mfi.c revision 1.62 1 /* $NetBSD: mfi.c,v 1.62 2019/11/10 21:16:35 chs Exp $ */
2 /* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2012 Manuel Bouyer.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * Copyright (c) 2006 Marco Peereboom <marco (at) peereboom.us>
30 *
31 * Permission to use, copy, modify, and distribute this software for any
32 * purpose with or without fee is hereby granted, provided that the above
33 * copyright notice and this permission notice appear in all copies.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
36 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
37 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
38 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
39 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
40 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
41 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
42 */
43
44 /*-
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 *
49 * Copyright 1994-2009 The FreeBSD Project.
50 * All rights reserved.
51 *
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
60 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR
62 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
63 * EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
64 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
65 * PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY
66 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
67 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
68 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 *
70 * The views and conclusions contained in the software and documentation
71 * are those of the authors and should not be interpreted as representing
72 * official policies,either expressed or implied, of the FreeBSD Project.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.62 2019/11/10 21:16:35 chs Exp $");
77
78 #include "bio.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/ioctl.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/cpu.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91
92 #include <uvm/uvm_param.h>
93
94 #include <sys/bus.h>
95
96 #include <dev/scsipi/scsipi_all.h>
97 #include <dev/scsipi/scsi_all.h>
98 #include <dev/scsipi/scsi_spc.h>
99 #include <dev/scsipi/scsipi_disk.h>
100 #include <dev/scsipi/scsi_disk.h>
101 #include <dev/scsipi/scsiconf.h>
102
103 #include <dev/ic/mfireg.h>
104 #include <dev/ic/mfivar.h>
105 #include <dev/ic/mfiio.h>
106
107 #if NBIO > 0
108 #include <dev/biovar.h>
109 #endif /* NBIO > 0 */
110
111 #include "ioconf.h"
112
113 #ifdef MFI_DEBUG
114 uint32_t mfi_debug = 0
115 /* | MFI_D_CMD */
116 /* | MFI_D_INTR */
117 /* | MFI_D_MISC */
118 /* | MFI_D_DMA */
119 /* | MFI_D_IOCTL */
120 /* | MFI_D_RW */
121 /* | MFI_D_MEM */
122 /* | MFI_D_CCB */
123 /* | MFI_D_SYNC */
124 ;
125 #endif
126
127 static void mfi_scsipi_request(struct scsipi_channel *,
128 scsipi_adapter_req_t, void *);
129 static void mfiminphys(struct buf *bp);
130
131 static struct mfi_ccb *mfi_get_ccb(struct mfi_softc *);
132 static void mfi_put_ccb(struct mfi_ccb *);
133 static int mfi_init_ccb(struct mfi_softc *);
134
135 static struct mfi_mem *mfi_allocmem(struct mfi_softc *, size_t);
136 static void mfi_freemem(struct mfi_softc *, struct mfi_mem **);
137
138 static int mfi_transition_firmware(struct mfi_softc *);
139 static int mfi_initialize_firmware(struct mfi_softc *);
140 static int mfi_get_info(struct mfi_softc *);
141 static int mfi_get_bbu(struct mfi_softc *,
142 struct mfi_bbu_status *);
143 /* return codes for mfi_get_bbu */
144 #define MFI_BBU_GOOD 0
145 #define MFI_BBU_BAD 1
146 #define MFI_BBU_UNKNOWN 2
147 static uint32_t mfi_read(struct mfi_softc *, bus_size_t);
148 static void mfi_write(struct mfi_softc *, bus_size_t, uint32_t);
149 static int mfi_poll(struct mfi_ccb *);
150 static int mfi_create_sgl(struct mfi_ccb *, int);
151
152 /* commands */
153 static int mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *);
154 static int mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
155 uint64_t, uint32_t);
156 static void mfi_scsi_ld_done(struct mfi_ccb *);
157 static void mfi_scsi_xs_done(struct mfi_ccb *, int, int);
158 static int mfi_mgmt_internal(struct mfi_softc *, uint32_t,
159 uint32_t, uint32_t, void *, uint8_t *, bool);
160 static int mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *,
161 uint32_t, uint32_t, uint32_t, void *, uint8_t *);
162 static void mfi_mgmt_done(struct mfi_ccb *);
163
164 #if NBIO > 0
165 static int mfi_ioctl(device_t, u_long, void *);
166 static int mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *);
167 static int mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *);
168 static int mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *);
169 static int mfi_ioctl_alarm(struct mfi_softc *,
170 struct bioc_alarm *);
171 static int mfi_ioctl_blink(struct mfi_softc *sc,
172 struct bioc_blink *);
173 static int mfi_ioctl_setstate(struct mfi_softc *,
174 struct bioc_setstate *);
175 static int mfi_bio_hs(struct mfi_softc *, int, int, void *);
176 static int mfi_create_sensors(struct mfi_softc *);
177 static int mfi_destroy_sensors(struct mfi_softc *);
178 static void mfi_sensor_refresh(struct sysmon_envsys *,
179 envsys_data_t *);
180 #endif /* NBIO > 0 */
181 static bool mfi_shutdown(device_t, int);
182 static bool mfi_suspend(device_t, const pmf_qual_t *);
183 static bool mfi_resume(device_t, const pmf_qual_t *);
184
185 static dev_type_open(mfifopen);
186 static dev_type_close(mfifclose);
187 static dev_type_ioctl(mfifioctl);
188 const struct cdevsw mfi_cdevsw = {
189 .d_open = mfifopen,
190 .d_close = mfifclose,
191 .d_read = noread,
192 .d_write = nowrite,
193 .d_ioctl = mfifioctl,
194 .d_stop = nostop,
195 .d_tty = notty,
196 .d_poll = nopoll,
197 .d_mmap = nommap,
198 .d_kqfilter = nokqfilter,
199 .d_discard = nodiscard,
200 .d_flag = D_OTHER
201 };
202
203 static uint32_t mfi_xscale_fw_state(struct mfi_softc *sc);
204 static void mfi_xscale_intr_ena(struct mfi_softc *sc);
205 static void mfi_xscale_intr_dis(struct mfi_softc *sc);
206 static int mfi_xscale_intr(struct mfi_softc *sc);
207 static void mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
208
209 static const struct mfi_iop_ops mfi_iop_xscale = {
210 mfi_xscale_fw_state,
211 mfi_xscale_intr_dis,
212 mfi_xscale_intr_ena,
213 mfi_xscale_intr,
214 mfi_xscale_post,
215 mfi_scsi_ld_io,
216 };
217
218 static uint32_t mfi_ppc_fw_state(struct mfi_softc *sc);
219 static void mfi_ppc_intr_ena(struct mfi_softc *sc);
220 static void mfi_ppc_intr_dis(struct mfi_softc *sc);
221 static int mfi_ppc_intr(struct mfi_softc *sc);
222 static void mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
223
