mb86960var.h revision 1.8 1 /*
2 * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
3 *
4 * This software may be used, modified, copied, distributed, and sold, in
5 * both source and binary form provided that the above copyright, these
6 * terms and the following disclaimer are retained. The name of the author
7 * and/or the contributor may not be used to endorse or promote products
8 * derived from this software without specific prior written permission.
9 *
10 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
11 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
14 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
15 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
16 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
17 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
19 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
20 * SUCH DAMAGE.
21 */
22
23 /*
24 * Portions copyright (C) 1993, David Greenman. This software may be used,
25 * modified, copied, distributed, and sold, in both source and binary form
26 * provided that the above copyright and these terms are retained. Under no
27 * circumstances is the author responsible for the proper functioning of this
28 * software, nor does the author assume any responsibility for damages
29 * incurred with its use.
30 */
31
32 #define FE_VERSION "if_fe.c ver. 0.8"
33
34 /*
35 * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
36 * Contributed by M.S. <seki (at) sysrap.cs.fujitsu.co.jp>
37 *
38 * This version is intended to be a generic template for various
39 * MB86960A/MB86965A based Ethernet cards. It currently supports
40 * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
41 * Telesis AT1700 series and RE2000 series. There are some
42 * unnecessary hooks embedded, which are primarily intended to support
43 * other types of Ethernet cards, but the author is not sure whether
44 * they are useful.
45 */
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/ioctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/socket.h>
55 #include <sys/syslog.h>
56 #include <sys/device.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_ether.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80
81 #include <machine/cpu.h>
82 #include <machine/pio.h>
83
84 #include <dev/isa/isareg.h>
85 #include <dev/isa/isavar.h>
86 #include <dev/ic/mb86960reg.h>
87 #include <dev/isa/if_fereg.h>
88
89 /*
90 * Default settings for fe driver specific options.
91 * They can be set in config file by "options" statements.
92 */
93
94 /*
95 * Debug control.
96 * 0: No debug at all. All debug specific codes are stripped off.
97 * 1: Silent. No debug messages are logged except emergent ones.
98 * 2: Brief. Lair events and/or important information are logged.
99 * 3: Detailed. Logs all information which *may* be useful for debugging.
100 * 4: Trace. All actions in the driver is logged. Super verbose.
101 */
102 #ifndef FE_DEBUG
103 #define FE_DEBUG 1
104 #endif
105
106 /*
107 * Delay padding of short transmission packets to minimum Ethernet size.
108 * This may or may not gain performance. An EXPERIMENTAL option.
109 */
110 #ifndef FE_DELAYED_PADDING
111 #define FE_DELAYED_PADDING 0
112 #endif
113
114 /*
115 * Transmit just one packet per a "send" command to 86960.
116 * This option is intended for performance test. An EXPERIMENTAL option.
117 */
118 #ifndef FE_SINGLE_TRANSMISSION
119 #define FE_SINGLE_TRANSMISSION 0
120 #endif
121
122 /*
123 * Device configuration flags.
124 */
125
126 /* DLCR6 settings. */
127 #define FE_FLAGS_DLCR6_VALUE 0x007F
128
129 /* Force DLCR6 override. */
130 #define FE_FLAGS_OVERRIDE_DLCR6 0x0080
131
132 /* A cludge for PCMCIA support. */
133 #define FE_FLAGS_PCMCIA 0x8000
134
135 /* Identification of the driver version. */
136 static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
137
138 /*
139 * Supported hardware (Ethernet card) types
140 * This information is currently used only for debugging
141 */
142 enum fe_type {
143 /* For cards which are successfully probed but not identified. */
144 FE_TYPE_UNKNOWN,
145
146 /* Fujitsu FMV-180 series. */
147 FE_TYPE_FMV181,
148 FE_TYPE_FMV182,
149
150 /* Allied-Telesis AT1700 series and RE2000 series. */
151 FE_TYPE_AT1700T,
152 FE_TYPE_AT1700BT,
153 FE_TYPE_AT1700FT,
154 FE_TYPE_AT1700AT,
155 FE_TYPE_RE2000,
156
157 /* PCMCIA by Fujitsu. */
158 FE_TYPE_MBH10302,
159 FE_TYPE_MBH10304,
160 };
161
162 /*
163 * fe_softc: per line info and status
164 */
165 struct fe_softc {
166 struct device sc_dev;
167 void *sc_ih;
168
169 struct arpcom sc_arpcom; /* ethernet common */
170
171 /* Set by probe() and not modified in later phases. */
172 enum fe_type type; /* interface type code */
173 char *typestr; /* printable name of the interface. */
174 int sc_iobase; /* MB86960A I/O base address */
175
176 u_char proto_dlcr4; /* DLCR4 prototype. */
177 u_char proto_dlcr5; /* DLCR5 prototype. */
178 u_char proto_dlcr6; /* DLCR6 prototype. */
179 u_char proto_dlcr7; /* DLCR7 prototype. */
180 u_char proto_bmpr13; /* BMPR13 prototype. */
181
182 /* Vendor specific hooks. */
183 void (*init) __P((struct fe_softc *)); /* Just before fe_init(). */
184 void (*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
185
186 /* Transmission buffer management. */
187 u_short txb_size; /* total bytes in TX buffer */
188 u_short txb_free; /* free bytes in TX buffer */
189 u_char txb_count; /* number of packets in TX buffer */
190 u_char txb_sched; /* number of scheduled packets */
191 u_char txb_padding; /* number of delayed padding bytes */
192
193 /* Multicast address filter management. */
194 u_char filter_change; /* MARs must be changed ASAP. */
195 u_char filter[FE_FILTER_LEN]; /* new filter value. */
196 };
197
198 /* Frequently accessed members in arpcom. */
199 #define sc_enaddr sc_arpcom.ac_enaddr
200
201 /* Standard driver entry points. These can be static. */
202 int feprobe __P((struct device *, void *, void *));
203 void feattach __P((struct device *, struct device *, void *));
204 int feintr __P((void *));
205 void fe_init __P((struct fe_softc *));
206 int fe_ioctl __P((struct ifnet *, u_long, caddr_t));
207 void fe_start __P((struct ifnet *));
208 void fe_reset __P((struct fe_softc *));
209 void fe_watchdog __P((int));
210
211 /* Local functions. Order of declaration is confused. FIXME. */
212 int fe_probe_fmv __P((struct fe_softc *, struct isa_attach_args *));
213 int fe_probe_ati __P((struct fe_softc *, struct isa_attach_args *));
214 int fe_probe_mbh __P((struct fe_softc *, struct isa_attach_args *));
215 void fe_init_mbh __P((struct fe_softc *));
216 int fe_get_packet __P((struct fe_softc *, int));
217 void fe_stop __P((struct fe_softc *));
218 void fe_tint __P((/*struct fe_softc *, u_char*/));
219 void fe_rint __P((/*struct fe_softc *, u_char*/));
220 static inline
221 void fe_xmit __P((struct fe_softc *));
222 void fe_write_mbufs __P((struct fe_softc *, struct mbuf *));
223 void fe_getmcaf __P((struct arpcom *, u_char *));
224 void fe_setmode __P((struct fe_softc *));
225 void fe_loadmar __P((struct fe_softc *));
226 #if FE_DEBUG >= 1
227 void fe_dump __P((int, struct fe_softc *));
228 #endif
229
230 struct cfdriver fecd = {
231 NULL, "fe", feprobe, feattach, DV_IFNET, sizeof(struct fe_softc)
232 };
233
234 /* Ethernet constants. To be defined in if_ehter.h? FIXME. */
235 #define ETHER_MIN_LEN 60 /* with header, without CRC. */
236 #define ETHER_MAX_LEN 1514 /* with header, without CRC. */
237 #define ETHER_ADDR_LEN 6 /* number of bytes in an address. */
238 #define ETHER_HDR_SIZE 14 /* src addr, dst addr, and data type. */
239
240 /*
241 * Fe driver specific constants which relate to 86960/86965.
242 */
243
244 /* Interrupt masks. */
245 #define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
246 #define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
247 FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
248
249 /* Maximum number of iterrations for a receive interrupt. */
250 #define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
251 /* Maximum size of SRAM is 65536,
252 * minimum size of transmission buffer in fe is 2x2KB,
253 * and minimum amount of received packet including headers
254 * added by the chip is 64 bytes.
255 * Hence FE_MAX_RECV_COUNT is the upper limit for number
256 * of packets in the receive buffer. */
257
258 /*
259 * Convenient routines to access contiguous I/O ports.
260 */
261
262 static inline void
263 inblk (int addr, u_char * mem, int len)
264 {
265 while (--len >= 0) {
266 *mem++ = inb(addr++);
267 }
268 }
269
270 static inline void
271 outblk (int addr, u_char const * mem, int len)
272 {
273 while (--len >= 0) {
274 outb(addr++, *mem++);
275 }
276 }
277
278 /*
279 * Hardware probe routines.
280 */
281
282 /*
283 * Determine if the device is present.
284 */
285 int
286 feprobe(parent, match, aux)
287 struct device *parent;
288 void *match, *aux;
289 {
290 struct fe_softc *sc = match;
291 struct isa_attach_args *ia = aux;
292
293 #if FE_DEBUG >= 2
294 log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
295 #endif
296
297 /* Probe an address. */
298 sc->sc_iobase = ia->ia_iobase;
299
300 if (fe_probe_fmv(sc, ia))
301 return (1);
302 if (fe_probe_ati(sc, ia))
303 return (1);
304 if (fe_probe_mbh(sc, ia))
305 return (1);
306 return (0);
307 }
308
309 /*
310 * Check for specific bits in specific registers have specific values.
