote a code for an experimental "delayed padding" technique.
1340 * When employed, it postpones the padding process for short packets.
1341 * If xmit() occurred at the moment, the padding process is omitted, and
1342 * garbages are sent as pad data. If next packet is stored in the
1343 * transmission buffer before xmit(), write_mbuf() pads the previous
1344 * packet before transmitting new packet. This *may* gain the
1345 * system performance (slightly).
1346 */
1347 void
1348 mb86960_write_mbufs(struct mb86960_softc *sc, struct mbuf *m)
1349 {
1350 bus_space_tag_t bst = sc->sc_bst;
1351 bus_space_handle_t bsh = sc->sc_bsh;
1352 int totlen, len;
1353 #if FE_DEBUG >= 2
1354 struct mbuf *mp;
1355 #endif
1356
1357 #if FE_DELAYED_PADDING
1358 /* Do the "delayed padding." */
1359 if (sc->txb_padding > 0) {
1360 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1361 for (len = sc->txb_padding; len > 0; len--)
1362 bus_space_write_1(bst, bsh, FE_BMPR8, 0);
1363 } else {
1364 for (len = sc->txb_padding >> 1; len > 0; len--)
1365 bus_space_write_2(bst, bsh, FE_BMPR8, 0);
1366 }
1367 sc->txb_padding = 0;
1368 }
1369 #endif
1370
1371 /* We need to use m->m_pkthdr.len, so require the header */
1372 if ((m->m_flags & M_PKTHDR) == 0)
1373 panic("mb86960_write_mbufs: no header mbuf");
1374
1375 #if FE_DEBUG >= 2
1376 /* First, count up the total number of bytes to copy. */
1377 for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
1378 totlen += mp->m_len;
1379 /* Check if this matches the one in the packet header. */
1380 if (totlen != m->m_pkthdr.len)
1381 log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
1382 device_xname(sc->sc_dev), totlen, m->m_pkthdr.len);
1383 #else
1384 /* Just use the length value in the packet header. */
1385 totlen = m->m_pkthdr.len;
1386 #endif
1387
1388 #if FE_DEBUG >= 1
1389 /*
1390 * Should never send big packets. If such a packet is passed,
1391 * it should be a bug of upper layer. We just ignore it.
1392 * ... Partial (too short) packets, neither.
1393 */
1394 if (totlen > (ETHER_MAX_LEN - ETHER_CRC_LEN) ||
1395 totlen < ETHER_HDR_LEN) {
1396 log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
1397 device_xname(sc->sc_dev),
1398 totlen < ETHER_HDR_LEN ? "partial" : "big", totlen);
1399 sc->sc_ec.ec_if.if_oerrors++;
1400 return;
1401 }
1402 #endif
1403
1404 /*
1405 * Put the length word for this frame.
1406 * Does 86960 accept odd length? -- Yes.
1407 * Do we need to pad the length to minimum size by ourselves?
1408 * -- Generally yes. But for (or will be) the last
1409 * packet in the transmission buffer, we can skip the
1410 * padding process. It may gain performance slightly. FIXME.
1411 */
1412 len = uimax(totlen, (ETHER_MIN_LEN - ETHER_CRC_LEN));
1413 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1414 bus_space_write_1(bst, bsh, FE_BMPR8, len);
1415 bus_space_write_1(bst, bsh, FE_BMPR8, len >> 8);
1416 } else {
1417 bus_space_write_2(bst, bsh, FE_BMPR8, len);
1418 /* roundup packet length since we will use word access */
1419 totlen = (totlen + 1) & ~1;
1420 }
1421
1422 /*
1423 * Update buffer status now.
1424 * Truncate the length up to an even number
1425 * if the chip is set in SBW_WORD mode.
1426 */
1427 sc->txb_free -= FE_TXLEN_SIZE +
1428 uimax(totlen, (ETHER_MIN_LEN - ETHER_CRC_LEN));
1429 sc->txb_count++;
1430
1431 #if FE_DELAYED_PADDING
1432 /* Postpone the packet padding if necessary. */
1433 if (totlen < (ETHER_MIN_LEN - ETHER_CRC_LEN))
1434 sc->txb_padding = (ETHER_MIN_LEN - ETHER_CRC_LEN) - totlen;
1435 #endif
1436
1437 /*
1438 * Transfer the data from mbuf chain to the transmission buffer.
