mfi.c revision 1.51 1 /* $NetBSD: mfi.c,v 1.51 2014/01/25 10:14:29 skrll Exp $ */
2 /* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2012 Manuel Bouyer.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * Copyright (c) 2006 Marco Peereboom <marco (at) peereboom.us>
30 *
31 * Permission to use, copy, modify, and distribute this software for any
32 * purpose with or without fee is hereby granted, provided that the above
33 * copyright notice and this permission notice appear in all copies.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
36 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
37 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
38 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
39 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
40 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
41 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
42 */
43
44 /*-
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 *
49 * Copyright 1994-2009 The FreeBSD Project.
50 * All rights reserved.
51 *
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
60 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR
62 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
63 * EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
64 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
65 * PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY
66 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
67 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
68 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 *
70 * The views and conclusions contained in the software and documentation
71 * are those of the authors and should not be interpreted as representing
72 * official policies,either expressed or implied, of the FreeBSD Project.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.51 2014/01/25 10:14:29 skrll Exp $");
77
78 #include "bio.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/ioctl.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/cpu.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91
92 #include <uvm/uvm_param.h>
93
94 #include <sys/bus.h>
95
96 #include <dev/scsipi/scsipi_all.h>
97 #include <dev/scsipi/scsi_all.h>
98 #include <dev/scsipi/scsi_spc.h>
99 #include <dev/scsipi/scsipi_disk.h>
100 #include <dev/scsipi/scsi_disk.h>
101 #include <dev/scsipi/scsiconf.h>
102
103 #include <dev/ic/mfireg.h>
104 #include <dev/ic/mfivar.h>
105 #include <dev/ic/mfiio.h>
106
107 #if NBIO > 0
108 #include <dev/biovar.h>
109 #endif /* NBIO > 0 */
110
111 #ifdef MFI_DEBUG
112 uint32_t mfi_debug = 0
113 /* | MFI_D_CMD */
114 /* | MFI_D_INTR */
115 /* | MFI_D_MISC */
116 /* | MFI_D_DMA */
117 /* | MFI_D_IOCTL */
118 /* | MFI_D_RW */
119 /* | MFI_D_MEM */
120 /* | MFI_D_CCB */
121 /* | MFI_D_SYNC */
122 ;
123 #endif
124
125 static void mfi_scsipi_request(struct scsipi_channel *,
126 scsipi_adapter_req_t, void *);
127 static void mfiminphys(struct buf *bp);
128
129 static struct mfi_ccb *mfi_get_ccb(struct mfi_softc *);
130 static void mfi_put_ccb(struct mfi_ccb *);
131 static int mfi_init_ccb(struct mfi_softc *);
132
133 static struct mfi_mem *mfi_allocmem(struct mfi_softc *, size_t);
134 static void mfi_freemem(struct mfi_softc *, struct mfi_mem **);
135
136 static int mfi_transition_firmware(struct mfi_softc *);
137 static int mfi_initialize_firmware(struct mfi_softc *);
138 static int mfi_get_info(struct mfi_softc *);
139 static int mfi_get_bbu(struct mfi_softc *,
140 struct mfi_bbu_status *);
141 /* return codes for mfi_get_bbu */
142 #define MFI_BBU_GOOD 0
143 #define MFI_BBU_BAD 1
144 #define MFI_BBU_UNKNOWN 2
145 static uint32_t mfi_read(struct mfi_softc *, bus_size_t);
146 static void mfi_write(struct mfi_softc *, bus_size_t, uint32_t);
147 static int mfi_poll(struct mfi_ccb *);
148 static int mfi_create_sgl(struct mfi_ccb *, int);
149
150 /* commands */
151 static int mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *);
152 static int mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
153 uint64_t, uint32_t);
154 static void mfi_scsi_ld_done(struct mfi_ccb *);
155 static void mfi_scsi_xs_done(struct mfi_ccb *, int, int);
156 static int mfi_mgmt_internal(struct mfi_softc *, uint32_t,
157 uint32_t, uint32_t, void *, uint8_t *, bool);
158 static int mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *,
159 uint32_t, uint32_t, uint32_t, void *, uint8_t *);
160 static void mfi_mgmt_done(struct mfi_ccb *);
161
162 #if NBIO > 0
163 static int mfi_ioctl(device_t, u_long, void *);
164 static int mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *);
165 static int mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *);
166 static int mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *);
167 static int mfi_ioctl_alarm(struct mfi_softc *,
168 struct bioc_alarm *);
169 static int mfi_ioctl_blink(struct mfi_softc *sc,
170 struct bioc_blink *);
171 static int mfi_ioctl_setstate(struct mfi_softc *,
172 struct bioc_setstate *);
173 static int mfi_bio_hs(struct mfi_softc *, int, int, void *);
174 static int mfi_create_sensors(struct mfi_softc *);
175 static int mfi_destroy_sensors(struct mfi_softc *);
176 static void mfi_sensor_refresh(struct sysmon_envsys *,
177 envsys_data_t *);
178 #endif /* NBIO > 0 */
179 static bool mfi_shutdown(device_t, int);
180 static bool mfi_suspend(device_t, const pmf_qual_t *);
181 static bool mfi_resume(device_t, const pmf_qual_t *);
182
183 static dev_type_open(mfifopen);
184 static dev_type_close(mfifclose);
185 static dev_type_ioctl(mfifioctl);
186 const struct cdevsw mfi_cdevsw = {
187 mfifopen, mfifclose, noread, nowrite, mfifioctl,
188 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
189 };
190
191 extern struct cfdriver mfi_cd;
192
193 static uint32_t mfi_xscale_fw_state(struct mfi_softc *sc);
194 static void mfi_xscale_intr_ena(struct mfi_softc *sc);
195 static void mfi_xscale_intr_dis(struct mfi_softc *sc);
196 static int mfi_xscale_intr(struct mfi_softc *sc);
197 static void mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
198
199 static const struct mfi_iop_ops mfi_iop_xscale = {
200 mfi_xscale_fw_state,
201 mfi_xscale_intr_dis,
202 mfi_xscale_intr_ena,
203 mfi_xscale_intr,
204 mfi_xscale_post,
205 mfi_scsi_ld_io,
206 };
207
208 static uint32_t mfi_ppc_fw_state(struct mfi_softc *sc);
209 static void mfi_ppc_intr_ena(struct mfi_softc *sc);
210 static void mfi_ppc_intr_dis(struct mfi_softc *sc);
211 static int mfi_ppc_intr(struct mfi_softc *sc);
212 static void mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
213
214 static const struct mfi_iop_ops mfi_iop_ppc = {
215 mfi_ppc_fw_state,
216 mfi_ppc_intr_dis,
217 mfi_ppc_intr_ena,
218 mfi_ppc_intr,
219 mfi_ppc_post,
220 mfi_scsi_ld_io,
221 };
222
223 uint32_t mfi_gen2_fw_state(struct mfi_softc *sc);
224 void mfi_gen2_intr_ena(struct mfi_softc *sc);
225 void mfi_gen2_intr_dis(struct mfi_softc *sc);
226 int mfi_gen2_intr(struct mfi_softc *sc);
227 void mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
228
229 static const struct mfi_iop_ops mfi_iop_gen2 = {
230 mfi_gen2_fw_state,
231 mfi_gen2_intr_dis,
232 mfi_gen2_intr_ena,
233 mfi_gen2_intr,
234 mfi_gen2_post,
235 mfi_scsi_ld_io,
236 };
237
238 u_int32_t mfi_skinny_fw_state(struct mfi_softc *);
239 void mfi_skinny_intr_dis(struct mfi_softc *);
240 void mfi_skinny_intr_ena(struct mfi_softc *);
241 int mfi_skinny_intr(struct mfi_softc *);
242 void mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *);
243
244 static const struct mfi_iop_ops mfi_iop_skinny = {
245 mfi_skinny_fw_state,
246 mfi_skinny_intr_dis,
247 mfi_skinny_intr_ena,
248 mfi_skinny_intr,
249 mfi_skinny_post,
250 mfi_scsi_ld_io,
251 };
252
253 static int mfi_tbolt_init_desc_pool(struct mfi_softc *);
254 static int mfi_tbolt_init_MFI_queue(struct mfi_softc *);
255 static void mfi_tbolt_build_mpt_ccb(struct mfi_ccb *);
256 int mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
257 uint64_t, uint32_t);
258 static void mfi_tbolt_scsi_ld_done(struct mfi_ccb *);
259 static int mfi_tbolt_create_sgl(struct mfi_ccb *, int);
260 void mfi_tbolt_sync_map_info(struct work *, void *);
261 static void mfi_sync_map_complete(struct mfi_ccb *);
262
263 u_int32_t mfi_tbolt_fw_state(struct mfi_softc *);
264 void mfi_tbolt_intr_dis(struct mfi_softc *);
265 void mfi_tbolt_intr_ena(struct mfi_softc *);
266 int mfi_tbolt_intr(struct mfi_softc *sc);
267 void mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *);
268
269 static const struct mfi_iop_ops mfi_iop_tbolt = {
270 mfi_tbolt_fw_state,
271 mfi_tbolt_intr_dis,
272 mfi_tbolt_intr_ena,
273 mfi_tbolt_intr,
274 mfi_tbolt_post,
275 mfi_tbolt_scsi_ld_io,
276 };
277
278 #define mfi_fw_state(_s) ((_s)->sc_iop->mio_fw_state(_s))
279 #define mfi_intr_enable(_s) ((_s)->sc_iop->mio_intr_ena(_s))
280 #define mfi_intr_disable(_s) ((_s)->sc_iop->mio_intr_dis(_s))
281 #define mfi_my_intr(_s) ((_s)->sc_iop->mio_intr(_s))
282 #define mfi_post(_s, _c) ((_s)->sc_iop->mio_post((_s), (_c)))
283
284 static struct mfi_ccb *
285 mfi_get_ccb(struct mfi_softc *sc)
286 {
287 struct mfi_ccb *ccb;
288 int s;
289
290 s = splbio();
291 ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
292 if (ccb) {
293 TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
294 ccb->ccb_state = MFI_CCB_READY;
295 }
296 splx(s);
297
298 DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb);
299 if (__predict_false(ccb == NULL && sc->sc_running))
300 aprint_error_dev(sc->sc_dev, "out of ccb\n");
301
302 return ccb;
303 }
304
305 static void
306 mfi_put_ccb(struct mfi_ccb *ccb)
307 {
308 struct mfi_softc *sc = ccb->ccb_sc;
309 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
310 int s;
311
312 DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb);
313
314 hdr->mfh_cmd_status = 0x0;
315 hdr->mfh_flags = 0x0;
316 ccb->ccb_state = MFI_CCB_FREE;
317 ccb->ccb_xs = NULL;
318 ccb->ccb_flags = 0;
319 ccb->ccb_done = NULL;
320 ccb->ccb_direction = 0;
321 ccb->ccb_frame_size = 0;
322 ccb->ccb_extra_frames = 0;
323 ccb->ccb_sgl = NULL;
324 ccb->ccb_data = NULL;
325 ccb->ccb_len = 0;
326 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
327 /* erase tb_request_desc but preserve SMID */
328 int index = ccb->ccb_tb_request_desc.header.SMID;
329 ccb->ccb_tb_request_desc.words = 0;
330 ccb->ccb_tb_request_desc.header.SMID = index;
331 }
332 s = splbio();
333 TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
334 splx(s);
335 }
336
337 static int
338 mfi_destroy_ccb(struct mfi_softc *sc)
339 {
340 struct mfi_ccb *ccb;
341 uint32_t i;
342
343 DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc));
344
345
346 for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) {
347 /* create a dma map for transfer */
348 bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
349 }
350
351 if (i < sc->sc_max_cmds)
352 return EBUSY;
353
354 free(sc->sc_ccb, M_DEVBUF);
355
356 return 0;
357 }
358
359 static int
360 mfi_init_ccb(struct mfi_softc *sc)
361 {
362 struct mfi_ccb *ccb;
363 uint32_t i;
364 int error;
365 bus_addr_t io_req_base_phys;
366 uint8_t *io_req_base;
367 int offset;
368
369 DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc));
370
371 sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds,
372 M_DEVBUF, M_WAITOK|M_ZERO);
373 io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
374 io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
375 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
376 /*
377 * The first 256 bytes (SMID 0) is not used.
378 * Don't add to the cmd list.