311 */
312 struct fe_simple_probe_struct {
313 u_char port; /* Offset from the base I/O address. */
314 u_char mask; /* Bits to be checked. */
315 u_char bits; /* Values to be compared against. */
316 };
317
318 static inline int
319 fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
320 {
321 struct fe_simple_probe_struct const * p;
322
323 for (p = sp; p->mask != 0; p++) {
324 if ((inb(addr + p->port) & p->mask) != p->bits) {
325 return (0);
326 }
327 }
328 return (1);
329 }
330
331 /*
332 * Routines to read all bytes from the config EEPROM through MB86965A.
333 * I'm not sure what exactly I'm doing here... I was told just to follow
334 * the steps, and it worked. Could someone tell me why the following
335 * code works? (Or, why all similar codes I tried previously doesn't
336 * work.) FIXME.
337 */
338
339 static inline void
340 strobe (int bmpr16)
341 {
342 /*
343 * Output same value twice. To speed-down execution?
344 */
345 outb(bmpr16, FE_B16_SELECT);
346 outb(bmpr16, FE_B16_SELECT);
347 outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
348 outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
349 outb(bmpr16, FE_B16_SELECT);
350 outb(bmpr16, FE_B16_SELECT);
351 }
352
353 void
354 fe_read_eeprom(sc, data)
355 struct fe_softc *sc;
356 u_char *data;
357 {
358 int iobase = sc->sc_iobase;
359 int bmpr16 = iobase + FE_BMPR16;
360 int bmpr17 = iobase + FE_BMPR17;
361 u_char n, val, bit;
362
363 /* Read bytes from EEPROM; two bytes per an iterration. */
364 for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
365 /* Reset the EEPROM interface. */
366 outb(bmpr16, 0x00);
367 outb(bmpr17, 0x00);
368 outb(bmpr16, FE_B16_SELECT);
369
370 /* Start EEPROM access. */
371 outb(bmpr17, FE_B17_DATA);
372 strobe(bmpr16);
373
374 /* Pass the iterration count to the chip. */
375 val = 0x80 | n;
376 for (bit = 0x80; bit != 0x00; bit >>= 1) {
377 outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
378 strobe(bmpr16);
379 }
380 outb(bmpr17, 0x00);
381
382 /* Read a byte. */
383 val = 0;
384 for (bit = 0x80; bit != 0x00; bit >>= 1) {
385 strobe(bmpr16);
386 if (inb(bmpr17) & FE_B17_DATA)
387 val |= bit;
388 }
389 *data++ = val;
390
391 /* Read one more byte. */
392 val = 0;
393 for (bit = 0x80; bit != 0x00; bit >>= 1) {
394 strobe(bmpr16);
395 if (inb(bmpr17) & FE_B17_DATA)
396 val |= bit;
397 }
398 *data++ = val;
399 }
400
401 #if FE_DEBUG >= 3
402 /* Report what we got. */
403 data -= FE_EEPROM_SIZE;
404 log(LOG_INFO, "%s: EEPROM at %04x:"
405 " %02x%02x%02x%02x %02x%02x%02x%02x -"
406 " %02x%02x%02x%02x %02x%02x%02x%02x -"
407 " %02x%02x%02x%02x %02x%02x%02x%02x -"
408 " %02x%02x%02x%02x %02x%02x%02x%02x\n",
409 sc->sc_dev.dv_xname, iobase,
410 data[ 0], data[ 1], data[ 2], data[ 3],
411 data[ 4], data[ 5], data[ 6], data[ 7],
412 data[ 8], data[ 9], data[10], data[11],
413 data[12], data[13], data[14], data[15],
414 data[16], data[17], data[18], data[19],
415 data[20], data[21], data[22], data[23],
416 data[24], data[25], data[26], data[27],
417 data[28], data[29], data[30], data[31]);
418 #endif
419 }
420
421 /*
422 * Hardware (vendor) specific probe routines.
423 */
424
425 /*
426 * Probe and initialization for Fujitsu FMV-180 series boards
427 */
428 int
429 fe_probe_fmv(sc, ia)
430 struct fe_softc *sc;
431 struct isa_attach_args *ia;
432 {
433 int i, n;
434 int iobase = sc->sc_iobase;
435 int irq;
436
437 static int const iomap[8] =
438 { 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
439 static int const irqmap[4] =
440 { 3, 7, 10, 15 };
441
442 static struct fe_simple_probe_struct const probe_table[] = {
443 { FE_DLCR2, 0x70, 0x00 },
444 { FE_DLCR4, 0x08, 0x00 },
445 /* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
446
447 { FE_FMV0, FE_FMV0_MAGIC_MASK, FE_FMV0_MAGIC_VALUE },
448 { FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID },
449 { FE_FMV3, FE_FMV3_EXTRA_MASK, FE_FMV3_EXTRA_VALUE },
450 #if 1
451 /*
452 * Test *vendor* part of the station address for Fujitsu.
453 * The test will gain reliability of probe process, but
454 * it rejects FMV-180 clone boards manufactured by other vendors.
455 * We have to turn the test off when such cards are made available.
456 */
457 { FE_FMV4, 0xFF, 0x00 },
458 { FE_FMV5, 0xFF, 0x00 },
459 { FE_FMV6, 0xFF, 0x0E },
460 #else
461 /*
462 * We can always verify the *first* 2 bits (in Ehternet
463 * bit order) are "no multicast" and "no local" even for
464 * unknown vendors.
465 */
466 { FE_FMV4, 0x03, 0x00 },
467 #endif
468 { 0 }
469 };
470
471 #if 0
472 /*
473 * Dont probe at all if the config says we are PCMCIA...
474 */
475 if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
476 return (0);
477 #endif
478
479 /*
480 * See if the sepcified address is possible for FMV-180 series.
481 */
482 for (i = 0; i < 8; i++) {
483 if (iomap[i] == iobase)
484 break;
485 }
486 if (i == 8)
487 return (0);
488
489 /* Simple probe. */
490 if (!fe_simple_probe(iobase, probe_table))
491 return (0);
492
493 /* Check if our I/O address matches config info on EEPROM. */
494 n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
495 if (iomap[n] != iobase)
496 return (0);
497
498 /* Determine the card type. */
499 switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
500 case FE_FMV0_MODEL_FMV181:
501 sc->type = FE_TYPE_FMV181;
502 sc->typestr = "FMV-181";
503 break;
504 case FE_FMV0_MODEL_FMV182:
505 sc->type = FE_TYPE_FMV182;
506 sc->typestr = "FMV-182";
507 break;
508 default:
509 /* Unknown card type: maybe a new model, but... */
510 return (0);
511 }
512
513 /*
514 * An FMV-180 has successfully been proved.
515 * Determine which IRQ to be used.
516 *
517 * In this version, we always get an IRQ assignment from the
518 * FMV-180's configuration EEPROM, ignoring that specified in
519 * config file.
520 */
521 n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
522 irq = irqmap[n];
523
524 if (ia->ia_irq != IRQUNK) {
525 if (ia->ia_irq != irq) {
526 printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
527 sc->sc_dev.dv_xname, ia->ia_irq, irq);
528 return (0);
529 }
530 } else
531 ia->ia_irq = irq;
532
533 /*
534 * Initialize constants in the per-line structure.
535 */
536
537 /* Get our station address from EEPROM. */
538 inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
539
540 /* Make sure we got a valid station address. */
541 if ((sc->sc_enaddr[0] & 0x03) != 0x00
542 || (sc->sc_enaddr[0] == 0x00
543 && sc->sc_enaddr[1] == 0x00
544 && sc->sc_enaddr[2] == 0x00))
545 return (0);
546
547 /* Register values which depend on board design. */
548 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
549 sc->proto_dlcr5 = 0;
550 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
551 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
552
553 /*
554 * Program the 86960 as follows:
555 * SRAM: 32KB, 100ns, byte-wide access.
556 * Transmission buffer: 4KB x 2.
557 * System bus interface: 16 bits.
558 * We cannot change these values but TXBSIZE, because they
559 * are hard-wired on the board. Modifying TXBSIZE will affect
560 * the driver performance.
561 */
562 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
563 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
564
565 /*
566 * Minimum initialization of the hardware.
567 * We write into registers; hope I/O ports have no
568 * overlap with other boards.
569 */
570
571 /* Initialize ASIC. */
572 outb(iobase + FE_FMV3, 0);
573 outb(iobase + FE_FMV10, 0);
574
575 /* Wait for a while. I'm not sure this is necessary. FIXME. */
576 delay(200);
577
578 /* Initialize 86960. */
579 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
580 delay(200);
581
582 /* Disable all interrupts. */
583 outb(iobase + FE_DLCR2, 0);
584 outb(iobase + FE_DLCR3, 0);
585
586 /* Turn the "master interrupt control" flag of ASIC on. */
587 outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
588
589 /*
590 * That's all. FMV-180 occupies 32 I/O addresses, by the way.
591 */
592 ia->ia_iosize = 32;
593 ia->ia_msize = 0;
594 return (1);
595 }
596
597 /*
598 * Probe and initialization for Allied-Telesis AT1700/RE2000 series.
599 */
600 int
601 fe_probe_ati(sc, ia)
602 struct fe_softc *sc;
603 struct isa_attach_args *ia;
604 {
605 int i, n;
606 int iobase = sc->sc_iobase;
607 u_char eeprom[FE_EEPROM_SIZE];
608 u_char save16, save17;
609 int irq;
610
611 static int const iomap[8] =
612 { 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
613 static int const irqmap[4][4] = {
614 { 3, 4, 5, 9 },
615 { 10, 11, 12, 15 },
616 { 3, 11, 5, 15 },
617 { 10, 11, 14, 15 },
618 };
619 static struct fe_simple_probe_struct const probe_table[] = {
620 { FE_DLCR2, 0x70, 0x00 },
621 { FE_DLCR4, 0x08, 0x00 },
622 { FE_DLCR5, 0x80, 0x00 },
623 #if 0
624 { FE_BMPR16, 0x1B, 0x00 },
625 { FE_BMPR17, 0x7F, 0x00 },
626 #endif
627 { 0 }
628 };
629
630 #if 0
631 /*
632 * Don't probe at all if the config says we are PCMCIA...
