mfi.c revision 1.53 1 /* $NetBSD: mfi.c,v 1.53 2014/07/25 08:10:37 dholland Exp $ */
2 /* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2012 Manuel Bouyer.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * Copyright (c) 2006 Marco Peereboom <marco (at) peereboom.us>
30 *
31 * Permission to use, copy, modify, and distribute this software for any
32 * purpose with or without fee is hereby granted, provided that the above
33 * copyright notice and this permission notice appear in all copies.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
36 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
37 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
38 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
39 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
40 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
41 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
42 */
43
44 /*-
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 *
49 * Copyright 1994-2009 The FreeBSD Project.
50 * All rights reserved.
51 *
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
60 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR
62 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
63 * EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
64 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
65 * PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY
66 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
67 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
68 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 *
70 * The views and conclusions contained in the software and documentation
71 * are those of the authors and should not be interpreted as representing
72 * official policies,either expressed or implied, of the FreeBSD Project.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.53 2014/07/25 08:10:37 dholland Exp $");
77
78 #include "bio.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/ioctl.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/cpu.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91
92 #include <uvm/uvm_param.h>
93
94 #include <sys/bus.h>
95
96 #include <dev/scsipi/scsipi_all.h>
97 #include <dev/scsipi/scsi_all.h>
98 #include <dev/scsipi/scsi_spc.h>
99 #include <dev/scsipi/scsipi_disk.h>
100 #include <dev/scsipi/scsi_disk.h>
101 #include <dev/scsipi/scsiconf.h>
102
103 #include <dev/ic/mfireg.h>
104 #include <dev/ic/mfivar.h>
105 #include <dev/ic/mfiio.h>
106
107 #if NBIO > 0
108 #include <dev/biovar.h>
109 #endif /* NBIO > 0 */
110
111 #ifdef MFI_DEBUG
112 uint32_t mfi_debug = 0
113 /* | MFI_D_CMD */
114 /* | MFI_D_INTR */
115 /* | MFI_D_MISC */
116 /* | MFI_D_DMA */
117 /* | MFI_D_IOCTL */
118 /* | MFI_D_RW */
119 /* | MFI_D_MEM */
120 /* | MFI_D_CCB */
121 /* | MFI_D_SYNC */
122 ;
123 #endif
124
125 static void mfi_scsipi_request(struct scsipi_channel *,
126 scsipi_adapter_req_t, void *);
127 static void mfiminphys(struct buf *bp);
128
129 static struct mfi_ccb *mfi_get_ccb(struct mfi_softc *);
130 static void mfi_put_ccb(struct mfi_ccb *);
131 static int mfi_init_ccb(struct mfi_softc *);
132
133 static struct mfi_mem *mfi_allocmem(struct mfi_softc *, size_t);
134 static void mfi_freemem(struct mfi_softc *, struct mfi_mem **);
135
136 static int mfi_transition_firmware(struct mfi_softc *);
137 static int mfi_initialize_firmware(struct mfi_softc *);
138 static int mfi_get_info(struct mfi_softc *);
139 static int mfi_get_bbu(struct mfi_softc *,
140 struct mfi_bbu_status *);
141 /* return codes for mfi_get_bbu */
142 #define MFI_BBU_GOOD 0
143 #define MFI_BBU_BAD 1
144 #define MFI_BBU_UNKNOWN 2
145 static uint32_t mfi_read(struct mfi_softc *, bus_size_t);
146 static void mfi_write(struct mfi_softc *, bus_size_t, uint32_t);
147 static int mfi_poll(struct mfi_ccb *);
148 static int mfi_create_sgl(struct mfi_ccb *, int);
149
150 /* commands */
151 static int mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *);
152 static int mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
153 uint64_t, uint32_t);
154 static void mfi_scsi_ld_done(struct mfi_ccb *);
155 static void mfi_scsi_xs_done(struct mfi_ccb *, int, int);
156 static int mfi_mgmt_internal(struct mfi_softc *, uint32_t,
157 uint32_t, uint32_t, void *, uint8_t *, bool);
158 static int mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *,
159 uint32_t, uint32_t, uint32_t, void *, uint8_t *);
160 static void mfi_mgmt_done(struct mfi_ccb *);
161
162 #if NBIO > 0
163 static int mfi_ioctl(device_t, u_long, void *);
164 static int mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *);
165 static int mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *);
166 static int mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *);
167 static int mfi_ioctl_alarm(struct mfi_softc *,
168 struct bioc_alarm *);
169 static int mfi_ioctl_blink(struct mfi_softc *sc,
170 struct bioc_blink *);
171 static int mfi_ioctl_setstate(struct mfi_softc *,
172 struct bioc_setstate *);
173 static int mfi_bio_hs(struct mfi_softc *, int, int, void *);
174 static int mfi_create_sensors(struct mfi_softc *);
175 static int mfi_destroy_sensors(struct mfi_softc *);
176 static void mfi_sensor_refresh(struct sysmon_envsys *,
177 envsys_data_t *);
178 #endif /* NBIO > 0 */
179 static bool mfi_shutdown(device_t, int);
180 static bool mfi_suspend(device_t, const pmf_qual_t *);
181 static bool mfi_resume(device_t, const pmf_qual_t *);
182
183 static dev_type_open(mfifopen);
184 static dev_type_close(mfifclose);
185 static dev_type_ioctl(mfifioctl);
186 const struct cdevsw mfi_cdevsw = {
187 .d_open = mfifopen,
188 .d_close = mfifclose,
189 .d_read = noread,
190 .d_write = nowrite,
191 .d_ioctl = mfifioctl,
192 .d_stop = nostop,
193 .d_tty = notty,
194 .d_poll = nopoll,
195 .d_mmap = nommap,
196 .d_kqfilter = nokqfilter,
197 .d_discard = nodiscard,
198 .d_flag = D_OTHER
199 };
200
201 extern struct cfdriver mfi_cd;
202
203 static uint32_t mfi_xscale_fw_state(struct mfi_softc *sc);
204 static void mfi_xscale_intr_ena(struct mfi_softc *sc);
205 static void mfi_xscale_intr_dis(struct mfi_softc *sc);
206 static int mfi_xscale_intr(struct mfi_softc *sc);
207 static void mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
208
209 static const struct mfi_iop_ops mfi_iop_xscale = {
210 mfi_xscale_fw_state,
211 mfi_xscale_intr_dis,
212 mfi_xscale_intr_ena,
213 mfi_xscale_intr,
214 mfi_xscale_post,
215 mfi_scsi_ld_io,
216 };
217
218 static uint32_t mfi_ppc_fw_state(struct mfi_softc *sc);
219 static void mfi_ppc_intr_ena(struct mfi_softc *sc);
220 static void mfi_ppc_intr_dis(struct mfi_softc *sc);
221 static int mfi_ppc_intr(struct mfi_softc *sc);
222 static void mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
223
224 static const struct mfi_iop_ops mfi_iop_ppc = {
225 mfi_ppc_fw_state,
226 mfi_ppc_intr_dis,
227 mfi_ppc_intr_ena,
228 mfi_ppc_intr,
229 mfi_ppc_post,
230 mfi_scsi_ld_io,
231 };
232
233 uint32_t mfi_gen2_fw_state(struct mfi_softc *sc);
234 void mfi_gen2_intr_ena(struct mfi_softc *sc);
235 void mfi_gen2_intr_dis(struct mfi_softc *sc);
236 int mfi_gen2_intr(struct mfi_softc *sc);
237 void mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
238
239 static const struct mfi_iop_ops mfi_iop_gen2 = {
240 mfi_gen2_fw_state,
241 mfi_gen2_intr_dis,
242 mfi_gen2_intr_ena,
243 mfi_gen2_intr,
244 mfi_gen2_post,
245 mfi_scsi_ld_io,
246 };
247
248 u_int32_t mfi_skinny_fw_state(struct mfi_softc *);
249 void mfi_skinny_intr_dis(struct mfi_softc *);
250 void mfi_skinny_intr_ena(struct mfi_softc *);
251 int mfi_skinny_intr(struct mfi_softc *);
252 void mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *);
253
254 static const struct mfi_iop_ops mfi_iop_skinny = {
255 mfi_skinny_fw_state,
256 mfi_skinny_intr_dis,
257 mfi_skinny_intr_ena,
258 mfi_skinny_intr,
259 mfi_skinny_post,
260 mfi_scsi_ld_io,
261 };
262
263 static int mfi_tbolt_init_desc_pool(struct mfi_softc *);
264 static int mfi_tbolt_init_MFI_queue(struct mfi_softc *);
265 static void mfi_tbolt_build_mpt_ccb(struct mfi_ccb *);
266 int mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
267 uint64_t, uint32_t);
268 static void mfi_tbolt_scsi_ld_done(struct mfi_ccb *);
269 static int mfi_tbolt_create_sgl(struct mfi_ccb *, int);
270 void mfi_tbolt_sync_map_info(struct work *, void *);
271 static void mfi_sync_map_complete(struct mfi_ccb *);
272
273 u_int32_t mfi_tbolt_fw_state(struct mfi_softc *);
274 void mfi_tbolt_intr_dis(struct mfi_softc *);
275 void mfi_tbolt_intr_ena(struct mfi_softc *);
276 int mfi_tbolt_intr(struct mfi_softc *sc);
277 void mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *);
278
279 static const struct mfi_iop_ops mfi_iop_tbolt = {
280 mfi_tbolt_fw_state,
281 mfi_tbolt_intr_dis,
282 mfi_tbolt_intr_ena,
283 mfi_tbolt_intr,
284 mfi_tbolt_post,
285 mfi_tbolt_scsi_ld_io,
286 };
287
288 #define mfi_fw_state(_s) ((_s)->sc_iop->mio_fw_state(_s))
289 #define mfi_intr_enable(_s) ((_s)->sc_iop->mio_intr_ena(_s))
290 #define mfi_intr_disable(_s) ((_s)->sc_iop->mio_intr_dis(_s))
291 #define mfi_my_intr(_s) ((_s)->sc_iop->mio_intr(_s))
292 #define mfi_post(_s, _c) ((_s)->sc_iop->mio_post((_s), (_c)))
293
294 static struct mfi_ccb *
295 mfi_get_ccb(struct mfi_softc *sc)
296 {
297 struct mfi_ccb *ccb;
298 int s;
299
300 s = splbio();
301 ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
302 if (ccb) {
303 TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
304 ccb->ccb_state = MFI_CCB_READY;
305 }
306 splx(s);
307
308 DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb);
309 if (__predict_false(ccb == NULL && sc->sc_running))
310 aprint_error_dev(sc->sc_dev, "out of ccb\n");
311
312 return ccb;
313 }
314
315 static void
316 mfi_put_ccb(struct mfi_ccb *ccb)
317 {
318 struct mfi_softc *sc = ccb->ccb_sc;
319 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
320 int s;
321
322 DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb);
323
324 hdr->mfh_cmd_status = 0x0;
325 hdr->mfh_flags = 0x0;
326 ccb->ccb_state = MFI_CCB_FREE;
327 ccb->ccb_xs = NULL;
328 ccb->ccb_flags = 0;
329 ccb->ccb_done = NULL;
330 ccb->ccb_direction = 0;
331 ccb->ccb_frame_size = 0;
332 ccb->ccb_extra_frames = 0;
333 ccb->ccb_sgl = NULL;
334 ccb->ccb_data = NULL;
335 ccb->ccb_len = 0;
336 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
337 /* erase tb_request_desc but preserve SMID */
338 int index = ccb->ccb_tb_request_desc.header.SMID;
339 ccb->ccb_tb_request_desc.words = 0;
340 ccb->ccb_tb_request_desc.header.SMID = index;
341 }
342 s = splbio();
343 TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
344 splx(s);
345 }
346
347 static int
348 mfi_destroy_ccb(struct mfi_softc *sc)
349 {
350 struct mfi_ccb *ccb;
351 uint32_t i;
352
353 DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc));
354
355
356 for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) {
357 /* create a dma map for transfer */
358 bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
359 }
360
361 if (i < sc->sc_max_cmds)
362 return EBUSY;
363
364 free(sc->sc_ccb, M_DEVBUF);
365
366 return 0;
367 }
368
369 static int
370 mfi_init_ccb(struct mfi_softc *sc)
371 {
372 struct mfi_ccb *ccb;
373 uint32_t i;
374 int error;
375 bus_addr_t io_req_base_phys;
376 uint8_t *io_req_base;
377 int offset;
378
379 DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc));
380
381 sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds,
382 M_DEVBUF, M_WAITOK|M_ZERO);
383 io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
384 io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
385 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
386 /*
387 * The first 256 bytes (SMID 0) is not used.
388 * Don't add to the cmd list.