379 */
380 io_req_base += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
381 io_req_base_phys += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
382 }
383
384 for (i = 0; i < sc->sc_max_cmds; i++) {
385 ccb = &sc->sc_ccb[i];
386
387 ccb->ccb_sc = sc;
388
389 /* select i'th frame */
390 ccb->ccb_frame = (union mfi_frame *)
391 ((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i);
392 ccb->ccb_pframe =
393 MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i;
394 ccb->ccb_frame->mfr_header.mfh_context = i;
395
396 /* select i'th sense */
397 ccb->ccb_sense = (struct mfi_sense *)
398 ((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
399 ccb->ccb_psense =
400 (MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
401
402 /* create a dma map for transfer */
403 error = bus_dmamap_create(sc->sc_datadmat,
404 MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0,
405 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
406 if (error) {
407 aprint_error_dev(sc->sc_dev,
408 "cannot create ccb dmamap (%d)\n", error);
409 goto destroy;
410 }
411 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
412 offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i;
413 ccb->ccb_tb_io_request =
414 (struct mfi_mpi2_request_raid_scsi_io *)
415 (io_req_base + offset);
416 ccb->ccb_tb_pio_request =
417 io_req_base_phys + offset;
418 offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i;
419 ccb->ccb_tb_sg_frame =
420 (mpi2_sge_io_union *)(sc->sc_reply_pool_limit +
421 offset);
422 ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr +
423 offset;
424 /* SMID 0 is reserved. Set SMID/index from 1 */
425 ccb->ccb_tb_request_desc.header.SMID = i + 1;
426 }
427
428 DNPRINTF(MFI_D_CCB,
429 "ccb(%d): %p frame: %#lx (%#lx) sense: %#lx (%#lx) map: %#lx\n",
430 ccb->ccb_frame->mfr_header.mfh_context, ccb,
431 (u_long)ccb->ccb_frame, (u_long)ccb->ccb_pframe,
432 (u_long)ccb->ccb_sense, (u_long)ccb->ccb_psense,
433 (u_long)ccb->ccb_dmamap);
434
435 /* add ccb to queue */
436 mfi_put_ccb(ccb);
437 }
438
439 return 0;
440 destroy:
441 /* free dma maps and ccb memory */
442 while (i) {
443 i--;
444 ccb = &sc->sc_ccb[i];
445 bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
446 }
447
448 free(sc->sc_ccb, M_DEVBUF);
449
450 return 1;
451 }
452
453 static uint32_t
454 mfi_read(struct mfi_softc *sc, bus_size_t r)
455 {
456 uint32_t rv;
457
458 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
459 BUS_SPACE_BARRIER_READ);
460 rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
461
462 DNPRINTF(MFI_D_RW, "%s: mr 0x%lx 0x08%x ", DEVNAME(sc), (u_long)r, rv);
463 return rv;
464 }
465
466 static void
467 mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v)
468 {
469 DNPRINTF(MFI_D_RW, "%s: mw 0x%lx 0x%08x", DEVNAME(sc), (u_long)r, v);
470
471 bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
472 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
473 BUS_SPACE_BARRIER_WRITE);
474 }
475
476 static struct mfi_mem *
477 mfi_allocmem(struct mfi_softc *sc, size_t size)
478 {
479 struct mfi_mem *mm;
480 int nsegs;
481
482 DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %ld\n", DEVNAME(sc),
483 (long)size);
484
485 mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_NOWAIT|M_ZERO);
486 if (mm == NULL)
487 return NULL;
488
489 mm->am_size = size;
490
491 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
492 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0)
493 goto amfree;
494
495 if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1,
496 &nsegs, BUS_DMA_NOWAIT) != 0)
497 goto destroy;
498
499 if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva,
500 BUS_DMA_NOWAIT) != 0)
501 goto free;
502
503 if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL,
504 BUS_DMA_NOWAIT) != 0)
505 goto unmap;
506
507 DNPRINTF(MFI_D_MEM, " kva: %p dva: %p map: %p\n",
508 mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map);
509
510 memset(mm->am_kva, 0, size);
511 return mm;
512
513 unmap:
514 bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size);
515 free:
516 bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
517 destroy:
518 bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
519 amfree:
520 free(mm, M_DEVBUF);
521
522 return NULL;
523 }
524
525 static void
526 mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp)
527 {
528 struct mfi_mem *mm = *mmp;
529
530 if (mm == NULL)
531 return;
532
533 *mmp = NULL;
534
535 DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm);
536
537 bus_dmamap_unload(sc->sc_dmat, mm->am_map);
538 bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size);
539 bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
540 bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
541 free(mm, M_DEVBUF);
542 }
543
544 static int
545 mfi_transition_firmware(struct mfi_softc *sc)
546 {
547 uint32_t fw_state, cur_state;
548 int max_wait, i;
549
550 fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
551
552 DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc),
553 fw_state);
554
555 while (fw_state != MFI_STATE_READY) {
556 DNPRINTF(MFI_D_MISC,
557 "%s: waiting for firmware to become ready\n",
558 DEVNAME(sc));
559 cur_state = fw_state;
560 switch (fw_state) {
561 case MFI_STATE_FAULT:
562 aprint_error_dev(sc->sc_dev, "firmware fault\n");
563 return 1;
564 case MFI_STATE_WAIT_HANDSHAKE:
565 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
566 sc->sc_ioptype == MFI_IOP_TBOLT)
567 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE);
568 else
569 mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE);
570 max_wait = 2;
571 break;
572 case MFI_STATE_OPERATIONAL:
573 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
574 sc->sc_ioptype == MFI_IOP_TBOLT)
575 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_READY);
576 else
577 mfi_write(sc, MFI_IDB, MFI_INIT_READY);
578 max_wait = 10;
579 break;
580 case MFI_STATE_UNDEFINED:
581 case MFI_STATE_BB_INIT:
582 max_wait = 2;
583 break;
584 case MFI_STATE_FW_INIT:
585 case MFI_STATE_DEVICE_SCAN:
586 case MFI_STATE_FLUSH_CACHE:
587 max_wait = 20;
588 break;
589 case MFI_STATE_BOOT_MESSAGE_PENDING:
590 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
591 sc->sc_ioptype == MFI_IOP_TBOLT) {
592 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG);
593 } else {
594 mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG);
595 }
596 max_wait = 180;
597 break;
598 default:
599 aprint_error_dev(sc->sc_dev,
600 "unknown firmware state %d\n", fw_state);
601 return 1;
602 }
603 for (i = 0; i < (max_wait * 10); i++) {
604 fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
605 if (fw_state == cur_state)
606 DELAY(100000);
607 else
608 break;
609 }
610 if (fw_state == cur_state) {
611 aprint_error_dev(sc->sc_dev,
612 "firmware stuck in state %#x\n", fw_state);
613 return 1;
614 }
615 }
616
617 return 0;
618 }
619
620 static int
621 mfi_initialize_firmware(struct mfi_softc *sc)
622 {
623 struct mfi_ccb *ccb;
624 struct mfi_init_frame *init;
625 struct mfi_init_qinfo *qinfo;
626
627 DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc));
628
629 if ((ccb = mfi_get_ccb(sc)) == NULL)
630 return 1;
631
632 init = &ccb->ccb_frame->mfr_init;
633 qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE);
634
635 memset(qinfo, 0, sizeof *qinfo);
636 qinfo->miq_rq_entries = sc->sc_max_cmds + 1;
637 qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
638 offsetof(struct mfi_prod_cons, mpc_reply_q));
639 qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
640 offsetof(struct mfi_prod_cons, mpc_producer));
641 qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
642 offsetof(struct mfi_prod_cons, mpc_consumer));
643
644 init->mif_header.mfh_cmd = MFI_CMD_INIT;
645 init->mif_header.mfh_data_len = sizeof *qinfo;
646 init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE);
647
648 DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n",
649 DEVNAME(sc),
650 qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo,
651 qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo);
652
653 if (mfi_poll(ccb)) {
654 aprint_error_dev(sc->sc_dev,
655 "mfi_initialize_firmware failed\n");
656 return 1;
657 }
658
659 mfi_put_ccb(ccb);
660
661 return 0;
662 }
663
664 static int
665 mfi_get_info(struct mfi_softc *sc)
666 {
667 #ifdef MFI_DEBUG
668 int i;
669 #endif
670 DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc));
671
672 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN,
673 sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false))
674 return 1;
675
676 #ifdef MFI_DEBUG
677
678 for (i = 0; i < sc->sc_info.mci_image_component_count; i++) {
679 printf("%s: active FW %s Version %s date %s time %s\n",
680 DEVNAME(sc),
681 sc->sc_info.mci_image_component[i].mic_name,
682 sc->sc_info.mci_image_component[i].mic_version,
683 sc->sc_info.mci_image_component[i].mic_build_date,
684 sc->sc_info.mci_image_component[i].mic_build_time);
685 }
686
687 for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) {
688 printf("%s: pending FW %s Version %s date %s time %s\n",
689 DEVNAME(sc),
690 sc->sc_info.mci_pending_image_component[i].mic_name,
691 sc->sc_info.mci_pending_image_component[i].mic_version,
692 sc->sc_info.mci_pending_image_component[i].mic_build_date,
693 sc->sc_info.mci_pending_image_component[i].mic_build_time);
694 }
695
696 printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n",
697 DEVNAME(sc),
698 sc->sc_info.mci_max_arms,
699 sc->sc_info.mci_max_spans,
700 sc->sc_info.mci_max_arrays,
701 sc->sc_info.mci_max_lds,
702 sc->sc_info.mci_product_name);
703
704 printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n",
705 DEVNAME(sc),
706 sc->sc_info.mci_serial_number,
707 sc->sc_info.mci_hw_present,
708 sc->sc_info.mci_current_fw_time,
709 sc->sc_info.mci_max_cmds,
710 sc->sc_info.mci_max_sg_elements);
711
712 printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n",
713 DEVNAME(sc),
714 sc->sc_info.mci_max_request_size,
715 sc->sc_info.mci_lds_present,
716 sc->sc_info.mci_lds_degraded,
717 sc->sc_info.mci_lds_offline,
718 sc->sc_info.mci_pd_present);
719
720 printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n",
721 DEVNAME(sc),
722 sc->sc_info.mci_pd_disks_present,
723 sc->sc_info.mci_pd_disks_pred_failure,
724 sc->sc_info.mci_pd_disks_failed);
725
726 printf("%s: nvram %d mem %d flash %d\n",
727 DEVNAME(sc),
728 sc->sc_info.mci_nvram_size,
729 sc->sc_info.mci_memory_size,
730 sc->sc_info.mci_flash_size);
731
732 printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n",
733 DEVNAME(sc),
734 sc->sc_info.mci_ram_correctable_errors,
735 sc->sc_info.mci_ram_uncorrectable_errors,
736 sc->sc_info.mci_cluster_allowed,
737 sc->sc_info.mci_cluster_active);
738
739 printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n",
740 DEVNAME(sc),
741 sc->sc_info.mci_max_strips_per_io,
742 sc->sc_info.mci_raid_levels,
743 sc->sc_info.mci_adapter_ops,
744 sc->sc_info.mci_ld_ops);
745
746 printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n",
747 DEVNAME(sc),
748 sc->sc_info.mci_stripe_sz_ops.min,
749 sc->sc_info.mci_stripe_sz_ops.max,
750 sc->sc_info.mci_pd_ops,
751 sc->sc_info.mci_pd_mix_support);
752
753 printf("%s: ecc_bucket %d pckg_prop %s\n",
754 DEVNAME(sc),
755 sc->sc_info.mci_ecc_bucket_count,
756 sc->sc_info.mci_package_version);
757
758 printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n",
759 DEVNAME(sc),
760 sc->sc_info.mci_properties.mcp_seq_num,
761 sc->sc_info.mci_properties.mcp_pred_fail_poll_interval,
762 sc->sc_info.mci_properties.mcp_intr_throttle_cnt,
763 sc->sc_info.mci_properties.mcp_intr_throttle_timeout);
764
765 printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n",
766 DEVNAME(sc),
767 sc->sc_info.mci_properties.mcp_rebuild_rate,
768 sc->sc_info.mci_properties.mcp_patrol_read_rate,
769 sc->sc_info.mci_properties.mcp_bgi_rate,
770 sc->sc_info.mci_properties.mcp_cc_rate);
771
772 printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n",
773 DEVNAME(sc),
774 sc->sc_info.mci_properties.mcp_recon_rate,
775 sc->sc_info.mci_properties.mcp_cache_flush_interval,
776 sc->sc_info.mci_properties.mcp_spinup_drv_cnt,
777 sc->sc_info.mci_properties.mcp_spinup_delay,
778 sc->sc_info.mci_properties.mcp_cluster_enable);
779
780 printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n",
781 DEVNAME(sc),
782 sc->sc_info.mci_properties.mcp_coercion_mode,
783 sc->sc_info.mci_properties.mcp_alarm_enable,
784 sc->sc_info.mci_properties.mcp_disable_auto_rebuild,
785 sc->sc_info.mci_properties.mcp_disable_battery_warn,
786 sc->sc_info.mci_properties.mcp_ecc_bucket_size);
787
788 printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n",
789 DEVNAME(sc),
790 sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate,
791 sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion,
792 sc->sc_info.mci_properties.mcp_expose_encl_devices);
793
794 printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n",
795 DEVNAME(sc),
796 sc->sc_info.mci_pci.mip_vendor,
797 sc->sc_info.mci_pci.mip_device,
798 sc->sc_info.mci_pci.mip_subvendor,
799 sc->sc_info.mci_pci.mip_subdevice);
800
801 printf("%s: type %#x port_count %d port_addr ",
802 DEVNAME(sc),
803 sc->sc_info.mci_host.mih_type,
804 sc->sc_info.mci_host.mih_port_count);
805
806 for (i = 0; i < 8; i++)
807 printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]);
808 printf("\n");
809
810 printf("%s: type %.x port_count %d port_addr ",
811 DEVNAME(sc),
812 sc->sc_info.mci_device.mid_type,
813 sc->sc_info.mci_device.mid_port_count);
814
815 for (i = 0; i < 8; i++) {
816 printf("%.0" PRIx64 " ",
817 sc->sc_info.mci_device.mid_port_addr[i]);
818 }
819 printf("\n");
820 #endif /* MFI_DEBUG */
821
822 return 0;
823 }
824
825 static int
826 mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat)
827 {
828 DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc));
829
830 if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN,
831 sizeof(*stat), stat, NULL, cold ? true : false))
832 return MFI_BBU_UNKNOWN;
833 #ifdef MFI_DEBUG
834 printf("bbu type %d, voltage %d, current %d, temperature %d, "
835 "status 0x%x\n", stat->battery_type, stat->voltage, stat->current,
836 stat->temperature, stat->fw_status);
837 printf("details: ");
838 switch(stat->battery_type) {
839 case MFI_BBU_TYPE_IBBU:
840 printf("guage %d relative charge %d charger state %d "
841 "charger ctrl %d\n", stat->detail.ibbu.gas_guage_status,
842 stat->detail.ibbu.relative_charge ,
843 stat->detail.ibbu.charger_system_state ,
844 stat->detail.ibbu.charger_system_ctrl);
845 printf("\tcurrent %d abs charge %d max error %d\n",
846 stat->detail.ibbu.charging_current ,
847 stat->detail.ibbu.absolute_charge ,
848 stat->detail.ibbu.max_error);
849 break;
850 case MFI_BBU_TYPE_BBU:
851 printf("guage %d relative charge %d charger state %d\n",
852 stat->detail.ibbu.gas_guage_status,
853 stat->detail.bbu.relative_charge ,
854 stat->detail.bbu.charger_status );
855 printf("\trem capacity %d fyll capacity %d SOH %d\n",
856 stat->detail.bbu.remaining_capacity ,
857 stat->detail.bbu.full_charge_capacity ,
858 stat->detail.bbu.is_SOH_good);
859 default:
860 printf("\n");
861 }
862 #endif
863 switch(stat->battery_type) {
864 case MFI_BBU_TYPE_BBU:
865 return (stat->detail.bbu.is_SOH_good ?