633 */
634 if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
635 return (0);
636 #endif
637
638 #if FE_DEBUG >= 4
639 log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
640 fe_dump(LOG_INFO, sc);
641 #endif
642
643 /*
644 * See if the sepcified address is possible for MB86965A JLI mode.
645 */
646 for (i = 0; i < 8; i++) {
647 if (iomap[i] == iobase)
648 break;
649 }
650 if (i == 8)
651 return (0);
652
653 /*
654 * We should test if MB86965A is on the base address now.
655 * Unfortunately, it is very hard to probe it reliably, since
656 * we have no way to reset the chip under software control.
657 * On cold boot, we could check the "signature" bit patterns
658 * described in the Fujitsu document. On warm boot, however,
659 * we can predict almost nothing about register values.
660 */
661 if (!fe_simple_probe(iobase, probe_table))
662 return (0);
663
664 /* Save old values of the registers. */
665 save16 = inb(iobase + FE_BMPR16);
666 save17 = inb(iobase + FE_BMPR17);
667
668 /* Check if our I/O address matches config info on 86965. */
669 n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
670 if (iomap[n] != iobase)
671 goto fail;
672
673 /*
674 * We are now almost sure we have an AT1700 at the given
675 * address. So, read EEPROM through 86965. We have to write
676 * into LSI registers to read from EEPROM. I want to avoid it
677 * at this stage, but I cannot test the presense of the chip
678 * any further without reading EEPROM. FIXME.
679 */
680 fe_read_eeprom(sc, eeprom);
681
682 /* Make sure the EEPROM is turned off. */
683 outb(iobase + FE_BMPR16, 0);
684 outb(iobase + FE_BMPR17, 0);
685
686 /* Make sure that config info in EEPROM and 86965 agree. */
687 if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
688 goto fail;
689
690 /*
691 * Determine the card type.
692 */
693 switch (eeprom[FE_ATI_EEP_MODEL]) {
694 case FE_ATI_MODEL_AT1700T:
695 sc->type = FE_TYPE_AT1700T;
696 sc->typestr = "AT-1700T";
697 break;
698 case FE_ATI_MODEL_AT1700BT:
699 sc->type = FE_TYPE_AT1700BT;
700 sc->typestr = "AT-1700BT";
701 break;
702 case FE_ATI_MODEL_AT1700FT:
703 sc->type = FE_TYPE_AT1700FT;
704 sc->typestr = "AT-1700FT";
705 break;
706 case FE_ATI_MODEL_AT1700AT:
707 sc->type = FE_TYPE_AT1700AT;
708 sc->typestr = "AT-1700AT";
709 break;
710 default:
711 sc->type = FE_TYPE_RE2000;
712 sc->typestr = "unknown (RE-2000?)";
713 break;
714 }
715
716 /*
717 * Try to determine IRQ settings.
718 * Different models use different ranges of IRQs.
719 */
720 n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
721 switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
722 case 0x30:
723 irq = irqmap[3][n];
724 break;
725 case 0x10:
726 case 0x50:
727 irq = irqmap[2][n];
728 break;
729 case 0x40:
730 case 0x60:
731 if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
732 irq = irqmap[1][n];
733 break;
734 }
735 default:
736 irq = irqmap[0][n];
737 break;
738 }
739
740 if (ia->ia_irq != IRQUNK) {
741 if (ia->ia_irq != irq) {
742 printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
743 sc->sc_dev.dv_xname, ia->ia_irq, irq);
744 return (0);
745 }
746 } else
747 ia->ia_irq = irq;
748
749 /*
750 * Initialize constants in the per-line structure.
751 */
752
753 /* Get our station address from EEPROM. */
754 bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
755
756 /* Make sure we got a valid station address. */
757 if ((sc->sc_enaddr[0] & 0x03) != 0x00
758 || (sc->sc_enaddr[0] == 0x00
759 && sc->sc_enaddr[1] == 0x00
760 && sc->sc_enaddr[2] == 0x00))
761 goto fail;
762
763 /* Should find all register prototypes here. FIXME. */
764 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; /* FIXME */
765 sc->proto_dlcr5 = 0;
766 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
767 #if 0 /* XXXX Should we use this? */
768 sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
769 #else
770 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
771 #endif
772
773 /*
774 * Program the 86965 as follows:
775 * SRAM: 32KB, 100ns, byte-wide access.
776 * Transmission buffer: 4KB x 2.
777 * System bus interface: 16 bits.
778 * We cannot change these values but TXBSIZE, because they
779 * are hard-wired on the board. Modifying TXBSIZE will affect
780 * the driver performance.
781 */
782 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
783 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
784
785 #if FE_DEBUG >= 3
786 log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
787 fe_dump(LOG_INFO, sc);
788 #endif
789
790 /* Initialize 86965. */
791 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
792 delay(200);
793
794 /* Disable all interrupts. */
795 outb(iobase + FE_DLCR2, 0);
796 outb(iobase + FE_DLCR3, 0);
797
798 #if FE_DEBUG >= 3
799 log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
800 fe_dump(LOG_INFO, sc);
801 #endif
802
803 /*
804 * That's all. AT1700 occupies 32 I/O addresses, by the way.
805 */
806 ia->ia_iosize = 32;
807 ia->ia_msize = 0;
808 return (1);
809
810 fail:
811 /* Restore register values, in the case we had no 86965. */
812 outb(iobase + FE_BMPR16, save16);
813 outb(iobase + FE_BMPR17, save17);
814 return (0);
815 }
816
817 /*
818 * Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
819 */
820 int
821 fe_probe_mbh(sc, ia)
822 struct fe_softc *sc;
823 struct isa_attach_args *ia;
824 {
825 int iobase = sc->sc_iobase;
826
827 static struct fe_simple_probe_struct probe_table[] = {
828 { FE_DLCR2, 0x70, 0x00 },
829 { FE_DLCR4, 0x08, 0x00 },
830 /* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
831 #if 0
832 /*
833 * Test *vendor* part of the address for Fujitsu.
834 * The test will gain reliability of probe process, but
835 * it rejects clones by other vendors, or OEM product
836 * supplied by resalers other than Fujitsu.
837 */
838 { FE_MBH10, 0xFF, 0x00 },
839 { FE_MBH11, 0xFF, 0x00 },
840 { FE_MBH12, 0xFF, 0x0E },
841 #else
842 /*
843 * We can always verify the *first* 2 bits (in Ehternet
844 * bit order) are "global" and "unicast" even for
845 * unknown vendors.
846 */
847 { FE_MBH10, 0x03, 0x00 },
848 #endif
849 /* Just a gap? Seems reliable, anyway. */
850 { 0x12, 0xFF, 0x00 },
851 { 0x13, 0xFF, 0x00 },
852 { 0x14, 0xFF, 0x00 },
853 { 0x15, 0xFF, 0x00 },
854 { 0x16, 0xFF, 0x00 },
855 { 0x17, 0xFF, 0x00 },
856 { 0x18, 0xFF, 0xFF },
857 { 0x19, 0xFF, 0xFF },
858
859 { 0 }
860 };
861
862 #if 0
863 /*
864 * We need a PCMCIA flag.
865 */
866 if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
867 return (0);
868 #endif
869
870 /*
871 * We need explicit IRQ and supported address.
872 */
873 if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
874 return (0);
875
876 #if FE_DEBUG >= 3
877 log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
878 fe_dump(LOG_INFO, sc);
879 #endif
880
881 /*
882 * See if MBH10302 is on its address.
883 * I'm not sure the following probe code works. FIXME.
884 */
885 if (!fe_simple_probe(iobase, probe_table))
886 return (0);
887
888 /* Determine the card type. */
889 sc->type = FE_TYPE_MBH10302;
890 sc->typestr = "MBH10302 (PCMCIA)";
891
892 /*
893 * Initialize constants in the per-line structure.
894 */
895
896 /* Get our station address from EEPROM. */
897 inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
898
899 /* Make sure we got a valid station address. */
900 if ((sc->sc_enaddr[0] & 0x03) != 0x00
901 || (sc->sc_enaddr[0] == 0x00
902 && sc->sc_enaddr[1] == 0x00
903 && sc->sc_enaddr[2] == 0x00))
904 return (0);
905
906 /* Should find all register prototypes here. FIXME. */
907 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
908 sc->proto_dlcr5 = 0;
909 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
910 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
911
912 /*
913 * Program the 86960 as follows:
914 * SRAM: 32KB, 100ns, byte-wide access.
915 * Transmission buffer: 4KB x 2.
916 * System bus interface: 16 bits.
917 * We cannot change these values but TXBSIZE, because they
918 * are hard-wired on the board. Modifying TXBSIZE will affect
919 * the driver performance.
920 */
921 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
922 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
923
924 /* Setup hooks. We need a special initialization procedure. */
925 sc->init = fe_init_mbh;
926
927 /*
928 * Minimum initialization.
929 */
930
931 /* Wait for a while. I'm not sure this is necessary. FIXME. */
932 delay(200);
933
934 /* Minimul initialization of 86960. */
935 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
936 delay(200);
937
938 /* Disable all interrupts. */
939 outb(iobase + FE_DLCR2, 0);
940 outb(iobase + FE_DLCR3, 0);
941
942 #if 1 /* FIXME. */
943 /* Initialize system bus interface and encoder/decoder operation. */
944 outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
945 #endif
946
947 /*
948 * That's all. MBH10302 occupies 32 I/O addresses, by the way.