389 */
390 io_req_base += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
391 io_req_base_phys += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
392 }
393
394 for (i = 0; i < sc->sc_max_cmds; i++) {
395 ccb = &sc->sc_ccb[i];
396
397 ccb->ccb_sc = sc;
398
399 /* select i'th frame */
400 ccb->ccb_frame = (union mfi_frame *)
401 ((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i);
402 ccb->ccb_pframe =
403 MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i;
404 ccb->ccb_frame->mfr_header.mfh_context = i;
405
406 /* select i'th sense */
407 ccb->ccb_sense = (struct mfi_sense *)
408 ((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
409 ccb->ccb_psense =
410 (MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
411
412 /* create a dma map for transfer */
413 error = bus_dmamap_create(sc->sc_datadmat,
414 MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0,
415 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
416 if (error) {
417 aprint_error_dev(sc->sc_dev,
418 "cannot create ccb dmamap (%d)\n", error);
419 goto destroy;
420 }
421 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
422 offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i;
423 ccb->ccb_tb_io_request =
424 (struct mfi_mpi2_request_raid_scsi_io *)
425 (io_req_base + offset);
426 ccb->ccb_tb_pio_request =
427 io_req_base_phys + offset;
428 offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i;
429 ccb->ccb_tb_sg_frame =
430 (mpi2_sge_io_union *)(sc->sc_reply_pool_limit +
431 offset);
432 ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr +
433 offset;
434 /* SMID 0 is reserved. Set SMID/index from 1 */
435 ccb->ccb_tb_request_desc.header.SMID = i + 1;
436 }
437
438 DNPRINTF(MFI_D_CCB,
439 "ccb(%d): %p frame: %#lx (%#lx) sense: %#lx (%#lx) map: %#lx\n",
440 ccb->ccb_frame->mfr_header.mfh_context, ccb,
441 (u_long)ccb->ccb_frame, (u_long)ccb->ccb_pframe,
442 (u_long)ccb->ccb_sense, (u_long)ccb->ccb_psense,
443 (u_long)ccb->ccb_dmamap);
444
445 /* add ccb to queue */
446 mfi_put_ccb(ccb);
447 }
448
449 return 0;
450 destroy:
451 /* free dma maps and ccb memory */
452 while (i) {
453 i--;
454 ccb = &sc->sc_ccb[i];
455 bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
456 }
457
458 free(sc->sc_ccb, M_DEVBUF);
459
460 return 1;
461 }
462
463 static uint32_t
464 mfi_read(struct mfi_softc *sc, bus_size_t r)
465 {
466 uint32_t rv;
467
468 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
469 BUS_SPACE_BARRIER_READ);
470 rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
471
472 DNPRINTF(MFI_D_RW, "%s: mr 0x%lx 0x08%x ", DEVNAME(sc), (u_long)r, rv);
473 return rv;
474 }
475
476 static void
477 mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v)
478 {
479 DNPRINTF(MFI_D_RW, "%s: mw 0x%lx 0x%08x", DEVNAME(sc), (u_long)r, v);
480
481 bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
482 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
483 BUS_SPACE_BARRIER_WRITE);
484 }
485
486 static struct mfi_mem *
487 mfi_allocmem(struct mfi_softc *sc, size_t size)
488 {
489 struct mfi_mem *mm;
490 int nsegs;
491
492 DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %ld\n", DEVNAME(sc),
493 (long)size);
494
495 mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_NOWAIT|M_ZERO);
496 if (mm == NULL)
497 return NULL;
498
499 mm->am_size = size;
500
501 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
502 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0)
503 goto amfree;
504
505 if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1,
506 &nsegs, BUS_DMA_NOWAIT) != 0)
507 goto destroy;
508
509 if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva,
510 BUS_DMA_NOWAIT) != 0)
511 goto free;
512
513 if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL,
514 BUS_DMA_NOWAIT) != 0)
515 goto unmap;
516
517 DNPRINTF(MFI_D_MEM, " kva: %p dva: %p map: %p\n",
518 mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map);
519
520 memset(mm->am_kva, 0, size);
521 return mm;
522
523 unmap:
524 bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size);
525 free:
526 bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
527 destroy:
528 bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
529 amfree:
530 free(mm, M_DEVBUF);
531
532 return NULL;
533 }
534
535 static void
536 mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp)
537 {
538 struct mfi_mem *mm = *mmp;
539
540 if (mm == NULL)
541 return;
542
543 *mmp = NULL;
544
545 DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm);
546
547 bus_dmamap_unload(sc->sc_dmat, mm->am_map);
548 bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size);
549 bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
550 bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
551 free(mm, M_DEVBUF);
552 }
553
554 static int
555 mfi_transition_firmware(struct mfi_softc *sc)
556 {
557 uint32_t fw_state, cur_state;
558 int max_wait, i;
559
560 fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
561
562 DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc),
563 fw_state);
564
565 while (fw_state != MFI_STATE_READY) {
566 DNPRINTF(MFI_D_MISC,
567 "%s: waiting for firmware to become ready\n",
568 DEVNAME(sc));
569 cur_state = fw_state;
570 switch (fw_state) {
571 case MFI_STATE_FAULT:
572 aprint_error_dev(sc->sc_dev, "firmware fault\n");
573 return 1;
574 case MFI_STATE_WAIT_HANDSHAKE:
575 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
576 sc->sc_ioptype == MFI_IOP_TBOLT)
577 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE);
578 else
579 mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE);
580 max_wait = 2;
581 break;
582 case MFI_STATE_OPERATIONAL:
583 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
584 sc->sc_ioptype == MFI_IOP_TBOLT)
585 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_READY);
586 else
587 mfi_write(sc, MFI_IDB, MFI_INIT_READY);
588 max_wait = 10;
589 break;
590 case MFI_STATE_UNDEFINED:
591 case MFI_STATE_BB_INIT:
592 max_wait = 2;
593 break;
594 case MFI_STATE_FW_INIT:
595 case MFI_STATE_DEVICE_SCAN:
596 case MFI_STATE_FLUSH_CACHE:
597 max_wait = 20;
598 break;
599 case MFI_STATE_BOOT_MESSAGE_PENDING:
600 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
601 sc->sc_ioptype == MFI_IOP_TBOLT) {
602 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG);
603 } else {
604 mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG);
605 }
606 max_wait = 180;
607 break;
608 default:
609 aprint_error_dev(sc->sc_dev,
610 "unknown firmware state %d\n", fw_state);
611 return 1;
612 }
613 for (i = 0; i < (max_wait * 10); i++) {
614 fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
615 if (fw_state == cur_state)
616 DELAY(100000);
617 else
618 break;
619 }
620 if (fw_state == cur_state) {
621 aprint_error_dev(sc->sc_dev,
622 "firmware stuck in state %#x\n", fw_state);
623 return 1;
624 }
625 }
626
627 return 0;
628 }
629
630 static int
631 mfi_initialize_firmware(struct mfi_softc *sc)
632 {
633 struct mfi_ccb *ccb;
634 struct mfi_init_frame *init;
635 struct mfi_init_qinfo *qinfo;
636
637 DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc));
638
639 if ((ccb = mfi_get_ccb(sc)) == NULL)
640 return 1;
641
642 init = &ccb->ccb_frame->mfr_init;
643 qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE);
644
645 memset(qinfo, 0, sizeof *qinfo);
646 qinfo->miq_rq_entries = sc->sc_max_cmds + 1;
647 qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
648 offsetof(struct mfi_prod_cons, mpc_reply_q));
649 qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
650 offsetof(struct mfi_prod_cons, mpc_producer));
651 qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
652 offsetof(struct mfi_prod_cons, mpc_consumer));
653
654 init->mif_header.mfh_cmd = MFI_CMD_INIT;
655 init->mif_header.mfh_data_len = sizeof *qinfo;
656 init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE);
657
658 DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n",
659 DEVNAME(sc),
660 qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo,
661 qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo);
662
663 if (mfi_poll(ccb)) {
664 aprint_error_dev(sc->sc_dev,
665 "mfi_initialize_firmware failed\n");
666 return 1;
667 }
668
669 mfi_put_ccb(ccb);
670
671 return 0;
672 }
673
674 static int
675 mfi_get_info(struct mfi_softc *sc)
676 {
677 #ifdef MFI_DEBUG
678 int i;
679 #endif
680 DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc));
681
682 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN,
683 sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false))
684 return 1;
685
686 #ifdef MFI_DEBUG
687
688 for (i = 0; i < sc->sc_info.mci_image_component_count; i++) {
689 printf("%s: active FW %s Version %s date %s time %s\n",
690 DEVNAME(sc),
691 sc->sc_info.mci_image_component[i].mic_name,
692 sc->sc_info.mci_image_component[i].mic_version,
693 sc->sc_info.mci_image_component[i].mic_build_date,
694 sc->sc_info.mci_image_component[i].mic_build_time);
695 }
696
697 for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) {
698 printf("%s: pending FW %s Version %s date %s time %s\n",
699 DEVNAME(sc),
700 sc->sc_info.mci_pending_image_component[i].mic_name,
701 sc->sc_info.mci_pending_image_component[i].mic_version,
702 sc->sc_info.mci_pending_image_component[i].mic_build_date,
703 sc->sc_info.mci_pending_image_component[i].mic_build_time);
704 }
705
706 printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n",
707 DEVNAME(sc),
708 sc->sc_info.mci_max_arms,
709 sc->sc_info.mci_max_spans,
710 sc->sc_info.mci_max_arrays,
711 sc->sc_info.mci_max_lds,
712 sc->sc_info.mci_product_name);
713
714 printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n",
715 DEVNAME(sc),
716 sc->sc_info.mci_serial_number,
717 sc->sc_info.mci_hw_present,
718 sc->sc_info.mci_current_fw_time,
719 sc->sc_info.mci_max_cmds,
720 sc->sc_info.mci_max_sg_elements);
721
722 printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n",
723 DEVNAME(sc),
724 sc->sc_info.mci_max_request_size,
725 sc->sc_info.mci_lds_present,
726 sc->sc_info.mci_lds_degraded,
727 sc->sc_info.mci_lds_offline,
728 sc->sc_info.mci_pd_present);
729
730 printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n",
731 DEVNAME(sc),
732 sc->sc_info.mci_pd_disks_present,
733 sc->sc_info.mci_pd_disks_pred_failure,
734 sc->sc_info.mci_pd_disks_failed);
735
736 printf("%s: nvram %d mem %d flash %d\n",
737 DEVNAME(sc),
738 sc->sc_info.mci_nvram_size,
739 sc->sc_info.mci_memory_size,
740 sc->sc_info.mci_flash_size);
741
742 printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n",
743 DEVNAME(sc),
744 sc->sc_info.mci_ram_correctable_errors,
745 sc->sc_info.mci_ram_uncorrectable_errors,
746 sc->sc_info.mci_cluster_allowed,
747 sc->sc_info.mci_cluster_active);
748
749 printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n",
750 DEVNAME(sc),
751 sc->sc_info.mci_max_strips_per_io,
752 sc->sc_info.mci_raid_levels,
753 sc->sc_info.mci_adapter_ops,
754 sc->sc_info.mci_ld_ops);
755
756 printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n",
757 DEVNAME(sc),
758 sc->sc_info.mci_stripe_sz_ops.min,
759 sc->sc_info.mci_stripe_sz_ops.max,
760 sc->sc_info.mci_pd_ops,
761 sc->sc_info.mci_pd_mix_support);
762
763 printf("%s: ecc_bucket %d pckg_prop %s\n",
764 DEVNAME(sc),
765 sc->sc_info.mci_ecc_bucket_count,
766 sc->sc_info.mci_package_version);
767
768 printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n",
769 DEVNAME(sc),
770 sc->sc_info.mci_properties.mcp_seq_num,
771 sc->sc_info.mci_properties.mcp_pred_fail_poll_interval,
772 sc->sc_info.mci_properties.mcp_intr_throttle_cnt,
773 sc->sc_info.mci_properties.mcp_intr_throttle_timeout);
774
775 printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n",
776 DEVNAME(sc),
777 sc->sc_info.mci_properties.mcp_rebuild_rate,
778 sc->sc_info.mci_properties.mcp_patrol_read_rate,
779 sc->sc_info.mci_properties.mcp_bgi_rate,
780 sc->sc_info.mci_properties.mcp_cc_rate);
781
782 printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n",
783 DEVNAME(sc),
784 sc->sc_info.mci_properties.mcp_recon_rate,
785 sc->sc_info.mci_properties.mcp_cache_flush_interval,
786 sc->sc_info.mci_properties.mcp_spinup_drv_cnt,
787 sc->sc_info.mci_properties.mcp_spinup_delay,
788 sc->sc_info.mci_properties.mcp_cluster_enable);
789
790 printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n",
791 DEVNAME(sc),
792 sc->sc_info.mci_properties.mcp_coercion_mode,
793 sc->sc_info.mci_properties.mcp_alarm_enable,
794 sc->sc_info.mci_properties.mcp_disable_auto_rebuild,
795 sc->sc_info.mci_properties.mcp_disable_battery_warn,
796 sc->sc_info.mci_properties.mcp_ecc_bucket_size);
797
798 printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n",
799 DEVNAME(sc),
800 sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate,
801 sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion,
802 sc->sc_info.mci_properties.mcp_expose_encl_devices);
803
804 printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n",
805 DEVNAME(sc),
806 sc->sc_info.mci_pci.mip_vendor,
807 sc->sc_info.mci_pci.mip_device,
808 sc->sc_info.mci_pci.mip_subvendor,
809 sc->sc_info.mci_pci.mip_subdevice);
810
811 printf("%s: type %#x port_count %d port_addr ",
812 DEVNAME(sc),
813 sc->sc_info.mci_host.mih_type,
814 sc->sc_info.mci_host.mih_port_count);
815
816 for (i = 0; i < 8; i++)
817 printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]);
818 printf("\n");
819
820 printf("%s: type %.x port_count %d port_addr ",
821 DEVNAME(sc),
822 sc->sc_info.mci_device.mid_type,
823 sc->sc_info.mci_device.mid_port_count);
824
825 for (i = 0; i < 8; i++) {
826 printf("%.0" PRIx64 " ",
827 sc->sc_info.mci_device.mid_port_addr[i]);
828 }
829 printf("\n");
830 #endif /* MFI_DEBUG */
831
832 return 0;
833 }
834
835 static int
836 mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat)
837 {
838 DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc));
839
840 if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN,
841 sizeof(*stat), stat, NULL, cold ? true : false))
842 return MFI_BBU_UNKNOWN;
843 #ifdef MFI_DEBUG
844 printf("bbu type %d, voltage %d, current %d, temperature %d, "
845 "status 0x%x\n", stat->battery_type, stat->voltage, stat->current,
846 stat->temperature, stat->fw_status);
847 printf("details: ");
848 switch(stat->battery_type) {
849 case MFI_BBU_TYPE_IBBU:
850 printf("guage %d relative charge %d charger state %d "
851 "charger ctrl %d\n", stat->detail.ibbu.gas_guage_status,
852 stat->detail.ibbu.relative_charge ,
853 stat->detail.ibbu.charger_system_state ,
854 stat->detail.ibbu.charger_system_ctrl);
855 printf("\tcurrent %d abs charge %d max error %d\n",
856 stat->detail.ibbu.charging_current ,
857 stat->detail.ibbu.absolute_charge ,
858 stat->detail.ibbu.max_error);
859 break;
860 case MFI_BBU_TYPE_BBU:
861 printf("guage %d relative charge %d charger state %d\n",
862 stat->detail.ibbu.gas_guage_status,
863 stat->detail.bbu.relative_charge ,
864 stat->detail.bbu.charger_status );
865 printf("\trem capacity %d fyll capacity %d SOH %d\n",
866 stat->detail.bbu.remaining_capacity ,
867 stat->detail.bbu.full_charge_capacity ,
868 stat->detail.bbu.is_SOH_good);
869 default:
870 printf("\n");
871 }
872 #endif
873 switch(stat->battery_type) {
874 case MFI_BBU_TYPE_BBU:
875 return (stat->detail.bbu.is_SOH_good ?