224 static const struct mfi_iop_ops mfi_iop_ppc = {
225 mfi_ppc_fw_state,
226 mfi_ppc_intr_dis,
227 mfi_ppc_intr_ena,
228 mfi_ppc_intr,
229 mfi_ppc_post,
230 mfi_scsi_ld_io,
231 };
232
233 uint32_t mfi_gen2_fw_state(struct mfi_softc *sc);
234 void mfi_gen2_intr_ena(struct mfi_softc *sc);
235 void mfi_gen2_intr_dis(struct mfi_softc *sc);
236 int mfi_gen2_intr(struct mfi_softc *sc);
237 void mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
238
239 static const struct mfi_iop_ops mfi_iop_gen2 = {
240 mfi_gen2_fw_state,
241 mfi_gen2_intr_dis,
242 mfi_gen2_intr_ena,
243 mfi_gen2_intr,
244 mfi_gen2_post,
245 mfi_scsi_ld_io,
246 };
247
248 u_int32_t mfi_skinny_fw_state(struct mfi_softc *);
249 void mfi_skinny_intr_dis(struct mfi_softc *);
250 void mfi_skinny_intr_ena(struct mfi_softc *);
251 int mfi_skinny_intr(struct mfi_softc *);
252 void mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *);
253
254 static const struct mfi_iop_ops mfi_iop_skinny = {
255 mfi_skinny_fw_state,
256 mfi_skinny_intr_dis,
257 mfi_skinny_intr_ena,
258 mfi_skinny_intr,
259 mfi_skinny_post,
260 mfi_scsi_ld_io,
261 };
262
263 static int mfi_tbolt_init_desc_pool(struct mfi_softc *);
264 static int mfi_tbolt_init_MFI_queue(struct mfi_softc *);
265 static void mfi_tbolt_build_mpt_ccb(struct mfi_ccb *);
266 int mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
267 uint64_t, uint32_t);
268 static void mfi_tbolt_scsi_ld_done(struct mfi_ccb *);
269 static int mfi_tbolt_create_sgl(struct mfi_ccb *, int);
270 void mfi_tbolt_sync_map_info(struct work *, void *);
271 static void mfi_sync_map_complete(struct mfi_ccb *);
272
273 u_int32_t mfi_tbolt_fw_state(struct mfi_softc *);
274 void mfi_tbolt_intr_dis(struct mfi_softc *);
275 void mfi_tbolt_intr_ena(struct mfi_softc *);
276 int mfi_tbolt_intr(struct mfi_softc *sc);
277 void mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *);
278
279 static const struct mfi_iop_ops mfi_iop_tbolt = {
280 mfi_tbolt_fw_state,
281 mfi_tbolt_intr_dis,
282 mfi_tbolt_intr_ena,
283 mfi_tbolt_intr,
284 mfi_tbolt_post,
285 mfi_tbolt_scsi_ld_io,
286 };
287
288 #define mfi_fw_state(_s) ((_s)->sc_iop->mio_fw_state(_s))
289 #define mfi_intr_enable(_s) ((_s)->sc_iop->mio_intr_ena(_s))
290 #define mfi_intr_disable(_s) ((_s)->sc_iop->mio_intr_dis(_s))
291 #define mfi_my_intr(_s) ((_s)->sc_iop->mio_intr(_s))
292 #define mfi_post(_s, _c) ((_s)->sc_iop->mio_post((_s), (_c)))
293
294 static struct mfi_ccb *
295 mfi_get_ccb(struct mfi_softc *sc)
296 {
297 struct mfi_ccb *ccb;
298 int s;
299
300 s = splbio();
301 ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
302 if (ccb) {
303 TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
304 ccb->ccb_state = MFI_CCB_READY;
305 }
306 splx(s);
307
308 DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb);
309 if (__predict_false(ccb == NULL && sc->sc_running))
310 aprint_error_dev(sc->sc_dev, "out of ccb\n");
311
312 return ccb;
313 }
314
315 static void
316 mfi_put_ccb(struct mfi_ccb *ccb)
317 {
318 struct mfi_softc *sc = ccb->ccb_sc;
319 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
320 int s;
321
322 DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb);
323
324 hdr->mfh_cmd_status = 0x0;
325 hdr->mfh_flags = 0x0;
326 ccb->ccb_state = MFI_CCB_FREE;
327 ccb->ccb_xs = NULL;
328 ccb->ccb_flags = 0;
329 ccb->ccb_done = NULL;
330 ccb->ccb_direction = 0;
331 ccb->ccb_frame_size = 0;
332 ccb->ccb_extra_frames = 0;
333 ccb->ccb_sgl = NULL;
334 ccb->ccb_data = NULL;
335 ccb->ccb_len = 0;
336 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
337 /* erase tb_request_desc but preserve SMID */
338 int index = ccb->ccb_tb_request_desc.header.SMID;
339 ccb->ccb_tb_request_desc.words = 0;
340 ccb->ccb_tb_request_desc.header.SMID = index;
341 }
342 s = splbio();
343 TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
344 splx(s);
345 }
346
347 static int
348 mfi_destroy_ccb(struct mfi_softc *sc)
349 {
350 struct mfi_ccb *ccb;
351 uint32_t i;
352
353 DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc));
354
355
356 for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) {
357 /* create a dma map for transfer */
358 bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
359 }
360
361 if (i < sc->sc_max_cmds)
362 return EBUSY;
363
364 free(sc->sc_ccb, M_DEVBUF);
365
366 return 0;
367 }
368
369 static int
370 mfi_init_ccb(struct mfi_softc *sc)
371 {
372 struct mfi_ccb *ccb;
373 uint32_t i;
374 int error;
375 bus_addr_t io_req_base_phys;
376 uint8_t *io_req_base;
377 int offset;
378
379 DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc));
380
381 sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds,
382 M_DEVBUF, M_WAITOK|M_ZERO);
383 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
384 /*
385 * The first 256 bytes (SMID 0) is not used.
386 * Don't add to the cmd list.
387 */
388 io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool) +
389 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
390 io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) +
391 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
392 } else {
393 io_req_base = NULL; /* XXX: gcc */
394 io_req_base_phys = 0; /* XXX: gcc */
395 }
396
397 for (i = 0; i < sc->sc_max_cmds; i++) {
398 ccb = &sc->sc_ccb[i];
399
400 ccb->ccb_sc = sc;
401
402 /* select i'th frame */
403 ccb->ccb_frame = (union mfi_frame *)
404 ((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i);
405 ccb->ccb_pframe =
406 MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i;
407 ccb->ccb_frame->mfr_header.mfh_context = i;
408
409 /* select i'th sense */
410 ccb->ccb_sense = (struct mfi_sense *)
411 ((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
412 ccb->ccb_psense =
413 (MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
414
415 /* create a dma map for transfer */
416 error = bus_dmamap_create(sc->sc_datadmat,
417 MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0,
418 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
419 if (error) {
420 aprint_error_dev(sc->sc_dev,
421 "cannot create ccb dmamap (%d)\n", error);
422 goto destroy;
423 }
424 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
425 offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i;
426 ccb->ccb_tb_io_request =
427 (struct mfi_mpi2_request_raid_scsi_io *)
428 (io_req_base + offset);
429 ccb->ccb_tb_pio_request =
430 io_req_base_phys + offset;
431 offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i;
432 ccb->ccb_tb_sg_frame =
433 (mpi2_sge_io_union *)(sc->sc_reply_pool_limit +
434 offset);
435 ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr +
436 offset;
437 /* SMID 0 is reserved. Set SMID/index from 1 */
438 ccb->ccb_tb_request_desc.header.SMID = i + 1;
439 }
440
441 DNPRINTF(MFI_D_CCB,