1439 * If the MB86960 is configured in word mode, data needs to be
1440 * transferred as words, and only words.
1441 * So that we require some extra code to patch over odd-length
1442 * or unaligned mbufs.
1443 */
1444 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1445 /* It's simple in byte mode. */
1446 for (; m != NULL; m = m->m_next) {
1447 if (m->m_len) {
1448 bus_space_write_multi_1(bst, bsh, FE_BMPR8,
1449 mtod(m, uint8_t *), m->m_len);
1450 }
1451 }
1452 } else {
1453 /* a bit trickier in word mode. */
1454 uint8_t *data, savebyte[2];
1455 int leftover;
1456
1457 leftover = 0;
1458 savebyte[0] = savebyte[1] = 0;
1459
1460 for (; m != NULL; m = m->m_next) {
1461 len = m->m_len;
1462 if (len == 0)
1463 continue;
1464 data = mtod(m, uint8_t *);
1465 while (len > 0) {
1466 if (leftover) {
1467 /*
1468 * Data left over (from mbuf or
1469 * realignment). Buffer the next
1470 * byte, and write it and the
1471 * leftover data out.
1472 */
1473 savebyte[1] = *data++;
1474 len--;
1475 bus_space_write_stream_2(bst, bsh,
1476 FE_BMPR8, *(uint16_t *)savebyte);
1477 leftover = 0;
1478 } else if (BUS_SPACE_ALIGNED_POINTER(data,
1479 uint16_t) == 0) {
1480 /*
1481 * Unaligned data; buffer the next byte.
1482 */
1483 savebyte[0] = *data++;
1484 len--;
1485 leftover = 1;
1486 } else {
1487 /*
1488 * Aligned data; output contiguous
1489 * words as much as we can, then
1490 * buffer the remaining byte, if any.
1491 */
1492 leftover = len & 1;
1493 len &= ~1;
1494 bus_space_write_multi_stream_2(bst,
1495 bsh, FE_BMPR8, (uint16_t *)data,
1496 len >> 1);
1497 data += len;
1498 if (leftover)
1499 savebyte[0] = *data++;
1500 len = 0;
1501 }
1502 }
1503 if (len < 0)
1504 panic("mb86960_write_mbufs: negative len");
1505 }
1506 if (leftover) {
1507 savebyte[1] = 0;
1508 bus_space_write_stream_2(bst, bsh, FE_BMPR8,
1509 *(uint16_t *)savebyte);
1510 }
1511 }
1512 #if FE_DELAYED_PADDING == 0
1513 /*
1514 * Pad the packet to the minimum length if necessary.
1515 */
1516 len = (ETHER_MIN_LEN - ETHER_CRC_LEN) - totlen;
1517 if (len > 0) {
1518 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1519 while (len-- > 0)
1520 bus_space_write_1(bst, bsh, FE_BMPR8, 0);
1521 } else {
1522 len >>= 1;
1523 while (len-- > 0)
1524 bus_space_write_2(bst, bsh, FE_BMPR8, 0);
1525 }
1526 }
1527 #endif
1528 }
1529
1530 /*
1531 * Compute the multicast address filter from the
1532 * list of multicast addresses we need to listen to.
1533 */
1534 void
1535 mb86960_getmcaf(struct ethercom *ec, uint8_t *af)
1536 {
1537 struct ifnet *ifp = &ec->ec_if;
1538 struct ether_multi *enm;
1539 uint32_t crc;
1540 struct ether_multistep step;
1541
1542 /*
1543 * Set up multicast address filter by passing all multicast addresses
1544 * through a crc generator, and then using the high order 6 bits as an
1545 * index into the 64 bit logical address filter. The high order bit
1546 * selects the word, while the rest of the bits select the bit within
1547 * the word.