949 */
950 ia->ia_iosize = 32;
951 ia->ia_msize = 0;
952 return (1);
953 }
954
955 /* MBH specific initialization routine. */
956 void
957 fe_init_mbh(sc)
958 struct fe_softc *sc;
959 {
960
961 /* Probably required after hot-insertion... */
962
963 /* Wait for a while. I'm not sure this is necessary. FIXME. */
964 delay(200);
965
966 /* Minimul initialization of 86960. */
967 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
968 delay(200);
969
970 /* Disable all interrupts. */
971 outb(sc->sc_iobase + FE_DLCR2, 0);
972 outb(sc->sc_iobase + FE_DLCR3, 0);
973
974 /* Enable master interrupt flag. */
975 outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
976 }
977
978 /*
979 * Install interface into kernel networking data structures
980 */
981 void
982 feattach(parent, self, aux)
983 struct device *parent, *self;
984 void *aux;
985 {
986 struct fe_softc *sc = (void *)self;
987 struct isa_attach_args *ia = aux;
988 struct cfdata *cf = sc->sc_dev.dv_cfdata;
989 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
990
991 /* Stop the 86960. */
992 fe_stop(sc);
993
994 /* Initialize ifnet structure. */
995 ifp->if_unit = sc->sc_dev.dv_unit;
996 ifp->if_name = fecd.cd_name;
997 ifp->if_start = fe_start;
998 ifp->if_ioctl = fe_ioctl;
999 ifp->if_watchdog = fe_watchdog;
1000 ifp->if_flags =
1001 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
1002
1003 /*
1004 * Set maximum size of output queue, if it has not been set.
1005 * It is done here as this driver may be started after the
1006 * system intialization (i.e., the interface is PCMCIA.)
1007 *
1008 * I'm not sure this is really necessary, but, even if it is,
1009 * it should be done somewhere else, e.g., in if_attach(),
1010 * since it must be a common workaround for all network drivers.
1011 * FIXME.
1012 */
1013 if (ifp->if_snd.ifq_maxlen == 0) {
1014 extern int ifqmaxlen; /* Don't be so shocked... */
1015 ifp->if_snd.ifq_maxlen = ifqmaxlen;
1016 }
1017
1018 #if FE_DEBUG >= 3
1019 log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
1020 fe_dump(LOG_INFO, sc);
1021 #endif
1022
1023 #if FE_SINGLE_TRANSMISSION
1024 /* Override txb config to allocate minimum. */
1025 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
1026 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
1027 #endif
1028
1029 /* Modify hardware config if it is requested. */
1030 if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
1031 sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
1032
1033 /* Find TX buffer size, based on the hardware dependent proto. */
1034 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1035 case FE_D6_TXBSIZ_2x2KB:
1036 sc->txb_size = 2048;
1037 break;
1038 case FE_D6_TXBSIZ_2x4KB:
1039 sc->txb_size = 4096;
1040 break;
1041 case FE_D6_TXBSIZ_2x8KB:
1042 sc->txb_size = 8192;
1043 break;
1044 default:
1045 /* Oops, we can't work with single buffer configuration. */
1046 #if FE_DEBUG >= 2
1047 log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
1048 sc->sc_dev.dv_xname);
1049 #endif
1050 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
1051 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
1052 sc->txb_size = 2048;
1053 break;
1054 }
1055
1056 /* Attach the interface. */
1057 if_attach(ifp);
1058 ether_ifattach(ifp);
1059
1060 /* Print additional info when attached. */
1061 printf(": address %s, type %s\n",
1062 ether_sprintf(sc->sc_arpcom.ac_enaddr), sc->typestr);
1063 #if FE_DEBUG >= 3
1064 {
1065 int buf, txb, bbw, sbw, ram;
1066
1067 buf = txb = bbw = sbw = ram = -1;
1068 switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
1069 case FE_D6_BUFSIZ_8KB:
1070 buf = 8;
1071 break;
1072 case FE_D6_BUFSIZ_16KB:
1073 buf = 16;
1074 break;
1075 case FE_D6_BUFSIZ_32KB:
1076 buf = 32;
1077 break;
1078 case FE_D6_BUFSIZ_64KB:
1079 buf = 64;
1080 break;
1081 }
1082 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1083 case FE_D6_TXBSIZ_2x2KB:
1084 txb = 2;
1085 break;
1086 case FE_D6_TXBSIZ_2x4KB:
1087 txb = 4;
1088 break;
1089 case FE_D6_TXBSIZ_2x8KB:
1090 txb = 8;
1091 break;
1092 }
1093 switch (sc->proto_dlcr6 & FE_D6_BBW) {
1094 case FE_D6_BBW_BYTE:
1095 bbw = 8;
1096 break;
1097 case FE_D6_BBW_WORD:
1098 bbw = 16;
1099 break;
1100 }
1101 switch (sc->proto_dlcr6 & FE_D6_SBW) {
1102 case FE_D6_SBW_BYTE:
1103 sbw = 8;
1104 break;
1105 case FE_D6_SBW_WORD:
1106 sbw = 16;
1107 break;
1108 }
1109 switch (sc->proto_dlcr6 & FE_D6_SRAM) {
1110 case FE_D6_SRAM_100ns:
1111 ram = 100;
1112 break;
1113 case FE_D6_SRAM_150ns:
1114 ram = 150;
1115 break;
1116 }
1117 printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
1118 sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
1119 }
1120 #endif
1121
1122 #if NBPFILTER > 0
1123 /* If BPF is in the kernel, call the attach for it. */
1124 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
1125 #endif
1126
1127 sc->sc_ih = isa_intr_establish(ia->ia_irq, IST_EDGE, IPL_NET, feintr,
1128 sc);
1129 }
1130
1131 /*
1132 * Reset interface.
1133 */
1134 void
1135 fe_reset(sc)
1136 struct fe_softc *sc;
1137 {
1138 int s;
1139
1140 s = splnet();
1141 fe_stop(sc);
1142 fe_init(sc);
1143 splx(s);
1144 }
1145
1146 /*
1147 * Stop everything on the interface.
1148 *
1149 * All buffered packets, both transmitting and receiving,
1150 * if any, will be lost by stopping the interface.
1151 */
1152 void
1153 fe_stop(sc)
1154 struct fe_softc *sc;
1155 {
1156
1157 #if FE_DEBUG >= 3
1158 log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
1159 fe_dump(LOG_INFO, sc);
1160 #endif
1161
1162 /* Disable interrupts. */
1163 outb(sc->sc_iobase + FE_DLCR2, 0x00);
1164 outb(sc->sc_iobase + FE_DLCR3, 0x00);
1165
1166 /* Stop interface hardware. */
1167 delay(200);
1168 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1169 delay(200);
1170
1171 /* Clear all interrupt status. */
1172 outb(sc->sc_iobase + FE_DLCR0, 0xFF);
1173 outb(sc->sc_iobase + FE_DLCR1, 0xFF);
1174
1175 /* Put the chip in stand-by mode. */
1176 delay(200);
1177 outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
1178 delay(200);
1179
1180 /* MAR loading can be delayed. */
1181 sc->filter_change = 0;
1182
1183 /* Call a hook. */
1184 if (sc->stop)
1185 sc->stop(sc);
1186
1187 #if DEBUG >= 3
1188 log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
1189 fe_dump(LOG_INFO, sc);
1190 #endif
1191 }
1192
1193 /*
1194 * Device timeout/watchdog routine. Entered if the device neglects to
1195 * generate an interrupt after a transmit has been started on it.
1196 */
1197 void
1198 fe_watchdog(unit)
1199 int unit;
1200 {
1201 struct fe_softc *sc = fecd.cd_devs[unit];
1202
1203 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1204 #if FE_DEBUG >= 3
1205 fe_dump(LOG_INFO, sc);
1206 #endif
1207
1208 /* Record how many packets are lost by this accident. */
1209 sc->sc_arpcom.ac_if.if_oerrors += sc->txb_sched + sc->txb_count;
1210
1211 fe_reset(sc);
1212 }
1213
1214 /*
1215 * Drop (skip) a packet from receive buffer in 86960 memory.
1216 */
1217 static inline void
1218 fe_droppacket(sc)
1219 struct fe_softc *sc;
1220 {
1221
1222 outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
1223 }
1224
1225 /*
1226 * Initialize device.
1227 */
1228 void
1229 fe_init(sc)
1230 struct fe_softc *sc;
1231 {
1232 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1233 int i;
1234
1235 #if FE_DEBUG >= 3
1236 log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
1237 fe_dump(LOG_INFO, sc);
1238 #endif
1239
1240 /* Reset transmitter flags. */
1241 ifp->if_flags &= ~IFF_OACTIVE;
1242 ifp->if_timer = 0;
1243
1244 sc->txb_free = sc->txb_size;
1245 sc->txb_count = 0;
1246 sc->txb_sched = 0;
1247
1248 /* Call a hook. */
1249 if (sc->init)
1250 sc->init(sc);
1251
1252 #if FE_DEBUG >= 3
1253 log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
1254 fe_dump(LOG_INFO, sc);
1255 #endif
1256
1257 /*
1258 * Make sure to disable the chip, also.
1259 * This may also help re-programming the chip after
1260 * hot insertion of PCMCIAs.