866 MFI_BBU_GOOD : MFI_BBU_BAD);
867 case MFI_BBU_TYPE_NONE:
868 return MFI_BBU_UNKNOWN;
869 default:
870 if (stat->fw_status &
871 (MFI_BBU_STATE_PACK_MISSING |
872 MFI_BBU_STATE_VOLTAGE_LOW |
873 MFI_BBU_STATE_TEMPERATURE_HIGH |
874 MFI_BBU_STATE_LEARN_CYC_FAIL |
875 MFI_BBU_STATE_LEARN_CYC_TIMEOUT |
876 MFI_BBU_STATE_I2C_ERR_DETECT))
877 return MFI_BBU_BAD;
878 return MFI_BBU_GOOD;
879 }
880 }
881
882 static void
883 mfiminphys(struct buf *bp)
884 {
885 DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount);
886
887 /* XXX currently using MFI_MAXFER = MAXPHYS */
888 if (bp->b_bcount > MFI_MAXFER)
889 bp->b_bcount = MFI_MAXFER;
890 minphys(bp);
891 }
892
893 int
894 mfi_rescan(device_t self, const char *ifattr, const int *locators)
895 {
896 struct mfi_softc *sc = device_private(self);
897
898 if (sc->sc_child != NULL)
899 return 0;
900
901 sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan,
902 scsiprint, NULL);
903
904 return 0;
905 }
906
907 void
908 mfi_childdetached(device_t self, device_t child)
909 {
910 struct mfi_softc *sc = device_private(self);
911
912 KASSERT(self == sc->sc_dev);
913 KASSERT(child == sc->sc_child);
914
915 if (child == sc->sc_child)
916 sc->sc_child = NULL;
917 }
918
919 int
920 mfi_detach(struct mfi_softc *sc, int flags)
921 {
922 int error;
923
924 DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc));
925
926 if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
927 return error;
928
929 #if NBIO > 0
930 mfi_destroy_sensors(sc);
931 bio_unregister(sc->sc_dev);
932 #endif /* NBIO > 0 */
933
934 mfi_intr_disable(sc);
935 mfi_shutdown(sc->sc_dev, 0);
936
937 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
938 workqueue_destroy(sc->sc_ldsync_wq);
939 mfi_put_ccb(sc->sc_ldsync_ccb);
940 mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
941 mfi_freemem(sc, &sc->sc_tbolt_ioc_init);
942 mfi_freemem(sc, &sc->sc_tbolt_verbuf);
943 }
944
945 if ((error = mfi_destroy_ccb(sc)) != 0)
946 return error;
947
948 mfi_freemem(sc, &sc->sc_sense);
949
950 mfi_freemem(sc, &sc->sc_frames);
951
952 mfi_freemem(sc, &sc->sc_pcq);
953
954 return 0;
955 }
956
957 static bool
958 mfi_shutdown(device_t dev, int how)
959 {
960 struct mfi_softc *sc = device_private(dev);
961 uint8_t mbox[MFI_MBOX_SIZE];
962 int s = splbio();
963 DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc));
964 if (sc->sc_running) {
965 mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
966 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH,
967 MFI_DATA_NONE, 0, NULL, mbox, true)) {
968 aprint_error_dev(dev, "shutdown: cache flush failed\n");
969 goto fail;
970 }
971
972 mbox[0] = 0;
973 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN,
974 MFI_DATA_NONE, 0, NULL, mbox, true)) {
975 aprint_error_dev(dev, "shutdown: "
976 "firmware shutdown failed\n");
977 goto fail;
978 }
979 sc->sc_running = false;
980 }
981 splx(s);
982 return true;
983 fail:
984 splx(s);
985 return false;
986 }
987
988 static bool
989 mfi_suspend(device_t dev, const pmf_qual_t *q)
990 {
991 /* XXX to be implemented */
992 return false;
993 }
994
995 static bool
996 mfi_resume(device_t dev, const pmf_qual_t *q)
997 {
998 /* XXX to be implemented */
999 return false;
1000 }
1001
1002 int
1003 mfi_attach(struct mfi_softc *sc, enum mfi_iop iop)
1004 {
1005 struct scsipi_adapter *adapt = &sc->sc_adapt;
1006 struct scsipi_channel *chan = &sc->sc_chan;
1007 uint32_t status, frames, max_sgl;
1008 int i;
1009
1010 DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc));
1011
1012 sc->sc_ioptype = iop;
1013
1014 switch (iop) {
1015 case MFI_IOP_XSCALE:
1016 sc->sc_iop = &mfi_iop_xscale;
1017 break;
1018 case MFI_IOP_PPC:
1019 sc->sc_iop = &mfi_iop_ppc;
1020 break;
1021 case MFI_IOP_GEN2:
1022 sc->sc_iop = &mfi_iop_gen2;
1023 break;
1024 case MFI_IOP_SKINNY:
1025 sc->sc_iop = &mfi_iop_skinny;
1026 break;
1027 case MFI_IOP_TBOLT:
1028 sc->sc_iop = &mfi_iop_tbolt;
1029 break;
1030 default:
1031 panic("%s: unknown iop %d", DEVNAME(sc), iop);
1032 }
1033
1034 if (mfi_transition_firmware(sc))
1035 return 1;
1036
1037 TAILQ_INIT(&sc->sc_ccb_freeq);
1038
1039 status = mfi_fw_state(sc);
1040 sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK;
1041 max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16;
1042 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1043 sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1044 sc->sc_sgl_size = sizeof(struct mfi_sg_ieee);
1045 } else if (sc->sc_64bit_dma) {
1046 sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1047 sc->sc_sgl_size = sizeof(struct mfi_sg64);
1048 } else {
1049 sc->sc_max_sgl = max_sgl;
1050 sc->sc_sgl_size = sizeof(struct mfi_sg32);
1051 }
1052 DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n",
1053 DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl);
1054
1055 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1056 uint32_t tb_mem_size;
1057 /* for Alignment */
1058 tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALLIGNMENT;
1059
1060 tb_mem_size +=
1061 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1);
1062 sc->sc_reply_pool_size =
1063 ((sc->sc_max_cmds + 1 + 15) / 16) * 16;
1064 tb_mem_size +=
1065 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
1066
1067 /* this is for SGL's */
1068 tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds;
1069 sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size);
1070 if (sc->sc_tbolt_reqmsgpool == NULL) {
1071 aprint_error_dev(sc->sc_dev,
1072 "unable to allocate thunderbolt "
1073 "request message pool\n");
1074 goto nopcq;
1075 }
1076 if (mfi_tbolt_init_desc_pool(sc)) {
1077 aprint_error_dev(sc->sc_dev,
1078 "Thunderbolt pool preparation error\n");
1079 goto nopcq;
1080 }
1081
1082 /*
1083 * Allocate DMA memory mapping for MPI2 IOC Init descriptor,
1084 * we are taking it diffrent from what we have allocated for
1085 * Request and reply descriptors to avoid confusion later
1086 */
1087 sc->sc_tbolt_ioc_init = mfi_allocmem(sc,
1088 sizeof(struct mpi2_ioc_init_request));
1089 if (sc->sc_tbolt_ioc_init == NULL) {
1090 aprint_error_dev(sc->sc_dev,
1091 "unable to allocate thunderbolt IOC init memory");
1092 goto nopcq;
1093 }
1094
1095 sc->sc_tbolt_verbuf = mfi_allocmem(sc,
1096 MEGASAS_MAX_NAME*sizeof(bus_addr_t));
1097 if (sc->sc_tbolt_verbuf == NULL) {
1098 aprint_error_dev(sc->sc_dev,
1099 "unable to allocate thunderbolt version buffer\n");
1100 goto nopcq;
1101 }
1102
1103 }
1104 /* consumer/producer and reply queue memory */
1105 sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) +
1106 sizeof(struct mfi_prod_cons));
1107 if (sc->sc_pcq == NULL) {
1108 aprint_error_dev(sc->sc_dev,
1109 "unable to allocate reply queue memory\n");
1110 goto nopcq;
1111 }
1112 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1113 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1114 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1115
1116 /* frame memory */
1117 frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) /
1118 MFI_FRAME_SIZE + 1;
1119 sc->sc_frames_size = frames * MFI_FRAME_SIZE;
1120 sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds);
1121 if (sc->sc_frames == NULL) {
1122 aprint_error_dev(sc->sc_dev,
1123 "unable to allocate frame memory\n");
1124 goto noframe;
1125 }
1126 /* XXX hack, fix this */
1127 if (MFIMEM_DVA(sc->sc_frames) & 0x3f) {
1128 aprint_error_dev(sc->sc_dev,
1129 "improper frame alignment (%#llx) FIXME\n",
1130 (long long int)MFIMEM_DVA(sc->sc_frames));
1131 goto noframe;
1132 }
1133
1134 /* sense memory */
1135 sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE);
1136 if (sc->sc_sense == NULL) {
1137 aprint_error_dev(sc->sc_dev,
1138 "unable to allocate sense memory\n");
1139 goto nosense;
1140 }
1141
1142 /* now that we have all memory bits go initialize ccbs */
1143 if (mfi_init_ccb(sc)) {
1144 aprint_error_dev(sc->sc_dev, "could not init ccb list\n");
1145 goto noinit;
1146 }
1147
1148 /* kickstart firmware with all addresses and pointers */
1149 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1150 if (mfi_tbolt_init_MFI_queue(sc)) {
1151 aprint_error_dev(sc->sc_dev,
1152 "could not initialize firmware\n");
1153 goto noinit;
1154 }
1155 } else {
1156 if (mfi_initialize_firmware(sc)) {
1157 aprint_error_dev(sc->sc_dev,
1158 "could not initialize firmware\n");
1159 goto noinit;
1160 }
1161 }
1162 sc->sc_running = true;
1163
1164 if (mfi_get_info(sc)) {
1165 aprint_error_dev(sc->sc_dev,
1166 "could not retrieve controller information\n");
1167 goto noinit;
1168 }
1169 aprint_normal_dev(sc->sc_dev,
1170 "%s version %s\n",
1171 sc->sc_info.mci_product_name,
1172 sc->sc_info.mci_package_version);
1173
1174
1175 aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ",
1176 sc->sc_info.mci_lds_present,
1177 sc->sc_info.mci_memory_size);
1178 sc->sc_bbuok = false;
1179 if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) {
1180 struct mfi_bbu_status bbu_stat;
1181 int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat);
1182 aprint_normal("BBU type ");
1183 switch (bbu_stat.battery_type) {
1184 case MFI_BBU_TYPE_BBU:
1185 aprint_normal("BBU");
1186 break;
1187 case MFI_BBU_TYPE_IBBU:
1188 aprint_normal("IBBU");
1189 break;
1190 default:
1191 aprint_normal("unknown type %d", bbu_stat.battery_type);
1192 }
1193 aprint_normal(", status ");
1194 switch(mfi_bbu_status) {
1195 case MFI_BBU_GOOD:
1196 aprint_normal("good\n");
1197 sc->sc_bbuok = true;
1198 break;
1199 case MFI_BBU_BAD:
1200 aprint_normal("bad\n");
1201 break;
1202 case MFI_BBU_UNKNOWN:
1203 aprint_normal("unknown\n");
1204 break;
1205 default:
1206 panic("mfi_bbu_status");
1207 }
1208 } else {
1209 aprint_normal("BBU not present\n");
1210 }
1211
1212 sc->sc_ld_cnt = sc->sc_info.mci_lds_present;
1213 sc->sc_max_ld = sc->sc_ld_cnt;
1214 for (i = 0; i < sc->sc_ld_cnt; i++)
1215 sc->sc_ld[i].ld_present = 1;
1216
1217 memset(adapt, 0, sizeof(*adapt));
1218 adapt->adapt_dev = sc->sc_dev;
1219 adapt->adapt_nchannels = 1;
1220 /* keep a few commands for management */
1221 if (sc->sc_max_cmds > 4)
1222 adapt->adapt_openings = sc->sc_max_cmds - 4;
1223 else
1224 adapt->adapt_openings = sc->sc_max_cmds;
1225 adapt->adapt_max_periph = adapt->adapt_openings;
1226 adapt->adapt_request = mfi_scsipi_request;
1227 adapt->adapt_minphys = mfiminphys;
1228
1229 memset(chan, 0, sizeof(*chan));
1230 chan->chan_adapter = adapt;
1231 chan->chan_bustype = &scsi_sas_bustype;
1232 chan->chan_channel = 0;
1233 chan->chan_flags = 0;
1234 chan->chan_nluns = 8;
1235 chan->chan_ntargets = MFI_MAX_LD;
1236 chan->chan_id = MFI_MAX_LD;
1237
1238 mfi_rescan(sc->sc_dev, "scsi", NULL);
1239
1240 /* enable interrupts */
1241 mfi_intr_enable(sc);
1242
1243 #if NBIO > 0
1244 if (bio_register(sc->sc_dev, mfi_ioctl) != 0)
1245 panic("%s: controller registration failed", DEVNAME(sc));
1246 if (mfi_create_sensors(sc) != 0)
1247 aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
1248 #endif /* NBIO > 0 */
1249 if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume,
1250 mfi_shutdown)) {
1251 aprint_error_dev(sc->sc_dev,
1252 "couldn't establish power handler\n");
1253 }
1254
1255 return 0;
1256 noinit:
1257 mfi_freemem(sc, &sc->sc_sense);
1258 nosense:
1259 mfi_freemem(sc, &sc->sc_frames);
1260 noframe:
1261 mfi_freemem(sc, &sc->sc_pcq);
1262 nopcq:
1263 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1264 if (sc->sc_tbolt_reqmsgpool)
1265 mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
1266 if (sc->sc_tbolt_verbuf)
1267 mfi_freemem(sc, &sc->sc_tbolt_verbuf);
1268 }
1269 return 1;
1270 }
1271
1272 static int
1273 mfi_poll(struct mfi_ccb *ccb)
1274 {
1275 struct mfi_softc *sc = ccb->ccb_sc;
1276 struct mfi_frame_header *hdr;
1277 int to = 0;
1278 int rv = 0;
1279
1280 DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc));
1281
1282 hdr = &ccb->ccb_frame->mfr_header;
1283 hdr->mfh_cmd_status = 0xff;
1284 if (!sc->sc_MFA_enabled)
1285 hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
1286
1287 /* no callback, caller is supposed to do the cleanup */
1288 ccb->ccb_done = NULL;
1289
1290 mfi_post(sc, ccb);
1291 if (sc->sc_MFA_enabled) {
1292 /*
1293 * depending on the command type, result may be posted
1294 * to *hdr, or not. In addition it seems there's
1295 * no way to avoid posting the SMID to the reply queue.
1296 * So pool using the interrupt routine.
1297 */
1298 while (ccb->ccb_state != MFI_CCB_DONE) {
1299 delay(1000);
1300 if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1301 rv = 1;
1302 break;
1303 }
1304 mfi_tbolt_intrh(sc);
1305 }
1306 } else {
1307 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1308 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1309 sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1310
1311 while (hdr->mfh_cmd_status == 0xff) {
1312 delay(1000);
1313 if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1314 rv = 1;
1315 break;
1316 }
1317 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1318 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1319 sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1320 }
1321 }
1322 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1323 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1324 sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1325
1326 if (ccb->ccb_data != NULL) {
1327 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1328 DEVNAME(sc));
1329 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1330 ccb->ccb_dmamap->dm_mapsize,
1331 (ccb->ccb_direction & MFI_DATA_IN) ?