1548 */
1549
1550 if ((ifp->if_flags & IFF_PROMISC) != 0)
1551 goto allmulti;
1552
1553 memset(af, 0, FE_FILTER_LEN);
1554 ETHER_FIRST_MULTI(step, ec, enm);
1555 while (enm != NULL) {
1556 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1557 sizeof(enm->enm_addrlo)) != 0) {
1558 /*
1559 * We must listen to a range of multicast addresses.
1560 * For now, just accept all multicasts, rather than
1561 * trying to set only those filter bits needed to match
1562 * the range. (At this time, the only use of address
1563 * ranges is for IP multicast routing, for which the
1564 * range is big enough to require all bits set.)
1565 */
1566 goto allmulti;
1567 }
1568
1569 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1570
1571 /* Just want the 6 most significant bits. */
1572 crc >>= 26;
1573
1574 /* Turn on the corresponding bit in the filter. */
1575 af[crc >> 3] |= 1 << (crc & 7);
1576
1577 ETHER_NEXT_MULTI(step, enm);
1578 }
1579 ifp->if_flags &= ~IFF_ALLMULTI;
1580 return;
1581
1582 allmulti:
1583 ifp->if_flags |= IFF_ALLMULTI;
1584 memset(af, 0xff, FE_FILTER_LEN);
1585 }
1586
1587 /*
1588 * Calculate a new "multicast packet filter" and put the 86960
1589 * receiver in appropriate mode.
1590 */
1591 void
1592 mb86960_setmode(struct mb86960_softc *sc)
1593 {
1594 bus_space_tag_t bst = sc->sc_bst;
1595 bus_space_handle_t bsh = sc->sc_bsh;
1596 int flags = sc->sc_ec.ec_if.if_flags;
1597
1598 /*
1599 * If the interface is not running, we postpone the update
1600 * process for receive modes and multicast address filter
1601 * until the interface is restarted. It reduces some
1602 * complicated job on maintaining chip states. (Earlier versions
1603 * of this driver had a bug on that point...)
1604 *
1605 * To complete the trick, mb86960_init() calls mb86960_setmode() after
1606 * restarting the interface.
1607 */
1608 if ((flags & IFF_RUNNING) == 0)
1609 return;
1610
1611 /*
1612 * Promiscuous mode is handled separately.
1613 */
1614 if ((flags & IFF_PROMISC) != 0) {
1615 /*
1616 * Program 86960 to receive all packets on the segment
1617 * including those directed to other stations.
1618 * Multicast filter stored in MARs are ignored
1619 * under this setting, so we don't need to update it.
1620 *
1621 * Promiscuous mode is used solely by BPF, and BPF only
1622 * listens to valid (no error) packets. So, we ignore
1623 * errornous ones even in this mode.
1624 */
1625 bus_space_write_1(bst, bsh, FE_DLCR5,
1626 sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
1627 sc->filter_change = 0;
1628
1629 #if FE_DEBUG >= 3
1630 log(LOG_INFO, "%s: promiscuous mode\n",
1631 device_xname(sc->sc_dev));
1632 #endif
1633 return;
1634 }
1635
1636 /*
1637 * Turn the chip to the normal (non-promiscuous) mode.
1638 */
1639 bus_space_write_1(bst, bsh, FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
1640
1641 /*
1642 * Find the new multicast filter value.
1643 */
1644 mb86960_getmcaf(&sc->sc_ec, sc->filter);
1645 sc->filter_change = 1;
1646
1647 #if FE_DEBUG >= 3
1648 log(LOG_INFO,
1649 "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
1650 device_xname(sc->sc_dev),
1651 sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
1652 sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
1653 #endif
1654
1655 /*
1656 * We have to update the multicast filter in the 86960, A.S.A.P.
1657 *
1658 * Note that the DLC (Data Linc Control unit, i.e. transmitter
1659 * and receiver) must be stopped when feeding the filter, and
1660 * DLC trashes all packets in both transmission and receive
1661 * buffers when stopped.