876 MFI_BBU_GOOD : MFI_BBU_BAD);
877 case MFI_BBU_TYPE_NONE:
878 return MFI_BBU_UNKNOWN;
879 default:
880 if (stat->fw_status &
881 (MFI_BBU_STATE_PACK_MISSING |
882 MFI_BBU_STATE_VOLTAGE_LOW |
883 MFI_BBU_STATE_TEMPERATURE_HIGH |
884 MFI_BBU_STATE_LEARN_CYC_FAIL |
885 MFI_BBU_STATE_LEARN_CYC_TIMEOUT |
886 MFI_BBU_STATE_I2C_ERR_DETECT))
887 return MFI_BBU_BAD;
888 return MFI_BBU_GOOD;
889 }
890 }
891
892 static void
893 mfiminphys(struct buf *bp)
894 {
895 DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount);
896
897 /* XXX currently using MFI_MAXFER = MAXPHYS */
898 if (bp->b_bcount > MFI_MAXFER)
899 bp->b_bcount = MFI_MAXFER;
900 minphys(bp);
901 }
902
903 int
904 mfi_rescan(device_t self, const char *ifattr, const int *locators)
905 {
906 struct mfi_softc *sc = device_private(self);
907
908 if (sc->sc_child != NULL)
909 return 0;
910
911 sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan,
912 scsiprint, NULL);
913
914 return 0;
915 }
916
917 void
918 mfi_childdetached(device_t self, device_t child)
919 {
920 struct mfi_softc *sc = device_private(self);
921
922 KASSERT(self == sc->sc_dev);
923 KASSERT(child == sc->sc_child);
924
925 if (child == sc->sc_child)
926 sc->sc_child = NULL;
927 }
928
929 int
930 mfi_detach(struct mfi_softc *sc, int flags)
931 {
932 int error;
933
934 DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc));
935
936 if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
937 return error;
938
939 #if NBIO > 0
940 mfi_destroy_sensors(sc);
941 bio_unregister(sc->sc_dev);
942 #endif /* NBIO > 0 */
943
944 mfi_intr_disable(sc);
945 mfi_shutdown(sc->sc_dev, 0);
946
947 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
948 workqueue_destroy(sc->sc_ldsync_wq);
949 mfi_put_ccb(sc->sc_ldsync_ccb);
950 mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
951 mfi_freemem(sc, &sc->sc_tbolt_ioc_init);
952 mfi_freemem(sc, &sc->sc_tbolt_verbuf);
953 }
954
955 if ((error = mfi_destroy_ccb(sc)) != 0)
956 return error;
957
958 mfi_freemem(sc, &sc->sc_sense);
959
960 mfi_freemem(sc, &sc->sc_frames);
961
962 mfi_freemem(sc, &sc->sc_pcq);
963
964 return 0;
965 }
966
967 static bool
968 mfi_shutdown(device_t dev, int how)
969 {
970 struct mfi_softc *sc = device_private(dev);
971 uint8_t mbox[MFI_MBOX_SIZE];
972 int s = splbio();
973 DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc));
974 if (sc->sc_running) {
975 mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
976 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH,
977 MFI_DATA_NONE, 0, NULL, mbox, true)) {
978 aprint_error_dev(dev, "shutdown: cache flush failed\n");
979 goto fail;
980 }
981
982 mbox[0] = 0;
983 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN,
984 MFI_DATA_NONE, 0, NULL, mbox, true)) {
985 aprint_error_dev(dev, "shutdown: "
986 "firmware shutdown failed\n");
987 goto fail;
988 }
989 sc->sc_running = false;
990 }
991 splx(s);
992 return true;
993 fail:
994 splx(s);
995 return false;
996 }
997
998 static bool
999 mfi_suspend(device_t dev, const pmf_qual_t *q)
1000 {
1001 /* XXX to be implemented */
1002 return false;
1003 }
1004
1005 static bool
1006 mfi_resume(device_t dev, const pmf_qual_t *q)
1007 {
1008 /* XXX to be implemented */
1009 return false;
1010 }
1011
1012 int
1013 mfi_attach(struct mfi_softc *sc, enum mfi_iop iop)
1014 {
1015 struct scsipi_adapter *adapt = &sc->sc_adapt;
1016 struct scsipi_channel *chan = &sc->sc_chan;
1017 uint32_t status, frames, max_sgl;
1018 int i;
1019
1020 DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc));
1021
1022 sc->sc_ioptype = iop;
1023
1024 switch (iop) {
1025 case MFI_IOP_XSCALE:
1026 sc->sc_iop = &mfi_iop_xscale;
1027 break;
1028 case MFI_IOP_PPC:
1029 sc->sc_iop = &mfi_iop_ppc;
1030 break;
1031 case MFI_IOP_GEN2:
1032 sc->sc_iop = &mfi_iop_gen2;
1033 break;
1034 case MFI_IOP_SKINNY:
1035 sc->sc_iop = &mfi_iop_skinny;
1036 break;
1037 case MFI_IOP_TBOLT:
1038 sc->sc_iop = &mfi_iop_tbolt;
1039 break;
1040 default:
1041 panic("%s: unknown iop %d", DEVNAME(sc), iop);
1042 }
1043
1044 if (mfi_transition_firmware(sc))
1045 return 1;
1046
1047 TAILQ_INIT(&sc->sc_ccb_freeq);
1048
1049 status = mfi_fw_state(sc);
1050 sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK;
1051 max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16;
1052 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1053 sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1054 sc->sc_sgl_size = sizeof(struct mfi_sg_ieee);
1055 } else if (sc->sc_64bit_dma) {
1056 sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1057 sc->sc_sgl_size = sizeof(struct mfi_sg64);
1058 } else {
1059 sc->sc_max_sgl = max_sgl;
1060 sc->sc_sgl_size = sizeof(struct mfi_sg32);
1061 }
1062 DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n",
1063 DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl);
1064
1065 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1066 uint32_t tb_mem_size;
1067 /* for Alignment */
1068 tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALLIGNMENT;
1069
1070 tb_mem_size +=
1071 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1);
1072 sc->sc_reply_pool_size =
1073 ((sc->sc_max_cmds + 1 + 15) / 16) * 16;
1074 tb_mem_size +=
1075 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
1076
1077 /* this is for SGL's */
1078 tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds;
1079 sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size);
1080 if (sc->sc_tbolt_reqmsgpool == NULL) {
1081 aprint_error_dev(sc->sc_dev,
1082 "unable to allocate thunderbolt "
1083 "request message pool\n");
1084 goto nopcq;
1085 }
1086 if (mfi_tbolt_init_desc_pool(sc)) {
1087 aprint_error_dev(sc->sc_dev,
1088 "Thunderbolt pool preparation error\n");
1089 goto nopcq;
1090 }
1091
1092 /*
1093 * Allocate DMA memory mapping for MPI2 IOC Init descriptor,
1094 * we are taking it diffrent from what we have allocated for
1095 * Request and reply descriptors to avoid confusion later
1096 */
1097 sc->sc_tbolt_ioc_init = mfi_allocmem(sc,
1098 sizeof(struct mpi2_ioc_init_request));
1099 if (sc->sc_tbolt_ioc_init == NULL) {
1100 aprint_error_dev(sc->sc_dev,
1101 "unable to allocate thunderbolt IOC init memory");
1102 goto nopcq;
1103 }
1104
1105 sc->sc_tbolt_verbuf = mfi_allocmem(sc,
1106 MEGASAS_MAX_NAME*sizeof(bus_addr_t));
1107 if (sc->sc_tbolt_verbuf == NULL) {
1108 aprint_error_dev(sc->sc_dev,
1109 "unable to allocate thunderbolt version buffer\n");
1110 goto nopcq;
1111 }
1112
1113 }
1114 /* consumer/producer and reply queue memory */
1115 sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) +
1116 sizeof(struct mfi_prod_cons));
1117 if (sc->sc_pcq == NULL) {
1118 aprint_error_dev(sc->sc_dev,
1119 "unable to allocate reply queue memory\n");
1120 goto nopcq;
1121 }
1122 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1123 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1124 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1125
1126 /* frame memory */
1127 frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) /
1128 MFI_FRAME_SIZE + 1;
1129 sc->sc_frames_size = frames * MFI_FRAME_SIZE;
1130 sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds);
1131 if (sc->sc_frames == NULL) {
1132 aprint_error_dev(sc->sc_dev,
1133 "unable to allocate frame memory\n");
1134 goto noframe;
1135 }
1136 /* XXX hack, fix this */
1137 if (MFIMEM_DVA(sc->sc_frames) & 0x3f) {
1138 aprint_error_dev(sc->sc_dev,
1139 "improper frame alignment (%#llx) FIXME\n",
1140 (long long int)MFIMEM_DVA(sc->sc_frames));
1141 goto noframe;
1142 }
1143
1144 /* sense memory */
1145 sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE);
1146 if (sc->sc_sense == NULL) {
1147 aprint_error_dev(sc->sc_dev,
1148 "unable to allocate sense memory\n");
1149 goto nosense;
1150 }
1151
1152 /* now that we have all memory bits go initialize ccbs */
1153 if (mfi_init_ccb(sc)) {
1154 aprint_error_dev(sc->sc_dev, "could not init ccb list\n");
1155 goto noinit;
1156 }
1157
1158 /* kickstart firmware with all addresses and pointers */
1159 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1160 if (mfi_tbolt_init_MFI_queue(sc)) {
1161 aprint_error_dev(sc->sc_dev,
1162 "could not initialize firmware\n");
1163 goto noinit;
1164 }
1165 } else {
1166 if (mfi_initialize_firmware(sc)) {
1167 aprint_error_dev(sc->sc_dev,
1168 "could not initialize firmware\n");
1169 goto noinit;
1170 }
1171 }
1172 sc->sc_running = true;
1173
1174 if (mfi_get_info(sc)) {
1175 aprint_error_dev(sc->sc_dev,
1176 "could not retrieve controller information\n");
1177 goto noinit;
1178 }
1179 aprint_normal_dev(sc->sc_dev,
1180 "%s version %s\n",
1181 sc->sc_info.mci_product_name,
1182 sc->sc_info.mci_package_version);
1183
1184
1185 aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ",
1186 sc->sc_info.mci_lds_present,
1187 sc->sc_info.mci_memory_size);
1188 sc->sc_bbuok = false;
1189 if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) {
1190 struct mfi_bbu_status bbu_stat;
1191 int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat);
1192 aprint_normal("BBU type ");
1193 switch (bbu_stat.battery_type) {
1194 case MFI_BBU_TYPE_BBU:
1195 aprint_normal("BBU");
1196 break;
1197 case MFI_BBU_TYPE_IBBU:
1198 aprint_normal("IBBU");
1199 break;
1200 default:
1201 aprint_normal("unknown type %d", bbu_stat.battery_type);
1202 }
1203 aprint_normal(", status ");
1204 switch(mfi_bbu_status) {
1205 case MFI_BBU_GOOD:
1206 aprint_normal("good\n");
1207 sc->sc_bbuok = true;
1208 break;
1209 case MFI_BBU_BAD:
1210 aprint_normal("bad\n");
1211 break;
1212 case MFI_BBU_UNKNOWN:
1213 aprint_normal("unknown\n");
1214 break;
1215 default:
1216 panic("mfi_bbu_status");
1217 }
1218 } else {
1219 aprint_normal("BBU not present\n");
1220 }
1221
1222 sc->sc_ld_cnt = sc->sc_info.mci_lds_present;
1223 sc->sc_max_ld = sc->sc_ld_cnt;
1224 for (i = 0; i < sc->sc_ld_cnt; i++)
1225 sc->sc_ld[i].ld_present = 1;
1226
1227 memset(adapt, 0, sizeof(*adapt));
1228 adapt->adapt_dev = sc->sc_dev;
1229 adapt->adapt_nchannels = 1;
1230 /* keep a few commands for management */
1231 if (sc->sc_max_cmds > 4)
1232 adapt->adapt_openings = sc->sc_max_cmds - 4;
1233 else
1234 adapt->adapt_openings = sc->sc_max_cmds;
1235 adapt->adapt_max_periph = adapt->adapt_openings;
1236 adapt->adapt_request = mfi_scsipi_request;
1237 adapt->adapt_minphys = mfiminphys;
1238
1239 memset(chan, 0, sizeof(*chan));
1240 chan->chan_adapter = adapt;
1241 chan->chan_bustype = &scsi_sas_bustype;
1242 chan->chan_channel = 0;
1243 chan->chan_flags = 0;
1244 chan->chan_nluns = 8;
1245 chan->chan_ntargets = MFI_MAX_LD;
1246 chan->chan_id = MFI_MAX_LD;
1247
1248 mfi_rescan(sc->sc_dev, "scsi", NULL);
1249
1250 /* enable interrupts */
1251 mfi_intr_enable(sc);
1252
1253 #if NBIO > 0
1254 if (bio_register(sc->sc_dev, mfi_ioctl) != 0)
1255 panic("%s: controller registration failed", DEVNAME(sc));
1256 if (mfi_create_sensors(sc) != 0)
1257 aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
1258 #endif /* NBIO > 0 */
1259 if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume,
1260 mfi_shutdown)) {
1261 aprint_error_dev(sc->sc_dev,
1262 "couldn't establish power handler\n");
1263 }
1264
1265 return 0;
1266 noinit:
1267 mfi_freemem(sc, &sc->sc_sense);
1268 nosense:
1269 mfi_freemem(sc, &sc->sc_frames);
1270 noframe:
1271 mfi_freemem(sc, &sc->sc_pcq);
1272 nopcq:
1273 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1274 if (sc->sc_tbolt_reqmsgpool)
1275 mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
1276 if (sc->sc_tbolt_verbuf)
1277 mfi_freemem(sc, &sc->sc_tbolt_verbuf);
1278 }
1279 return 1;
1280 }
1281
1282 static int
1283 mfi_poll(struct mfi_ccb *ccb)
1284 {
1285 struct mfi_softc *sc = ccb->ccb_sc;
1286 struct mfi_frame_header *hdr;
1287 int to = 0;
1288 int rv = 0;
1289
1290 DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc));
1291
1292 hdr = &ccb->ccb_frame->mfr_header;
1293 hdr->mfh_cmd_status = 0xff;
1294 if (!sc->sc_MFA_enabled)
1295 hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
1296
1297 /* no callback, caller is supposed to do the cleanup */
1298 ccb->ccb_done = NULL;
1299
1300 mfi_post(sc, ccb);
1301 if (sc->sc_MFA_enabled) {
1302 /*
1303 * depending on the command type, result may be posted
1304 * to *hdr, or not. In addition it seems there's
1305 * no way to avoid posting the SMID to the reply queue.
1306 * So pool using the interrupt routine.
1307 */
1308 while (ccb->ccb_state != MFI_CCB_DONE) {
1309 delay(1000);
1310 if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1311 rv = 1;
1312 break;
1313 }
1314 mfi_tbolt_intrh(sc);
1315 }
1316 } else {
1317 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1318 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1319 sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1320
1321 while (hdr->mfh_cmd_status == 0xff) {
1322 delay(1000);
1323 if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1324 rv = 1;
1325 break;
1326 }
1327 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1328 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1329 sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1330 }
1331 }
1332 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1333 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1334 sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1335
1336 if (ccb->ccb_data != NULL) {
1337 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1338 DEVNAME(sc));
1339 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1340 ccb->ccb_dmamap->dm_mapsize,
1341 (ccb->ccb_direction & MFI_DATA_IN) ?