1332 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1333
1334 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1335 }
1336
1337 if (rv != 0) {
1338 aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n",
1339 hdr->mfh_context);
1340 ccb->ccb_flags |= MFI_CCB_F_ERR;
1341 return 1;
1342 }
1343
1344 return 0;
1345 }
1346
1347 int
1348 mfi_intr(void *arg)
1349 {
1350 struct mfi_softc *sc = arg;
1351 struct mfi_prod_cons *pcq;
1352 struct mfi_ccb *ccb;
1353 uint32_t producer, consumer, ctx;
1354 int claimed = 0;
1355
1356 if (!mfi_my_intr(sc))
1357 return 0;
1358
1359 pcq = MFIMEM_KVA(sc->sc_pcq);
1360
1361 DNPRINTF(MFI_D_INTR, "%s: mfi_intr %#lx %#lx\n", DEVNAME(sc),
1362 (u_long)sc, (u_long)pcq);
1363
1364 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1365 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1366 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1367
1368 producer = pcq->mpc_producer;
1369 consumer = pcq->mpc_consumer;
1370
1371 while (consumer != producer) {
1372 DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n",
1373 DEVNAME(sc), producer, consumer);
1374
1375 ctx = pcq->mpc_reply_q[consumer];
1376 pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX;
1377 if (ctx == MFI_INVALID_CTX)
1378 aprint_error_dev(sc->sc_dev,
1379 "invalid context, p: %d c: %d\n",
1380 producer, consumer);
1381 else {
1382 /* XXX remove from queue and call scsi_done */
1383 ccb = &sc->sc_ccb[ctx];
1384 DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n",
1385 DEVNAME(sc), ctx);
1386 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1387 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1388 sc->sc_frames_size,
1389 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1390 ccb->ccb_done(ccb);
1391
1392 claimed = 1;
1393 }
1394 consumer++;
1395 if (consumer == (sc->sc_max_cmds + 1))
1396 consumer = 0;
1397 }
1398
1399 pcq->mpc_consumer = consumer;
1400 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1401 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1402 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1403
1404 return claimed;
1405 }
1406
1407 static int
1408 mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno,
1409 uint32_t blockcnt)
1410 {
1411 struct scsipi_periph *periph = xs->xs_periph;
1412 struct mfi_io_frame *io;
1413
1414 DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n",
1415 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1416 periph->periph_target);
1417
1418 if (!xs->data)
1419 return 1;
1420
1421 io = &ccb->ccb_frame->mfr_io;
1422 if (xs->xs_control & XS_CTL_DATA_IN) {
1423 io->mif_header.mfh_cmd = MFI_CMD_LD_READ;
1424 ccb->ccb_direction = MFI_DATA_IN;
1425 } else {
1426 io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE;
1427 ccb->ccb_direction = MFI_DATA_OUT;
1428 }
1429 io->mif_header.mfh_target_id = periph->periph_target;
1430 io->mif_header.mfh_timeout = 0;
1431 io->mif_header.mfh_flags = 0;
1432 io->mif_header.mfh_sense_len = MFI_SENSE_SIZE;
1433 io->mif_header.mfh_data_len= blockcnt;
1434 io->mif_lba_hi = (blockno >> 32);
1435 io->mif_lba_lo = (blockno & 0xffffffff);
1436 io->mif_sense_addr_lo = htole32(ccb->ccb_psense);
1437 io->mif_sense_addr_hi = 0;
1438
1439 ccb->ccb_done = mfi_scsi_ld_done;
1440 ccb->ccb_xs = xs;
1441 ccb->ccb_frame_size = MFI_IO_FRAME_SIZE;
1442 ccb->ccb_sgl = &io->mif_sgl;
1443 ccb->ccb_data = xs->data;
1444 ccb->ccb_len = xs->datalen;
1445
1446 if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1447 BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1448 return 1;
1449
1450 return 0;
1451 }
1452
1453 static void
1454 mfi_scsi_ld_done(struct mfi_ccb *ccb)
1455 {
1456 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
1457 mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status);
1458 }
1459
1460 static void
1461 mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status)
1462 {
1463 struct scsipi_xfer *xs = ccb->ccb_xs;
1464 struct mfi_softc *sc = ccb->ccb_sc;
1465
1466 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %#lx %#lx\n",
1467 DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1468
1469 if (xs->data != NULL) {
1470 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n",
1471 DEVNAME(sc));
1472 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1473 ccb->ccb_dmamap->dm_mapsize,
1474 (xs->xs_control & XS_CTL_DATA_IN) ?
1475 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1476
1477 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1478 }
1479
1480 if (status != MFI_STAT_OK) {
1481 xs->error = XS_DRIVER_STUFFUP;
1482 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n",
1483 DEVNAME(sc), status);
1484
1485 if (scsi_status != 0) {
1486 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
1487 ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
1488 MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD);
1489 DNPRINTF(MFI_D_INTR,
1490 "%s: mfi_scsi_xs_done sense %#x %lx %lx\n",
1491 DEVNAME(sc), scsi_status,
1492 (u_long)&xs->sense, (u_long)ccb->ccb_sense);
1493 memset(&xs->sense, 0, sizeof(xs->sense));
1494 memcpy(&xs->sense, ccb->ccb_sense,
1495 sizeof(struct scsi_sense_data));
1496 xs->error = XS_SENSE;
1497 }
1498 } else {
1499 xs->error = XS_NOERROR;
1500 xs->status = SCSI_OK;
1501 xs->resid = 0;
1502 }
1503
1504 mfi_put_ccb(ccb);
1505 scsipi_done(xs);
1506 }
1507
1508 static int
1509 mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs)
1510 {
1511 struct mfi_pass_frame *pf;
1512 struct scsipi_periph *periph = xs->xs_periph;
1513
1514 DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n",
1515 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1516 periph->periph_target);
1517
1518 pf = &ccb->ccb_frame->mfr_pass;
1519 pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO;
1520 pf->mpf_header.mfh_target_id = periph->periph_target;
1521 pf->mpf_header.mfh_lun_id = 0;
1522 pf->mpf_header.mfh_cdb_len = xs->cmdlen;
1523 pf->mpf_header.mfh_timeout = 0;
1524 pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */
1525 pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE;
1526
1527 pf->mpf_sense_addr_hi = 0;
1528 pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense);
1529
1530 memset(pf->mpf_cdb, 0, 16);
1531 memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen);
1532
1533 ccb->ccb_done = mfi_scsi_ld_done;
1534 ccb->ccb_xs = xs;
1535 ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE;
1536 ccb->ccb_sgl = &pf->mpf_sgl;
1537
1538 if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT))
1539 ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ?
1540 MFI_DATA_IN : MFI_DATA_OUT;
1541 else
1542 ccb->ccb_direction = MFI_DATA_NONE;
1543
1544 if (xs->data) {
1545 ccb->ccb_data = xs->data;
1546 ccb->ccb_len = xs->datalen;
1547
1548 if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1549 BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1550 return 1;
1551 }
1552
1553 return 0;
1554 }
1555
1556 static void
1557 mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1558 void *arg)
1559 {
1560 struct scsipi_periph *periph;
1561 struct scsipi_xfer *xs;
1562 struct scsipi_adapter *adapt = chan->chan_adapter;
1563 struct mfi_softc *sc = device_private(adapt->adapt_dev);
1564 struct mfi_ccb *ccb;
1565 struct scsi_rw_6 *rw;
1566 struct scsipi_rw_10 *rwb;
1567 struct scsipi_rw_12 *rw12;
1568 struct scsipi_rw_16 *rw16;
1569 uint64_t blockno;
1570 uint32_t blockcnt;
1571 uint8_t target;
1572 uint8_t mbox[MFI_MBOX_SIZE];
1573 int s;
1574
1575 switch (req) {
1576 case ADAPTER_REQ_GROW_RESOURCES:
1577 /* Not supported. */
1578 return;
1579 case ADAPTER_REQ_SET_XFER_MODE:
1580 {
1581 struct scsipi_xfer_mode *xm = arg;
1582 xm->xm_mode = PERIPH_CAP_TQING;
1583 xm->xm_period = 0;
1584 xm->xm_offset = 0;
1585 scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
1586 return;
1587 }
1588 case ADAPTER_REQ_RUN_XFER:
1589 break;
1590 }
1591
1592 xs = arg;
1593
1594 periph = xs->xs_periph;
1595 target = periph->periph_target;
1596
1597 DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x "
1598 "target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode,
1599 periph->periph_target, periph->periph_lun);
1600
1601 s = splbio();
1602 if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present ||
1603 periph->periph_lun != 0) {
1604 DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n",
1605 DEVNAME(sc), target);
1606 xs->error = XS_SELTIMEOUT;
1607 scsipi_done(xs);
1608 splx(s);
1609 return;
1610 }
1611 if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 ||
1612 xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) {
1613 /* the cache is stable storage, don't flush */
1614 xs->error = XS_NOERROR;
1615 xs->status = SCSI_OK;
1616 xs->resid = 0;
1617 scsipi_done(xs);
1618 splx(s);
1619 return;
1620 }
1621
1622 if ((ccb = mfi_get_ccb(sc)) == NULL) {
1623 DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc));
1624 xs->error = XS_RESOURCE_SHORTAGE;
1625 scsipi_done(xs);
1626 splx(s);
1627 return;
1628 }
1629
1630 switch (xs->cmd->opcode) {
1631 /* IO path */
1632 case READ_16:
1633 case WRITE_16:
1634 rw16 = (struct scsipi_rw_16 *)xs->cmd;
1635 blockno = _8btol(rw16->addr);
1636 blockcnt = _4btol(rw16->length);
1637 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1638 goto stuffup;
1639 }
1640 break;
1641
1642 case READ_12:
1643 case WRITE_12:
1644 rw12 = (struct scsipi_rw_12 *)xs->cmd;
1645 blockno = _4btol(rw12->addr);
1646 blockcnt = _4btol(rw12->length);
1647 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1648 goto stuffup;
1649 }
1650 break;
1651
1652 case READ_10:
1653 case WRITE_10:
1654 rwb = (struct scsipi_rw_10 *)xs->cmd;
1655 blockno = _4btol(rwb->addr);
1656 blockcnt = _2btol(rwb->length);
1657 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1658 goto stuffup;
1659 }
1660 break;
1661
1662 case SCSI_READ_6_COMMAND:
1663 case SCSI_WRITE_6_COMMAND:
1664 rw = (struct scsi_rw_6 *)xs->cmd;
1665 blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
1666 blockcnt = rw->length ? rw->length : 0x100;
1667 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1668 goto stuffup;
1669 }
1670 break;
1671
1672 case SCSI_SYNCHRONIZE_CACHE_10:
1673 case SCSI_SYNCHRONIZE_CACHE_16:
1674 mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
1675 if (mfi_mgmt(ccb, xs,
1676 MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, mbox)) {
1677 goto stuffup;
1678 }
1679 break;
1680
1681 /* hand it of to the firmware and let it deal with it */
1682 case SCSI_TEST_UNIT_READY:
1683 /* save off sd? after autoconf */
1684 if (!cold) /* XXX bogus */
1685 strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev),
1686 sizeof(sc->sc_ld[target].ld_dev));
1687 /* FALLTHROUGH */
1688
1689 default:
1690 if (mfi_scsi_ld(ccb, xs)) {
1691 goto stuffup;
1692 }
1693 break;
1694 }
1695
1696 DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target);
1697
1698 if (xs->xs_control & XS_CTL_POLL) {
1699 if (mfi_poll(ccb)) {
1700 /* XXX check for sense in ccb->ccb_sense? */
1701 aprint_error_dev(sc->sc_dev,
1702 "mfi_scsipi_request poll failed\n");
1703 memset(&xs->sense, 0, sizeof(xs->sense));
1704 xs->sense.scsi_sense.response_code =
1705 SSD_RCODE_VALID | SSD_RCODE_CURRENT;
1706 xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
1707 xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */
1708 xs->error = XS_SENSE;
1709 xs->status = SCSI_CHECK;
1710 } else {
1711 DNPRINTF(MFI_D_DMA,
1712 "%s: mfi_scsipi_request poll complete %d\n",
1713 DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs);
1714 xs->error = XS_NOERROR;
1715 xs->status = SCSI_OK;
1716 xs->resid = 0;
1717 }
1718 mfi_put_ccb(ccb);
1719 scsipi_done(xs);
1720 splx(s);
1721 return;
1722 }
1723
1724 mfi_post(sc, ccb);
1725
1726 DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc),
1727 ccb->ccb_dmamap->dm_nsegs);
1728
1729 splx(s);
1730 return;
1731
1732 stuffup:
1733 mfi_put_ccb(ccb);
1734 xs->error = XS_DRIVER_STUFFUP;
1735 scsipi_done(xs);
1736 splx(s);
1737 }
1738
1739 static int
1740 mfi_create_sgl(struct mfi_ccb *ccb, int flags)
1741 {
1742 struct mfi_softc *sc = ccb->ccb_sc;
1743 struct mfi_frame_header *hdr;
1744 bus_dma_segment_t *sgd;
1745 union mfi_sgl *sgl;
1746 int error, i;
1747
1748 DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %#lx\n", DEVNAME(sc),
1749 (u_long)ccb->ccb_data);
1750
1751 if (!ccb->ccb_data)
1752 return 1;
1753
1754 KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
1755 error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
1756 ccb->ccb_data, ccb->ccb_len, NULL, flags);
1757 if (error) {
1758 if (error == EFBIG) {
1759 aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
1760 sc->sc_max_sgl);
1761 } else {
1762 aprint_error_dev(sc->sc_dev,
1763 "error %d loading dma map\n", error);
1764 }
1765 return 1;
1766 }
1767
1768 hdr = &ccb->ccb_frame->mfr_header;
1769 sgl = ccb->ccb_sgl;
1770 sgd = ccb->ccb_dmamap->dm_segs;
1771 for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
1772 if (sc->sc_ioptype == MFI_IOP_TBOLT &&
1773 (hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO ||
1774 hdr->mfh_cmd == MFI_CMD_LD_READ ||
1775 hdr->mfh_cmd == MFI_CMD_LD_WRITE)) {
1776 sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr);
1777 sgl->sg_ieee[i].len = htole32(sgd[i].ds_len);
1778 sgl->sg_ieee[i].flags = 0;
1779 DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1780 PRIx32 "\n",
1781 DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1782 hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
1783 } else if (sc->sc_64bit_dma) {
1784 sgl->sg64[i].addr = htole64(sgd[i].ds_addr);
1785 sgl->sg64[i].len = htole32(sgd[i].ds_len);
1786 DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1787 PRIx32 "\n",
1788 DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1789 hdr->mfh_flags |= MFI_FRAME_SGL64;
1790 } else {
1791 sgl->sg32[i].addr = htole32(sgd[i].ds_addr);
1792 sgl->sg32[i].len = htole32(sgd[i].ds_len);
1793 DNPRINTF(MFI_D_DMA, "%s: addr: %#x len: %#x\n",
1794 DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len);
1795 hdr->mfh_flags |= MFI_FRAME_SGL32;
1796 }
1797 }
1798
1799 if (ccb->ccb_direction == MFI_DATA_IN) {
1800 hdr->mfh_flags |= MFI_FRAME_DIR_READ;
1801 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1802 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1803 } else {
1804 hdr->mfh_flags |= MFI_FRAME_DIR_WRITE;
1805 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1806 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1807 }
1808
1809 hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs;
1810 ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs;
1811 ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE;
1812
1813 DNPRINTF(MFI_D_DMA, "%s: sg_count: %d frame_size: %d frames_size: %d"
1814 " dm_nsegs: %d extra_frames: %d\n",
1815 DEVNAME(sc),
1816 hdr->mfh_sg_count,
1817 ccb->ccb_frame_size,
1818 sc->sc_frames_size,
1819 ccb->ccb_dmamap->dm_nsegs,
1820 ccb->ccb_extra_frames);
1821
1822 return 0;
1823 }
1824
1825 static int
1826 mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir,
1827 uint32_t len, void *buf, uint8_t *mbox, bool poll)
1828 {
1829 struct mfi_ccb *ccb;
1830 int rv = 1;
1831
1832 if ((ccb = mfi_get_ccb(sc)) == NULL)
1833 return rv;
1834 rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox);
1835 if (rv)
1836 return rv;
1837
1838 if (poll) {
1839 rv = 1;
1840 if (mfi_poll(ccb))
1841 goto done;
1842 } else {
1843 mfi_post(sc, ccb);
1844
1845 DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n",
1846 DEVNAME(sc));
1847 while (ccb->ccb_state != MFI_CCB_DONE)
1848 tsleep(ccb, PRIBIO, "mfi_mgmt", 0);
1849
1850 if (ccb->ccb_flags & MFI_CCB_F_ERR)
1851 goto done;
1852 }
1853 rv = 0;
1854
1855 done:
1856 mfi_put_ccb(ccb);
1857 return rv;
1858 }
1859
1860 static int
1861 mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
1862 uint32_t opc, uint32_t dir, uint32_t len, void *buf, uint8_t *mbox)
1863 {
1864 struct mfi_dcmd_frame *dcmd;
1865
1866 DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc);
1867
1868 dcmd = &ccb->ccb_frame->mfr_dcmd;
1869 memset(dcmd->mdf_mbox, 0, MFI_MBOX_SIZE);
1870 dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD;
1871 dcmd->mdf_header.mfh_timeout = 0;
1872
1873 dcmd->mdf_opcode = opc;
1874 dcmd->mdf_header.mfh_data_len = 0;
1875 ccb->ccb_direction = dir;
1876 ccb->ccb_xs = xs;
1877 ccb->ccb_done = mfi_mgmt_done;
1878
1879 ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE;
1880
1881 /* handle special opcodes */
1882 if (mbox)
1883 memcpy(dcmd->mdf_mbox, mbox, MFI_MBOX_SIZE);
1884
1885 if (dir != MFI_DATA_NONE) {
1886 dcmd->mdf_header.mfh_data_len = len;
1887 ccb->ccb_data = buf;
1888 ccb->ccb_len = len;
1889 ccb->ccb_sgl = &dcmd->mdf_sgl;
1890
1891 if (mfi_create_sgl(ccb, BUS_DMA_WAITOK))
1892 return 1;
1893 }
1894 return 0;
1895 }
1896
1897 static void
1898 mfi_mgmt_done(struct mfi_ccb *ccb)
1899 {
1900 struct scsipi_xfer *xs = ccb->ccb_xs;
1901 struct mfi_softc *sc = ccb->ccb_sc;
1902 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
1903
1904 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n",
1905 DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1906
1907 if (ccb->ccb_data != NULL) {
1908 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1909 DEVNAME(sc));
1910 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1911 ccb->ccb_dmamap->dm_mapsize,
1912 (ccb->ccb_direction & MFI_DATA_IN) ?