1662 *
1663 * ... Are the above sentenses correct? I have to check the
1664 * manual of the MB86960A. FIXME.
1665 *
1666 * To reduce the packet lossage, we delay the filter update
1667 * process until buffers are empty.
1668 */
1669 if (sc->txb_sched == 0 && sc->txb_count == 0 &&
1670 (bus_space_read_1(bst, bsh, FE_DLCR1) & FE_D1_PKTRDY) == 0) {
1671 /*
1672 * Buffers are (apparently) empty. Load
1673 * the new filter value into MARs now.
1674 */
1675 mb86960_loadmar(sc);
1676 } else {
1677 /*
1678 * Buffers are not empty. Mark that we have to update
1679 * the MARs. The new filter will be loaded by mb86960_intr()
1680 * later.
1681 */
1682 #if FE_DEBUG >= 4
1683 log(LOG_INFO, "%s: filter change delayed\n",
1684 device_xname(sc->sc_dev));
1685 #endif
1686 }
1687 }
1688
1689 /*
1690 * Load a new multicast address filter into MARs.
1691 *
1692 * The caller must have splnet'ed befor mb86960_loadmar.
1693 * This function starts the DLC upon return. So it can be called only
1694 * when the chip is working, i.e., from the driver's point of view, when
1695 * a device is RUNNING. (I mistook the point in previous versions.)
1696 */
1697 void
1698 mb86960_loadmar(struct mb86960_softc *sc)
1699 {
1700 bus_space_tag_t bst = sc->sc_bst;
1701 bus_space_handle_t bsh = sc->sc_bsh;
1702
1703 /* Stop the DLC (transmitter and receiver). */
1704 bus_space_write_1(bst, bsh, FE_DLCR6,
1705 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1706
1707 /* Select register bank 1 for MARs. */
1708 bus_space_write_1(bst, bsh, FE_DLCR7,
1709 sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
1710
1711 /* Copy filter value into the registers. */
1712 bus_space_write_region_1(bst, bsh, FE_MAR8, sc->filter, FE_FILTER_LEN);
1713
1714 /* Restore the bank selection for BMPRs (i.e., runtime registers). */
1715 bus_space_write_1(bst, bsh, FE_DLCR7,
1716 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1717
1718 /* Restart the DLC. */
1719 bus_space_write_1(bst, bsh, FE_DLCR6,
1720 sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1721
1722 /* We have just updated the filter. */
1723 sc->filter_change = 0;
1724
1725 #if FE_DEBUG >= 3
1726 log(LOG_INFO, "%s: address filter changed\n", device_xname(sc->sc_dev));
1727 #endif
1728 }
1729
1730 /*
1731 * Enable power on the interface.
1732 */
1733 int
1734 mb86960_enable(struct mb86960_softc *sc)
1735 {
1736
1737 #if FE_DEBUG >= 3
1738 log(LOG_INFO, "%s: mb86960_enable()\n", device_xname(sc->sc_dev));
1739 #endif
1740
1741 if ((sc->sc_stat & FE_STAT_ENABLED) == 0 && sc->sc_enable != NULL) {
1742 if ((*sc->sc_enable)(sc) != 0) {
1743 aprint_error_dev(sc->sc_dev, "device enable failed\n");
1744 return EIO;
1745 }
1746 }
1747
1748 sc->sc_stat |= FE_STAT_ENABLED;
1749 return 0;
1750 }
1751
1752 /*
1753 * Disable power on the interface.
1754 */
1755 void
1756 mb86960_disable(struct mb86960_softc *sc)
1757 {
1758
1759 #if FE_DEBUG >= 3
1760 log(LOG_INFO, "%s: mb86960_disable()\n", device_xname(sc->sc_dev));
1761 #endif
1762
1763 if ((sc->sc_stat & FE_STAT_ENABLED) != 0 && sc->sc_disable != NULL) {
1764 (*sc->sc_disable)(sc);
1765 sc->sc_stat &= ~FE_STAT_ENABLED;
1766 }
1767 }
1768
1769 /*
1770 * mbe_activate:
1771 *
1772 * Handle device activation/deactivation requests.