1261 */
1262 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1263
1264 /* Power up the chip and select register bank for DLCRs. */
1265 delay(200);
1266 outb(sc->sc_iobase + FE_DLCR7,
1267 sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1268 delay(200);
1269
1270 /* Feed the station address. */
1271 outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
1272
1273 /* Select the BMPR bank for runtime register access. */
1274 outb(sc->sc_iobase + FE_DLCR7,
1275 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1276
1277 /* Initialize registers. */
1278 outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
1279 outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
1280 outb(sc->sc_iobase + FE_DLCR2, 0x00);
1281 outb(sc->sc_iobase + FE_DLCR3, 0x00);
1282 outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
1283 outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
1284 outb(sc->sc_iobase + FE_BMPR10, 0x00);
1285 outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
1286 outb(sc->sc_iobase + FE_BMPR12, 0x00);
1287 outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
1288 outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
1289 outb(sc->sc_iobase + FE_BMPR15, 0x00);
1290
1291 #if FE_DEBUG >= 3
1292 log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
1293 fe_dump(LOG_INFO, sc);
1294 #endif
1295
1296 /* Enable interrupts. */
1297 outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
1298 outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
1299
1300 /* Enable transmitter and receiver. */
1301 delay(200);
1302 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1303 delay(200);
1304
1305 #if FE_DEBUG >= 3
1306 log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
1307 fe_dump(LOG_INFO, sc);
1308 #endif
1309
1310 /*
1311 * Make sure to empty the receive buffer.
1312 *
1313 * This may be redundant, but *if* the receive buffer were full
1314 * at this point, the driver would hang. I have experienced
1315 * some strange hangups just after UP. I hope the following
1316 * code solve the problem.
1317 *
1318 * I have changed the order of hardware initialization.
1319 * I think the receive buffer cannot have any packets at this
1320 * point in this version. The following code *must* be
1321 * redundant now. FIXME.
1322 */
1323 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1324 if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1325 break;
1326 fe_droppacket(sc);
1327 }
1328 #if FE_DEBUG >= 1
1329 if (i >= FE_MAX_RECV_COUNT) {
1330 log(LOG_ERR, "%s: cannot empty receive buffer\n",
1331 sc->sc_dev.dv_xname);
1332 }
1333 #endif
1334 #if FE_DEBUG >= 3
1335 if (i < FE_MAX_RECV_COUNT) {
1336 log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
1337 sc->sc_dev.dv_xname, i);
1338 }
1339 #endif
1340
1341 #if FE_DEBUG >= 3
1342 log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
1343 fe_dump(LOG_INFO, sc);
1344 #endif
1345
1346 /* Do we need this here? */
1347 outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
1348 outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
1349
1350 #if FE_DEBUG >= 3
1351 log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
1352 fe_dump(LOG_INFO, sc);
1353 #endif
1354
1355 /* Set 'running' flag. */
1356 ifp->if_flags |= IFF_RUNNING;
1357
1358 /*
1359 * At this point, the interface is runnung properly,
1360 * except that it receives *no* packets. we then call
1361 * fe_setmode() to tell the chip what packets to be
1362 * received, based on the if_flags and multicast group
1363 * list. It completes the initialization process.
1364 */
1365 fe_setmode(sc);
1366
1367 #if FE_DEBUG >= 3
1368 log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
1369 fe_dump(LOG_INFO, sc);
1370 #endif
1371
1372 /* ...and attempt to start output. */
1373 fe_start(ifp);
1374
1375 #if FE_DEBUG >= 3
1376 log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
1377 fe_dump(LOG_INFO, sc);
1378 #endif
1379 }
1380
1381 /*
1382 * This routine actually starts the transmission on the interface
1383 */
1384 static inline void
1385 fe_xmit(sc)
1386 struct fe_softc *sc;
1387 {
1388
1389 /*
1390 * Set a timer just in case we never hear from the board again.
1391 * We use longer timeout for multiple packet transmission.
1392 * I'm not sure this timer value is appropriate. FIXME.
1393 */
1394 sc->sc_arpcom.ac_if.if_timer = 1 + sc->txb_count;
1395
1396 /* Update txb variables. */
1397 sc->txb_sched = sc->txb_count;
1398 sc->txb_count = 0;
1399 sc->txb_free = sc->txb_size;
1400
1401 #if FE_DELAYED_PADDING
1402 /* Omit the postponed padding process. */
1403 sc->txb_padding = 0;
1404 #endif
1405
1406 /* Start transmitter, passing packets in TX buffer. */
1407 outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
1408 }
1409
1410 /*
1411 * Start output on interface.
1412 * We make two assumptions here:
1413 * 1) that the current priority is set to splnet _before_ this code
1414 * is called *and* is returned to the appropriate priority after
1415 * return
1416 * 2) that the IFF_OACTIVE flag is checked before this code is called
1417 * (i.e. that the output part of the interface is idle)
1418 */
1419 void
1420 fe_start(ifp)
1421 struct ifnet *ifp;
1422 {
1423 struct fe_softc *sc = fecd.cd_devs[ifp->if_unit];
1424 struct mbuf *m;
1425
1426 #if FE_DEBUG >= 1
1427 /* Just a sanity check. */
1428 if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1429 /*
1430 * Txb_count and txb_free co-works to manage the
1431 * transmission buffer. Txb_count keeps track of the
1432 * used potion of the buffer, while txb_free does unused
1433 * potion. So, as long as the driver runs properly,
1434 * txb_count is zero if and only if txb_free is same
1435 * as txb_size (which represents whole buffer.)
1436 */
1437 log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
1438 sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
1439 /*
1440 * So, what should I do, then?
1441 *
1442 * We now know txb_count and txb_free contradicts. We
1443 * cannot, however, tell which is wrong. More
1444 * over, we cannot peek 86960 transmission buffer or
1445 * reset the transmission buffer. (In fact, we can
1446 * reset the entire interface. I don't want to do it.)
1447 *
1448 * If txb_count is incorrect, leaving it as is will cause
1449 * sending of gabages after next interrupt. We have to
1450 * avoid it. Hence, we reset the txb_count here. If
1451 * txb_free was incorrect, resetting txb_count just loose
1452 * some packets. We can live with it.
1453 */
1454 sc->txb_count = 0;
1455 }
1456 #endif
1457
1458 #if FE_DEBUG >= 1
1459 /*
1460 * First, see if there are buffered packets and an idle
1461 * transmitter - should never happen at this point.
1462 */
1463 if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1464 log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
1465 sc->sc_dev.dv_xname, sc->txb_count);
1466 fe_xmit(sc);
1467 }
1468 #endif
1469
1470 /*
1471 * Stop accepting more transmission packets temporarily, when
1472 * a filter change request is delayed. Updating the MARs on
1473 * 86960 flushes the transmisstion buffer, so it is delayed
1474 * until all buffered transmission packets have been sent
1475 * out.
1476 */
1477 if (sc->filter_change) {
1478 /*
1479 * Filter change requst is delayed only when the DLC is
1480 * working. DLC soon raise an interrupt after finishing
1481 * the work.
1482 */
1483 goto indicate_active;
1484 }
1485
1486 for (;;) {
1487 /*
1488 * See if there is room to put another packet in the buffer.
1489 * We *could* do better job by peeking the send queue to
1490 * know the length of the next packet. Current version just
1491 * tests against the worst case (i.e., longest packet). FIXME.
1492 *
1493 * When adding the packet-peek feature, don't forget adding a
1494 * test on txb_count against QUEUEING_MAX.
1495 * There is a little chance the packet count exceeds
1496 * the limit. Assume transmission buffer is 8KB (2x8KB
1497 * configuration) and an application sends a bunch of small
1498 * (i.e., minimum packet sized) packets rapidly. An 8KB
1499 * buffer can hold 130 blocks of 62 bytes long...
1500 */
1501 if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
1502 /* No room. */
1503 goto indicate_active;
1504 }
1505
1506 #if FE_SINGLE_TRANSMISSION
1507 if (sc->txb_count > 0) {
1508 /* Just one packet per a transmission buffer. */
1509 goto indicate_active;
1510 }
1511 #endif
1512
1513 /*
1514 * Get the next mbuf chain for a packet to send.
1515 */
1516 IF_DEQUEUE(&ifp->if_snd, m);
1517 if (m == 0) {
1518 /* No more packets to send. */
1519 goto indicate_inactive;
1520 }
1521
1522 #if NBPFILTER > 0
1523 /* Tap off here if there is a BPF listener. */
1524 if (ifp->if_bpf)
1525 bpf_mtap(ifp->if_bpf, m);
1526 #endif
1527
1528 /*
1529 * Copy the mbuf chain into the transmission buffer.
1530 * txb_* variables are updated as necessary.
1531 */
1532 fe_write_mbufs(sc, m);
1533
1534 m_freem(m);
1535
1536 /* Start transmitter if it's idle. */
1537 if (sc->txb_sched == 0)
1538 fe_xmit(sc);
1539 }
1540
1541 indicate_inactive:
1542 /*
1543 * We are using the !OACTIVE flag to indicate to
1544 * the outside world that we can accept an
1545 * additional packet rather than that the
1546 * transmitter is _actually_ active. Indeed, the
1547 * transmitter may be active, but if we haven't
1548 * filled all the buffers with data then we still
1549 * want to accept more.
1550 */
1551 ifp->if_flags &= ~IFF_OACTIVE;
1552 return;
1553
1554 indicate_active:
1555 /*
1556 * The transmitter is active, and there are no room for
1557 * more outgoing packets in the transmission buffer.
1558 */
1559 ifp->if_flags |= IFF_OACTIVE;
1560 return;
1561 }
1562
1563 /*
1564 * Transmission interrupt handler
1565 * The control flow of this function looks silly. FIXME.
1566 */
1567 void
1568 fe_tint(sc, tstat)
1569 struct fe_softc *sc;
1570 u_char tstat;
1571 {
1572 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1573 int left;
1574 int col;
1575
1576 /*
1577 * Handle "excessive collision" interrupt.
1578 */
1579 if (tstat & FE_D0_COLL16) {
1580 /*
1581 * Find how many packets (including this collided one)
1582 * are left unsent in transmission buffer.