1913 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1914
1915 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1916 }
1917
1918 if (hdr->mfh_cmd_status != MFI_STAT_OK)
1919 ccb->ccb_flags |= MFI_CCB_F_ERR;
1920
1921 ccb->ccb_state = MFI_CCB_DONE;
1922 if (xs) {
1923 if (hdr->mfh_cmd_status != MFI_STAT_OK) {
1924 xs->error = XS_DRIVER_STUFFUP;
1925 } else {
1926 xs->error = XS_NOERROR;
1927 xs->status = SCSI_OK;
1928 xs->resid = 0;
1929 }
1930 mfi_put_ccb(ccb);
1931 scsipi_done(xs);
1932 } else
1933 wakeup(ccb);
1934 }
1935
1936 #if NBIO > 0
1937 int
1938 mfi_ioctl(device_t dev, u_long cmd, void *addr)
1939 {
1940 struct mfi_softc *sc = device_private(dev);
1941 int error = 0;
1942 int s;
1943
1944 KERNEL_LOCK(1, curlwp);
1945 s = splbio();
1946
1947 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc));
1948
1949 switch (cmd) {
1950 case BIOCINQ:
1951 DNPRINTF(MFI_D_IOCTL, "inq\n");
1952 error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr);
1953 break;
1954
1955 case BIOCVOL:
1956 DNPRINTF(MFI_D_IOCTL, "vol\n");
1957 error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr);
1958 break;
1959
1960 case BIOCDISK:
1961 DNPRINTF(MFI_D_IOCTL, "disk\n");
1962 error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr);
1963 break;
1964
1965 case BIOCALARM:
1966 DNPRINTF(MFI_D_IOCTL, "alarm\n");
1967 error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr);
1968 break;
1969
1970 case BIOCBLINK:
1971 DNPRINTF(MFI_D_IOCTL, "blink\n");
1972 error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr);
1973 break;
1974
1975 case BIOCSETSTATE:
1976 DNPRINTF(MFI_D_IOCTL, "setstate\n");
1977 error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr);
1978 break;
1979
1980 default:
1981 DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n");
1982 error = EINVAL;
1983 }
1984 splx(s);
1985 KERNEL_UNLOCK_ONE(curlwp);
1986
1987 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error);
1988 return error;
1989 }
1990
1991 static int
1992 mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi)
1993 {
1994 struct mfi_conf *cfg;
1995 int rv = EINVAL;
1996
1997 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc));
1998
1999 if (mfi_get_info(sc)) {
2000 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n",
2001 DEVNAME(sc));
2002 return EIO;
2003 }
2004
2005 /* get figures */
2006 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2007 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2008 sizeof *cfg, cfg, NULL, false))
2009 goto freeme;
2010
2011 strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
2012 bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs;
2013 bi->bi_nodisk = sc->sc_info.mci_pd_disks_present;
2014
2015 rv = 0;
2016 freeme:
2017 free(cfg, M_DEVBUF);
2018 return rv;
2019 }
2020
2021 static int
2022 mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv)
2023 {
2024 int i, per, rv = EINVAL;
2025 uint8_t mbox[MFI_MBOX_SIZE];
2026
2027 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n",
2028 DEVNAME(sc), bv->bv_volid);
2029
2030 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
2031 sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false))
2032 goto done;
2033
2034 i = bv->bv_volid;
2035 mbox[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target;
2036 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n",
2037 DEVNAME(sc), mbox[0]);
2038
2039 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN,
2040 sizeof(sc->sc_ld_details), &sc->sc_ld_details, mbox, false))
2041 goto done;
2042
2043 if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) {
2044 /* go do hotspares */
2045 rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv);
2046 goto done;
2047 }
2048
2049 strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev));
2050
2051 switch(sc->sc_ld_list.mll_list[i].mll_state) {
2052 case MFI_LD_OFFLINE:
2053 bv->bv_status = BIOC_SVOFFLINE;
2054 break;
2055
2056 case MFI_LD_PART_DEGRADED:
2057 case MFI_LD_DEGRADED:
2058 bv->bv_status = BIOC_SVDEGRADED;
2059 break;
2060
2061 case MFI_LD_ONLINE:
2062 bv->bv_status = BIOC_SVONLINE;
2063 break;
2064
2065 default:
2066 bv->bv_status = BIOC_SVINVALID;
2067 DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n",
2068 DEVNAME(sc),
2069 sc->sc_ld_list.mll_list[i].mll_state);
2070 }
2071
2072 /* additional status can modify MFI status */
2073 switch (sc->sc_ld_details.mld_progress.mlp_in_prog) {
2074 case MFI_LD_PROG_CC:
2075 case MFI_LD_PROG_BGI:
2076 bv->bv_status = BIOC_SVSCRUB;
2077 per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress;
2078 bv->bv_percent = (per * 100) / 0xffff;
2079 bv->bv_seconds =
2080 sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds;
2081 break;
2082
2083 case MFI_LD_PROG_FGI:
2084 case MFI_LD_PROG_RECONSTRUCT:
2085 /* nothing yet */
2086 break;
2087 }
2088
2089 /*
2090 * The RAID levels are determined per the SNIA DDF spec, this is only
2091 * a subset that is valid for the MFI contrller.
2092 */
2093 bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid;
2094 if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid ==
2095 MFI_DDF_SRL_SPANNED)
2096 bv->bv_level *= 10;
2097
2098 bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span *
2099 sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth;
2100
2101 bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */
2102
2103 rv = 0;
2104 done:
2105 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n",
2106 DEVNAME(sc), rv);
2107 return rv;
2108 }
2109
2110 static int
2111 mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd)
2112 {
2113 struct mfi_conf *cfg;
2114 struct mfi_array *ar;
2115 struct mfi_ld_cfg *ld;
2116 struct mfi_pd_details *pd;
2117 struct scsipi_inquiry_data *inqbuf;
2118 char vend[8+16+4+1];
2119 int i, rv = EINVAL;
2120 int arr, vol, disk;
2121 uint32_t size;
2122 uint8_t mbox[MFI_MBOX_SIZE];
2123
2124 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n",
2125 DEVNAME(sc), bd->bd_diskid);
2126
2127 pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2128
2129 /* send single element command to retrieve size for full structure */
2130 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2131 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2132 sizeof *cfg, cfg, NULL, false))
2133 goto freeme;
2134
2135 size = cfg->mfc_size;
2136 free(cfg, M_DEVBUF);
2137
2138 /* memory for read config */
2139 cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2140 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2141 size, cfg, NULL, false))
2142 goto freeme;
2143
2144 ar = cfg->mfc_array;
2145
2146 /* calculate offset to ld structure */
2147 ld = (struct mfi_ld_cfg *)(
2148 ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2149 cfg->mfc_array_size * cfg->mfc_no_array);
2150
2151 vol = bd->bd_volid;
2152
2153 if (vol >= cfg->mfc_no_ld) {
2154 /* do hotspares */
2155 rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd);
2156 goto freeme;
2157 }
2158
2159 /* find corresponding array for ld */
2160 for (i = 0, arr = 0; i < vol; i++)
2161 arr += ld[i].mlc_parm.mpa_span_depth;
2162
2163 /* offset disk into pd list */
2164 disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span;
2165
2166 /* offset array index into the next spans */
2167 arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span;
2168
2169 bd->bd_target = ar[arr].pd[disk].mar_enc_slot;
2170 switch (ar[arr].pd[disk].mar_pd_state){
2171 case MFI_PD_UNCONFIG_GOOD:
2172 bd->bd_status = BIOC_SDUNUSED;
2173 break;
2174
2175 case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */
2176 bd->bd_status = BIOC_SDHOTSPARE;
2177 break;
2178
2179 case MFI_PD_OFFLINE:
2180 bd->bd_status = BIOC_SDOFFLINE;
2181 break;
2182
2183 case MFI_PD_FAILED:
2184 bd->bd_status = BIOC_SDFAILED;
2185 break;
2186
2187 case MFI_PD_REBUILD:
2188 bd->bd_status = BIOC_SDREBUILD;
2189 break;
2190
2191 case MFI_PD_ONLINE:
2192 bd->bd_status = BIOC_SDONLINE;
2193 break;
2194
2195 case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */
2196 default:
2197 bd->bd_status = BIOC_SDINVALID;
2198 break;
2199
2200 }
2201
2202 /* get the remaining fields */
2203 *((uint16_t *)&mbox) = ar[arr].pd[disk].mar_pd.mfp_id;
2204 memset(pd, 0, sizeof(*pd));
2205 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2206 sizeof *pd, pd, mbox, false))
2207 goto freeme;
2208
2209 bd->bd_size = pd->mpd_size * 512; /* bytes per block */
2210
2211 /* if pd->mpd_enc_idx is 0 then it is not in an enclosure */
2212 bd->bd_channel = pd->mpd_enc_idx;
2213
2214 inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2215 memcpy(vend, inqbuf->vendor, sizeof vend - 1);
2216 vend[sizeof vend - 1] = '\0';
2217 strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
2218
2219 /* XXX find a way to retrieve serial nr from drive */
2220 /* XXX find a way to get bd_procdev */
2221
2222 rv = 0;
2223 freeme:
2224 free(pd, M_DEVBUF);
2225 free(cfg, M_DEVBUF);
2226
2227 return rv;
2228 }
2229
2230 static int
2231 mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba)
2232 {
2233 uint32_t opc, dir = MFI_DATA_NONE;
2234 int rv = 0;
2235 int8_t ret;
2236
2237 switch(ba->ba_opcode) {
2238 case BIOC_SADISABLE:
2239 opc = MR_DCMD_SPEAKER_DISABLE;
2240 break;
2241
2242 case BIOC_SAENABLE:
2243 opc = MR_DCMD_SPEAKER_ENABLE;
2244 break;
2245
2246 case BIOC_SASILENCE:
2247 opc = MR_DCMD_SPEAKER_SILENCE;
2248 break;
2249
2250 case BIOC_GASTATUS:
2251 opc = MR_DCMD_SPEAKER_GET;
2252 dir = MFI_DATA_IN;
2253 break;
2254
2255 case BIOC_SATEST:
2256 opc = MR_DCMD_SPEAKER_TEST;
2257 break;
2258
2259 default:
2260 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid "
2261 "opcode %x\n", DEVNAME(sc), ba->ba_opcode);
2262 return EINVAL;
2263 }
2264
2265 if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false))
2266 rv = EINVAL;
2267 else
2268 if (ba->ba_opcode == BIOC_GASTATUS)
2269 ba->ba_status = ret;
2270 else
2271 ba->ba_status = 0;
2272
2273 return rv;
2274 }
2275
2276 static int
2277 mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb)
2278 {
2279 int i, found, rv = EINVAL;
2280 uint8_t mbox[MFI_MBOX_SIZE];
2281 uint32_t cmd;
2282 struct mfi_pd_list *pd;
2283
2284 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc),
2285 bb->bb_status);
2286
2287 /* channel 0 means not in an enclosure so can't be blinked */
2288 if (bb->bb_channel == 0)
2289 return EINVAL;
2290
2291 pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2292
2293 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2294 MFI_PD_LIST_SIZE, pd, NULL, false))
2295 goto done;
2296
2297 for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2298 if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index &&
2299 bb->bb_target == pd->mpl_address[i].mpa_enc_slot) {
2300 found = 1;
2301 break;
2302 }
2303
2304 if (!found)
2305 goto done;
2306
2307 memset(mbox, 0, sizeof mbox);
2308
2309 *((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2310
2311 switch (bb->bb_status) {
2312 case BIOC_SBUNBLINK:
2313 cmd = MR_DCMD_PD_UNBLINK;
2314 break;
2315
2316 case BIOC_SBBLINK:
2317 cmd = MR_DCMD_PD_BLINK;
2318 break;
2319
2320 case BIOC_SBALARM:
2321 default:
2322 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid "
2323 "opcode %x\n", DEVNAME(sc), bb->bb_status);
2324 goto done;
2325 }
2326
2327
2328 if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, mbox, false))
2329 goto done;
2330
2331 rv = 0;
2332 done:
2333 free(pd, M_DEVBUF);
2334 return rv;
2335 }
2336
2337 static int
2338 mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs)
2339 {
2340 struct mfi_pd_list *pd;
2341 int i, found, rv = EINVAL;
2342 uint8_t mbox[MFI_MBOX_SIZE];
2343
2344 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc),
2345 bs->bs_status);
2346
2347 pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2348
2349 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2350 MFI_PD_LIST_SIZE, pd, NULL, false))
2351 goto done;
2352
2353 for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2354 if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index &&
2355 bs->bs_target == pd->mpl_address[i].mpa_enc_slot) {
2356 found = 1;
2357 break;
2358 }
2359
2360 if (!found)
2361 goto done;
2362
2363 memset(mbox, 0, sizeof mbox);
2364
2365 *((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2366
2367 switch (bs->bs_status) {
2368 case BIOC_SSONLINE:
2369 mbox[2] = MFI_PD_ONLINE;
2370 break;
2371
2372 case BIOC_SSOFFLINE:
2373 mbox[2] = MFI_PD_OFFLINE;
2374 break;
2375
2376 case BIOC_SSHOTSPARE:
2377 mbox[2] = MFI_PD_HOTSPARE;
2378 break;
2379 /*
2380 case BIOC_SSREBUILD:
2381 break;
2382 */
2383 default:
2384 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid "
2385 "opcode %x\n", DEVNAME(sc), bs->bs_status);
2386 goto done;
2387 }
2388
2389
2390 if (mfi_mgmt_internal(sc, MD_DCMD_PD_SET_STATE, MFI_DATA_NONE,
2391 0, NULL, mbox, false))
2392 goto done;
2393
2394 rv = 0;
2395 done:
2396 free(pd, M_DEVBUF);