1773 */
1774 int
1775 mb86960_activate(device_t self, enum devact act)
1776 {
1777 struct mb86960_softc *sc = device_private(self);
1778
1779 switch (act) {
1780 case DVACT_DEACTIVATE:
1781 if_deactivate(&sc->sc_ec.ec_if);
1782 return 0;
1783 default:
1784 return EOPNOTSUPP;
1785 }
1786 }
1787
1788 /*
1789 * mb86960_detach:
1790 *
1791 * Detach a MB86960 interface.
1792 */
1793 int
1794 mb86960_detach(struct mb86960_softc *sc)
1795 {
1796 struct ifnet *ifp = &sc->sc_ec.ec_if;
1797
1798 /* Succeed now if there's no work to do. */
1799 if ((sc->sc_stat & FE_STAT_ATTACHED) == 0)
1800 return 0;
1801
1802 /* Delete all media. */
1803 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1804
1805 /* Unhook the entropy source. */
1806 rnd_detach_source(&sc->rnd_source);
1807
1808 ether_ifdetach(ifp);
1809 if_detach(ifp);
1810
1811 mb86960_disable(sc);
1812 return 0;
1813 }
1814
1815 /*
1816 * Routines to read all bytes from the config EEPROM (93C06) through MB86965A.
1817 */
1818 void
1819 mb86965_read_eeprom(bus_space_tag_t iot, bus_space_handle_t ioh, uint8_t *data)
1820 {
1821 int addr, op, bit;
1822 uint16_t val;
1823
1824 /* Read bytes from EEPROM; two bytes per an iteration. */
1825 for (addr = 0; addr < FE_EEPROM_SIZE / 2; addr++) {
1826 /* Reset the EEPROM interface. */
1827 bus_space_write_1(iot, ioh, FE_BMPR16, 0x00);
1828 bus_space_write_1(iot, ioh, FE_BMPR17, 0x00);
1829 bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT);
1830
1831 /* Send start bit. */
1832 bus_space_write_1(iot, ioh, FE_BMPR17, FE_B17_DATA);
1833 FE_EEPROM_DELAY();
1834 bus_space_write_1(iot, ioh,
1835 FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK);
1836 FE_EEPROM_DELAY();
1837 bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT);
1838
1839 /* Send read command and read address. */
1840 op = 0x80 | addr; /* READ instruction */
1841 for (bit = 8; bit > 0; bit--) {
1842 bus_space_write_1(iot, ioh, FE_BMPR17,
1843 (op & (1 << (bit - 1))) ? FE_B17_DATA : 0);
1844 FE_EEPROM_DELAY();
1845 bus_space_write_1(iot, ioh,
1846 FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK);
1847 FE_EEPROM_DELAY();
1848 bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT);
1849 }
1850 bus_space_write_1(iot, ioh, FE_BMPR17, 0x00);
1851
1852 /* Read two bytes in each address */
1853 val = 0;
1854 for (bit = 16; bit > 0; bit--) {
1855 FE_EEPROM_DELAY();
1856 bus_space_write_1(iot, ioh,
1857 FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK);
1858 FE_EEPROM_DELAY();
1859 if (bus_space_read_1(iot, ioh, FE_BMPR17) &
1860 FE_B17_DATA)
1861 val |= 1 << (bit - 1);
1862 bus_space_write_1(iot, ioh,
1863 FE_BMPR16, FE_B16_SELECT);
1864 }
1865 data[addr * 2] = val >> 8;
1866 data[addr * 2 + 1] = val & 0xff;
1867 }
1868
1869 /* Make sure the EEPROM is turned off. */
1870 bus_space_write_1(iot, ioh, FE_BMPR16, 0);
1871 bus_space_write_1(iot, ioh, FE_BMPR17, 0);
1872
1873 #if FE_DEBUG >= 3
1874 /* Report what we got. */
1875 log(LOG_INFO, "mb86965_read_eeprom: "