1342 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1343
1344 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1345 }
1346
1347 if (rv != 0) {
1348 aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n",
1349 hdr->mfh_context);
1350 ccb->ccb_flags |= MFI_CCB_F_ERR;
1351 return 1;
1352 }
1353
1354 return 0;
1355 }
1356
1357 int
1358 mfi_intr(void *arg)
1359 {
1360 struct mfi_softc *sc = arg;
1361 struct mfi_prod_cons *pcq;
1362 struct mfi_ccb *ccb;
1363 uint32_t producer, consumer, ctx;
1364 int claimed = 0;
1365
1366 if (!mfi_my_intr(sc))
1367 return 0;
1368
1369 pcq = MFIMEM_KVA(sc->sc_pcq);
1370
1371 DNPRINTF(MFI_D_INTR, "%s: mfi_intr %#lx %#lx\n", DEVNAME(sc),
1372 (u_long)sc, (u_long)pcq);
1373
1374 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1375 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1376 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1377
1378 producer = pcq->mpc_producer;
1379 consumer = pcq->mpc_consumer;
1380
1381 while (consumer != producer) {
1382 DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n",
1383 DEVNAME(sc), producer, consumer);
1384
1385 ctx = pcq->mpc_reply_q[consumer];
1386 pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX;
1387 if (ctx == MFI_INVALID_CTX)
1388 aprint_error_dev(sc->sc_dev,
1389 "invalid context, p: %d c: %d\n",
1390 producer, consumer);
1391 else {
1392 /* XXX remove from queue and call scsi_done */
1393 ccb = &sc->sc_ccb[ctx];
1394 DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n",
1395 DEVNAME(sc), ctx);
1396 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1397 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1398 sc->sc_frames_size,
1399 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1400 ccb->ccb_done(ccb);
1401
1402 claimed = 1;
1403 }
1404 consumer++;
1405 if (consumer == (sc->sc_max_cmds + 1))
1406 consumer = 0;
1407 }
1408
1409 pcq->mpc_consumer = consumer;
1410 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1411 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1412 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1413
1414 return claimed;
1415 }
1416
1417 static int
1418 mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno,
1419 uint32_t blockcnt)
1420 {
1421 struct scsipi_periph *periph = xs->xs_periph;
1422 struct mfi_io_frame *io;
1423
1424 DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n",
1425 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1426 periph->periph_target);
1427
1428 if (!xs->data)
1429 return 1;
1430
1431 io = &ccb->ccb_frame->mfr_io;
1432 if (xs->xs_control & XS_CTL_DATA_IN) {
1433 io->mif_header.mfh_cmd = MFI_CMD_LD_READ;
1434 ccb->ccb_direction = MFI_DATA_IN;
1435 } else {
1436 io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE;
1437 ccb->ccb_direction = MFI_DATA_OUT;
1438 }
1439 io->mif_header.mfh_target_id = periph->periph_target;
1440 io->mif_header.mfh_timeout = 0;
1441 io->mif_header.mfh_flags = 0;
1442 io->mif_header.mfh_sense_len = MFI_SENSE_SIZE;
1443 io->mif_header.mfh_data_len= blockcnt;
1444 io->mif_lba_hi = (blockno >> 32);
1445 io->mif_lba_lo = (blockno & 0xffffffff);
1446 io->mif_sense_addr_lo = htole32(ccb->ccb_psense);
1447 io->mif_sense_addr_hi = 0;
1448
1449 ccb->ccb_done = mfi_scsi_ld_done;
1450 ccb->ccb_xs = xs;
1451 ccb->ccb_frame_size = MFI_IO_FRAME_SIZE;
1452 ccb->ccb_sgl = &io->mif_sgl;
1453 ccb->ccb_data = xs->data;
1454 ccb->ccb_len = xs->datalen;
1455
1456 if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1457 BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1458 return 1;
1459
1460 return 0;
1461 }
1462
1463 static void
1464 mfi_scsi_ld_done(struct mfi_ccb *ccb)
1465 {
1466 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
1467 mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status);
1468 }
1469
1470 static void
1471 mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status)
1472 {
1473 struct scsipi_xfer *xs = ccb->ccb_xs;
1474 struct mfi_softc *sc = ccb->ccb_sc;
1475
1476 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %#lx %#lx\n",
1477 DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1478
1479 if (xs->data != NULL) {
1480 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n",
1481 DEVNAME(sc));
1482 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1483 ccb->ccb_dmamap->dm_mapsize,
1484 (xs->xs_control & XS_CTL_DATA_IN) ?
1485 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1486
1487 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1488 }
1489
1490 if (status != MFI_STAT_OK) {
1491 xs->error = XS_DRIVER_STUFFUP;
1492 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n",
1493 DEVNAME(sc), status);
1494
1495 if (scsi_status != 0) {
1496 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
1497 ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
1498 MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD);
1499 DNPRINTF(MFI_D_INTR,
1500 "%s: mfi_scsi_xs_done sense %#x %lx %lx\n",
1501 DEVNAME(sc), scsi_status,
1502 (u_long)&xs->sense, (u_long)ccb->ccb_sense);
1503 memset(&xs->sense, 0, sizeof(xs->sense));
1504 memcpy(&xs->sense, ccb->ccb_sense,
1505 sizeof(struct scsi_sense_data));
1506 xs->error = XS_SENSE;
1507 }
1508 } else {
1509 xs->error = XS_NOERROR;
1510 xs->status = SCSI_OK;
1511 xs->resid = 0;
1512 }
1513
1514 mfi_put_ccb(ccb);
1515 scsipi_done(xs);
1516 }
1517
1518 static int
1519 mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs)
1520 {
1521 struct mfi_pass_frame *pf;
1522 struct scsipi_periph *periph = xs->xs_periph;
1523
1524 DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n",
1525 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1526 periph->periph_target);
1527
1528 pf = &ccb->ccb_frame->mfr_pass;
1529 pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO;
1530 pf->mpf_header.mfh_target_id = periph->periph_target;
1531 pf->mpf_header.mfh_lun_id = 0;
1532 pf->mpf_header.mfh_cdb_len = xs->cmdlen;
1533 pf->mpf_header.mfh_timeout = 0;
1534 pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */
1535 pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE;
1536
1537 pf->mpf_sense_addr_hi = 0;
1538 pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense);
1539
1540 memset(pf->mpf_cdb, 0, 16);
1541 memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen);
1542
1543 ccb->ccb_done = mfi_scsi_ld_done;
1544 ccb->ccb_xs = xs;
1545 ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE;
1546 ccb->ccb_sgl = &pf->mpf_sgl;
1547
1548 if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT))
1549 ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ?
1550 MFI_DATA_IN : MFI_DATA_OUT;
1551 else
1552 ccb->ccb_direction = MFI_DATA_NONE;
1553
1554 if (xs->data) {
1555 ccb->ccb_data = xs->data;
1556 ccb->ccb_len = xs->datalen;
1557
1558 if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1559 BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1560 return 1;
1561 }
1562
1563 return 0;
1564 }
1565
1566 static void
1567 mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1568 void *arg)
1569 {
1570 struct scsipi_periph *periph;
1571 struct scsipi_xfer *xs;
1572 struct scsipi_adapter *adapt = chan->chan_adapter;
1573 struct mfi_softc *sc = device_private(adapt->adapt_dev);
1574 struct mfi_ccb *ccb;
1575 struct scsi_rw_6 *rw;
1576 struct scsipi_rw_10 *rwb;
1577 struct scsipi_rw_12 *rw12;
1578 struct scsipi_rw_16 *rw16;
1579 uint64_t blockno;
1580 uint32_t blockcnt;
1581 uint8_t target;
1582 uint8_t mbox[MFI_MBOX_SIZE];
1583 int s;
1584
1585 switch (req) {
1586 case ADAPTER_REQ_GROW_RESOURCES:
1587 /* Not supported. */
1588 return;
1589 case ADAPTER_REQ_SET_XFER_MODE:
1590 {
1591 struct scsipi_xfer_mode *xm = arg;
1592 xm->xm_mode = PERIPH_CAP_TQING;
1593 xm->xm_period = 0;
1594 xm->xm_offset = 0;
1595 scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
1596 return;
1597 }
1598 case ADAPTER_REQ_RUN_XFER:
1599 break;
1600 }
1601
1602 xs = arg;
1603
1604 periph = xs->xs_periph;
1605 target = periph->periph_target;
1606
1607 DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x "
1608 "target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode,
1609 periph->periph_target, periph->periph_lun);
1610
1611 s = splbio();
1612 if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present ||
1613 periph->periph_lun != 0) {
1614 DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n",
1615 DEVNAME(sc), target);
1616 xs->error = XS_SELTIMEOUT;
1617 scsipi_done(xs);
1618 splx(s);
1619 return;
1620 }
1621 if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 ||
1622 xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) {
1623 /* the cache is stable storage, don't flush */
1624 xs->error = XS_NOERROR;
1625 xs->status = SCSI_OK;
1626 xs->resid = 0;
1627 scsipi_done(xs);
1628 splx(s);
1629 return;
1630 }
1631
1632 if ((ccb = mfi_get_ccb(sc)) == NULL) {
1633 DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc));
1634 xs->error = XS_RESOURCE_SHORTAGE;
1635 scsipi_done(xs);
1636 splx(s);
1637 return;
1638 }
1639
1640 switch (xs->cmd->opcode) {
1641 /* IO path */
1642 case READ_16:
1643 case WRITE_16:
1644 rw16 = (struct scsipi_rw_16 *)xs->cmd;
1645 blockno = _8btol(rw16->addr);
1646 blockcnt = _4btol(rw16->length);
1647 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1648 goto stuffup;
1649 }
1650 break;
1651
1652 case READ_12:
1653 case WRITE_12:
1654 rw12 = (struct scsipi_rw_12 *)xs->cmd;
1655 blockno = _4btol(rw12->addr);
1656 blockcnt = _4btol(rw12->length);
1657 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1658 goto stuffup;
1659 }
1660 break;
1661
1662 case READ_10:
1663 case WRITE_10:
1664 rwb = (struct scsipi_rw_10 *)xs->cmd;
1665 blockno = _4btol(rwb->addr);
1666 blockcnt = _2btol(rwb->length);
1667 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1668 goto stuffup;
1669 }
1670 break;
1671
1672 case SCSI_READ_6_COMMAND:
1673 case SCSI_WRITE_6_COMMAND:
1674 rw = (struct scsi_rw_6 *)xs->cmd;
1675 blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
1676 blockcnt = rw->length ? rw->length : 0x100;
1677 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1678 goto stuffup;
1679 }
1680 break;
1681
1682 case SCSI_SYNCHRONIZE_CACHE_10:
1683 case SCSI_SYNCHRONIZE_CACHE_16:
1684 mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
1685 if (mfi_mgmt(ccb, xs,
1686 MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, mbox)) {
1687 goto stuffup;
1688 }
1689 break;
1690
1691 /* hand it of to the firmware and let it deal with it */
1692 case SCSI_TEST_UNIT_READY:
1693 /* save off sd? after autoconf */
1694 if (!cold) /* XXX bogus */
1695 strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev),
1696 sizeof(sc->sc_ld[target].ld_dev));
1697 /* FALLTHROUGH */
1698
1699 default:
1700 if (mfi_scsi_ld(ccb, xs)) {
1701 goto stuffup;
1702 }
1703 break;
1704 }
1705
1706 DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target);
1707
1708 if (xs->xs_control & XS_CTL_POLL) {
1709 if (mfi_poll(ccb)) {
1710 /* XXX check for sense in ccb->ccb_sense? */
1711 aprint_error_dev(sc->sc_dev,
1712 "mfi_scsipi_request poll failed\n");
1713 memset(&xs->sense, 0, sizeof(xs->sense));
1714 xs->sense.scsi_sense.response_code =
1715 SSD_RCODE_VALID | SSD_RCODE_CURRENT;
1716 xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
1717 xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */
1718 xs->error = XS_SENSE;
1719 xs->status = SCSI_CHECK;
1720 } else {
1721 DNPRINTF(MFI_D_DMA,
1722 "%s: mfi_scsipi_request poll complete %d\n",
1723 DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs);
1724 xs->error = XS_NOERROR;
1725 xs->status = SCSI_OK;
1726 xs->resid = 0;
1727 }
1728 mfi_put_ccb(ccb);
1729 scsipi_done(xs);
1730 splx(s);
1731 return;
1732 }
1733
1734 mfi_post(sc, ccb);
1735
1736 DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc),
1737 ccb->ccb_dmamap->dm_nsegs);
1738
1739 splx(s);
1740 return;
1741
1742 stuffup:
1743 mfi_put_ccb(ccb);
1744 xs->error = XS_DRIVER_STUFFUP;
1745 scsipi_done(xs);
1746 splx(s);
1747 }
1748
1749 static int
1750 mfi_create_sgl(struct mfi_ccb *ccb, int flags)
1751 {
1752 struct mfi_softc *sc = ccb->ccb_sc;
1753 struct mfi_frame_header *hdr;
1754 bus_dma_segment_t *sgd;
1755 union mfi_sgl *sgl;
1756 int error, i;
1757
1758 DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %#lx\n", DEVNAME(sc),
1759 (u_long)ccb->ccb_data);
1760
1761 if (!ccb->ccb_data)
1762 return 1;
1763
1764 KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
1765 error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
1766 ccb->ccb_data, ccb->ccb_len, NULL, flags);
1767 if (error) {
1768 if (error == EFBIG) {
1769 aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
1770 sc->sc_max_sgl);
1771 } else {
1772 aprint_error_dev(sc->sc_dev,
1773 "error %d loading dma map\n", error);
1774 }
1775 return 1;
1776 }
1777
1778 hdr = &ccb->ccb_frame->mfr_header;
1779 sgl = ccb->ccb_sgl;
1780 sgd = ccb->ccb_dmamap->dm_segs;
1781 for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
1782 if (sc->sc_ioptype == MFI_IOP_TBOLT &&
1783 (hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO ||
1784 hdr->mfh_cmd == MFI_CMD_LD_READ ||
1785 hdr->mfh_cmd == MFI_CMD_LD_WRITE)) {
1786 sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr);
1787 sgl->sg_ieee[i].len = htole32(sgd[i].ds_len);
1788 sgl->sg_ieee[i].flags = 0;
1789 DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1790 PRIx32 "\n",
1791 DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1792 hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
1793 } else if (sc->sc_64bit_dma) {
1794 sgl->sg64[i].addr = htole64(sgd[i].ds_addr);
1795 sgl->sg64[i].len = htole32(sgd[i].ds_len);
1796 DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1797 PRIx32 "\n",
1798 DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1799 hdr->mfh_flags |= MFI_FRAME_SGL64;