442 "ccb(%d): %p frame: %#lx (%#lx) sense: %#lx (%#lx) map: %#lx\n",
443 ccb->ccb_frame->mfr_header.mfh_context, ccb,
444 (u_long)ccb->ccb_frame, (u_long)ccb->ccb_pframe,
445 (u_long)ccb->ccb_sense, (u_long)ccb->ccb_psense,
446 (u_long)ccb->ccb_dmamap);
447
448 /* add ccb to queue */
449 mfi_put_ccb(ccb);
450 }
451
452 return 0;
453 destroy:
454 /* free dma maps and ccb memory */
455 while (i) {
456 i--;
457 ccb = &sc->sc_ccb[i];
458 bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
459 }
460
461 free(sc->sc_ccb, M_DEVBUF);
462
463 return 1;
464 }
465
466 static uint32_t
467 mfi_read(struct mfi_softc *sc, bus_size_t r)
468 {
469 uint32_t rv;
470
471 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
472 BUS_SPACE_BARRIER_READ);
473 rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
474
475 DNPRINTF(MFI_D_RW, "%s: mr 0x%lx 0x08%x ", DEVNAME(sc), (u_long)r, rv);
476 return rv;
477 }
478
479 static void
480 mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v)
481 {
482 DNPRINTF(MFI_D_RW, "%s: mw 0x%lx 0x%08x", DEVNAME(sc), (u_long)r, v);
483
484 bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
485 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
486 BUS_SPACE_BARRIER_WRITE);
487 }
488
489 static struct mfi_mem *
490 mfi_allocmem(struct mfi_softc *sc, size_t size)
491 {
492 struct mfi_mem *mm;
493 int nsegs;
494
495 DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %ld\n", DEVNAME(sc),
496 (long)size);
497
498 mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_WAITOK|M_ZERO);
499 mm->am_size = size;
500
501 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
502 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0)
503 goto amfree;
504
505 if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1,
506 &nsegs, BUS_DMA_NOWAIT) != 0)
507 goto destroy;
508
509 if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva,
510 BUS_DMA_NOWAIT) != 0)
511 goto free;
512
513 if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL,
514 BUS_DMA_NOWAIT) != 0)
515 goto unmap;
516
517 DNPRINTF(MFI_D_MEM, " kva: %p dva: %p map: %p\n",
518 mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map);
519
520 memset(mm->am_kva, 0, size);
521 return mm;
522
523 unmap:
524 bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size);
525 free:
526 bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
527 destroy:
528 bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
529 amfree:
530 free(mm, M_DEVBUF);
531
532 return NULL;
533 }
534
535 static void
536 mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp)
537 {
538 struct mfi_mem *mm = *mmp;
539
540 if (mm == NULL)
541 return;
542
543 *mmp = NULL;
544
545 DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm);
546
547 bus_dmamap_unload(sc->sc_dmat, mm->am_map);
548 bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size);
549 bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
550 bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
551 free(mm, M_DEVBUF);
552 }
553
554 static int
555 mfi_transition_firmware(struct mfi_softc *sc)
556 {
557 uint32_t fw_state, cur_state;
558 int max_wait, i;
559
560 fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
561
562 DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc),
563 fw_state);
564
565 while (fw_state != MFI_STATE_READY) {
566 DNPRINTF(MFI_D_MISC,
567 "%s: waiting for firmware to become ready\n",
568 DEVNAME(sc));
569 cur_state = fw_state;
570 switch (fw_state) {
571 case MFI_STATE_FAULT:
572 aprint_error_dev(sc->sc_dev, "firmware fault\n");
573 return 1;
574 case MFI_STATE_WAIT_HANDSHAKE:
575 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
576 sc->sc_ioptype == MFI_IOP_TBOLT)
577 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE);
578 else
579 mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE);
580 max_wait = 2;
581 break;
582 case MFI_STATE_OPERATIONAL:
583 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
584 sc->sc_ioptype == MFI_IOP_TBOLT)
585 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_READY);
586 else
587 mfi_write(sc, MFI_IDB, MFI_INIT_READY);
588 max_wait = 10;
589 break;
590 case MFI_STATE_UNDEFINED:
591 case MFI_STATE_BB_INIT:
592 max_wait = 2;
593 break;
594 case MFI_STATE_FW_INIT:
595 case MFI_STATE_DEVICE_SCAN:
596 case MFI_STATE_FLUSH_CACHE:
597 max_wait = 20;
598 break;
599 case MFI_STATE_BOOT_MESSAGE_PENDING:
600 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
601 sc->sc_ioptype == MFI_IOP_TBOLT) {
602 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG);
603 } else {
604 mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG);
605 }
606 max_wait = 180;
607 break;
608 default:
609 aprint_error_dev(sc->sc_dev,
610 "unknown firmware state %d\n", fw_state);
611 return 1;
612 }
613 for (i = 0; i < (max_wait * 10); i++) {
614 fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
615 if (fw_state == cur_state)
616 DELAY(100000);
617 else
618 break;
619 }
620 if (fw_state == cur_state) {
621 aprint_error_dev(sc->sc_dev,
622 "firmware stuck in state %#x\n", fw_state);
623 return 1;
624 }
625 }
626
627 return 0;
628 }
629
630 static int
631 mfi_initialize_firmware(struct mfi_softc *sc)
632 {
633 struct mfi_ccb *ccb;
634 struct mfi_init_frame *init;
635 struct mfi_init_qinfo *qinfo;
636
637 DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc));
638
639 if ((ccb = mfi_get_ccb(sc)) == NULL)
640 return 1;
641
642 init = &ccb->ccb_frame->mfr_init;
643 qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE);
644
645 memset(qinfo, 0, sizeof *qinfo);
646 qinfo->miq_rq_entries = sc->sc_max_cmds + 1;
647 qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
648 offsetof(struct mfi_prod_cons, mpc_reply_q));
649 qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
650 offsetof(struct mfi_prod_cons, mpc_producer));
651 qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
652 offsetof(struct mfi_prod_cons, mpc_consumer));
653
654 init->mif_header.mfh_cmd = MFI_CMD_INIT;
655 init->mif_header.mfh_data_len = sizeof *qinfo;
656 init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE);
657
658 DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n",
659 DEVNAME(sc),
660 qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo,
661 qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo);
662
663 if (mfi_poll(ccb)) {
664 aprint_error_dev(sc->sc_dev,
665 "mfi_initialize_firmware failed\n");
666 return 1;
667 }
668
669 mfi_put_ccb(ccb);
670
671 return 0;
672 }
673
674 static int
675 mfi_get_info(struct mfi_softc *sc)
676 {
677 #ifdef MFI_DEBUG
678 int i;
679 #endif
680 DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc));
681
682 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN,
683 sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false))