1583 */
1584 left = inb(sc->sc_iobase + FE_BMPR10);
1585
1586 #if FE_DEBUG >= 2
1587 log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
1588 sc->sc_dev.dv_xname, left, sc->txb_sched);
1589 #endif
1590 #if FE_DEBUG >= 3
1591 fe_dump(LOG_INFO, sc);
1592 #endif
1593
1594 /*
1595 * Update statistics.
1596 */
1597 ifp->if_collisions += 16;
1598 ifp->if_oerrors++;
1599 ifp->if_opackets += sc->txb_sched - left;
1600
1601 /*
1602 * Collision statistics has been updated.
1603 * Clear the collision flag on 86960 now to avoid confusion.
1604 */
1605 outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1606
1607 /*
1608 * Restart transmitter, skipping the
1609 * collided packet.
1610 *
1611 * We *must* skip the packet to keep network running
1612 * properly. Excessive collision error is an
1613 * indication of the network overload. If we
1614 * tried sending the same packet after excessive
1615 * collision, the network would be filled with
1616 * out-of-time packets. Packets belonging
1617 * to reliable transport (such as TCP) are resent
1618 * by some upper layer.
1619 */
1620 outb(sc->sc_iobase + FE_BMPR11,
1621 FE_B11_CTRL_SKIP | FE_B11_MODE1);
1622 sc->txb_sched = left - 1;
1623 }
1624
1625 /*
1626 * Handle "transmission complete" interrupt.
1627 */
1628 if (tstat & FE_D0_TXDONE) {
1629 /*
1630 * Add in total number of collisions on last
1631 * transmission. We also clear "collision occurred" flag
1632 * here.
1633 *
1634 * 86960 has a design flow on collision count on multiple
1635 * packet transmission. When we send two or more packets
1636 * with one start command (that's what we do when the
1637 * transmission queue is clauded), 86960 informs us number
1638 * of collisions occured on the last packet on the
1639 * transmission only. Number of collisions on previous
1640 * packets are lost. I have told that the fact is clearly
1641 * stated in the Fujitsu document.
1642 *
1643 * I considered not to mind it seriously. Collision
1644 * count is not so important, anyway. Any comments? FIXME.
1645 */
1646
1647 if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
1648 /* Clear collision flag. */
1649 outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1650
1651 /* Extract collision count from 86960. */
1652 col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
1653 if (col == 0) {
1654 /*
1655 * Status register indicates collisions,
1656 * while the collision count is zero.
1657 * This can happen after multiple packet
1658 * transmission, indicating that one or more
1659 * previous packet(s) had been collided.
1660 *
1661 * Since the accurate number of collisions
1662 * has been lost, we just guess it as 1;
1663 * Am I too optimistic? FIXME.
1664 */
1665 col = 1;
1666 } else
1667 col >>= FE_D4_COL_SHIFT;
1668 ifp->if_collisions += col;
1669 #if FE_DEBUG >= 4
1670 log(LOG_WARNING, "%s: %d collision%s (%d)\n",
1671 sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
1672 sc->txb_sched);
1673 #endif
1674 }
1675
1676 /*
1677 * Update total number of successfully
1678 * transmitted packets.
1679 */
1680 ifp->if_opackets += sc->txb_sched;
1681 sc->txb_sched = 0;
1682
1683 /*
1684 * The transmitter is no more active.
1685 * Reset output active flag and watchdog timer.
1686 */
1687 ifp->if_flags &= ~IFF_OACTIVE;
1688 ifp->if_timer = 0;
1689
1690 /*
1691 * If more data is ready to transmit in the buffer, start
1692 * transmitting them. Otherwise keep transmitter idle,
1693 * even if more data is queued. This gives receive
1694 * process a slight priority.
1695 */
1696 if (sc->txb_count > 0)
1697 fe_xmit(sc);
1698 }
1699 }
1700
1701 /*
1702 * Ethernet interface receiver interrupt.
1703 */
1704 void
1705 fe_rint(sc, rstat)
1706 struct fe_softc *sc;
1707 u_char rstat;
1708 {
1709 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1710 int len;
1711 u_char status;
1712 int i;
1713
1714 /*
1715 * Update statistics if this interrupt is caused by an error.
1716 */
1717 if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
1718 FE_D1_ALGERR | FE_D1_SRTPKT)) {
1719 #if FE_DEBUG >= 3
1720 log(LOG_WARNING, "%s: receive error: %b\n",
1721 sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
1722 #endif
1723 ifp->if_ierrors++;
1724 }
1725
1726 /*
1727 * MB86960 has a flag indicating "receive queue empty."
1728 * We just loop cheking the flag to pull out all received
1729 * packets.
1730 *
1731 * We limit the number of iterrations to avoid infinite loop.
1732 * It can be caused by a very slow CPU (some broken
1733 * peripheral may insert incredible number of wait cycles)
1734 * or, worse, by a broken MB86960 chip.
1735 */
1736 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1737 /* Stop the iterration if 86960 indicates no packets. */
1738 if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1739 break;
1740
1741 /*
1742 * Extract A receive status byte.
1743 * As our 86960 is in 16 bit bus access mode, we have to
1744 * use inw() to get the status byte. The significant
1745 * value is returned in lower 8 bits.
1746 */
1747 status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
1748 #if FE_DEBUG >= 4
1749 log(LOG_INFO, "%s: receive status = %02x\n",
1750 sc->sc_dev.dv_xname, status);
1751 #endif
1752
1753 /*
1754 * If there was an error, update statistics and drop
1755 * the packet, unless the interface is in promiscuous
1756 * mode.
1757 */
1758 if ((status & 0xF0) != 0x20) { /* XXXX ? */
1759 if ((ifp->if_flags & IFF_PROMISC) == 0) {
1760 ifp->if_ierrors++;
1761 fe_droppacket(sc);
1762 continue;
1763 }
1764 }
1765
1766 /*
1767 * Extract the packet length.
1768 * It is a sum of a header (14 bytes) and a payload.
1769 * CRC has been stripped off by the 86960.
1770 */
1771 len = inw(sc->sc_iobase + FE_BMPR8);
1772
1773 /*
1774 * MB86965 checks the packet length and drop big packet
1775 * before passing it to us. There are no chance we can
1776 * get [crufty] packets. Hence, if the length exceeds
1777 * the specified limit, it means some serious failure,
1778 * such as out-of-sync on receive buffer management.
1779 *
1780 * Is this statement true? FIXME.
1781 */
1782 if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
1783 #if FE_DEBUG >= 2
1784 log(LOG_WARNING,
1785 "%s: received a %s packet? (%u bytes)\n",
1786 sc->sc_dev.dv_xname,
1787 len < ETHER_HDR_SIZE ? "partial" : "big", len);
1788 #endif
1789 ifp->if_ierrors++;
1790 fe_droppacket(sc);
1791 continue;
1792 }
1793
1794 /*
1795 * Check for a short (RUNT) packet. We *do* check
1796 * but do nothing other than print a message.
1797 * Short packets are illegal, but does nothing bad
1798 * if it carries data for upper layer.
1799 */
1800 #if FE_DEBUG >= 2
1801 if (len < ETHER_MIN_LEN) {
1802 log(LOG_WARNING,
1803 "%s: received a short packet? (%u bytes)\n",
1804 sc->sc_dev.dv_xname, len);
1805 }
1806 #endif
1807
1808 /*
1809 * Go get a packet.
1810 */
1811 if (!fe_get_packet(sc, len)) {
1812 /* Skip a packet, updating statistics. */
1813 #if FE_DEBUG >= 2
1814 log(LOG_WARNING,
1815 "%s: out of mbufs; dropping packet (%u bytes)\n",
1816 sc->sc_dev.dv_xname, len);
1817 #endif
1818 ifp->if_ierrors++;
1819 fe_droppacket(sc);
1820
1821 /*
1822 * We stop receiving packets, even if there are
1823 * more in the buffer. We hope we can get more
1824 * mbufs next time.
1825 */
1826 return;
1827 }
1828
1829 /* Successfully received a packet. Update stat. */
1830 ifp->if_ipackets++;
1831 }
1832 }
1833
1834 /*
1835 * Ethernet interface interrupt processor
1836 */
1837 int
1838 feintr(arg)
1839 void *arg;
1840 {
1841 struct fe_softc *sc = arg;
1842 u_char tstat, rstat;
1843
1844 #if FE_DEBUG >= 4
1845 log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
1846 fe_dump(LOG_INFO, sc);
1847 #endif
1848
1849 /*
1850 * Get interrupt conditions, masking unneeded flags.
1851 */
1852 tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1853 rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1854 if (tstat == 0 && rstat == 0)
1855 return (0);
1856
1857 /*
1858 * Loop until there are no more new interrupt conditions.
1859 */
1860 for (;;) {
1861 /*
1862 * Reset the conditions we are acknowledging.
1863 */
1864 outb(sc->sc_iobase + FE_DLCR0, tstat);
1865 outb(sc->sc_iobase + FE_DLCR1, rstat);
1866
1867 /*
1868 * Handle transmitter interrupts. Handle these first because
1869 * the receiver will reset the board under some conditions.
1870 */
1871 if (tstat != 0)
1872 fe_tint(sc, tstat);
1873
1874 /*
1875 * Handle receiver interrupts.
1876 */
1877 if (rstat != 0)
1878 fe_rint(sc, rstat);
1879
1880 /*
1881 * Update the multicast address filter if it is
1882 * needed and possible. We do it now, because
1883 * we can make sure the transmission buffer is empty,
1884 * and there is a good chance that the receive queue
1885 * is empty. It will minimize the possibility of
1886 * packet lossage.