1800 } else {
1801 sgl->sg32[i].addr = htole32(sgd[i].ds_addr);
1802 sgl->sg32[i].len = htole32(sgd[i].ds_len);
1803 DNPRINTF(MFI_D_DMA, "%s: addr: %#x len: %#x\n",
1804 DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len);
1805 hdr->mfh_flags |= MFI_FRAME_SGL32;
1806 }
1807 }
1808
1809 if (ccb->ccb_direction == MFI_DATA_IN) {
1810 hdr->mfh_flags |= MFI_FRAME_DIR_READ;
1811 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1812 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1813 } else {
1814 hdr->mfh_flags |= MFI_FRAME_DIR_WRITE;
1815 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1816 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1817 }
1818
1819 hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs;
1820 ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs;
1821 ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE;
1822
1823 DNPRINTF(MFI_D_DMA, "%s: sg_count: %d frame_size: %d frames_size: %d"
1824 " dm_nsegs: %d extra_frames: %d\n",
1825 DEVNAME(sc),
1826 hdr->mfh_sg_count,
1827 ccb->ccb_frame_size,
1828 sc->sc_frames_size,
1829 ccb->ccb_dmamap->dm_nsegs,
1830 ccb->ccb_extra_frames);
1831
1832 return 0;
1833 }
1834
1835 static int
1836 mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir,
1837 uint32_t len, void *buf, uint8_t *mbox, bool poll)
1838 {
1839 struct mfi_ccb *ccb;
1840 int rv = 1;
1841
1842 if ((ccb = mfi_get_ccb(sc)) == NULL)
1843 return rv;
1844 rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox);
1845 if (rv)
1846 return rv;
1847
1848 if (poll) {
1849 rv = 1;
1850 if (mfi_poll(ccb))
1851 goto done;
1852 } else {
1853 mfi_post(sc, ccb);
1854
1855 DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n",
1856 DEVNAME(sc));
1857 while (ccb->ccb_state != MFI_CCB_DONE)
1858 tsleep(ccb, PRIBIO, "mfi_mgmt", 0);
1859
1860 if (ccb->ccb_flags & MFI_CCB_F_ERR)
1861 goto done;
1862 }
1863 rv = 0;
1864
1865 done:
1866 mfi_put_ccb(ccb);
1867 return rv;
1868 }
1869
1870 static int
1871 mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
1872 uint32_t opc, uint32_t dir, uint32_t len, void *buf, uint8_t *mbox)
1873 {
1874 struct mfi_dcmd_frame *dcmd;
1875
1876 DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc);
1877
1878 dcmd = &ccb->ccb_frame->mfr_dcmd;
1879 memset(dcmd->mdf_mbox, 0, MFI_MBOX_SIZE);
1880 dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD;
1881 dcmd->mdf_header.mfh_timeout = 0;
1882
1883 dcmd->mdf_opcode = opc;
1884 dcmd->mdf_header.mfh_data_len = 0;
1885 ccb->ccb_direction = dir;
1886 ccb->ccb_xs = xs;
1887 ccb->ccb_done = mfi_mgmt_done;
1888
1889 ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE;
1890
1891 /* handle special opcodes */
1892 if (mbox)
1893 memcpy(dcmd->mdf_mbox, mbox, MFI_MBOX_SIZE);
1894
1895 if (dir != MFI_DATA_NONE) {
1896 dcmd->mdf_header.mfh_data_len = len;
1897 ccb->ccb_data = buf;
1898 ccb->ccb_len = len;
1899 ccb->ccb_sgl = &dcmd->mdf_sgl;
1900
1901 if (mfi_create_sgl(ccb, BUS_DMA_WAITOK))
1902 return 1;
1903 }
1904 return 0;
1905 }
1906
1907 static void
1908 mfi_mgmt_done(struct mfi_ccb *ccb)
1909 {
1910 struct scsipi_xfer *xs = ccb->ccb_xs;
1911 struct mfi_softc *sc = ccb->ccb_sc;
1912 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
1913
1914 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n",
1915 DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1916
1917 if (ccb->ccb_data != NULL) {
1918 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1919 DEVNAME(sc));
1920 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1921 ccb->ccb_dmamap->dm_mapsize,
1922 (ccb->ccb_direction & MFI_DATA_IN) ?
1923 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1924
1925 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1926 }
1927
1928 if (hdr->mfh_cmd_status != MFI_STAT_OK)
1929 ccb->ccb_flags |= MFI_CCB_F_ERR;
1930
1931 ccb->ccb_state = MFI_CCB_DONE;
1932 if (xs) {
1933 if (hdr->mfh_cmd_status != MFI_STAT_OK) {
1934 xs->error = XS_DRIVER_STUFFUP;
1935 } else {
1936 xs->error = XS_NOERROR;
1937 xs->status = SCSI_OK;
1938 xs->resid = 0;
1939 }
1940 mfi_put_ccb(ccb);
1941 scsipi_done(xs);
1942 } else
1943 wakeup(ccb);
1944 }
1945
1946 #if NBIO > 0
1947 int
1948 mfi_ioctl(device_t dev, u_long cmd, void *addr)
1949 {
1950 struct mfi_softc *sc = device_private(dev);
1951 int error = 0;
1952 int s;
1953
1954 KERNEL_LOCK(1, curlwp);
1955 s = splbio();
1956
1957 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc));
1958
1959 switch (cmd) {
1960 case BIOCINQ:
1961 DNPRINTF(MFI_D_IOCTL, "inq\n");
1962 error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr);
1963 break;
1964
1965 case BIOCVOL:
1966 DNPRINTF(MFI_D_IOCTL, "vol\n");
1967 error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr);
1968 break;
1969
1970 case BIOCDISK:
1971 DNPRINTF(MFI_D_IOCTL, "disk\n");
1972 error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr);
1973 break;
1974
1975 case BIOCALARM:
1976 DNPRINTF(MFI_D_IOCTL, "alarm\n");
1977 error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr);
1978 break;
1979
1980 case BIOCBLINK:
1981 DNPRINTF(MFI_D_IOCTL, "blink\n");
1982 error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr);
1983 break;
1984
1985 case BIOCSETSTATE:
1986 DNPRINTF(MFI_D_IOCTL, "setstate\n");
1987 error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr);
1988 break;
1989
1990 default:
1991 DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n");
1992 error = EINVAL;
1993 }
1994 splx(s);
1995 KERNEL_UNLOCK_ONE(curlwp);
1996
1997 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error);
1998 return error;
1999 }
2000
2001 static int
2002 mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi)
2003 {
2004 struct mfi_conf *cfg;
2005 int rv = EINVAL;
2006
2007 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc));
2008
2009 if (mfi_get_info(sc)) {
2010 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n",
2011 DEVNAME(sc));
2012 return EIO;
2013 }
2014
2015 /* get figures */
2016 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2017 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2018 sizeof *cfg, cfg, NULL, false))
2019 goto freeme;
2020
2021 strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
2022 bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs;
2023 bi->bi_nodisk = sc->sc_info.mci_pd_disks_present;
2024
2025 rv = 0;
2026 freeme:
2027 free(cfg, M_DEVBUF);
2028 return rv;
2029 }
2030
2031 static int
2032 mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv)
2033 {
2034 int i, per, rv = EINVAL;
2035 uint8_t mbox[MFI_MBOX_SIZE];
2036
2037 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n",
2038 DEVNAME(sc), bv->bv_volid);
2039
2040 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
2041 sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false))
2042 goto done;
2043
2044 i = bv->bv_volid;
2045 mbox[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target;
2046 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n",
2047 DEVNAME(sc), mbox[0]);
2048
2049 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN,
2050 sizeof(sc->sc_ld_details), &sc->sc_ld_details, mbox, false))
2051 goto done;
2052
2053 if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) {
2054 /* go do hotspares */
2055 rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv);
2056 goto done;
2057 }
2058
2059 strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev));
2060
2061 switch(sc->sc_ld_list.mll_list[i].mll_state) {
2062 case MFI_LD_OFFLINE:
2063 bv->bv_status = BIOC_SVOFFLINE;
2064 break;
2065
2066 case MFI_LD_PART_DEGRADED:
2067 case MFI_LD_DEGRADED:
2068 bv->bv_status = BIOC_SVDEGRADED;
2069 break;
2070
2071 case MFI_LD_ONLINE:
2072 bv->bv_status = BIOC_SVONLINE;
2073 break;
2074
2075 default:
2076 bv->bv_status = BIOC_SVINVALID;
2077 DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n",
2078 DEVNAME(sc),
2079 sc->sc_ld_list.mll_list[i].mll_state);
2080 }
2081
2082 /* additional status can modify MFI status */
2083 switch (sc->sc_ld_details.mld_progress.mlp_in_prog) {
2084 case MFI_LD_PROG_CC:
2085 case MFI_LD_PROG_BGI:
2086 bv->bv_status = BIOC_SVSCRUB;
2087 per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress;
2088 bv->bv_percent = (per * 100) / 0xffff;
2089 bv->bv_seconds =
2090 sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds;
2091 break;
2092
2093 case MFI_LD_PROG_FGI:
2094 case MFI_LD_PROG_RECONSTRUCT:
2095 /* nothing yet */
2096 break;
2097 }
2098
2099 /*
2100 * The RAID levels are determined per the SNIA DDF spec, this is only
2101 * a subset that is valid for the MFI contrller.
2102 */
2103 bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid;
2104 if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid ==
2105 MFI_DDF_SRL_SPANNED)
2106 bv->bv_level *= 10;
2107
2108 bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span *
2109 sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth;
2110
2111 bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */
2112
2113 rv = 0;
2114 done:
2115 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n",
2116 DEVNAME(sc), rv);
2117 return rv;
2118 }
2119
2120 static int
2121 mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd)
2122 {
2123 struct mfi_conf *cfg;
2124 struct mfi_array *ar;
2125 struct mfi_ld_cfg *ld;
2126 struct mfi_pd_details *pd;
2127 struct scsipi_inquiry_data *inqbuf;
2128 char vend[8+16+4+1];
2129 int i, rv = EINVAL;
2130 int arr, vol, disk;
2131 uint32_t size;
2132 uint8_t mbox[MFI_MBOX_SIZE];
2133
2134 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n",
2135 DEVNAME(sc), bd->bd_diskid);
2136
2137 pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2138
2139 /* send single element command to retrieve size for full structure */
2140 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2141 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2142 sizeof *cfg, cfg, NULL, false))
2143 goto freeme;
2144
2145 size = cfg->mfc_size;
2146 free(cfg, M_DEVBUF);
2147
2148 /* memory for read config */
2149 cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2150 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2151 size, cfg, NULL, false))
2152 goto freeme;
2153
2154 ar = cfg->mfc_array;
2155
2156 /* calculate offset to ld structure */
2157 ld = (struct mfi_ld_cfg *)(
2158 ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2159 cfg->mfc_array_size * cfg->mfc_no_array);
2160
2161 vol = bd->bd_volid;
2162
2163 if (vol >= cfg->mfc_no_ld) {
2164 /* do hotspares */
2165 rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd);
2166 goto freeme;
2167 }
2168
2169 /* find corresponding array for ld */
2170 for (i = 0, arr = 0; i < vol; i++)
2171 arr += ld[i].mlc_parm.mpa_span_depth;
2172
2173 /* offset disk into pd list */
2174 disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span;
2175
2176 /* offset array index into the next spans */
2177 arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span;
2178
2179 bd->bd_target = ar[arr].pd[disk].mar_enc_slot;
2180 switch (ar[arr].pd[disk].mar_pd_state){
2181 case MFI_PD_UNCONFIG_GOOD:
2182 bd->bd_status = BIOC_SDUNUSED;
2183 break;
2184
2185 case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */
2186 bd->bd_status = BIOC_SDHOTSPARE;
2187 break;
2188
2189 case MFI_PD_OFFLINE:
2190 bd->bd_status = BIOC_SDOFFLINE;
2191 break;
2192
2193 case MFI_PD_FAILED:
2194 bd->bd_status = BIOC_SDFAILED;
2195 break;
2196
2197 case MFI_PD_REBUILD:
2198 bd->bd_status = BIOC_SDREBUILD;
2199 break;
2200
2201 case MFI_PD_ONLINE:
2202 bd->bd_status = BIOC_SDONLINE;
2203 break;
2204
2205 case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */
2206 default:
2207 bd->bd_status = BIOC_SDINVALID;
2208 break;
2209
2210 }
2211
2212 /* get the remaining fields */
2213 *((uint16_t *)&mbox) = ar[arr].pd[disk].mar_pd.mfp_id;
2214 memset(pd, 0, sizeof(*pd));
2215 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2216 sizeof *pd, pd, mbox, false))
2217 goto freeme;
2218
2219 bd->bd_size = pd->mpd_size * 512; /* bytes per block */
2220
2221 /* if pd->mpd_enc_idx is 0 then it is not in an enclosure */
2222 bd->bd_channel = pd->mpd_enc_idx;
2223
2224 inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2225 memcpy(vend, inqbuf->vendor, sizeof vend - 1);
2226 vend[sizeof vend - 1] = '\0';
2227 strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
2228
2229 /* XXX find a way to retrieve serial nr from drive */
2230 /* XXX find a way to get bd_procdev */
2231
2232 rv = 0;
2233 freeme:
2234 free(pd, M_DEVBUF);
2235 free(cfg, M_DEVBUF);
2236
2237 return rv;
2238 }
2239
2240 static int
2241 mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba)
2242 {
2243 uint32_t opc, dir = MFI_DATA_NONE;
2244 int rv = 0;
2245 int8_t ret;
2246
2247 switch(ba->ba_opcode) {
2248 case BIOC_SADISABLE:
2249 opc = MR_DCMD_SPEAKER_DISABLE;
2250 break;
2251
2252 case BIOC_SAENABLE:
2253 opc = MR_DCMD_SPEAKER_ENABLE;
2254 break;
2255
2256 case BIOC_SASILENCE:
2257 opc = MR_DCMD_SPEAKER_SILENCE;
2258 break;
2259
2260 case BIOC_GASTATUS:
2261 opc = MR_DCMD_SPEAKER_GET;
2262 dir = MFI_DATA_IN;
2263 break;
2264
2265 case BIOC_SATEST:
2266 opc = MR_DCMD_SPEAKER_TEST;
2267 break;
2268
2269 default:
2270 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid "
2271 "opcode %x\n", DEVNAME(sc), ba->ba_opcode);
2272 return EINVAL;
2273 }
2274
2275 if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false))
2276 rv = EINVAL;
2277 else
2278 if (ba->ba_opcode == BIOC_GASTATUS)
2279 ba->ba_status = ret;
2280 else
2281 ba->ba_status = 0;
2282
2283 return rv;
2284 }
2285
2286 static int
2287 mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb)
2288 {
2289 int i, found, rv = EINVAL;
2290 uint8_t mbox[MFI_MBOX_SIZE];
2291 uint32_t cmd;
2292 struct mfi_pd_list *pd;
2293
2294 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc),