684 return 1;
685
686 #ifdef MFI_DEBUG
687
688 for (i = 0; i < sc->sc_info.mci_image_component_count; i++) {
689 printf("%s: active FW %s Version %s date %s time %s\n",
690 DEVNAME(sc),
691 sc->sc_info.mci_image_component[i].mic_name,
692 sc->sc_info.mci_image_component[i].mic_version,
693 sc->sc_info.mci_image_component[i].mic_build_date,
694 sc->sc_info.mci_image_component[i].mic_build_time);
695 }
696
697 for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) {
698 printf("%s: pending FW %s Version %s date %s time %s\n",
699 DEVNAME(sc),
700 sc->sc_info.mci_pending_image_component[i].mic_name,
701 sc->sc_info.mci_pending_image_component[i].mic_version,
702 sc->sc_info.mci_pending_image_component[i].mic_build_date,
703 sc->sc_info.mci_pending_image_component[i].mic_build_time);
704 }
705
706 printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n",
707 DEVNAME(sc),
708 sc->sc_info.mci_max_arms,
709 sc->sc_info.mci_max_spans,
710 sc->sc_info.mci_max_arrays,
711 sc->sc_info.mci_max_lds,
712 sc->sc_info.mci_product_name);
713
714 printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n",
715 DEVNAME(sc),
716 sc->sc_info.mci_serial_number,
717 sc->sc_info.mci_hw_present,
718 sc->sc_info.mci_current_fw_time,
719 sc->sc_info.mci_max_cmds,
720 sc->sc_info.mci_max_sg_elements);
721
722 printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n",
723 DEVNAME(sc),
724 sc->sc_info.mci_max_request_size,
725 sc->sc_info.mci_lds_present,
726 sc->sc_info.mci_lds_degraded,
727 sc->sc_info.mci_lds_offline,
728 sc->sc_info.mci_pd_present);
729
730 printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n",
731 DEVNAME(sc),
732 sc->sc_info.mci_pd_disks_present,
733 sc->sc_info.mci_pd_disks_pred_failure,
734 sc->sc_info.mci_pd_disks_failed);
735
736 printf("%s: nvram %d mem %d flash %d\n",
737 DEVNAME(sc),
738 sc->sc_info.mci_nvram_size,
739 sc->sc_info.mci_memory_size,
740 sc->sc_info.mci_flash_size);
741
742 printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n",
743 DEVNAME(sc),
744 sc->sc_info.mci_ram_correctable_errors,
745 sc->sc_info.mci_ram_uncorrectable_errors,
746 sc->sc_info.mci_cluster_allowed,
747 sc->sc_info.mci_cluster_active);
748
749 printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n",
750 DEVNAME(sc),
751 sc->sc_info.mci_max_strips_per_io,
752 sc->sc_info.mci_raid_levels,
753 sc->sc_info.mci_adapter_ops,
754 sc->sc_info.mci_ld_ops);
755
756 printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n",
757 DEVNAME(sc),
758 sc->sc_info.mci_stripe_sz_ops.min,
759 sc->sc_info.mci_stripe_sz_ops.max,
760 sc->sc_info.mci_pd_ops,
761 sc->sc_info.mci_pd_mix_support);
762
763 printf("%s: ecc_bucket %d pckg_prop %s\n",
764 DEVNAME(sc),
765 sc->sc_info.mci_ecc_bucket_count,
766 sc->sc_info.mci_package_version);
767
768 printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n",
769 DEVNAME(sc),
770 sc->sc_info.mci_properties.mcp_seq_num,
771 sc->sc_info.mci_properties.mcp_pred_fail_poll_interval,
772 sc->sc_info.mci_properties.mcp_intr_throttle_cnt,
773 sc->sc_info.mci_properties.mcp_intr_throttle_timeout);
774
775 printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n",
776 DEVNAME(sc),
777 sc->sc_info.mci_properties.mcp_rebuild_rate,
778 sc->sc_info.mci_properties.mcp_patrol_read_rate,
779 sc->sc_info.mci_properties.mcp_bgi_rate,
780 sc->sc_info.mci_properties.mcp_cc_rate);
781
782 printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n",
783 DEVNAME(sc),
784 sc->sc_info.mci_properties.mcp_recon_rate,
785 sc->sc_info.mci_properties.mcp_cache_flush_interval,
786 sc->sc_info.mci_properties.mcp_spinup_drv_cnt,
787 sc->sc_info.mci_properties.mcp_spinup_delay,
788 sc->sc_info.mci_properties.mcp_cluster_enable);
789
790 printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n",
791 DEVNAME(sc),
792 sc->sc_info.mci_properties.mcp_coercion_mode,
793 sc->sc_info.mci_properties.mcp_alarm_enable,
794 sc->sc_info.mci_properties.mcp_disable_auto_rebuild,
795 sc->sc_info.mci_properties.mcp_disable_battery_warn,
796 sc->sc_info.mci_properties.mcp_ecc_bucket_size);
797
798 printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n",
799 DEVNAME(sc),
800 sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate,
801 sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion,
802 sc->sc_info.mci_properties.mcp_expose_encl_devices);
803
804 printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n",
805 DEVNAME(sc),
806 sc->sc_info.mci_pci.mip_vendor,
807 sc->sc_info.mci_pci.mip_device,
808 sc->sc_info.mci_pci.mip_subvendor,
809 sc->sc_info.mci_pci.mip_subdevice);
810
811 printf("%s: type %#x port_count %d port_addr ",
812 DEVNAME(sc),
813 sc->sc_info.mci_host.mih_type,
814 sc->sc_info.mci_host.mih_port_count);
815
816 for (i = 0; i < 8; i++)
817 printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]);
818 printf("\n");
819
820 printf("%s: type %.x port_count %d port_addr ",
821 DEVNAME(sc),
822 sc->sc_info.mci_device.mid_type,
823 sc->sc_info.mci_device.mid_port_count);
824
825 for (i = 0; i < 8; i++) {
826 printf("%.0" PRIx64 " ",
827 sc->sc_info.mci_device.mid_port_addr[i]);
828 }
829 printf("\n");
830 #endif /* MFI_DEBUG */
831
832 return 0;
833 }
834
835 static int
836 mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat)
837 {
838 DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc));
839
840 if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN,
841 sizeof(*stat), stat, NULL, cold ? true : false))
842 return MFI_BBU_UNKNOWN;
843 #ifdef MFI_DEBUG
844 printf("bbu type %d, voltage %d, current %d, temperature %d, "
845 "status 0x%x\n", stat->battery_type, stat->voltage, stat->current,
846 stat->temperature, stat->fw_status);
847 printf("details: ");
848 switch(stat->battery_type) {
849 case MFI_BBU_TYPE_IBBU:
850 printf("guage %d relative charge %d charger state %d "
851 "charger ctrl %d\n", stat->detail.ibbu.gas_guage_status,
852 stat->detail.ibbu.relative_charge ,
853 stat->detail.ibbu.charger_system_state ,
854 stat->detail.ibbu.charger_system_ctrl);
855 printf("\tcurrent %d abs charge %d max error %d\n",
856 stat->detail.ibbu.charging_current ,
857 stat->detail.ibbu.absolute_charge ,
858 stat->detail.ibbu.max_error);
859 break;
860 case MFI_BBU_TYPE_BBU:
861 printf("guage %d relative charge %d charger state %d\n",
862 stat->detail.ibbu.gas_guage_status,
863 stat->detail.bbu.relative_charge ,
864 stat->detail.bbu.charger_status );
865 printf("\trem capacity %d fyll capacity %d SOH %d\n",
866 stat->detail.bbu.remaining_capacity ,
867 stat->detail.bbu.full_charge_capacity ,
868 stat->detail.bbu.is_SOH_good);
869 break;
870 default:
871 printf("\n");
872 }
873 #endif
874 switch(stat->battery_type) {
875 case MFI_BBU_TYPE_BBU:
876 return (stat->detail.bbu.is_SOH_good ?