1876 " %02x%02x%02x%02x %02x%02x%02x%02x -"
1877 " %02x%02x%02x%02x %02x%02x%02x%02x -"
1878 " %02x%02x%02x%02x %02x%02x%02x%02x -"
1879 " %02x%02x%02x%02x %02x%02x%02x%02x\n",
1880 data[ 0], data[ 1], data[ 2], data[ 3],
1881 data[ 4], data[ 5], data[ 6], data[ 7],
1882 data[ 8], data[ 9], data[10], data[11],
1883 data[12], data[13], data[14], data[15],
1884 data[16], data[17], data[18], data[19],
1885 data[20], data[21], data[22], data[23],
1886 data[24], data[25], data[26], data[27],
1887 data[28], data[29], data[30], data[31]);
1888 #endif
1889 }
1890
1891 #if FE_DEBUG >= 1
1892 void
1893 mb86960_dump(int level, struct mb86960_softc *sc)
1894 {
1895 bus_space_tag_t bst = sc->sc_bst;
1896 bus_space_handle_t bsh = sc->sc_bsh;
1897 uint8_t save_dlcr7;
1898
1899 save_dlcr7 = bus_space_read_1(bst, bsh, FE_DLCR7);
1900
1901 log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x\n",
1902 bus_space_read_1(bst, bsh, FE_DLCR0),
1903 bus_space_read_1(bst, bsh, FE_DLCR1),
1904 bus_space_read_1(bst, bsh, FE_DLCR2),
1905 bus_space_read_1(bst, bsh, FE_DLCR3),
1906 bus_space_read_1(bst, bsh, FE_DLCR4),
1907 bus_space_read_1(bst, bsh, FE_DLCR5),
1908 bus_space_read_1(bst, bsh, FE_DLCR6),
1909 bus_space_read_1(bst, bsh, FE_DLCR7));
1910
1911 bus_space_write_1(bst, bsh, FE_DLCR7,
1912 (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
1913 log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x\n",
1914 bus_space_read_1(bst, bsh, FE_DLCR8),
1915 bus_space_read_1(bst, bsh, FE_DLCR9),
1916 bus_space_read_1(bst, bsh, FE_DLCR10),
1917 bus_space_read_1(bst, bsh, FE_DLCR11),
1918 bus_space_read_1(bst, bsh, FE_DLCR12),
1919 bus_space_read_1(bst, bsh, FE_DLCR13),
1920 bus_space_read_1(bst, bsh, FE_DLCR14),
1921 bus_space_read_1(bst, bsh, FE_DLCR15));
1922
1923 bus_space_write_1(bst, bsh, FE_DLCR7,
1924 (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
1925 log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x\n",
1926 bus_space_read_1(bst, bsh, FE_MAR8),
1927 bus_space_read_1(bst, bsh, FE_MAR9),
1928 bus_space_read_1(bst, bsh, FE_MAR10),
1929 bus_space_read_1(bst, bsh, FE_MAR11),
1930 bus_space_read_1(bst, bsh, FE_MAR12),
1931 bus_space_read_1(bst, bsh, FE_MAR13),
1932 bus_space_read_1(bst, bsh, FE_MAR14),
1933 bus_space_read_1(bst, bsh, FE_MAR15));
1934
1935 bus_space_write_1(bst, bsh, FE_DLCR7,
1936 (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
1937 log(level,
1938 "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x\n",
1939 bus_space_read_1(bst, bsh, FE_BMPR10),
1940 bus_space_read_1(bst, bsh, FE_BMPR11),
1941 bus_space_read_1(bst, bsh, FE_BMPR12),
1942 bus_space_read_1(bst, bsh, FE_BMPR13),
1943 bus_space_read_1(bst, bsh, FE_BMPR14),
1944 bus_space_read_1(bst, bsh, FE_BMPR15),
1945 bus_space_read_1(bst, bsh, FE_BMPR16),
1946 bus_space_read_1(bst, bsh, FE_BMPR17),
1947 bus_space_read_1(bst, bsh, FE_BMPR19));
1948
1949 bus_space_write_1(bst, bsh, FE_DLCR7, save_dlcr7);
1950 }
1951 #endif
1952