2295 bb->bb_status);
2296
2297 /* channel 0 means not in an enclosure so can't be blinked */
2298 if (bb->bb_channel == 0)
2299 return EINVAL;
2300
2301 pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2302
2303 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2304 MFI_PD_LIST_SIZE, pd, NULL, false))
2305 goto done;
2306
2307 for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2308 if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index &&
2309 bb->bb_target == pd->mpl_address[i].mpa_enc_slot) {
2310 found = 1;
2311 break;
2312 }
2313
2314 if (!found)
2315 goto done;
2316
2317 memset(mbox, 0, sizeof mbox);
2318
2319 *((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2320
2321 switch (bb->bb_status) {
2322 case BIOC_SBUNBLINK:
2323 cmd = MR_DCMD_PD_UNBLINK;
2324 break;
2325
2326 case BIOC_SBBLINK:
2327 cmd = MR_DCMD_PD_BLINK;
2328 break;
2329
2330 case BIOC_SBALARM:
2331 default:
2332 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid "
2333 "opcode %x\n", DEVNAME(sc), bb->bb_status);
2334 goto done;
2335 }
2336
2337
2338 if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, mbox, false))
2339 goto done;
2340
2341 rv = 0;
2342 done:
2343 free(pd, M_DEVBUF);
2344 return rv;
2345 }
2346
2347 static int
2348 mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs)
2349 {
2350 struct mfi_pd_list *pd;
2351 int i, found, rv = EINVAL;
2352 uint8_t mbox[MFI_MBOX_SIZE];
2353
2354 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc),
2355 bs->bs_status);
2356
2357 pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2358
2359 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2360 MFI_PD_LIST_SIZE, pd, NULL, false))
2361 goto done;
2362
2363 for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2364 if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index &&
2365 bs->bs_target == pd->mpl_address[i].mpa_enc_slot) {
2366 found = 1;
2367 break;
2368 }
2369
2370 if (!found)
2371 goto done;
2372
2373 memset(mbox, 0, sizeof mbox);
2374
2375 *((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2376
2377 switch (bs->bs_status) {
2378 case BIOC_SSONLINE:
2379 mbox[2] = MFI_PD_ONLINE;
2380 break;
2381
2382 case BIOC_SSOFFLINE:
2383 mbox[2] = MFI_PD_OFFLINE;
2384 break;
2385
2386 case BIOC_SSHOTSPARE:
2387 mbox[2] = MFI_PD_HOTSPARE;
2388 break;
2389 /*
2390 case BIOC_SSREBUILD:
2391 break;
2392 */
2393 default:
2394 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid "
2395 "opcode %x\n", DEVNAME(sc), bs->bs_status);
2396 goto done;
2397 }
2398
2399
2400 if (mfi_mgmt_internal(sc, MD_DCMD_PD_SET_STATE, MFI_DATA_NONE,
2401 0, NULL, mbox, false))
2402 goto done;
2403
2404 rv = 0;
2405 done:
2406 free(pd, M_DEVBUF);
2407 return rv;
2408 }
2409
2410 static int
2411 mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs)
2412 {
2413 struct mfi_conf *cfg;
2414 struct mfi_hotspare *hs;
2415 struct mfi_pd_details *pd;
2416 struct bioc_disk *sdhs;
2417 struct bioc_vol *vdhs;
2418 struct scsipi_inquiry_data *inqbuf;
2419 char vend[8+16+4+1];
2420 int i, rv = EINVAL;
2421 uint32_t size;
2422 uint8_t mbox[MFI_MBOX_SIZE];
2423
2424 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid);
2425
2426 if (!bio_hs)
2427 return EINVAL;
2428
2429 pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2430
2431 /* send single element command to retrieve size for full structure */
2432 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2433 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2434 sizeof *cfg, cfg, NULL, false))
2435 goto freeme;
2436
2437 size = cfg->mfc_size;
2438 free(cfg, M_DEVBUF);
2439
2440 /* memory for read config */
2441 cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2442 if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
2443 size, cfg, NULL, false))
2444 goto freeme;
2445
2446 /* calculate offset to hs structure */
2447 hs = (struct mfi_hotspare *)(
2448 ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2449 cfg->mfc_array_size * cfg->mfc_no_array +
2450 cfg->mfc_ld_size * cfg->mfc_no_ld);
2451
2452 if (volid < cfg->mfc_no_ld)
2453 goto freeme; /* not a hotspare */
2454
2455 if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs))
2456 goto freeme; /* not a hotspare */
2457
2458 /* offset into hotspare structure */
2459 i = volid - cfg->mfc_no_ld;
2460
2461 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d "
2462 "hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld,
2463 cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id);
2464
2465 /* get pd fields */
2466 memset(mbox, 0, sizeof mbox);
2467 *((uint16_t *)&mbox) = hs[i].mhs_pd.mfp_id;
2468 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2469 sizeof *pd, pd, mbox, false)) {
2470 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n",
2471 DEVNAME(sc));
2472 goto freeme;
2473 }
2474
2475 switch (type) {
2476 case MFI_MGMT_VD:
2477 vdhs = bio_hs;
2478 vdhs->bv_status = BIOC_SVONLINE;
2479 vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */
2480 vdhs->bv_level = -1; /* hotspare */
2481 vdhs->bv_nodisk = 1;
2482 break;
2483
2484 case MFI_MGMT_SD:
2485 sdhs = bio_hs;
2486 sdhs->bd_status = BIOC_SDHOTSPARE;
2487 sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */
2488 sdhs->bd_channel = pd->mpd_enc_idx;
2489 sdhs->bd_target = pd->mpd_enc_slot;
2490 inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2491 memcpy(vend, inqbuf->vendor, sizeof(vend) - 1);
2492 vend[sizeof vend - 1] = '\0';
2493 strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor));
2494 break;
2495
2496 default:
2497 goto freeme;
2498 }
2499
2500 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc));
2501 rv = 0;
2502 freeme:
2503 free(pd, M_DEVBUF);
2504 free(cfg, M_DEVBUF);
2505
2506 return rv;
2507 }
2508
2509 static int
2510 mfi_destroy_sensors(struct mfi_softc *sc)
2511 {
2512 if (sc->sc_sme == NULL)
2513 return 0;
2514 sysmon_envsys_unregister(sc->sc_sme);
2515 sc->sc_sme = NULL;
2516 free(sc->sc_sensor, M_DEVBUF);
2517 return 0;
2518 }
2519
2520 static int
2521 mfi_create_sensors(struct mfi_softc *sc)
2522 {
2523 int i;
2524 int nsensors = sc->sc_ld_cnt + 1;
2525 int rv;
2526
2527 sc->sc_sme = sysmon_envsys_create();
2528 sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
2529 M_DEVBUF, M_NOWAIT | M_ZERO);
2530 if (sc->sc_sensor == NULL) {
2531 aprint_error_dev(sc->sc_dev, "can't allocate envsys_data_t\n");
2532 return ENOMEM;
2533 }
2534
2535 /* BBU */
2536 sc->sc_sensor[0].units = ENVSYS_INDICATOR;
2537 sc->sc_sensor[0].state = ENVSYS_SINVALID;
2538 sc->sc_sensor[0].value_cur = 0;
2539 /* Enable monitoring for BBU state changes, if present */
2540 if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU)
2541 sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
2542 snprintf(sc->sc_sensor[0].desc,
2543 sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc));
2544 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0]))
2545 goto out;
2546
2547 for (i = 1; i < nsensors; i++) {
2548 sc->sc_sensor[i].units = ENVSYS_DRIVE;
2549 sc->sc_sensor[i].state = ENVSYS_SINVALID;
2550 sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
2551 /* Enable monitoring for drive state changes */
2552 sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
2553 /* logical drives */
2554 snprintf(sc->sc_sensor[i].desc,
2555 sizeof(sc->sc_sensor[i].desc), "%s:%d",
2556 DEVNAME(sc), i - 1);
2557 if (sysmon_envsys_sensor_attach(sc->sc_sme,
2558 &sc->sc_sensor[i]))
2559 goto out;
2560 }
2561
2562 sc->sc_sme->sme_name = DEVNAME(sc);
2563 sc->sc_sme->sme_cookie = sc;
2564 sc->sc_sme->sme_refresh = mfi_sensor_refresh;
2565 rv = sysmon_envsys_register(sc->sc_sme);
2566 if (rv != 0) {
2567 aprint_error_dev(sc->sc_dev,
2568 "unable to register with sysmon (rv = %d)\n", rv);
2569 goto out;
2570 }
2571 return 0;
2572
2573 out:
2574 free(sc->sc_sensor, M_DEVBUF);
2575 sysmon_envsys_destroy(sc->sc_sme);
2576 sc->sc_sme = NULL;
2577 return EINVAL;
2578 }
2579
2580 static void
2581 mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
2582 {
2583 struct mfi_softc *sc = sme->sme_cookie;
2584 struct bioc_vol bv;
2585 int s;
2586 int error;
2587
2588 if (edata->sensor >= sc->sc_ld_cnt + 1)
2589 return;
2590
2591 if (edata->sensor == 0) {
2592 /* BBU */
2593 struct mfi_bbu_status bbu_stat;
2594 int bbu_status;
2595 if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0)
2596 return;
2597
2598 KERNEL_LOCK(1, curlwp);
2599 s = splbio();
2600 bbu_status = mfi_get_bbu(sc, &bbu_stat);
2601 splx(s);
2602 KERNEL_UNLOCK_ONE(curlwp);
2603 switch(bbu_status) {
2604 case MFI_BBU_GOOD:
2605 edata->value_cur = 1;
2606 edata->state = ENVSYS_SVALID;
2607 if (!sc->sc_bbuok)
2608 aprint_normal_dev(sc->sc_dev,
2609 "BBU state changed to good\n");
2610 sc->sc_bbuok = true;
2611 break;
2612 case MFI_BBU_BAD:
2613 edata->value_cur = 0;
2614 edata->state = ENVSYS_SCRITICAL;
2615 if (sc->sc_bbuok)
2616 aprint_normal_dev(sc->sc_dev,
2617 "BBU state changed to bad\n");
2618 sc->sc_bbuok = false;
2619 break;
2620 case MFI_BBU_UNKNOWN:
2621 default:
2622 edata->value_cur = 0;
2623 edata->state = ENVSYS_SINVALID;
2624 sc->sc_bbuok = false;
2625 break;
2626 }
2627 return;
2628 }
2629
2630 memset(&bv, 0, sizeof(bv));
2631 bv.bv_volid = edata->sensor - 1;
2632 KERNEL_LOCK(1, curlwp);
2633 s = splbio();
2634 error = mfi_ioctl_vol(sc, &bv);
2635 splx(s);
2636 KERNEL_UNLOCK_ONE(curlwp);
2637 if (error)
2638 return;
2639
2640 switch(bv.bv_status) {
2641 case BIOC_SVOFFLINE:
2642 edata->value_cur = ENVSYS_DRIVE_FAIL;
2643 edata->state = ENVSYS_SCRITICAL;
2644 break;
2645
2646 case BIOC_SVDEGRADED:
2647 edata->value_cur = ENVSYS_DRIVE_PFAIL;
2648 edata->state = ENVSYS_SCRITICAL;
2649 break;
2650
2651 case BIOC_SVSCRUB:
2652 case BIOC_SVONLINE:
2653 edata->value_cur = ENVSYS_DRIVE_ONLINE;
2654 edata->state = ENVSYS_SVALID;
2655 break;
2656
2657 case BIOC_SVINVALID:
2658 /* FALLTRHOUGH */
2659 default:
2660 edata->value_cur = 0; /* unknown */
2661 edata->state = ENVSYS_SINVALID;
2662 }
2663 }
2664
2665 #endif /* NBIO > 0 */
2666
2667 static uint32_t
2668 mfi_xscale_fw_state(struct mfi_softc *sc)
2669 {
2670 return mfi_read(sc, MFI_OMSG0);
2671 }
2672
2673 static void
2674 mfi_xscale_intr_dis(struct mfi_softc *sc)
2675 {
2676 mfi_write(sc, MFI_OMSK, 0);
2677 }
2678
2679 static void
2680 mfi_xscale_intr_ena(struct mfi_softc *sc)
2681 {
2682 mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR);
2683 }
2684
2685 static int
2686 mfi_xscale_intr(struct mfi_softc *sc)
2687 {
2688 uint32_t status;
2689
2690 status = mfi_read(sc, MFI_OSTS);
2691 if (!ISSET(status, MFI_OSTS_INTR_VALID))
2692 return 0;
2693
2694 /* write status back to acknowledge interrupt */
2695 mfi_write(sc, MFI_OSTS, status);
2696 return 1;
2697 }
2698
2699 static void
2700 mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2701 {
2702 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
2703 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
2704 sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2705 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
2706 ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
2707 MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD);
2708
2709 mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) |
2710 ccb->ccb_extra_frames);
2711 ccb->ccb_state = MFI_CCB_RUNNING;
2712 }
2713
2714 static uint32_t
2715 mfi_ppc_fw_state(struct mfi_softc *sc)
2716 {
2717 return mfi_read(sc, MFI_OSP);
2718 }
2719
2720 static void
2721 mfi_ppc_intr_dis(struct mfi_softc *sc)
2722 {
2723 /* Taking a wild guess --dyoung */
2724 mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0);
2725 mfi_write(sc, MFI_ODC, 0xffffffff);
2726 }
2727
2728 static void
2729 mfi_ppc_intr_ena(struct mfi_softc *sc)
2730 {
2731 mfi_write(sc, MFI_ODC, 0xffffffff);
2732 mfi_write(sc, MFI_OMSK, ~0x80000004);
2733 }
2734
2735 static int
2736 mfi_ppc_intr(struct mfi_softc *sc)
2737 {
2738 uint32_t status;
2739
2740 status = mfi_read(sc, MFI_OSTS);
2741 if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID))
2742 return 0;
2743
2744 /* write status back to acknowledge interrupt */
2745 mfi_write(sc, MFI_ODC, status);
2746 return 1;
2747 }
2748
2749 static void
2750 mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2751 {
2752 mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2753 (ccb->ccb_extra_frames << 1));
2754 ccb->ccb_state = MFI_CCB_RUNNING;
2755 }
2756
2757 u_int32_t
2758 mfi_gen2_fw_state(struct mfi_softc *sc)
2759 {
2760 return (mfi_read(sc, MFI_OSP));
2761 }
2762
2763 void
2764 mfi_gen2_intr_dis(struct mfi_softc *sc)
2765 {
2766 mfi_write(sc, MFI_OMSK, 0xffffffff);
2767 mfi_write(sc, MFI_ODC, 0xffffffff);
2768 }
2769
2770 void
2771 mfi_gen2_intr_ena(struct mfi_softc *sc)
2772 {
2773 mfi_write(sc, MFI_ODC, 0xffffffff);
2774 mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID);
2775 }
2776
2777 int
2778 mfi_gen2_intr(struct mfi_softc *sc)
2779 {
2780 u_int32_t status;
2781
2782 status = mfi_read(sc, MFI_OSTS);
2783 if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID))
2784 return (0);
2785
2786 /* write status back to acknowledge interrupt */
2787 mfi_write(sc, MFI_ODC, status);
2788
2789 return (1);
2790 }
2791
2792 void
2793 mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2794 {
2795 mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2796 (ccb->ccb_extra_frames << 1));
2797 ccb->ccb_state = MFI_CCB_RUNNING;
2798 }
2799
2800 u_int32_t
2801 mfi_skinny_fw_state(struct mfi_softc *sc)
2802 {
2803 return (mfi_read(sc, MFI_OSP));
2804 }
2805
2806 void
2807 mfi_skinny_intr_dis(struct mfi_softc *sc)
2808 {
2809 mfi_write(sc, MFI_OMSK, 0);
2810 }
2811
2812 void
2813 mfi_skinny_intr_ena(struct mfi_softc *sc)
2814 {
2815 mfi_write(sc, MFI_OMSK, ~0x00000001);
2816 }
2817
2818 int
2819 mfi_skinny_intr(struct mfi_softc *sc)