2397 return rv;
2398 }
2399
2400 static int
2401 mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs)
2402 {
2403 struct mfi_conf *cfg;
2404 struct mfi_hotspare *hs;
2405 struct mfi_pd_details *pd;
2406 struct bioc_disk *sdhs;
2407 struct bioc_vol *vdhs;
2408 struct scsipi_inquiry_data *inqbuf;
2409 char vend[8+16+4+1];
2410 int i, rv = EINVAL;
2411 uint32_t size;
2412 uint8_t mbox[MFI_MBOX_SIZE];
2413
2414 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid);
2415
2416 if (!bio_hs)
2417 return EINVAL;
2418
2419 pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2420
2421 /* send single element command to retrieve size for full structure */
2422 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2423 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2424 sizeof *cfg, cfg, NULL, false))
2425 goto freeme;
2426
2427 size = cfg->mfc_size;
2428 free(cfg, M_DEVBUF);
2429
2430 /* memory for read config */
2431 cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2432 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2433 size, cfg, NULL, false))
2434 goto freeme;
2435
2436 /* calculate offset to hs structure */
2437 hs = (struct mfi_hotspare *)(
2438 ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2439 cfg->mfc_array_size * cfg->mfc_no_array +
2440 cfg->mfc_ld_size * cfg->mfc_no_ld);
2441
2442 if (volid < cfg->mfc_no_ld)
2443 goto freeme; /* not a hotspare */
2444
2445 if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs))
2446 goto freeme; /* not a hotspare */
2447
2448 /* offset into hotspare structure */
2449 i = volid - cfg->mfc_no_ld;
2450
2451 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d "
2452 "hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld,
2453 cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id);
2454
2455 /* get pd fields */
2456 memset(mbox, 0, sizeof mbox);
2457 *((uint16_t *)&mbox) = hs[i].mhs_pd.mfp_id;
2458 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2459 sizeof *pd, pd, mbox, false)) {
2460 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n",
2461 DEVNAME(sc));
2462 goto freeme;
2463 }
2464
2465 switch (type) {
2466 case MFI_MGMT_VD:
2467 vdhs = bio_hs;
2468 vdhs->bv_status = BIOC_SVONLINE;
2469 vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */
2470 vdhs->bv_level = -1; /* hotspare */
2471 vdhs->bv_nodisk = 1;
2472 break;
2473
2474 case MFI_MGMT_SD:
2475 sdhs = bio_hs;
2476 sdhs->bd_status = BIOC_SDHOTSPARE;
2477 sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */
2478 sdhs->bd_channel = pd->mpd_enc_idx;
2479 sdhs->bd_target = pd->mpd_enc_slot;
2480 inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2481 memcpy(vend, inqbuf->vendor, sizeof(vend) - 1);
2482 vend[sizeof vend - 1] = '\0';
2483 strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor));
2484 break;
2485
2486 default:
2487 goto freeme;
2488 }
2489
2490 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc));
2491 rv = 0;
2492 freeme:
2493 free(pd, M_DEVBUF);
2494 free(cfg, M_DEVBUF);
2495
2496 return rv;
2497 }
2498
2499 static int
2500 mfi_destroy_sensors(struct mfi_softc *sc)
2501 {
2502 if (sc->sc_sme == NULL)
2503 return 0;
2504 sysmon_envsys_unregister(sc->sc_sme);
2505 sc->sc_sme = NULL;
2506 free(sc->sc_sensor, M_DEVBUF);
2507 return 0;
2508 }
2509
2510 static int
2511 mfi_create_sensors(struct mfi_softc *sc)
2512 {
2513 int i;
2514 int nsensors = sc->sc_ld_cnt + 1;
2515 int rv;
2516
2517 sc->sc_sme = sysmon_envsys_create();
2518 sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
2519 M_DEVBUF, M_NOWAIT | M_ZERO);
2520 if (sc->sc_sensor == NULL) {
2521 aprint_error_dev(sc->sc_dev, "can't allocate envsys_data_t\n");
2522 return ENOMEM;
2523 }
2524
2525 /* BBU */
2526 sc->sc_sensor[0].units = ENVSYS_INDICATOR;
2527 sc->sc_sensor[0].state = ENVSYS_SINVALID;
2528 sc->sc_sensor[0].value_cur = 0;
2529 /* Enable monitoring for BBU state changes, if present */
2530 if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU)
2531 sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
2532 snprintf(sc->sc_sensor[0].desc,
2533 sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc));
2534 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0]))
2535 goto out;
2536
2537 for (i = 1; i < nsensors; i++) {
2538 sc->sc_sensor[i].units = ENVSYS_DRIVE;
2539 sc->sc_sensor[i].state = ENVSYS_SINVALID;
2540 sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
2541 /* Enable monitoring for drive state changes */
2542 sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
2543 /* logical drives */
2544 snprintf(sc->sc_sensor[i].desc,
2545 sizeof(sc->sc_sensor[i].desc), "%s:%d",
2546 DEVNAME(sc), i - 1);
2547 if (sysmon_envsys_sensor_attach(sc->sc_sme,
2548 &sc->sc_sensor[i]))
2549 goto out;
2550 }
2551
2552 sc->sc_sme->sme_name = DEVNAME(sc);
2553 sc->sc_sme->sme_cookie = sc;
2554 sc->sc_sme->sme_refresh = mfi_sensor_refresh;
2555 rv = sysmon_envsys_register(sc->sc_sme);
2556 if (rv != 0) {
2557 aprint_error_dev(sc->sc_dev,
2558 "unable to register with sysmon (rv = %d)\n", rv);
2559 goto out;
2560 }
2561 return 0;
2562
2563 out:
2564 free(sc->sc_sensor, M_DEVBUF);
2565 sysmon_envsys_destroy(sc->sc_sme);
2566 sc->sc_sme = NULL;
2567 return EINVAL;
2568 }
2569
2570 static void
2571 mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
2572 {
2573 struct mfi_softc *sc = sme->sme_cookie;
2574 struct bioc_vol bv;
2575 int s;
2576 int error;
2577
2578 if (edata->sensor >= sc->sc_ld_cnt + 1)
2579 return;
2580
2581 if (edata->sensor == 0) {
2582 /* BBU */
2583 struct mfi_bbu_status bbu_stat;
2584 int bbu_status;
2585 if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0)
2586 return;
2587
2588 KERNEL_LOCK(1, curlwp);
2589 s = splbio();
2590 bbu_status = mfi_get_bbu(sc, &bbu_stat);
2591 splx(s);
2592 KERNEL_UNLOCK_ONE(curlwp);
2593 switch(bbu_status) {
2594 case MFI_BBU_GOOD:
2595 edata->value_cur = 1;
2596 edata->state = ENVSYS_SVALID;
2597 if (!sc->sc_bbuok)
2598 aprint_normal_dev(sc->sc_dev,
2599 "BBU state changed to good\n");
2600 sc->sc_bbuok = true;
2601 break;
2602 case MFI_BBU_BAD:
2603 edata->value_cur = 0;
2604 edata->state = ENVSYS_SCRITICAL;
2605 if (sc->sc_bbuok)
2606 aprint_normal_dev(sc->sc_dev,
2607 "BBU state changed to bad\n");
2608 sc->sc_bbuok = false;
2609 break;
2610 case MFI_BBU_UNKNOWN:
2611 default:
2612 edata->value_cur = 0;
2613 edata->state = ENVSYS_SINVALID;
2614 sc->sc_bbuok = false;
2615 break;
2616 }
2617 return;
2618 }
2619
2620 memset(&bv, 0, sizeof(bv));
2621 bv.bv_volid = edata->sensor - 1;
2622 KERNEL_LOCK(1, curlwp);
2623 s = splbio();
2624 error = mfi_ioctl_vol(sc, &bv);
2625 splx(s);
2626 KERNEL_UNLOCK_ONE(curlwp);
2627 if (error)
2628 return;
2629
2630 switch(bv.bv_status) {
2631 case BIOC_SVOFFLINE:
2632 edata->value_cur = ENVSYS_DRIVE_FAIL;
2633 edata->state = ENVSYS_SCRITICAL;
2634 break;
2635
2636 case BIOC_SVDEGRADED:
2637 edata->value_cur = ENVSYS_DRIVE_PFAIL;
2638 edata->state = ENVSYS_SCRITICAL;
2639 break;
2640
2641 case BIOC_SVSCRUB:
2642 case BIOC_SVONLINE:
2643 edata->value_cur = ENVSYS_DRIVE_ONLINE;
2644 edata->state = ENVSYS_SVALID;
2645 break;
2646
2647 case BIOC_SVINVALID:
2648 /* FALLTRHOUGH */
2649 default:
2650 edata->value_cur = 0; /* unknown */
2651 edata->state = ENVSYS_SINVALID;
2652 }
2653 }
2654
2655 #endif /* NBIO > 0 */
2656
2657 static uint32_t
2658 mfi_xscale_fw_state(struct mfi_softc *sc)
2659 {
2660 return mfi_read(sc, MFI_OMSG0);
2661 }
2662
2663 static void
2664 mfi_xscale_intr_dis(struct mfi_softc *sc)
2665 {
2666 mfi_write(sc, MFI_OMSK, 0);
2667 }
2668
2669 static void
2670 mfi_xscale_intr_ena(struct mfi_softc *sc)
2671 {
2672 mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR);
2673 }
2674
2675 static int
2676 mfi_xscale_intr(struct mfi_softc *sc)
2677 {
2678 uint32_t status;
2679
2680 status = mfi_read(sc, MFI_OSTS);
2681 if (!ISSET(status, MFI_OSTS_INTR_VALID))
2682 return 0;
2683
2684 /* write status back to acknowledge interrupt */
2685 mfi_write(sc, MFI_OSTS, status);
2686 return 1;
2687 }
2688
2689 static void
2690 mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2691 {
2692 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
2693 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
2694 sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2695 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
2696 ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
2697 MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD);
2698
2699 mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) |
2700 ccb->ccb_extra_frames);
2701 ccb->ccb_state = MFI_CCB_RUNNING;
2702 }
2703
2704 static uint32_t
2705 mfi_ppc_fw_state(struct mfi_softc *sc)
2706 {
2707 return mfi_read(sc, MFI_OSP);
2708 }
2709
2710 static void
2711 mfi_ppc_intr_dis(struct mfi_softc *sc)
2712 {
2713 /* Taking a wild guess --dyoung */
2714 mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0);
2715 mfi_write(sc, MFI_ODC, 0xffffffff);
2716 }
2717
2718 static void
2719 mfi_ppc_intr_ena(struct mfi_softc *sc)
2720 {
2721 mfi_write(sc, MFI_ODC, 0xffffffff);
2722 mfi_write(sc, MFI_OMSK, ~0x80000004);
2723 }
2724
2725 static int
2726 mfi_ppc_intr(struct mfi_softc *sc)
2727 {
2728 uint32_t status;
2729
2730 status = mfi_read(sc, MFI_OSTS);
2731 if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID))
2732 return 0;
2733
2734 /* write status back to acknowledge interrupt */
2735 mfi_write(sc, MFI_ODC, status);
2736 return 1;
2737 }
2738
2739 static void
2740 mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2741 {
2742 mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2743 (ccb->ccb_extra_frames << 1));
2744 ccb->ccb_state = MFI_CCB_RUNNING;
2745 }
2746
2747 u_int32_t
2748 mfi_gen2_fw_state(struct mfi_softc *sc)
2749 {
2750 return (mfi_read(sc, MFI_OSP));
2751 }
2752
2753 void
2754 mfi_gen2_intr_dis(struct mfi_softc *sc)
2755 {
2756 mfi_write(sc, MFI_OMSK, 0xffffffff);
2757 mfi_write(sc, MFI_ODC, 0xffffffff);
2758 }
2759
2760 void
2761 mfi_gen2_intr_ena(struct mfi_softc *sc)
2762 {
2763 mfi_write(sc, MFI_ODC, 0xffffffff);
2764 mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID);
2765 }
2766
2767 int
2768 mfi_gen2_intr(struct mfi_softc *sc)
2769 {
2770 u_int32_t status;
2771
2772 status = mfi_read(sc, MFI_OSTS);
2773 if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID))
2774 return (0);
2775
2776 /* write status back to acknowledge interrupt */
2777 mfi_write(sc, MFI_ODC, status);
2778
2779 return (1);
2780 }
2781
2782 void
2783 mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2784 {
2785 mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2786 (ccb->ccb_extra_frames << 1));
2787 ccb->ccb_state = MFI_CCB_RUNNING;
2788 }
2789
2790 u_int32_t
2791 mfi_skinny_fw_state(struct mfi_softc *sc)
2792 {
2793 return (mfi_read(sc, MFI_OSP));
2794 }
2795
2796 void
2797 mfi_skinny_intr_dis(struct mfi_softc *sc)
2798 {
2799 mfi_write(sc, MFI_OMSK, 0);
2800 }
2801
2802 void
2803 mfi_skinny_intr_ena(struct mfi_softc *sc)
2804 {
2805 mfi_write(sc, MFI_OMSK, ~0x00000001);
2806 }
2807
2808 int
2809 mfi_skinny_intr(struct mfi_softc *sc)
2810 {
2811 u_int32_t status;
2812
2813 status = mfi_read(sc, MFI_OSTS);
2814 if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID))
2815 return (0);
2816
2817 /* write status back to acknowledge interrupt */
2818 mfi_write(sc, MFI_OSTS, status);
2819
2820 return (1);
2821 }
2822
2823 void
2824 mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2825 {
2826 mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe |
2827 (ccb->ccb_extra_frames << 1));
2828 mfi_write(sc, MFI_IQPH, 0x00000000);
2829 ccb->ccb_state = MFI_CCB_RUNNING;
2830 }
2831
2832 #define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000008)
2833
2834 void
2835 mfi_tbolt_intr_ena(struct mfi_softc *sc)
2836 {
2837 mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK);
2838 mfi_read(sc, MFI_OMSK);
2839 }
2840
2841 void
2842 mfi_tbolt_intr_dis(struct mfi_softc *sc)
2843 {
2844 mfi_write(sc, MFI_OMSK, 0xFFFFFFFF);
2845 mfi_read(sc, MFI_OMSK);
2846 }
2847
2848 int
2849 mfi_tbolt_intr(struct mfi_softc *sc)
2850 {
2851 int32_t status;
2852
2853 status = mfi_read(sc, MFI_OSTS);
2854
2855 if (ISSET(status, 0x1)) {
2856 mfi_write(sc, MFI_OSTS, status);
2857 mfi_read(sc, MFI_OSTS);
2858 if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT))
2859 return 0;
2860 return 1;
2861 }
2862 if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK))
2863 return 0;
2864 mfi_read(sc, MFI_OSTS);
2865 return 1;
2866 }
2867
2868 u_int32_t
2869 mfi_tbolt_fw_state(struct mfi_softc *sc)
2870 {
2871 return mfi_read(sc, MFI_OSP);
2872 }
2873
2874 void
2875 mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2876 {
2877 if (sc->sc_MFA_enabled) {
2878 if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0)
2879 mfi_tbolt_build_mpt_ccb(ccb);
2880 mfi_write(sc, MFI_IQPL,
2881 ccb->ccb_tb_request_desc.words & 0xFFFFFFFF);