877 MFI_BBU_GOOD : MFI_BBU_BAD);
878 case MFI_BBU_TYPE_NONE:
879 return MFI_BBU_UNKNOWN;
880 default:
881 if (stat->fw_status &
882 (MFI_BBU_STATE_PACK_MISSING |
883 MFI_BBU_STATE_VOLTAGE_LOW |
884 MFI_BBU_STATE_TEMPERATURE_HIGH |
885 MFI_BBU_STATE_LEARN_CYC_FAIL |
886 MFI_BBU_STATE_LEARN_CYC_TIMEOUT |
887 MFI_BBU_STATE_I2C_ERR_DETECT))
888 return MFI_BBU_BAD;
889 return MFI_BBU_GOOD;
890 }
891 }
892
893 static void
894 mfiminphys(struct buf *bp)
895 {
896 DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount);
897
898 /* XXX currently using MFI_MAXFER = MAXPHYS */
899 if (bp->b_bcount > MFI_MAXFER)
900 bp->b_bcount = MFI_MAXFER;
901 minphys(bp);
902 }
903
904 int
905 mfi_rescan(device_t self, const char *ifattr, const int *locators)
906 {
907 struct mfi_softc *sc = device_private(self);
908
909 if (sc->sc_child != NULL)
910 return 0;
911
912 sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan,
913 scsiprint, NULL);
914
915 return 0;
916 }
917
918 void
919 mfi_childdetached(device_t self, device_t child)
920 {
921 struct mfi_softc *sc = device_private(self);
922
923 KASSERT(self == sc->sc_dev);
924 KASSERT(child == sc->sc_child);
925
926 if (child == sc->sc_child)
927 sc->sc_child = NULL;
928 }
929
930 int
931 mfi_detach(struct mfi_softc *sc, int flags)
932 {
933 int error;
934
935 DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc));
936
937 if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
938 return error;
939
940 #if NBIO > 0
941 mfi_destroy_sensors(sc);
942 bio_unregister(sc->sc_dev);
943 #endif /* NBIO > 0 */
944
945 mfi_intr_disable(sc);
946 mfi_shutdown(sc->sc_dev, 0);
947
948 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
949 workqueue_destroy(sc->sc_ldsync_wq);
950 mfi_put_ccb(sc->sc_ldsync_ccb);
951 mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
952 mfi_freemem(sc, &sc->sc_tbolt_ioc_init);
953 mfi_freemem(sc, &sc->sc_tbolt_verbuf);
954 }
955
956 if ((error = mfi_destroy_ccb(sc)) != 0)
957 return error;
958
959 mfi_freemem(sc, &sc->sc_sense);
960
961 mfi_freemem(sc, &sc->sc_frames);
962
963 mfi_freemem(sc, &sc->sc_pcq);
964
965 return 0;
966 }
967
968 static bool
969 mfi_shutdown(device_t dev, int how)
970 {
971 struct mfi_softc *sc = device_private(dev);
972 uint8_t mbox[MFI_MBOX_SIZE];
973 int s = splbio();
974 DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc));
975 if (sc->sc_running) {
976 mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
977 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH,
978 MFI_DATA_NONE, 0, NULL, mbox, true)) {
979 aprint_error_dev(dev, "shutdown: cache flush failed\n");
980 goto fail;
981 }
982
983 mbox[0] = 0;
984 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN,
985 MFI_DATA_NONE, 0, NULL, mbox, true)) {
986 aprint_error_dev(dev, "shutdown: "
987 "firmware shutdown failed\n");
988 goto fail;
989 }
990 sc->sc_running = false;
991 }
992 splx(s);
993 return true;
994 fail:
995 splx(s);
996 return false;
997 }
998
999 static bool
1000 mfi_suspend(device_t dev, const pmf_qual_t *q)
1001 {
1002 /* XXX to be implemented */
1003 return false;
1004 }
1005
1006 static bool
1007 mfi_resume(device_t dev, const pmf_qual_t *q)
1008 {
1009 /* XXX to be implemented */
1010 return false;
1011 }
1012
1013 int
1014 mfi_attach(struct mfi_softc *sc, enum mfi_iop iop)
1015 {
1016 struct scsipi_adapter *adapt = &sc->sc_adapt;
1017 struct scsipi_channel *chan = &sc->sc_chan;
1018 uint32_t status, frames, max_sgl;
1019 int i;
1020
1021 DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc));
1022
1023 sc->sc_ioptype = iop;
1024
1025 switch (iop) {
1026 case MFI_IOP_XSCALE:
1027 sc->sc_iop = &mfi_iop_xscale;
1028 break;
1029 case MFI_IOP_PPC:
1030 sc->sc_iop = &mfi_iop_ppc;
1031 break;
1032 case MFI_IOP_GEN2:
1033 sc->sc_iop = &mfi_iop_gen2;
1034 break;
1035 case MFI_IOP_SKINNY:
1036 sc->sc_iop = &mfi_iop_skinny;
1037 break;
1038 case MFI_IOP_TBOLT:
1039 sc->sc_iop = &mfi_iop_tbolt;
1040 break;
1041 default:
1042 panic("%s: unknown iop %d", DEVNAME(sc), iop);
1043 }
1044
1045 if (mfi_transition_firmware(sc))
1046 return 1;
1047
1048 TAILQ_INIT(&sc->sc_ccb_freeq);
1049
1050 status = mfi_fw_state(sc);
1051 sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK;
1052 max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16;
1053 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1054 sc->sc_max_sgl = uimin(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1055 sc->sc_sgl_size = sizeof(struct mfi_sg_ieee);
1056 } else if (sc->sc_64bit_dma) {
1057 sc->sc_max_sgl = uimin(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1058 sc->sc_sgl_size = sizeof(struct mfi_sg64);
1059 } else {
1060 sc->sc_max_sgl = max_sgl;
1061 sc->sc_sgl_size = sizeof(struct mfi_sg32);
1062 }
1063 DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n",
1064 DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl);
1065
1066 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1067 uint32_t tb_mem_size;
1068 /* for Alignment */
1069 tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALLIGNMENT;
1070
1071 tb_mem_size +=
1072 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1);
1073 sc->sc_reply_pool_size =
1074 ((sc->sc_max_cmds + 1 + 15) / 16) * 16;
1075 tb_mem_size +=
1076 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
1077
1078 /* this is for SGL's */
1079 tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds;
1080 sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size);
1081 if (sc->sc_tbolt_reqmsgpool == NULL) {
1082 aprint_error_dev(sc->sc_dev,
1083 "unable to allocate thunderbolt "
1084 "request message pool\n");
1085 goto nopcq;
1086 }
1087 if (mfi_tbolt_init_desc_pool(sc)) {
1088 aprint_error_dev(sc->sc_dev,
1089 "Thunderbolt pool preparation error\n");
1090 goto nopcq;
1091 }
1092
1093 /*
1094 * Allocate DMA memory mapping for MPI2 IOC Init descriptor,
1095 * we are taking it diffrent from what we have allocated for
1096 * Request and reply descriptors to avoid confusion later
1097 */
1098 sc->sc_tbolt_ioc_init = mfi_allocmem(sc,
1099 sizeof(struct mpi2_ioc_init_request));
1100 if (sc->sc_tbolt_ioc_init == NULL) {
1101 aprint_error_dev(sc->sc_dev,
1102 "unable to allocate thunderbolt IOC init memory");
1103 goto nopcq;
1104 }
1105
1106 sc->sc_tbolt_verbuf = mfi_allocmem(sc,
1107 MEGASAS_MAX_NAME*sizeof(bus_addr_t));
1108 if (sc->sc_tbolt_verbuf == NULL) {
1109 aprint_error_dev(sc->sc_dev,
1110 "unable to allocate thunderbolt version buffer\n");
1111 goto nopcq;
1112 }
1113
1114 }
1115 /* consumer/producer and reply queue memory */
1116 sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) +
1117 sizeof(struct mfi_prod_cons));
1118 if (sc->sc_pcq == NULL) {
1119 aprint_error_dev(sc->sc_dev,
1120 "unable to allocate reply queue memory\n");
1121 goto nopcq;