2820 {
2821 u_int32_t status;
2822
2823 status = mfi_read(sc, MFI_OSTS);
2824 if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID))
2825 return (0);
2826
2827 /* write status back to acknowledge interrupt */
2828 mfi_write(sc, MFI_OSTS, status);
2829
2830 return (1);
2831 }
2832
2833 void
2834 mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2835 {
2836 mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe |
2837 (ccb->ccb_extra_frames << 1));
2838 mfi_write(sc, MFI_IQPH, 0x00000000);
2839 ccb->ccb_state = MFI_CCB_RUNNING;
2840 }
2841
2842 #define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000008)
2843
2844 void
2845 mfi_tbolt_intr_ena(struct mfi_softc *sc)
2846 {
2847 mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK);
2848 mfi_read(sc, MFI_OMSK);
2849 }
2850
2851 void
2852 mfi_tbolt_intr_dis(struct mfi_softc *sc)
2853 {
2854 mfi_write(sc, MFI_OMSK, 0xFFFFFFFF);
2855 mfi_read(sc, MFI_OMSK);
2856 }
2857
2858 int
2859 mfi_tbolt_intr(struct mfi_softc *sc)
2860 {
2861 int32_t status;
2862
2863 status = mfi_read(sc, MFI_OSTS);
2864
2865 if (ISSET(status, 0x1)) {
2866 mfi_write(sc, MFI_OSTS, status);
2867 mfi_read(sc, MFI_OSTS);
2868 if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT))
2869 return 0;
2870 return 1;
2871 }
2872 if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK))
2873 return 0;
2874 mfi_read(sc, MFI_OSTS);
2875 return 1;
2876 }
2877
2878 u_int32_t
2879 mfi_tbolt_fw_state(struct mfi_softc *sc)
2880 {
2881 return mfi_read(sc, MFI_OSP);
2882 }
2883
2884 void
2885 mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2886 {
2887 if (sc->sc_MFA_enabled) {
2888 if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0)
2889 mfi_tbolt_build_mpt_ccb(ccb);
2890 mfi_write(sc, MFI_IQPL,
2891 ccb->ccb_tb_request_desc.words & 0xFFFFFFFF);
2892 mfi_write(sc, MFI_IQPH,
2893 ccb->ccb_tb_request_desc.words >> 32);
2894 ccb->ccb_state = MFI_CCB_RUNNING;
2895 return;
2896 }
2897 uint64_t bus_add = ccb->ccb_pframe;
2898 bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA
2899 << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2900 mfi_write(sc, MFI_IQPL, bus_add);
2901 mfi_write(sc, MFI_IQPH, bus_add >> 32);
2902 ccb->ccb_state = MFI_CCB_RUNNING;
2903 }
2904
2905 static void
2906 mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb)
2907 {
2908 union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc;
2909 struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
2910 struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain;
2911
2912 io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
2913 io_req->SGLOffset0 =
2914 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
2915 io_req->ChainOffset =
2916 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16;
2917
2918 mpi25_ieee_chain =
2919 (struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain;
2920 mpi25_ieee_chain->Address = ccb->ccb_pframe;
2921
2922 /*
2923 In MFI pass thru, nextChainOffset will always be zero to
2924 indicate the end of the chain.
2925 */
2926 mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
2927 | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
2928
2929 /* setting the length to the maximum length */
2930 mpi25_ieee_chain->Length = 1024;
2931
2932 req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
2933 MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2934 ccb->ccb_flags |= MFI_CCB_F_TBOLT;
2935 bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
2936 MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2937 ccb->ccb_tb_pio_request -
2938 MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2939 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
2940 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2941 }
2942
2943 /*
2944 * Description:
2945 * This function will prepare message pools for the Thunderbolt controller
2946 */
2947 static int
2948 mfi_tbolt_init_desc_pool(struct mfi_softc *sc)
2949 {
2950 uint32_t offset = 0;
2951 uint8_t *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2952
2953 /* Request Decriptors alignment restrictions */
2954 KASSERT(((uintptr_t)addr & 0xFF) == 0);
2955
2956 /* Skip request message pool */
2957 addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)];
2958
2959 /* Reply Frame Pool is initialized */
2960 sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr;
2961 KASSERT(((uintptr_t)addr & 0xFF) == 0);
2962
2963 offset = (uintptr_t)sc->sc_reply_frame_pool
2964 - (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2965 sc->sc_reply_frame_busaddr =
2966 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset;
2967
2968 /* initializing reply address to 0xFFFFFFFF */
2969 memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF,
2970 (MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size));
2971
2972 /* Skip Reply Frame Pool */
2973 addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2974 sc->sc_reply_pool_limit = (void *)addr;
2975
2976 offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2977 sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset;
2978
2979 /* initialize the last_reply_idx to 0 */
2980 sc->sc_last_reply_idx = 0;
2981 offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME *
2982 sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
2983 KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size);
2984 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0,
2985 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize,
2986 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2987 return 0;
2988 }
2989
2990 /*
2991 * This routine prepare and issue INIT2 frame to the Firmware
2992 */
2993
2994 static int
2995 mfi_tbolt_init_MFI_queue(struct mfi_softc *sc)
2996 {
2997 struct mpi2_ioc_init_request *mpi2IocInit;
2998 struct mfi_init_frame *mfi_init;
2999 struct mfi_ccb *ccb;
3000 bus_addr_t phyAddress;
3001 mfi_address *mfiAddressTemp;
3002 int s;
3003 char *verbuf;
3004 char wqbuf[10];
3005
3006 /* Check if initialization is already completed */
3007 if (sc->sc_MFA_enabled) {
3008 return 1;
3009 }
3010
3011 mpi2IocInit =
3012 (struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init);
3013
3014 s = splbio();
3015 if ((ccb = mfi_get_ccb(sc)) == NULL) {
3016 splx(s);
3017 return (EBUSY);
3018 }
3019
3020
3021 mfi_init = &ccb->ccb_frame->mfr_init;
3022
3023 memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request));
3024 mpi2IocInit->Function = MPI2_FUNCTION_IOC_INIT;
3025 mpi2IocInit->WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3026
3027 /* set MsgVersion and HeaderVersion host driver was built with */
3028 mpi2IocInit->MsgVersion = MPI2_VERSION;
3029 mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION;
3030 mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4;
3031 mpi2IocInit->ReplyDescriptorPostQueueDepth =
3032 (uint16_t)sc->sc_reply_pool_size;
3033 mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */
3034
3035 /* Get physical address of reply frame pool */
3036 phyAddress = sc->sc_reply_frame_busaddr;
3037 mfiAddressTemp =
3038 (mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress;
3039 mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3040 mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3041
3042 /* Get physical address of request message pool */
3043 phyAddress = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
3044 mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress;
3045 mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3046 mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3047
3048 mpi2IocInit->ReplyFreeQueueAddress = 0; /* Not supported by MR. */
3049 mpi2IocInit->TimeStamp = time_uptime;
3050
3051 verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf);
3052 snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3053 MEGASAS_VERSION);
3054 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3055 MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE);
3056 mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf));
3057 mfi_init->driver_ver_hi =
3058 htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32);
3059
3060 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3061 MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3062 BUS_DMASYNC_PREWRITE);
3063 /* Get the physical address of the mpi2 ioc init command */
3064 phyAddress = MFIMEM_DVA(sc->sc_tbolt_ioc_init);
3065 mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress);
3066 mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32);
3067
3068 mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT;
3069 mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request);
3070 if (mfi_poll(ccb) != 0) {
3071 aprint_error_dev(sc->sc_dev, "failed to send IOC init2 "
3072 "command at 0x%" PRIx64 "\n",
3073 (uint64_t)ccb->ccb_pframe);
3074 splx(s);
3075 return 1;
3076 }
3077 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3078 MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3079 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3080 MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3081 BUS_DMASYNC_POSTWRITE);
3082 mfi_put_ccb(ccb);
3083 splx(s);
3084
3085 if (mfi_init->mif_header.mfh_cmd_status == 0) {
3086 sc->sc_MFA_enabled = 1;
3087 }
3088 else {
3089 aprint_error_dev(sc->sc_dev, "Init command Failed %x\n",
3090 mfi_init->mif_header.mfh_cmd_status);
3091 return 1;
3092 }
3093
3094 snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc));
3095 if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info,
3096 sc, PRIBIO, IPL_BIO, 0) != 0) {
3097 aprint_error_dev(sc->sc_dev, "workqueue_create failed\n");
3098 return 1;
3099 }
3100 workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3101 return 0;
3102 }
3103
3104 int
3105 mfi_tbolt_intrh(void *arg)
3106 {
3107 struct mfi_softc *sc = arg;
3108 struct mfi_ccb *ccb;
3109 union mfi_mpi2_reply_descriptor *desc;
3110 int smid, num_completed;
3111
3112 if (!mfi_tbolt_intr(sc))
3113 return 0;
3114
3115 DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc),
3116 (u_long)sc, (u_long)sc->sc_last_reply_idx);
3117
3118 KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size);
3119
3120 desc = (union mfi_mpi2_reply_descriptor *)
3121 ((uintptr_t)sc->sc_reply_frame_pool +
3122 sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3123
3124 bus_dmamap_sync(sc->sc_dmat,
3125 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3126 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3127 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3128 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3129 num_completed = 0;
3130 while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) !=
3131 MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
3132 smid = desc->header.SMID;
3133 KASSERT(smid > 0 && smid <= sc->sc_max_cmds);
3134 ccb = &sc->sc_ccb[smid - 1];
3135 DNPRINTF(MFI_D_INTR,
3136 "%s: mfi_tbolt_intr SMID %#x reply_idx %#x "
3137 "desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid,
3138 sc->sc_last_reply_idx, desc->words, ccb);
3139 KASSERT(ccb->ccb_state == MFI_CCB_RUNNING);
3140 if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO &&
3141 ccb->ccb_tb_io_request->ChainOffset != 0) {
3142 bus_dmamap_sync(sc->sc_dmat,
3143 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3144 ccb->ccb_tb_psg_frame -
3145 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3146 MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_POSTREAD);
3147 }
3148 if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) {
3149 bus_dmamap_sync(sc->sc_dmat,
3150 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3151 ccb->ccb_tb_pio_request -
3152 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3153 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3154 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3155 }
3156 if (ccb->ccb_done)
3157 ccb->ccb_done(ccb);
3158 else
3159 ccb->ccb_state = MFI_CCB_DONE;
3160 sc->sc_last_reply_idx++;
3161 if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) {
3162 sc->sc_last_reply_idx = 0;
3163 }
3164 desc->words = ~0x0;
3165 /* Get the next reply descriptor */
3166 desc = (union mfi_mpi2_reply_descriptor *)
3167 ((uintptr_t)sc->sc_reply_frame_pool +
3168 sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3169 num_completed++;
3170 }
3171 if (num_completed == 0)
3172 return 0;
3173
3174 bus_dmamap_sync(sc->sc_dmat,
3175 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3176 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3177 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3178 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3179 mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx);
3180 return 1;
3181 }
3182
3183
3184 int
3185 mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
3186 uint64_t blockno, uint32_t blockcnt)
3187 {
3188 struct scsipi_periph *periph = xs->xs_periph;
3189 struct mfi_mpi2_request_raid_scsi_io *io_req;
3190 int sge_count;
3191
3192 DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n",
3193 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
3194 periph->periph_target);
3195
3196 if (!xs->data)
3197 return 1;
3198
3199 ccb->ccb_done = mfi_tbolt_scsi_ld_done;
3200 ccb->ccb_xs = xs;
3201 ccb->ccb_data = xs->data;
3202 ccb->ccb_len = xs->datalen;
3203
3204 io_req = ccb->ccb_tb_io_request;
3205
3206 /* Just the CDB length,rest of the Flags are zero */
3207 io_req->IoFlags = xs->cmdlen;
3208 memset(io_req->CDB.CDB32, 0, 32);
3209 memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen);
3210
3211 io_req->RaidContext.TargetID = periph->periph_target;
3212 io_req->RaidContext.Status = 0;
3213 io_req->RaidContext.exStatus = 0;
3214 io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT;
3215 io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST;