1887 */
1888 if (sc->filter_change &&
1889 sc->txb_count == 0 && sc->txb_sched == 0) {
1890 fe_loadmar(sc);
1891 sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
1892 }
1893
1894 /*
1895 * If it looks like the transmitter can take more data,
1896 * attempt to start output on the interface. This is done
1897 * after handling the receiver interrupt to give the
1898 * receive operation priority.
1899 */
1900 if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1901 fe_start(&sc->sc_arpcom.ac_if);
1902
1903 /*
1904 * Get interrupt conditions, masking unneeded flags.
1905 */
1906 tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1907 rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1908 if (tstat == 0 && rstat == 0)
1909 return (1);
1910 }
1911 }
1912
1913 /*
1914 * Process an ioctl request. This code needs some work - it looks pretty ugly.
1915 */
1916 int
1917 fe_ioctl(ifp, command, data)
1918 register struct ifnet *ifp;
1919 u_long command;
1920 caddr_t data;
1921 {
1922 struct fe_softc *sc = fecd.cd_devs[ifp->if_unit];
1923 register struct ifaddr *ifa = (struct ifaddr *)data;
1924 struct ifreq *ifr = (struct ifreq *)data;
1925 int s, error = 0;
1926
1927 #if FE_DEBUG >= 3
1928 log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
1929 #endif
1930
1931 s = splnet();
1932
1933 switch (command) {
1934
1935 case SIOCSIFADDR:
1936 ifp->if_flags |= IFF_UP;
1937
1938 switch (ifa->ifa_addr->sa_family) {
1939 #ifdef INET
1940 case AF_INET:
1941 fe_init(sc);
1942 arp_ifinit(&sc->sc_arpcom, ifa);
1943 break;
1944 #endif
1945 #ifdef NS
1946 case AF_NS:
1947 {
1948 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1949
1950 if (ns_nullhost(*ina))
1951 ina->x_host =
1952 *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1953 else
1954 bcopy(ina->x_host.c_host,
1955 sc->sc_arpcom.ac_enaddr,
1956 sizeof(sc->sc_arpcom.ac_enaddr));
1957 /* Set new address. */
1958 fe_init(sc);
1959 break;
1960 }
1961 #endif
1962 default:
1963 fe_init(sc);
1964 break;
1965 }
1966 break;
1967
1968 case SIOCSIFFLAGS:
1969 if ((ifp->if_flags & IFF_UP) == 0 &&
1970 (ifp->if_flags & IFF_RUNNING) != 0) {
1971 /*
1972 * If interface is marked down and it is running, then
1973 * stop it.
1974 */
1975 fe_stop(sc);
1976 ifp->if_flags &= ~IFF_RUNNING;
1977 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1978 (ifp->if_flags & IFF_RUNNING) == 0) {
1979 /*
1980 * If interface is marked up and it is stopped, then
1981 * start it.
1982 */
1983 fe_init(sc);
1984 } else {
1985 /*
1986 * Reset the interface to pick up changes in any other
1987 * flags that affect hardware registers.
1988 */
1989 fe_setmode(sc);
1990 }
1991 #if DEBUG >= 1
1992 /* "ifconfig fe0 debug" to print register dump. */
1993 if (ifp->if_flags & IFF_DEBUG) {
1994 log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
1995 fe_dump(LOG_DEBUG, sc);
1996 }
1997 #endif
1998 break;
1999
2000 case SIOCADDMULTI:
2001 case SIOCDELMULTI:
2002 /* Update our multicast list. */
2003 error = (command == SIOCADDMULTI) ?
2004 ether_addmulti(ifr, &sc->sc_arpcom) :
2005 ether_delmulti(ifr, &sc->sc_arpcom);
2006
2007 if (error == ENETRESET) {
2008 /*
2009 * Multicast list has changed; set the hardware filter
2010 * accordingly.
2011 */
2012 fe_setmode(sc);
2013 error = 0;
2014 }
2015 break;
2016
2017 default:
2018 error = EINVAL;
2019 }
2020
2021 splx(s);
2022 return (error);
2023 }
2024
2025 /*
2026 * Retreive packet from receive buffer and send to the next level up via
2027 * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2028 * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
2029 */
2030 int
2031 fe_get_packet(sc, len)
2032 struct fe_softc *sc;
2033 int len;
2034 {
2035 struct ether_header *eh;
2036 struct mbuf *m;
2037 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2038
2039 /* Allocate a header mbuf. */
2040 MGETHDR(m, M_DONTWAIT, MT_DATA);
2041 if (m == 0)
2042 return (0);
2043 m->m_pkthdr.rcvif = ifp;
2044 m->m_pkthdr.len = len;
2045
2046 /* The following silliness is to make NFS happy. */
2047 #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
2048 #define EOFF (EROUND - sizeof(struct ether_header))
2049
2050 /*
2051 * Our strategy has one more problem. There is a policy on
2052 * mbuf cluster allocation. It says that we must have at
2053 * least MINCLSIZE (208 bytes) to allocate a cluster. For a
2054 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
2055 * our code violates the rule...
2056 * On the other hand, the current code is short, simle,
2057 * and fast, however. It does no harmful thing, just waists
2058 * some memory. Any comments? FIXME.
2059 */
2060
2061 /* Attach a cluster if this packet doesn't fit in a normal mbuf. */
2062 if (len > MHLEN - EOFF) {
2063 MCLGET(m, M_DONTWAIT);
2064 if ((m->m_flags & M_EXT) == 0) {
2065 m_freem(m);
2066 return (0);
2067 }
2068 }
2069
2070 /*
2071 * The following assumes there is room for the ether header in the
2072 * header mbuf.
2073 */
2074 m->m_data += EOFF;
2075 eh = mtod(m, struct ether_header *);
2076
2077 /* Set the length of this packet. */
2078 m->m_len = len;
2079
2080 /* Get a packet. */
2081 insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
2082
2083 #if NBPFILTER > 0
2084 /*
2085 * Check if there's a BPF listener on this interface. If so, hand off
2086 * the raw packet to bpf.
2087 */
2088 if (ifp->if_bpf) {
2089 bpf_mtap(ifp->if_bpf, m);
2090
2091 /*
2092 * Note that the interface cannot be in promiscuous mode if
2093 * there are no BPF listeners. And if we are in promiscuous
2094 * mode, we have to check if this packet is really ours.
2095 */
2096 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
2097 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
2098 bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
2099 sizeof(eh->ether_dhost)) != 0) {
2100 m_freem(m);
2101 return (1);
2102 }
2103 }
2104 #endif
2105
2106 /* Fix up data start offset in mbuf to point past ether header. */
2107 m_adj(m, sizeof(struct ether_header));
2108 ether_input(ifp, eh, m);
2109 return (1);
2110 }
2111
2112 /*
2113 * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
2114 * Returns number of bytes actually written, including length word.
2115 *
2116 * If an mbuf chain is too long for an Ethernet frame, it is not sent.
2117 * Packets shorter than Ethernet minimum are legal, and we pad them
2118 * before sending out. An exception is "partial" packets which are
2119 * shorter than mandatory Ethernet header.
2120 *
2121 * I wrote a code for an experimental "delayed padding" technique.
2122 * When employed, it postpones the padding process for short packets.
2123 * If xmit() occured at the moment, the padding process is omitted, and
2124 * garbages are sent as pad data. If next packet is stored in the
2125 * transmission buffer before xmit(), write_mbuf() pads the previous
2126 * packet before transmitting new packet. This *may* gain the
2127 * system performance (slightly).
2128 */
2129 void
2130 fe_write_mbufs(sc, m)
2131 struct fe_softc *sc;
2132 struct mbuf *m;
2133 {
2134 int bmpr8 = sc->sc_iobase + FE_BMPR8;
2135 struct mbuf *mp;
2136 u_char *data;
2137 u_short savebyte; /* WARNING: Architecture dependent! */
2138 int totlen, len, wantbyte;
2139
2140 #if FE_DELAYED_PADDING
2141 /* Do the "delayed padding." */
2142 len = sc->txb_padding >> 1;
2143 if (len > 0) {
2144 while (--len >= 0)
2145 outw(bmpr8, 0);
2146 sc->txb_padding = 0;
2147 }
2148 #endif
2149
2150 /* We need to use m->m_pkthdr.len, so require the header */
2151 if ((m->m_flags & M_PKTHDR) == 0)
2152 panic("fe_write_mbufs: no header mbuf");
2153
2154 #if FE_DEBUG >= 2
2155 /* First, count up the total number of bytes to copy. */
2156 for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
2157 totlen += mp->m_len;
2158 /* Check if this matches the one in the packet header. */
2159 if (totlen != m->m_pkthdr.len)
2160 log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
2161 sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
2162 #else
2163 /* Just use the length value in the packet header. */
2164 totlen = m->m_pkthdr.len;
2165 #endif
2166
2167 #if FE_DEBUG >= 1
2168 /*
2169 * Should never send big packets. If such a packet is passed,
2170 * it should be a bug of upper layer. We just ignore it.
2171 * ... Partial (too short) packets, neither.
2172 */
2173 if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
2174 log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
2175 sc->sc_dev.dv_xname,
2176 totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
2177 sc->sc_arpcom.ac_if.if_oerrors++;
2178 return;
2179 }
2180 #endif
2181
2182 /*
2183 * Put the length word for this frame.
2184 * Does 86960 accept odd length? -- Yes.
2185 * Do we need to pad the length to minimum size by ourselves?
2186 * -- Generally yes. But for (or will be) the last
2187 * packet in the transmission buffer, we can skip the
2188 * padding process. It may gain performance slightly. FIXME.
2189 */
2190 outw(bmpr8, max(totlen, ETHER_MIN_LEN));
2191
2192 /*
2193 * Update buffer status now.
2194 * Truncate the length up to an even number, since we use outw().