1122 }
1123 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1124 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1125 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1126
1127 /* frame memory */
1128 frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) /
1129 MFI_FRAME_SIZE + 1;
1130 sc->sc_frames_size = frames * MFI_FRAME_SIZE;
1131 sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds);
1132 if (sc->sc_frames == NULL) {
1133 aprint_error_dev(sc->sc_dev,
1134 "unable to allocate frame memory\n");
1135 goto noframe;
1136 }
1137 /* XXX hack, fix this */
1138 if (MFIMEM_DVA(sc->sc_frames) & 0x3f) {
1139 aprint_error_dev(sc->sc_dev,
1140 "improper frame alignment (%#llx) FIXME\n",
1141 (long long int)MFIMEM_DVA(sc->sc_frames));
1142 goto noframe;
1143 }
1144
1145 /* sense memory */
1146 sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE);
1147 if (sc->sc_sense == NULL) {
1148 aprint_error_dev(sc->sc_dev,
1149 "unable to allocate sense memory\n");
1150 goto nosense;
1151 }
1152
1153 /* now that we have all memory bits go initialize ccbs */
1154 if (mfi_init_ccb(sc)) {
1155 aprint_error_dev(sc->sc_dev, "could not init ccb list\n");
1156 goto noinit;
1157 }
1158
1159 /* kickstart firmware with all addresses and pointers */
1160 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1161 if (mfi_tbolt_init_MFI_queue(sc)) {
1162 aprint_error_dev(sc->sc_dev,
1163 "could not initialize firmware\n");
1164 goto noinit;
1165 }
1166 } else {
1167 if (mfi_initialize_firmware(sc)) {
1168 aprint_error_dev(sc->sc_dev,
1169 "could not initialize firmware\n");
1170 goto noinit;
1171 }
1172 }
1173 sc->sc_running = true;
1174
1175 if (mfi_get_info(sc)) {
1176 aprint_error_dev(sc->sc_dev,
1177 "could not retrieve controller information\n");
1178 goto noinit;
1179 }
1180 aprint_normal_dev(sc->sc_dev,
1181 "%s version %s\n",
1182 sc->sc_info.mci_product_name,
1183 sc->sc_info.mci_package_version);
1184
1185
1186 aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ",
1187 sc->sc_info.mci_lds_present,
1188 sc->sc_info.mci_memory_size);
1189 sc->sc_bbuok = false;
1190 if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) {
1191 struct mfi_bbu_status bbu_stat;
1192 int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat);
1193 aprint_normal("BBU type ");
1194 switch (bbu_stat.battery_type) {
1195 case MFI_BBU_TYPE_BBU:
1196 aprint_normal("BBU");
1197 break;
1198 case MFI_BBU_TYPE_IBBU:
1199 aprint_normal("IBBU");
1200 break;
1201 default:
1202 aprint_normal("unknown type %d", bbu_stat.battery_type);
1203 }
1204 aprint_normal(", status ");
1205 switch(mfi_bbu_status) {
1206 case MFI_BBU_GOOD:
1207 aprint_normal("good\n");
1208 sc->sc_bbuok = true;
1209 break;
1210 case MFI_BBU_BAD:
1211 aprint_normal("bad\n");
1212 break;
1213 case MFI_BBU_UNKNOWN:
1214 aprint_normal("unknown\n");
1215 break;
1216 default:
1217 panic("mfi_bbu_status");
1218 }
1219 } else {
1220 aprint_normal("BBU not present\n");
1221 }
1222
1223 sc->sc_ld_cnt = sc->sc_info.mci_lds_present;
1224 sc->sc_max_ld = sc->sc_ld_cnt;
1225 for (i = 0; i < sc->sc_ld_cnt; i++)
1226 sc->sc_ld[i].ld_present = 1;
1227
1228 memset(adapt, 0, sizeof(*adapt));
1229 adapt->adapt_dev = sc->sc_dev;
1230 adapt->adapt_nchannels = 1;
1231 /* keep a few commands for management */
1232 if (sc->sc_max_cmds > 4)
1233 adapt->adapt_openings = sc->sc_max_cmds - 4;
1234 else
1235 adapt->adapt_openings = sc->sc_max_cmds;
1236 adapt->adapt_max_periph = adapt->adapt_openings;
1237 adapt->adapt_request = mfi_scsipi_request;
1238 adapt->adapt_minphys = mfiminphys;
1239
1240 memset(chan, 0, sizeof(*chan));
1241 chan->chan_adapter = adapt;
1242 chan->chan_bustype = &scsi_sas_bustype;
1243 chan->chan_channel = 0;
1244 chan->chan_flags = 0;
1245 chan->chan_nluns = 8;
1246 chan->chan_ntargets = MFI_MAX_LD;
1247 chan->chan_id = MFI_MAX_LD;
1248
1249 mfi_rescan(sc->sc_dev, "scsi", NULL);
1250
1251 /* enable interrupts */
1252 mfi_intr_enable(sc);
1253
1254 #if NBIO > 0
1255 if (bio_register(sc->sc_dev, mfi_ioctl) != 0)
1256 panic("%s: controller registration failed", DEVNAME(sc));
1257 if (mfi_create_sensors(sc) != 0)
1258 aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
1259 #endif /* NBIO > 0 */
1260 if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume,
1261 mfi_shutdown)) {
1262 aprint_error_dev(sc->sc_dev,
1263 "couldn't establish power handler\n");
1264 }
1265
1266 return 0;
1267 noinit:
1268 mfi_freemem(sc, &sc->sc_sense);
1269 nosense:
1270 mfi_freemem(sc, &sc->sc_frames);
1271 noframe:
1272 mfi_freemem(sc, &sc->sc_pcq);
1273 nopcq:
1274 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1275 if (sc->sc_tbolt_reqmsgpool)
1276 mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
1277 if (sc->sc_tbolt_verbuf)
1278 mfi_freemem(sc, &sc->sc_tbolt_verbuf);
1279 }
1280 return 1;
1281 }
1282
1283 static int
1284 mfi_poll(struct mfi_ccb *ccb)
1285 {
1286 struct mfi_softc *sc = ccb->ccb_sc;
1287 struct mfi_frame_header *hdr;
1288 int to = 0;
1289 int rv = 0;
1290
1291 DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc));
1292
1293 hdr = &ccb->ccb_frame->mfr_header;
1294 hdr->mfh_cmd_status = 0xff;
1295 if (!sc->sc_MFA_enabled)
1296 hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
1297
1298 /* no callback, caller is supposed to do the cleanup */
1299 ccb->ccb_done = NULL;
1300
1301 mfi_post(sc, ccb);
1302 if (sc->sc_MFA_enabled) {
1303 /*
1304 * depending on the command type, result may be posted
1305 * to *hdr, or not. In addition it seems there's
1306 * no way to avoid posting the SMID to the reply queue.
1307 * So pool using the interrupt routine.
1308 */
1309 while (ccb->ccb_state != MFI_CCB_DONE) {
1310 delay(1000);
1311 if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1312 rv = 1;
1313 break;
1314 }
1315 mfi_tbolt_intrh(sc);
1316 }
1317 } else {
1318 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1319 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1320 sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1321
1322 while (hdr->mfh_cmd_status == 0xff) {
1323 delay(1000);
1324 if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1325 rv = 1;
1326 break;
1327 }
1328 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1329 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1330 sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1331 }
1332 }
1333 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1334 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1335 sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1336
1337 if (ccb->ccb_data != NULL) {
1338 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1339 DEVNAME(sc));
1340 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1341 ccb->ccb_dmamap->dm_mapsize,
1342 (ccb->ccb_direction & MFI_DATA_IN) ?