2882 mfi_write(sc, MFI_IQPH,
2883 ccb->ccb_tb_request_desc.words >> 32);
2884 ccb->ccb_state = MFI_CCB_RUNNING;
2885 return;
2886 }
2887 uint64_t bus_add = ccb->ccb_pframe;
2888 bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA
2889 << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2890 mfi_write(sc, MFI_IQPL, bus_add);
2891 mfi_write(sc, MFI_IQPH, bus_add >> 32);
2892 ccb->ccb_state = MFI_CCB_RUNNING;
2893 }
2894
2895 static void
2896 mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb)
2897 {
2898 union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc;
2899 struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
2900 struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain;
2901
2902 io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
2903 io_req->SGLOffset0 =
2904 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
2905 io_req->ChainOffset =
2906 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16;
2907
2908 mpi25_ieee_chain =
2909 (struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain;
2910 mpi25_ieee_chain->Address = ccb->ccb_pframe;
2911
2912 /*
2913 In MFI pass thru, nextChainOffset will always be zero to
2914 indicate the end of the chain.
2915 */
2916 mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
2917 | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
2918
2919 /* setting the length to the maximum length */
2920 mpi25_ieee_chain->Length = 1024;
2921
2922 req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
2923 MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2924 ccb->ccb_flags |= MFI_CCB_F_TBOLT;
2925 bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
2926 MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2927 ccb->ccb_tb_pio_request -
2928 MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2929 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
2930 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2931 }
2932
2933 /*
2934 * Description:
2935 * This function will prepare message pools for the Thunderbolt controller
2936 */
2937 static int
2938 mfi_tbolt_init_desc_pool(struct mfi_softc *sc)
2939 {
2940 uint32_t offset = 0;
2941 uint8_t *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2942
2943 /* Request Decriptors alignment restrictions */
2944 KASSERT(((uintptr_t)addr & 0xFF) == 0);
2945
2946 /* Skip request message pool */
2947 addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)];
2948
2949 /* Reply Frame Pool is initialized */
2950 sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr;
2951 KASSERT(((uintptr_t)addr & 0xFF) == 0);
2952
2953 offset = (uintptr_t)sc->sc_reply_frame_pool
2954 - (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2955 sc->sc_reply_frame_busaddr =
2956 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset;
2957
2958 /* initializing reply address to 0xFFFFFFFF */
2959 memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF,
2960 (MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size));
2961
2962 /* Skip Reply Frame Pool */
2963 addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2964 sc->sc_reply_pool_limit = (void *)addr;
2965
2966 offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2967 sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset;
2968
2969 /* initialize the last_reply_idx to 0 */
2970 sc->sc_last_reply_idx = 0;
2971 offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME *
2972 sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
2973 KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size);
2974 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0,
2975 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize,
2976 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2977 return 0;
2978 }
2979
2980 /*
2981 * This routine prepare and issue INIT2 frame to the Firmware
2982 */
2983
2984 static int
2985 mfi_tbolt_init_MFI_queue(struct mfi_softc *sc)
2986 {
2987 struct mpi2_ioc_init_request *mpi2IocInit;
2988 struct mfi_init_frame *mfi_init;
2989 struct mfi_ccb *ccb;
2990 bus_addr_t phyAddress;
2991 mfi_address *mfiAddressTemp;
2992 int s;
2993 char *verbuf;
2994 char wqbuf[10];
2995
2996 /* Check if initialization is already completed */
2997 if (sc->sc_MFA_enabled) {
2998 return 1;
2999 }
3000
3001 mpi2IocInit =
3002 (struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init);
3003
3004 s = splbio();
3005 if ((ccb = mfi_get_ccb(sc)) == NULL) {
3006 splx(s);
3007 return (EBUSY);
3008 }
3009
3010
3011 mfi_init = &ccb->ccb_frame->mfr_init;
3012
3013 memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request));
3014 mpi2IocInit->Function = MPI2_FUNCTION_IOC_INIT;
3015 mpi2IocInit->WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3016
3017 /* set MsgVersion and HeaderVersion host driver was built with */
3018 mpi2IocInit->MsgVersion = MPI2_VERSION;
3019 mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION;
3020 mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4;
3021 mpi2IocInit->ReplyDescriptorPostQueueDepth =
3022 (uint16_t)sc->sc_reply_pool_size;
3023 mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */
3024
3025 /* Get physical address of reply frame pool */
3026 phyAddress = sc->sc_reply_frame_busaddr;
3027 mfiAddressTemp =
3028 (mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress;
3029 mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3030 mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3031
3032 /* Get physical address of request message pool */
3033 phyAddress = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
3034 mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress;
3035 mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3036 mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3037
3038 mpi2IocInit->ReplyFreeQueueAddress = 0; /* Not supported by MR. */
3039 mpi2IocInit->TimeStamp = time_uptime;
3040
3041 verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf);
3042 snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3043 MEGASAS_VERSION);
3044 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3045 MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE);
3046 mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf));
3047 mfi_init->driver_ver_hi =
3048 htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32);
3049
3050 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3051 MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3052 BUS_DMASYNC_PREWRITE);
3053 /* Get the physical address of the mpi2 ioc init command */
3054 phyAddress = MFIMEM_DVA(sc->sc_tbolt_ioc_init);
3055 mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress);
3056 mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32);
3057
3058 mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT;
3059 mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request);
3060 if (mfi_poll(ccb) != 0) {
3061 aprint_error_dev(sc->sc_dev, "failed to send IOC init2 "
3062 "command at 0x%" PRIx64 "\n",
3063 (uint64_t)ccb->ccb_pframe);
3064 splx(s);
3065 return 1;
3066 }
3067 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3068 MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3069 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3070 MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3071 BUS_DMASYNC_POSTWRITE);
3072 mfi_put_ccb(ccb);
3073 splx(s);
3074
3075 if (mfi_init->mif_header.mfh_cmd_status == 0) {
3076 sc->sc_MFA_enabled = 1;
3077 }
3078 else {
3079 aprint_error_dev(sc->sc_dev, "Init command Failed %x\n",
3080 mfi_init->mif_header.mfh_cmd_status);
3081 return 1;
3082 }
3083
3084 snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc));
3085 if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info,
3086 sc, PRIBIO, IPL_BIO, 0) != 0) {
3087 aprint_error_dev(sc->sc_dev, "workqueue_create failed\n");
3088 return 1;
3089 }
3090 workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3091 return 0;
3092 }
3093
3094 int
3095 mfi_tbolt_intrh(void *arg)
3096 {
3097 struct mfi_softc *sc = arg;
3098 struct mfi_ccb *ccb;
3099 union mfi_mpi2_reply_descriptor *desc;
3100 int smid, num_completed;
3101
3102 if (!mfi_tbolt_intr(sc))
3103 return 0;
3104
3105 DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc),
3106 (u_long)sc, (u_long)sc->sc_last_reply_idx);
3107
3108 KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size);
3109
3110 desc = (union mfi_mpi2_reply_descriptor *)
3111 ((uintptr_t)sc->sc_reply_frame_pool +
3112 sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3113
3114 bus_dmamap_sync(sc->sc_dmat,
3115 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3116 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3117 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3118 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3119 num_completed = 0;
3120 while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) !=
3121 MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
3122 smid = desc->header.SMID;
3123 KASSERT(smid > 0 && smid <= sc->sc_max_cmds);
3124 ccb = &sc->sc_ccb[smid - 1];
3125 DNPRINTF(MFI_D_INTR,
3126 "%s: mfi_tbolt_intr SMID %#x reply_idx %#x "
3127 "desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid,
3128 sc->sc_last_reply_idx, desc->words, ccb);
3129 KASSERT(ccb->ccb_state == MFI_CCB_RUNNING);
3130 if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO &&
3131 ccb->ccb_tb_io_request->ChainOffset != 0) {
3132 bus_dmamap_sync(sc->sc_dmat,
3133 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3134 ccb->ccb_tb_psg_frame -
3135 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3136 MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_POSTREAD);
3137 }
3138 if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) {
3139 bus_dmamap_sync(sc->sc_dmat,
3140 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3141 ccb->ccb_tb_pio_request -
3142 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3143 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3144 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3145 }
3146 if (ccb->ccb_done)
3147 ccb->ccb_done(ccb);
3148 else
3149 ccb->ccb_state = MFI_CCB_DONE;
3150 sc->sc_last_reply_idx++;
3151 if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) {
3152 sc->sc_last_reply_idx = 0;
3153 }
3154 desc->words = ~0x0;
3155 /* Get the next reply descriptor */
3156 desc = (union mfi_mpi2_reply_descriptor *)
3157 ((uintptr_t)sc->sc_reply_frame_pool +
3158 sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3159 num_completed++;
3160 }
3161 if (num_completed == 0)
3162 return 0;
3163
3164 bus_dmamap_sync(sc->sc_dmat,
3165 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3166 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3167 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3168 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3169 mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx);
3170 return 1;
3171 }
3172
3173
3174 int
3175 mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
3176 uint64_t blockno, uint32_t blockcnt)
3177 {
3178 struct scsipi_periph *periph = xs->xs_periph;
3179 struct mfi_mpi2_request_raid_scsi_io *io_req;
3180 int sge_count;
3181
3182 DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n",
3183 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
3184 periph->periph_target);
3185
3186 if (!xs->data)
3187 return 1;
3188
3189 ccb->ccb_done = mfi_tbolt_scsi_ld_done;
3190 ccb->ccb_xs = xs;
3191 ccb->ccb_data = xs->data;
3192 ccb->ccb_len = xs->datalen;
3193
3194 io_req = ccb->ccb_tb_io_request;
3195
3196 /* Just the CDB length,rest of the Flags are zero */
3197 io_req->IoFlags = xs->cmdlen;
3198 memset(io_req->CDB.CDB32, 0, 32);
3199 memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen);
3200
3201 io_req->RaidContext.TargetID = periph->periph_target;
3202 io_req->RaidContext.Status = 0;
3203 io_req->RaidContext.exStatus = 0;
3204 io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT;
3205 io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST;
3206 io_req->DevHandle = periph->periph_target;
3207
3208 ccb->ccb_tb_request_desc.header.RequestFlags =
3209 (MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
3210 io_req->DataLength = blockcnt * MFI_SECTOR_LEN;
3211
3212 if (xs->xs_control & XS_CTL_DATA_IN) {
3213 io_req->Control = MPI2_SCSIIO_CONTROL_READ;
3214 ccb->ccb_direction = MFI_DATA_IN;
3215 } else {
3216 io_req->Control = MPI2_SCSIIO_CONTROL_WRITE;
3217 ccb->ccb_direction = MFI_DATA_OUT;
3218 }
3219
3220 sge_count = mfi_tbolt_create_sgl(ccb,
3221 (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK
3222 );
3223 if (sge_count < 0)
3224 return 1;
3225 KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl);
3226 io_req->RaidContext.numSGE = sge_count;
3227 io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3228 io_req->SGLOffset0 =
3229 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