2195 */
2196 totlen = (totlen + 1) & ~1;
2197 sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
2198 sc->txb_count++;
2199
2200 #if FE_DELAYED_PADDING
2201 /* Postpone the packet padding if necessary. */
2202 if (totlen < ETHER_MIN_LEN)
2203 sc->txb_padding = ETHER_MIN_LEN - totlen;
2204 #endif
2205
2206 /*
2207 * Transfer the data from mbuf chain to the transmission buffer.
2208 * MB86960 seems to require that data be transferred as words, and
2209 * only words. So that we require some extra code to patch
2210 * over odd-length mbufs.
2211 */
2212 wantbyte = 0;
2213 for (; m != 0; m = m->m_next) {
2214 /* Ignore empty mbuf. */
2215 len = m->m_len;
2216 if (len == 0)
2217 continue;
2218
2219 /* Find the actual data to send. */
2220 data = mtod(m, caddr_t);
2221
2222 /* Finish the last byte. */
2223 if (wantbyte) {
2224 outw(bmpr8, savebyte | (*data << 8));
2225 data++;
2226 len--;
2227 wantbyte = 0;
2228 }
2229
2230 /* Output contiguous words. */
2231 if (len > 1)
2232 outsw(bmpr8, data, len >> 1);
2233
2234 /* Save remaining byte, if there is one. */
2235 if (len & 1) {
2236 data += len & ~1;
2237 savebyte = *data;
2238 wantbyte = 1;
2239 }
2240 }
2241
2242 /* Spit the last byte, if the length is odd. */
2243 if (wantbyte)
2244 outw(bmpr8, savebyte);
2245
2246 #if ! FE_DELAYED_PADDING
2247 /*
2248 * Pad the packet to the minimum length if necessary.
2249 */
2250 len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
2251 while (--len >= 0)
2252 outw(bmpr8, 0);
2253 #endif
2254 }
2255
2256 /*
2257 * Compute the multicast address filter from the
2258 * list of multicast addresses we need to listen to.
2259 */
2260 void
2261 fe_getmcaf(ac, af)
2262 struct arpcom *ac;
2263 u_char *af;
2264 {
2265 struct ifnet *ifp = &ac->ac_if;
2266 struct ether_multi *enm;
2267 register u_char *cp, c;
2268 register u_long crc;
2269 register int i, len;
2270 struct ether_multistep step;
2271
2272 /*
2273 * Set up multicast address filter by passing all multicast addresses
2274 * through a crc generator, and then using the high order 6 bits as an
2275 * index into the 64 bit logical address filter. The high order bit
2276 * selects the word, while the rest of the bits select the bit within
2277 * the word.
2278 */
2279
2280 if ((ifp->if_flags & IFF_PROMISC) != 0)
2281 goto allmulti;
2282
2283 af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
2284 ETHER_FIRST_MULTI(step, ac, enm);
2285 while (enm != NULL) {
2286 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
2287 sizeof(enm->enm_addrlo)) != 0) {
2288 /*
2289 * We must listen to a range of multicast addresses.
2290 * For now, just accept all multicasts, rather than
2291 * trying to set only those filter bits needed to match
2292 * the range. (At this time, the only use of address
2293 * ranges is for IP multicast routing, for which the
2294 * range is big enough to require all bits set.)
2295 */
2296 goto allmulti;
2297 }
2298
2299 cp = enm->enm_addrlo;
2300 crc = 0xffffffff;
2301 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
2302 c = *cp++;
2303 for (i = 8; --i >= 0;) {
2304 if ((crc & 0x01) ^ (c & 0x01)) {
2305 crc >>= 1;
2306 crc ^= 0xedb88320;
2307 } else
2308 crc >>= 1;
2309 c >>= 1;
2310 }
2311 }
2312 /* Just want the 6 most significant bits. */
2313 crc >>= 26;
2314
2315 /* Turn on the corresponding bit in the filter. */
2316 af[crc >> 3] |= 1 << (crc & 7);
2317
2318 ETHER_NEXT_MULTI(step, enm);
2319 }
2320 ifp->if_flags &= ~IFF_ALLMULTI;
2321 return;
2322
2323 allmulti:
2324 ifp->if_flags |= IFF_ALLMULTI;
2325 af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
2326 }
2327
2328 /*
2329 * Calculate a new "multicast packet filter" and put the 86960
2330 * receiver in appropriate mode.
2331 */
2332 void
2333 fe_setmode(sc)
2334 struct fe_softc *sc;
2335 {
2336 int flags = sc->sc_arpcom.ac_if.if_flags;
2337
2338 /*
2339 * If the interface is not running, we postpone the update
2340 * process for receive modes and multicast address filter
2341 * until the interface is restarted. It reduces some
2342 * complicated job on maintaining chip states. (Earlier versions
2343 * of this driver had a bug on that point...)
2344 *
2345 * To complete the trick, fe_init() calls fe_setmode() after
2346 * restarting the interface.
2347 */
2348 if ((flags & IFF_RUNNING) == 0)
2349 return;
2350
2351 /*
2352 * Promiscuous mode is handled separately.
2353 */
2354 if ((flags & IFF_PROMISC) != 0) {
2355 /*
2356 * Program 86960 to receive all packets on the segment
2357 * including those directed to other stations.
2358 * Multicast filter stored in MARs are ignored
2359 * under this setting, so we don't need to update it.
2360 *
2361 * Promiscuous mode is used solely by BPF, and BPF only
2362 * listens to valid (no error) packets. So, we ignore
2363 * errornous ones even in this mode.
2364 */
2365 outb(sc->sc_iobase + FE_DLCR5,
2366 sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2367 sc->filter_change = 0;
2368
2369 #if FE_DEBUG >= 3
2370 log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
2371 #endif
2372 return;
2373 }
2374
2375 /*
2376 * Turn the chip to the normal (non-promiscuous) mode.
2377 */
2378 outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2379
2380 /*
2381 * Find the new multicast filter value.
2382 */
2383 fe_getmcaf(&sc->sc_arpcom, sc->filter);
2384 sc->filter_change = 1;
2385
2386 #if FE_DEBUG >= 3
2387 log(LOG_INFO,
2388 "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
2389 sc->sc_dev.dv_xname,
2390 sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
2391 sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
2392 #endif
2393
2394 /*
2395 * We have to update the multicast filter in the 86960, A.S.A.P.
2396 *
2397 * Note that the DLC (Data Linc Control unit, i.e. transmitter
2398 * and receiver) must be stopped when feeding the filter, and
2399 * DLC trushes all packets in both transmission and receive
2400 * buffers when stopped.
2401 *
2402 * ... Are the above sentenses correct? I have to check the
2403 * manual of the MB86960A. FIXME.
2404 *
2405 * To reduce the packet lossage, we delay the filter update
2406 * process until buffers are empty.
2407 */
2408 if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2409 (inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
2410 /*
2411 * Buffers are (apparently) empty. Load
2412 * the new filter value into MARs now.
2413 */
2414 fe_loadmar(sc);
2415 } else {
2416 /*
2417 * Buffers are not empty. Mark that we have to update
2418 * the MARs. The new filter will be loaded by feintr()
2419 * later.
2420 */
2421 #if FE_DEBUG >= 4
2422 log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
2423 #endif
2424 }
2425 }
2426
2427 /*
2428 * Load a new multicast address filter into MARs.
2429 *
2430 * The caller must have splnet'ed befor fe_loadmar.
2431 * This function starts the DLC upon return. So it can be called only
2432 * when the chip is working, i.e., from the driver's point of view, when
2433 * a device is RUNNING. (I mistook the point in previous versions.)
2434 */
2435 void
2436 fe_loadmar(sc)
2437 struct fe_softc *sc;
2438 {
2439
2440 /* Stop the DLC (transmitter and receiver). */
2441 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2442
2443 /* Select register bank 1 for MARs. */
2444 outb(sc->sc_iobase + FE_DLCR7,
2445 sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2446
2447 /* Copy filter value into the registers. */
2448 outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
2449
2450 /* Restore the bank selection for BMPRs (i.e., runtime registers). */
2451 outb(sc->sc_iobase + FE_DLCR7,
2452 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2453
2454 /* Restart the DLC. */
2455 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2456
2457 /* We have just updated the filter. */
2458 sc->filter_change = 0;
2459
2460 #if FE_DEBUG >= 3
2461 log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
2462 #endif
2463 }
2464
2465 #if FE_DEBUG >= 1
2466 void
2467 fe_dump(level, sc)
2468 int level;
2469 struct fe_softc *sc;
2470 {
2471 int iobase = sc->sc_iobase;
2472 u_char save_dlcr7;
2473
2474 save_dlcr7 = inb(iobase + FE_DLCR7);
2475
2476 log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
2477 inb(iobase + FE_DLCR0), inb(iobase + FE_DLCR1),
2478 inb(iobase + FE_DLCR2), inb(iobase + FE_DLCR3),
2479 inb(iobase + FE_DLCR4), inb(iobase + FE_DLCR5),
2480 inb(iobase + FE_DLCR6), inb(iobase + FE_DLCR7));
2481
2482 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
2483 log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x,",
2484 inb(iobase + FE_DLCR8), inb(iobase + FE_DLCR9),
2485 inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
2486 inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
2487 inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
2488
2489 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
2490 log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x,",
2491 inb(iobase + FE_MAR8), inb(iobase + FE_MAR9),
2492 inb(iobase + FE_MAR10), inb(iobase + FE_MAR11),
2493 inb(iobase + FE_MAR12), inb(iobase + FE_MAR13),
2494 inb(iobase + FE_MAR14), inb(iobase + FE_MAR15));
2495
2496 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
2497 log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
2498 inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
2499 inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
2500 inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
2501 inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
2502 inb(iobase + FE_BMPR19));
2503
2504 outb(iobase + FE_DLCR7, save_dlcr7);
2505 }
2506 #endif
2507