3216 io_req->DevHandle = periph->periph_target;
3217
3218 ccb->ccb_tb_request_desc.header.RequestFlags =
3219 (MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
3220 io_req->DataLength = blockcnt * MFI_SECTOR_LEN;
3221
3222 if (xs->xs_control & XS_CTL_DATA_IN) {
3223 io_req->Control = MPI2_SCSIIO_CONTROL_READ;
3224 ccb->ccb_direction = MFI_DATA_IN;
3225 } else {
3226 io_req->Control = MPI2_SCSIIO_CONTROL_WRITE;
3227 ccb->ccb_direction = MFI_DATA_OUT;
3228 }
3229
3230 sge_count = mfi_tbolt_create_sgl(ccb,
3231 (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK
3232 );
3233 if (sge_count < 0)
3234 return 1;
3235 KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl);
3236 io_req->RaidContext.numSGE = sge_count;
3237 io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3238 io_req->SGLOffset0 =
3239 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
3240
3241 io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense);
3242 io_req->SenseBufferLength = MFI_SENSE_SIZE;
3243
3244 ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO;
3245 bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
3246 MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3247 ccb->ccb_tb_pio_request -
3248 MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3249 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3250 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3251
3252 return 0;
3253 }
3254
3255
3256 static void
3257 mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb)
3258 {
3259 struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
3260 mfi_scsi_xs_done(ccb, io_req->RaidContext.Status,
3261 io_req->RaidContext.exStatus);
3262 }
3263
3264 static int
3265 mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags)
3266 {
3267 struct mfi_softc *sc = ccb->ccb_sc;
3268 bus_dma_segment_t *sgd;
3269 int error, i, sge_idx, sge_count;
3270 struct mfi_mpi2_request_raid_scsi_io *io_req;
3271 struct mpi25_ieee_sge_chain64 *sgl_ptr;
3272
3273 DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc),
3274 (u_long)ccb->ccb_data);
3275
3276 if (!ccb->ccb_data)
3277 return -1;
3278
3279 KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
3280 error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
3281 ccb->ccb_data, ccb->ccb_len, NULL, flags);
3282 if (error) {
3283 if (error == EFBIG)
3284 aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
3285 sc->sc_max_sgl);
3286 else
3287 aprint_error_dev(sc->sc_dev,
3288 "error %d loading dma map\n", error);
3289 return -1;
3290 }
3291
3292 io_req = ccb->ccb_tb_io_request;
3293 sgl_ptr = &io_req->SGL.IeeeChain.Chain64;
3294 sge_count = ccb->ccb_dmamap->dm_nsegs;
3295 sgd = ccb->ccb_dmamap->dm_segs;
3296 KASSERT(sge_count <= sc->sc_max_sgl);
3297 KASSERT(sge_count <=
3298 (MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 +
3299 MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG));
3300
3301 if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) {
3302 /* One element to store the chain info */
3303 sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1;
3304 DNPRINTF(MFI_D_DMA,
3305 "mfi sge_idx %d sge_count %d io_req paddr 0x%" PRIx64 "\n",
3306 sge_idx, sge_count, ccb->ccb_tb_pio_request);
3307 } else {
3308 sge_idx = sge_count;
3309 }
3310
3311 for (i = 0; i < sge_idx; i++) {
3312 sgl_ptr->Address = htole64(sgd[i].ds_addr);
3313 sgl_ptr->Length = htole32(sgd[i].ds_len);
3314 sgl_ptr->Flags = 0;
3315 if (sge_idx < sge_count) {
3316 DNPRINTF(MFI_D_DMA,
3317 "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3318 " flags 0x%x\n", sgl_ptr, i,
3319 sgl_ptr->Address, sgl_ptr->Length,
3320 sgl_ptr->Flags);
3321 }
3322 sgl_ptr++;
3323 }
3324 io_req->ChainOffset = 0;
3325 if (sge_idx < sge_count) {
3326 struct mpi25_ieee_sge_chain64 *sg_chain;
3327 io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG;
3328 sg_chain = sgl_ptr;
3329 /* Prepare chain element */
3330 sg_chain->NextChainOffset = 0;
3331 sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3332 MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
3333 sg_chain->Length = (sizeof(mpi2_sge_io_union) *
3334 (sge_count - sge_idx));
3335 sg_chain->Address = ccb->ccb_tb_psg_frame;
3336 DNPRINTF(MFI_D_DMA,
3337 "sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32
3338 " flags 0x%x\n", sg_chain, sg_chain->Address,
3339 sg_chain->Length, sg_chain->Flags);
3340 sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64;
3341 for (; i < sge_count; i++) {
3342 sgl_ptr->Address = htole64(sgd[i].ds_addr);
3343 sgl_ptr->Length = htole32(sgd[i].ds_len);
3344 sgl_ptr->Flags = 0;
3345 DNPRINTF(MFI_D_DMA,
3346 "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3347 " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address,
3348 sgl_ptr->Length, sgl_ptr->Flags);
3349 sgl_ptr++;
3350 }
3351 bus_dmamap_sync(sc->sc_dmat,
3352 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3353 ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3354 MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_PREREAD);
3355 }
3356
3357 if (ccb->ccb_direction == MFI_DATA_IN) {
3358 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3359 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3360 } else {
3361 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3362 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3363 }
3364 return sge_count;
3365 }
3366
3367 /*
3368 * The ThunderBolt HW has an option for the driver to directly
3369 * access the underlying disks and operate on the RAID. To
3370 * do this there needs to be a capability to keep the RAID controller
3371 * and driver in sync. The FreeBSD driver does not take advantage
3372 * of this feature since it adds a lot of complexity and slows down
3373 * performance. Performance is gained by using the controller's
3374 * cache etc.
3375 *
3376 * Even though this driver doesn't access the disks directly, an
3377 * AEN like command is used to inform the RAID firmware to "sync"
3378 * with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command. This
3379 * command in write mode will return when the RAID firmware has
3380 * detected a change to the RAID state. Examples of this type
3381 * of change are removing a disk. Once the command returns then
3382 * the driver needs to acknowledge this and "sync" all LD's again.
3383 * This repeats until we shutdown. Then we need to cancel this
3384 * pending command.
3385 *
3386 * If this is not done right the RAID firmware will not remove a
3387 * pulled drive and the RAID won't go degraded etc. Effectively,
3388 * stopping any RAID mangement to functions.
3389 *
3390 * Doing another LD sync, requires the use of an event since the
3391 * driver needs to do a mfi_wait_command and can't do that in an
3392 * interrupt thread.
3393 *
3394 * The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO
3395 * That requires a bunch of structure and it is simplier to just do
3396 * the MFI_DCMD_LD_GET_LIST versus walking the RAID map.
3397 */
3398
3399 void
3400 mfi_tbolt_sync_map_info(struct work *w, void *v)
3401 {
3402 struct mfi_softc *sc = v;
3403 int i;
3404 struct mfi_ccb *ccb = NULL;
3405 uint8_t mbox[MFI_MBOX_SIZE];
3406 struct mfi_ld *ld_sync = NULL;
3407 size_t ld_size;
3408 int s;
3409
3410 DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc));
3411 again:
3412 s = splbio();
3413 if (sc->sc_ldsync_ccb != NULL) {
3414 splx(s);
3415 return;
3416 }
3417
3418 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
3419 sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) {
3420 aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n");
3421 goto err;
3422 }
3423
3424 ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld;
3425
3426 ld_sync = (struct mfi_ld *) malloc(ld_size, M_DEVBUF,
3427 M_WAITOK | M_ZERO);
3428 if (ld_sync == NULL) {
3429 aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n");
3430 goto err;
3431 }
3432 for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) {
3433 ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld;
3434 }
3435
3436 if ((ccb = mfi_get_ccb(sc)) == NULL) {
3437 aprint_error_dev(sc->sc_dev, "Failed to get sync command\n");
3438 free(ld_sync, M_DEVBUF);
3439 goto err;
3440 }
3441 sc->sc_ldsync_ccb = ccb;
3442
3443 memset(mbox, 0, MFI_MBOX_SIZE);
3444 mbox[0] = sc->sc_ld_list.mll_no_ld;
3445 mbox[1] = MFI_DCMD_MBOX_PEND_FLAG;
3446 if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT,
3447 ld_size, ld_sync, mbox)) {
3448 aprint_error_dev(sc->sc_dev, "Failed to create sync command\n");
3449 goto err;
3450 }
3451 /*
3452 * we won't sleep on this command, so we have to override
3453 * the callback set up by mfi_mgmt()
3454 */
3455 ccb->ccb_done = mfi_sync_map_complete;
3456
3457 mfi_post(sc, ccb);
3458 splx(s);
3459 return;
3460
3461 err:
3462 if (ld_sync)
3463 free(ld_sync, M_DEVBUF);
3464 if (ccb)
3465 mfi_put_ccb(ccb);
3466 sc->sc_ldsync_ccb = NULL;
3467 splx(s);
3468 kpause("ldsyncp", 0, hz, NULL);
3469 goto again;
3470 }
3471
3472 static void
3473 mfi_sync_map_complete(struct mfi_ccb *ccb)
3474 {
3475 struct mfi_softc *sc = ccb->ccb_sc;
3476 bool aborted = !sc->sc_running;
3477
3478 DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n",
3479 DEVNAME(ccb->ccb_sc));
3480 KASSERT(sc->sc_ldsync_ccb == ccb);
3481 mfi_mgmt_done(ccb);
3482 free(ccb->ccb_data, M_DEVBUF);
3483 if (ccb->ccb_flags & MFI_CCB_F_ERR) {
3484 aprint_error_dev(sc->sc_dev, "sync command failed\n");
3485 aborted = true;
3486 }
3487 mfi_put_ccb(ccb);
3488 sc->sc_ldsync_ccb = NULL;
3489
3490 /* set it up again so the driver can catch more events */
3491 if (!aborted) {
3492 workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3493 }
3494 }
3495
3496 static int
3497 mfifopen(dev_t dev, int flag, int mode, struct lwp *l)
3498 {
3499 struct mfi_softc *sc;
3500
3501 if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL)
3502 return (ENXIO);
3503 return (0);
3504 }
3505
3506 static int
3507 mfifclose(dev_t dev, int flag, int mode, struct lwp *l)
3508 {
3509 return (0);
3510 }
3511
3512 static int
3513 mfifioctl(dev_t dev, u_long cmd, void *data, int flag,
3514 struct lwp *l)
3515 {
3516 struct mfi_softc *sc;
3517 struct mfi_ioc_packet *ioc = data;
3518 uint8_t *udata;
3519 struct mfi_ccb *ccb = NULL;
3520 int ctx, i, s, error;
3521 union mfi_sense_ptr sense_ptr;
3522
3523 switch(cmd) {
3524 case MFI_CMD:
3525 sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no);
3526 break;
3527 default:
3528 return ENOTTY;
3529 }
3530 if (sc == NULL)
3531 return (ENXIO);
3532 if (sc->sc_opened)
3533 return (EBUSY);
3534
3535 switch(cmd) {
3536 case MFI_CMD:
3537 error = kauth_authorize_device_passthru(l->l_cred, dev,
3538 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
3539 if (error)
3540 return error;
3541 if (ioc->mfi_sge_count > MAX_IOCTL_SGE)
3542 return EINVAL;
3543 s = splbio();
3544 if ((ccb = mfi_get_ccb(sc)) == NULL)
3545 return ENOMEM;
3546 ccb->ccb_data = NULL;
3547 ctx = ccb->ccb_frame->mfr_header.mfh_context;
3548 memcpy(ccb->ccb_frame, ioc->mfi_frame.raw,
3549 sizeof(*ccb->ccb_frame));
3550 ccb->ccb_frame->mfr_header.mfh_context = ctx;
3551 ccb->ccb_frame->mfr_header.mfh_scsi_status = 0;
3552 ccb->ccb_frame->mfr_header.mfh_pad0 = 0;
3553 ccb->ccb_frame_size =
3554 (sizeof(union mfi_sgl) * ioc->mfi_sge_count) +
3555 ioc->mfi_sgl_off;
3556 if (ioc->mfi_sge_count > 0) {
3557 ccb->ccb_sgl = (union mfi_sgl *)
3558 &ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off];
3559 }
3560 if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ)
3561 ccb->ccb_direction = MFI_DATA_IN;
3562 if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE)
3563 ccb->ccb_direction = MFI_DATA_OUT;
3564 ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len;
3565 if (ccb->ccb_len > MAXPHYS) {
3566 error = ENOMEM;
3567 goto out;
3568 }
3569 if (ccb->ccb_len &&
3570 (ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) {
3571 udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO);
3572 if (udata == NULL) {
3573 error = ENOMEM;
3574 goto out;
3575 }
3576 ccb->ccb_data = udata;
3577 if (ccb->ccb_direction & MFI_DATA_OUT) {
3578 for (i = 0; i < ioc->mfi_sge_count; i++) {
3579 error = copyin(ioc->mfi_sgl[i].iov_base,
3580 udata, ioc->mfi_sgl[i].iov_len);
3581 if (error)
3582 goto out;
3583 udata = &udata[
3584 ioc->mfi_sgl[i].iov_len];
3585 }
3586 }
3587 if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) {
3588 error = EIO;
3589 goto out;
3590 }
3591 }
3592 if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) {
3593 ccb->ccb_frame->mfr_io.mif_sense_addr_lo =
3594 htole32(ccb->ccb_psense);
3595 ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0;
3596 }
3597 ccb->ccb_done = mfi_mgmt_done;
3598 mfi_post(sc, ccb);
3599 while (ccb->ccb_state != MFI_CCB_DONE)
3600 tsleep(ccb, PRIBIO, "mfi_fioc", 0);
3601
3602 if (ccb->ccb_direction & MFI_DATA_IN) {
3603 udata = ccb->ccb_data;
3604 for (i = 0; i < ioc->mfi_sge_count; i++) {
3605 error = copyout(udata,
3606 ioc->mfi_sgl[i].iov_base,
3607 ioc->mfi_sgl[i].iov_len);
3608 if (error)
3609 goto out;
3610 udata = &udata[
3611 ioc->mfi_sgl[i].iov_len];
3612 }
3613 }
3614 if (ioc->mfi_sense_len) {
3615 memcpy(&sense_ptr.sense_ptr_data[0],
3616 &ioc->mfi_frame.raw[ioc->mfi_sense_off],
3617 sizeof(sense_ptr.sense_ptr_data));
3618 error = copyout(ccb->ccb_sense,
3619 sense_ptr.user_space,
3620 sizeof(sense_ptr.sense_ptr_data));
3621 if (error)
3622 goto out;
3623 }
3624 memcpy(ioc->mfi_frame.raw, ccb->ccb_frame,
3625 sizeof(*ccb->ccb_frame));
3626 break;
3627 default:
3628 printf("mfifioctl unhandled cmd 0x%lx\n", cmd);
3629 return ENOTTY;
3630 }
3631
3632 out:
3633 if (ccb->ccb_data)
3634 free(ccb->ccb_data, M_DEVBUF);
3635 if (ccb)
3636 mfi_put_ccb(ccb);
3637 splx(s);
3638 return error;
3639 }
3640