3230
3231 io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense);
3232 io_req->SenseBufferLength = MFI_SENSE_SIZE;
3233
3234 ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO;
3235 bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
3236 MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3237 ccb->ccb_tb_pio_request -
3238 MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3239 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3240 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3241
3242 return 0;
3243 }
3244
3245
3246 static void
3247 mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb)
3248 {
3249 struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
3250 mfi_scsi_xs_done(ccb, io_req->RaidContext.Status,
3251 io_req->RaidContext.exStatus);
3252 }
3253
3254 static int
3255 mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags)
3256 {
3257 struct mfi_softc *sc = ccb->ccb_sc;
3258 bus_dma_segment_t *sgd;
3259 int error, i, sge_idx, sge_count;
3260 struct mfi_mpi2_request_raid_scsi_io *io_req;
3261 struct mpi25_ieee_sge_chain64 *sgl_ptr;
3262
3263 DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc),
3264 (u_long)ccb->ccb_data);
3265
3266 if (!ccb->ccb_data)
3267 return -1;
3268
3269 KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
3270 error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
3271 ccb->ccb_data, ccb->ccb_len, NULL, flags);
3272 if (error) {
3273 if (error == EFBIG)
3274 aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
3275 sc->sc_max_sgl);
3276 else
3277 aprint_error_dev(sc->sc_dev,
3278 "error %d loading dma map\n", error);
3279 return -1;
3280 }
3281
3282 io_req = ccb->ccb_tb_io_request;
3283 sgl_ptr = &io_req->SGL.IeeeChain.Chain64;
3284 sge_count = ccb->ccb_dmamap->dm_nsegs;
3285 sgd = ccb->ccb_dmamap->dm_segs;
3286 KASSERT(sge_count <= sc->sc_max_sgl);
3287 KASSERT(sge_count <=
3288 (MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 +
3289 MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG));
3290
3291 if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) {
3292 /* One element to store the chain info */
3293 sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1;
3294 DNPRINTF(MFI_D_DMA,
3295 "mfi sge_idx %d sge_count %d io_req paddr 0x%" PRIx64 "\n",
3296 sge_idx, sge_count, ccb->ccb_tb_pio_request);
3297 } else {
3298 sge_idx = sge_count;
3299 }
3300
3301 for (i = 0; i < sge_idx; i++) {
3302 sgl_ptr->Address = htole64(sgd[i].ds_addr);
3303 sgl_ptr->Length = htole32(sgd[i].ds_len);
3304 sgl_ptr->Flags = 0;
3305 if (sge_idx < sge_count) {
3306 DNPRINTF(MFI_D_DMA,
3307 "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3308 " flags 0x%x\n", sgl_ptr, i,
3309 sgl_ptr->Address, sgl_ptr->Length,
3310 sgl_ptr->Flags);
3311 }
3312 sgl_ptr++;
3313 }
3314 io_req->ChainOffset = 0;
3315 if (sge_idx < sge_count) {
3316 struct mpi25_ieee_sge_chain64 *sg_chain;
3317 io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG;
3318 sg_chain = sgl_ptr;
3319 /* Prepare chain element */
3320 sg_chain->NextChainOffset = 0;
3321 sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3322 MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
3323 sg_chain->Length = (sizeof(mpi2_sge_io_union) *
3324 (sge_count - sge_idx));
3325 sg_chain->Address = ccb->ccb_tb_psg_frame;
3326 DNPRINTF(MFI_D_DMA,
3327 "sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32
3328 " flags 0x%x\n", sg_chain, sg_chain->Address,
3329 sg_chain->Length, sg_chain->Flags);
3330 sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64;
3331 for (; i < sge_count; i++) {
3332 sgl_ptr->Address = htole64(sgd[i].ds_addr);
3333 sgl_ptr->Length = htole32(sgd[i].ds_len);
3334 sgl_ptr->Flags = 0;
3335 DNPRINTF(MFI_D_DMA,
3336 "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3337 " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address,
3338 sgl_ptr->Length, sgl_ptr->Flags);
3339 sgl_ptr++;
3340 }
3341 bus_dmamap_sync(sc->sc_dmat,
3342 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3343 ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3344 MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_PREREAD);
3345 }
3346
3347 if (ccb->ccb_direction == MFI_DATA_IN) {
3348 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3349 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3350 } else {
3351 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3352 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3353 }
3354 return sge_count;
3355 }
3356
3357 /*
3358 * The ThunderBolt HW has an option for the driver to directly
3359 * access the underlying disks and operate on the RAID. To
3360 * do this there needs to be a capability to keep the RAID controller
3361 * and driver in sync. The FreeBSD driver does not take advantage
3362 * of this feature since it adds a lot of complexity and slows down
3363 * performance. Performance is gained by using the controller's
3364 * cache etc.
3365 *
3366 * Even though this driver doesn't access the disks directly, an
3367 * AEN like command is used to inform the RAID firmware to "sync"
3368 * with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command. This
3369 * command in write mode will return when the RAID firmware has
3370 * detected a change to the RAID state. Examples of this type
3371 * of change are removing a disk. Once the command returns then
3372 * the driver needs to acknowledge this and "sync" all LD's again.
3373 * This repeats until we shutdown. Then we need to cancel this
3374 * pending command.
3375 *
3376 * If this is not done right the RAID firmware will not remove a
3377 * pulled drive and the RAID won't go degraded etc. Effectively,
3378 * stopping any RAID mangement to functions.
3379 *
3380 * Doing another LD sync, requires the use of an event since the
3381 * driver needs to do a mfi_wait_command and can't do that in an
3382 * interrupt thread.
3383 *
3384 * The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO
3385 * That requires a bunch of structure and it is simplier to just do
3386 * the MFI_DCMD_LD_GET_LIST versus walking the RAID map.
3387 */
3388
3389 void
3390 mfi_tbolt_sync_map_info(struct work *w, void *v)
3391 {
3392 struct mfi_softc *sc = v;
3393 int i;
3394 struct mfi_ccb *ccb = NULL;
3395 uint8_t mbox[MFI_MBOX_SIZE];
3396 struct mfi_ld *ld_sync = NULL;
3397 size_t ld_size;
3398 int s;
3399
3400 DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc));
3401 again:
3402 s = splbio();
3403 if (sc->sc_ldsync_ccb != NULL) {
3404 splx(s);
3405 return;
3406 }
3407
3408 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
3409 sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) {
3410 aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n");
3411 goto err;
3412 }
3413
3414 ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld;
3415
3416 ld_sync = (struct mfi_ld *) malloc(ld_size, M_DEVBUF,
3417 M_WAITOK | M_ZERO);
3418 if (ld_sync == NULL) {
3419 aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n");
3420 goto err;
3421 }
3422 for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) {
3423 ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld;
3424 }
3425
3426 if ((ccb = mfi_get_ccb(sc)) == NULL) {
3427 aprint_error_dev(sc->sc_dev, "Failed to get sync command\n");
3428 free(ld_sync, M_DEVBUF);
3429 goto err;
3430 }
3431 sc->sc_ldsync_ccb = ccb;
3432
3433 memset(mbox, 0, MFI_MBOX_SIZE);
3434 mbox[0] = sc->sc_ld_list.mll_no_ld;
3435 mbox[1] = MFI_DCMD_MBOX_PEND_FLAG;
3436 if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT,
3437 ld_size, ld_sync, mbox)) {
3438 aprint_error_dev(sc->sc_dev, "Failed to create sync command\n");
3439 goto err;
3440 }
3441 /*
3442 * we won't sleep on this command, so we have to override
3443 * the callback set up by mfi_mgmt()
3444 */
3445 ccb->ccb_done = mfi_sync_map_complete;
3446
3447 mfi_post(sc, ccb);
3448 splx(s);
3449 return;
3450
3451 err:
3452 if (ld_sync)
3453 free(ld_sync, M_DEVBUF);
3454 if (ccb)
3455 mfi_put_ccb(ccb);
3456 sc->sc_ldsync_ccb = NULL;
3457 splx(s);
3458 kpause("ldsyncp", 0, hz, NULL);
3459 goto again;
3460 }
3461
3462 static void
3463 mfi_sync_map_complete(struct mfi_ccb *ccb)
3464 {
3465 struct mfi_softc *sc = ccb->ccb_sc;
3466 bool aborted = !sc->sc_running;
3467
3468 DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n",
3469 DEVNAME(ccb->ccb_sc));
3470 KASSERT(sc->sc_ldsync_ccb == ccb);
3471 mfi_mgmt_done(ccb);
3472 free(ccb->ccb_data, M_DEVBUF);
3473 if (ccb->ccb_flags & MFI_CCB_F_ERR) {
3474 aprint_error_dev(sc->sc_dev, "sync command failed\n");
3475 aborted = true;
3476 }
3477 mfi_put_ccb(ccb);
3478 sc->sc_ldsync_ccb = NULL;
3479
3480 /* set it up again so the driver can catch more events */
3481 if (!aborted) {
3482 workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3483 }
3484 }
3485
3486 static int
3487 mfifopen(dev_t dev, int flag, int mode, struct lwp *l)
3488 {
3489 struct mfi_softc *sc;
3490
3491 if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL)
3492 return (ENXIO);
3493 return (0);
3494 }
3495
3496 static int
3497 mfifclose(dev_t dev, int flag, int mode, struct lwp *l)
3498 {
3499 return (0);
3500 }
3501
3502 static int
3503 mfifioctl(dev_t dev, u_long cmd, void *data, int flag,
3504 struct lwp *l)
3505 {
3506 struct mfi_softc *sc;
3507 struct mfi_ioc_packet *ioc = data;
3508 uint8_t *udata;
3509 struct mfi_ccb *ccb = NULL;
3510 int ctx, i, s, error;
3511 union mfi_sense_ptr sense_ptr;
3512
3513 switch(cmd) {
3514 case MFI_CMD:
3515 sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no);
3516 break;
3517 default:
3518 return ENOTTY;
3519 }
3520 if (sc == NULL)
3521 return (ENXIO);
3522 if (sc->sc_opened)
3523 return (EBUSY);
3524
3525 switch(cmd) {
3526 case MFI_CMD:
3527 error = kauth_authorize_device_passthru(l->l_cred, dev,
3528 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
3529 if (error)
3530 return error;
3531 if (ioc->mfi_sge_count > MAX_IOCTL_SGE)
3532 return EINVAL;
3533 s = splbio();
3534 if ((ccb = mfi_get_ccb(sc)) == NULL)
3535 return ENOMEM;
3536 ccb->ccb_data = NULL;
3537 ctx = ccb->ccb_frame->mfr_header.mfh_context;
3538 memcpy(ccb->ccb_frame, ioc->mfi_frame.raw,
3539 sizeof(*ccb->ccb_frame));
3540 ccb->ccb_frame->mfr_header.mfh_context = ctx;
3541 ccb->ccb_frame->mfr_header.mfh_scsi_status = 0;
3542 ccb->ccb_frame->mfr_header.mfh_pad0 = 0;
3543 ccb->ccb_frame_size =
3544 (sizeof(union mfi_sgl) * ioc->mfi_sge_count) +
3545 ioc->mfi_sgl_off;
3546 if (ioc->mfi_sge_count > 0) {
3547 ccb->ccb_sgl = (union mfi_sgl *)
3548 &ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off];
3549 }
3550 if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ)
3551 ccb->ccb_direction = MFI_DATA_IN;
3552 if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE)
3553 ccb->ccb_direction = MFI_DATA_OUT;
3554 ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len;
3555 if (ccb->ccb_len > MAXPHYS) {
3556 error = ENOMEM;
3557 goto out;
3558 }
3559 if (ccb->ccb_len &&
3560 (ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) {
3561 udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO);
3562 if (udata == NULL) {
3563 error = ENOMEM;
3564 goto out;
3565 }
3566 ccb->ccb_data = udata;
3567 if (ccb->ccb_direction & MFI_DATA_OUT) {
3568 for (i = 0; i < ioc->mfi_sge_count; i++) {
3569 error = copyin(ioc->mfi_sgl[i].iov_base,
3570 udata, ioc->mfi_sgl[i].iov_len);
3571 if (error)
3572 goto out;
3573 udata = &udata[
3574 ioc->mfi_sgl[i].iov_len];
3575 }
3576 }
3577 if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) {
3578 error = EIO;
3579 goto out;
3580 }
3581 }
3582 if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) {
3583 ccb->ccb_frame->mfr_io.mif_sense_addr_lo =
3584 htole32(ccb->ccb_psense);
3585 ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0;
3586 }
3587 ccb->ccb_done = mfi_mgmt_done;
3588 mfi_post(sc, ccb);
3589 while (ccb->ccb_state != MFI_CCB_DONE)
3590 tsleep(ccb, PRIBIO, "mfi_fioc", 0);
3591
3592 if (ccb->ccb_direction & MFI_DATA_IN) {
3593 udata = ccb->ccb_data;
3594 for (i = 0; i < ioc->mfi_sge_count; i++) {
3595 error = copyout(udata,
3596 ioc->mfi_sgl[i].iov_base,
3597 ioc->mfi_sgl[i].iov_len);
3598 if (error)
3599 goto out;
3600 udata = &udata[
3601 ioc->mfi_sgl[i].iov_len];
3602 }
3603 }
3604 if (ioc->mfi_sense_len) {
3605 memcpy(&sense_ptr.sense_ptr_data[0],
3606 &ioc->mfi_frame.raw[ioc->mfi_sense_off],
3607 sizeof(sense_ptr.sense_ptr_data));
3608 error = copyout(ccb->ccb_sense,
3609 sense_ptr.user_space,
3610 sizeof(sense_ptr.sense_ptr_data));
3611 if (error)
3612 goto out;
3613 }
3614 memcpy(ioc->mfi_frame.raw, ccb->ccb_frame,
3615 sizeof(*ccb->ccb_frame));
3616 break;
3617 default:
3618 printf("mfifioctl unhandled cmd 0x%lx\n", cmd);
3619 return ENOTTY;
3620 }
3621
3622 out:
3623 if (ccb->ccb_data)
3624 free(ccb->ccb_data, M_DEVBUF);
3625 if (ccb)
3626 mfi_put_ccb(ccb);
3627 splx(s);
3628 return error;
3629 }
3630