1343 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1344
1345 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1346 }
1347
1348 if (rv != 0) {
1349 aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n",
1350 hdr->mfh_context);
1351 ccb->ccb_flags |= MFI_CCB_F_ERR;
1352 return 1;
1353 }
1354
1355 return 0;
1356 }
1357
1358 int
1359 mfi_intr(void *arg)
1360 {
1361 struct mfi_softc *sc = arg;
1362 struct mfi_prod_cons *pcq;
1363 struct mfi_ccb *ccb;
1364 uint32_t producer, consumer, ctx;
1365 int claimed = 0;
1366
1367 if (!mfi_my_intr(sc))
1368 return 0;
1369
1370 pcq = MFIMEM_KVA(sc->sc_pcq);
1371
1372 DNPRINTF(MFI_D_INTR, "%s: mfi_intr %#lx %#lx\n", DEVNAME(sc),
1373 (u_long)sc, (u_long)pcq);
1374
1375 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1376 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1377 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1378
1379 producer = pcq->mpc_producer;
1380 consumer = pcq->mpc_consumer;
1381
1382 while (consumer != producer) {
1383 DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n",
1384 DEVNAME(sc), producer, consumer);
1385
1386 ctx = pcq->mpc_reply_q[consumer];
1387 pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX;
1388 if (ctx == MFI_INVALID_CTX)
1389 aprint_error_dev(sc->sc_dev,
1390 "invalid context, p: %d c: %d\n",
1391 producer, consumer);
1392 else {
1393 /* XXX remove from queue and call scsi_done */
1394 ccb = &sc->sc_ccb[ctx];
1395 DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n",
1396 DEVNAME(sc), ctx);
1397 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1398 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1399 sc->sc_frames_size,
1400 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1401 ccb->ccb_done(ccb);
1402
1403 claimed = 1;
1404 }
1405 consumer++;
1406 if (consumer == (sc->sc_max_cmds + 1))
1407 consumer = 0;
1408 }
1409
1410 pcq->mpc_consumer = consumer;
1411 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1412 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1413 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1414
1415 return claimed;
1416 }
1417
1418 static int
1419 mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno,
1420 uint32_t blockcnt)
1421 {
1422 struct scsipi_periph *periph = xs->xs_periph;
1423 struct mfi_io_frame *io;
1424
1425 DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n",
1426 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1427 periph->periph_target);
1428
1429 if (!xs->data)
1430 return 1;
1431
1432 io = &ccb->ccb_frame->mfr_io;
1433 if (xs->xs_control & XS_CTL_DATA_IN) {
1434 io->mif_header.mfh_cmd = MFI_CMD_LD_READ;
1435 ccb->ccb_direction = MFI_DATA_IN;
1436 } else {
1437 io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE;
1438 ccb->ccb_direction = MFI_DATA_OUT;
1439 }
1440 io->mif_header.mfh_target_id = periph->periph_target;
1441 io->mif_header.mfh_timeout = 0;
1442 io->mif_header.mfh_flags = 0;
1443 io->mif_header.mfh_sense_len = MFI_SENSE_SIZE;
1444 io->mif_header.mfh_data_len= blockcnt;
1445 io->mif_lba_hi = (blockno >> 32);
1446 io->mif_lba_lo = (blockno & 0xffffffff);
1447 io->mif_sense_addr_lo = htole32(ccb->ccb_psense);
1448 io->mif_sense_addr_hi = 0;
1449
1450 ccb->ccb_done = mfi_scsi_ld_done;
1451 ccb->ccb_xs = xs;
1452 ccb->ccb_frame_size = MFI_IO_FRAME_SIZE;
1453 ccb->ccb_sgl = &io->mif_sgl;
1454 ccb->ccb_data = xs->data;
1455 ccb->ccb_len = xs->datalen;
1456
1457 if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1458 BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1459 return 1;
1460
1461 return 0;
1462 }
1463
1464 static void
1465 mfi_scsi_ld_done(struct mfi_ccb *ccb)
1466 {
1467 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
1468 mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status);
1469 }
1470
1471 static void
1472 mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status)
1473 {
1474 struct scsipi_xfer *xs = ccb->ccb_xs;
1475 struct mfi_softc *sc = ccb->ccb_sc;
1476
1477 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %#lx %#lx\n",
1478 DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1479
1480 if (xs->data != NULL) {
1481 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n",
1482 DEVNAME(sc));
1483 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1484 ccb->ccb_dmamap->dm_mapsize,
1485 (xs->xs_control & XS_CTL_DATA_IN) ?
1486 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1487
1488 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1489 }
1490
1491 if (status != MFI_STAT_OK) {
1492 xs->error = XS_DRIVER_STUFFUP;
1493 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n",
1494 DEVNAME(sc), status);
1495
1496 if (scsi_status != 0) {
1497 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
1498 ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
1499 MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD);
1500 DNPRINTF(MFI_D_INTR,
1501 "%s: mfi_scsi_xs_done sense %#x %lx %lx\n",
1502 DEVNAME(sc), scsi_status,
1503 (u_long)&xs->sense, (u_long)ccb->ccb_sense);
1504 memset(&xs->sense, 0, sizeof(xs->sense));
1505 memcpy(&xs->sense, ccb->ccb_sense,
1506 sizeof(struct scsi_sense_data));
1507 xs->error = XS_SENSE;
1508 }
1509 } else {
1510 xs->error = XS_NOERROR;
1511 xs->status = SCSI_OK;
1512 xs->resid = 0;
1513 }
1514
1515 mfi_put_ccb(ccb);
1516 scsipi_done(xs);
1517 }
1518
1519 static int
1520 mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs)
1521 {
1522 struct mfi_pass_frame *pf;
1523 struct scsipi_periph *periph = xs->xs_periph;
1524
1525 DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n",
1526 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1527 periph->periph_target);
1528
1529 pf = &ccb->ccb_frame->mfr_pass;
1530 pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO;
1531 pf->mpf_header.mfh_target_id = periph->periph_target;
1532 pf->mpf_header.mfh_lun_id = 0;
1533 pf->mpf_header.mfh_cdb_len = xs->cmdlen;
1534 pf->mpf_header.mfh_timeout = 0;
1535 pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */
1536 pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE;
1537
1538 pf->mpf_sense_addr_hi = 0;
1539 pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense);
1540
1541 memset(pf->mpf_cdb, 0, 16);
1542 memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen);
1543
1544 ccb->ccb_done = mfi_scsi_ld_done;
1545 ccb->ccb_xs = xs;
1546 ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE;
1547 ccb->ccb_sgl = &pf->mpf_sgl;
1548
1549 if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT))
1550 ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ?
1551 MFI_DATA_IN : MFI_DATA_OUT;
1552 else
1553 ccb->ccb_direction = MFI_DATA_NONE;
1554
1555 if (xs->data) {
1556 ccb->ccb_data = xs->data;
1557 ccb->ccb_len = xs->datalen;
1558
1559 if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1560 BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1561 return 1;
1562 }
1563
1564 return 0;
1565 }
1566
1567 static void
1568 mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1569 void *arg)
1570 {
1571 struct scsipi_periph *periph;
1572 struct scsipi_xfer *xs;
1573 struct scsipi_adapter *adapt = chan->chan_adapter;
1574 struct mfi_softc *sc = device_private(adapt->adapt_dev);
1575 struct mfi_ccb *ccb;
1576 struct scsi_rw_6 *rw;
1577 struct scsipi_rw_10 *rwb;
1578 struct scsipi_rw_12 *rw12;
1579 struct scsipi_rw_16 *rw16;
1580 uint64_t blockno;
1581 uint32_t blockcnt;
1582 uint8_t target;
1583 uint8_t mbox[MFI_MBOX_SIZE];
1584 int s;
1585
1586 switch (req) {
1587 case ADAPTER_REQ_GROW_RESOURCES:
1588 /* Not supported. */
1589 return;
1590 case ADAPTER_REQ_SET_XFER_MODE:
1591 {
1592 struct scsipi_xfer_mode *xm = arg;
1593 xm->xm_mode = PERIPH_CAP_TQING;
1594 xm->xm_period = 0;
1595 xm->xm_offset = 0;
1596 scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
1597 return;
1598 }
1599 case ADAPTER_REQ_RUN_XFER:
1600 break;
1601 }
1602
1603 xs = arg;
1604
1605 periph = xs->xs_periph;
1606 target = periph->periph_target;
1607
1608 DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x "
1609 "target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode,
1610 periph->periph_target, periph->periph_lun);
1611
1612 s = splbio();
1613 if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present ||
1614 periph->periph_lun != 0) {
1615 DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n",
1616 DEVNAME(sc), target);
1617 xs->error = XS_SELTIMEOUT;
1618 scsipi_done(xs);
1619 splx(s);
1620 return;
1621 }
1622 if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 ||
1623 xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) {
1624 /* the cache is stable storage, don't flush */
1625 xs->error = XS_NOERROR;
1626 xs->status = SCSI_OK;
1627 xs->resid = 0;
1628 scsipi_done(xs);
1629 splx(s);
1630 return;
1631 }
1632
1633 if ((ccb = mfi_get_ccb(sc)) == NULL) {
1634 DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc));
1635 xs->error = XS_RESOURCE_SHORTAGE;
1636 scsipi_done(xs);
1637 splx(s);
1638 return;
1639 }
1640
1641 switch (xs->cmd->opcode) {
1642 /* IO path */
1643 case READ_16:
1644 case WRITE_16:
1645 rw16 = (struct scsipi_rw_16 *)xs->cmd;
1646 blockno = _8btol(rw16->addr);
1647 blockcnt = _4btol(rw16->length);
1648 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1649 goto stuffup;
1650 }
1651 break;
1652
1653 case READ_12:
1654 case WRITE_12:
1655 rw12 = (struct scsipi_rw_12 *)xs->cmd;
1656 blockno = _4btol(rw12->addr);
1657 blockcnt = _4btol(rw12->length);
1658 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1659 goto stuffup;
1660 }
1661 break;
1662
1663 case READ_10:
1664 case WRITE_10:
1665 rwb = (struct scsipi_rw_10 *)xs->cmd;
1666 blockno = _4btol(rwb->addr);
1667 blockcnt = _2btol(rwb->length);
1668 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1669 goto stuffup;
1670 }
1671 break;
1672
1673 case SCSI_READ_6_COMMAND:
1674 case SCSI_WRITE_6_COMMAND:
1675 rw = (struct scsi_rw_6 *)xs->cmd;
1676 blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
1677 blockcnt = rw->length ? rw->length : 0x100;
1678 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1679 goto stuffup;
1680 }
1681 break;
1682
1683 case SCSI_SYNCHRONIZE_CACHE_10:
1684 case SCSI_SYNCHRONIZE_CACHE_16:
1685 mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
1686 if (mfi_mgmt(ccb, xs,
1687 MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, mbox)) {
1688 goto stuffup;
1689 }
1690 break;
1691
1692 /* hand it of to the firmware and let it deal with it */
1693 case SCSI_TEST_UNIT_READY:
1694 /* save off sd? after autoconf */
1695 if (!cold) /* XXX bogus */
1696 strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev),
1697 sizeof(sc->sc_ld[target].ld_dev));
1698 /* FALLTHROUGH */
1699
1700 default:
1701 if (mfi_scsi_ld(ccb, xs)) {
1702 goto stuffup;
1703 }
1704 break;
1705 }
1706
1707 DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target);
1708
1709 if (xs->xs_control & XS_CTL_POLL) {
1710 if (mfi_poll(ccb)) {
1711 /* XXX check for sense in ccb->ccb_sense? */
1712 aprint_error_dev(sc->sc_dev,
1713 "mfi_scsipi_request poll failed\n");
1714 memset(&xs->sense, 0, sizeof(xs->sense));
1715 xs->sense.scsi_sense.response_code =
1716 SSD_RCODE_VALID | SSD_RCODE_CURRENT;
1717 xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
1718 xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */
1719 xs->error = XS_SENSE;
1720 xs->status = SCSI_CHECK;
1721 } else {
1722 DNPRINTF(MFI_D_DMA,
1723 "%s: mfi_scsipi_request poll complete %d\n",
1724 DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs);
1725 xs->error = XS_NOERROR;
1726 xs->status = SCSI_OK;
1727 xs->resid = 0;
1728 }
1729 mfi_put_ccb(ccb);
1730 scsipi_done(xs);
1731 splx(s);
1732 return;
1733 }
1734
1735 mfi_post(sc, ccb);
1736
1737 DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc),
1738 ccb->ccb_dmamap->dm_nsegs);
1739
1740 splx(s);
1741 return;
1742
1743 stuffup:
1744 mfi_put_ccb(ccb);
1745 xs->error = XS_DRIVER_STUFFUP;
1746 scsipi_done(xs);
1747 splx(s);
1748 }
1749
1750 static int
1751 mfi_create_sgl(struct mfi_ccb *ccb, int flags)
1752 {
1753 struct mfi_softc *sc = ccb->ccb_sc;
1754 struct mfi_frame_header *hdr;
1755 bus_dma_segment_t *sgd;
1756 union mfi_sgl *sgl;
1757 int error, i;
1758
1759 DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %#lx\n", DEVNAME(sc),
1760 (u_long)ccb->ccb_data);
1761
1762 if (!ccb->ccb_data)
1763 return 1;
1764
1765 KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
1766 error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
1767 ccb->ccb_data, ccb->ccb_len, NULL, flags);
1768 if (error) {
1769 if (error == EFBIG) {
1770 aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
1771 sc->sc_max_sgl);
1772 } else {
1773 aprint_error_dev(sc->sc_dev,
1774 "error %d loading dma map\n", error);
1775 }
1776 return 1;
1777 }
1778
1779 hdr = &ccb->ccb_frame->mfr_header;
1780 sgl = ccb->ccb_sgl;
1781 sgd = ccb->ccb_dmamap->dm_segs;
1782 for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
1783 if (sc->sc_ioptype == MFI_IOP_TBOLT &&
1784 (hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO ||
1785 hdr->mfh_cmd == MFI_CMD_LD_READ ||
1786 hdr->mfh_cmd == MFI_CMD_LD_WRITE)) {
1787 sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr);
1788 sgl->sg_ieee[i].len = htole32(sgd[i].ds_len);
1789 sgl->sg_ieee[i].flags = 0;
1790 DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1791 PRIx32 "\n",
1792 DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1793 hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
1794 } else if (sc->sc_64bit_dma) {
1795 sgl->sg64[i].addr = htole64(sgd[i].ds_addr);
1796 sgl->sg64[i].len = htole32(sgd[i].ds_len);
1797 DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1798 PRIx32 "\n",
1799 DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1800 hdr->mfh_flags |= MFI_FRAME_SGL64;
1801 } else {
1802 sgl->sg32[i].addr = htole32(sgd[i].ds_addr);
1803 sgl->sg32[i].len = htole32(sgd[i].ds_len);
1804 DNPRINTF(MFI_D_DMA, "%s: addr: %#x len: %#x\n",
1805 DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len);
1806 hdr->mfh_flags |= MFI_FRAME_SGL32;
1807 }
1808 }
1809
1810 if (ccb->ccb_direction == MFI_DATA_IN) {
1811 hdr->mfh_flags |= MFI_FRAME_DIR_READ;
1812 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1813 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1814 } else {
1815 hdr->mfh_flags |= MFI_FRAME_DIR_WRITE;
1816 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1817 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1818 }
1819
1820 hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs;
1821 ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs;
1822 ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE;
1823
1824 DNPRINTF(MFI_D_DMA, "%s: sg_count: %d frame_size: %d frames_size: %d"
1825 " dm_nsegs: %d extra_frames: %d\n",
1826 DEVNAME(sc),
1827 hdr->mfh_sg_count,
1828 ccb->ccb_frame_size,
1829 sc->sc_frames_size,
1830 ccb->ccb_dmamap->dm_nsegs,
1831 ccb->ccb_extra_frames);
1832
1833 return 0;
1834 }
1835
1836 static int
1837 mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir,
1838 uint32_t len, void *buf, uint8_t *mbox, bool poll)
1839 {
1840 struct mfi_ccb *ccb;
1841 int rv = 1;
1842
1843 if ((ccb = mfi_get_ccb(sc)) == NULL)
1844 return rv;
1845 rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox);
1846 if (rv)
1847 return rv;
1848
1849 if (poll) {
1850 rv = 1;
1851 if (mfi_poll(ccb))
1852 goto done;
1853 } else {
1854 mfi_post(sc, ccb);
1855
1856 DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n",
1857 DEVNAME(sc));
1858 while (ccb->ccb_state != MFI_CCB_DONE)
1859 tsleep(ccb, PRIBIO, "mfi_mgmt", 0);
1860
1861 if (ccb->ccb_flags & MFI_CCB_F_ERR)
1862 goto done;
1863 }
1864 rv = 0;
1865
1866 done:
1867 mfi_put_ccb(ccb);
1868 return rv;
1869 }
1870
1871 static int
1872 mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
1873 uint32_t opc, uint32_t dir, uint32_t len, void *buf, uint8_t *mbox)
1874 {
1875 struct mfi_dcmd_frame *dcmd;
1876
1877 DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc);
1878
1879 dcmd = &ccb->ccb_frame->mfr_dcmd;
1880 memset(dcmd->mdf_mbox.b, 0, MFI_MBOX_SIZE);
1881 dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD;
1882 dcmd->mdf_header.mfh_timeout = 0;
1883
1884 dcmd->mdf_opcode = opc;
1885 dcmd->mdf_header.mfh_data_len = 0;
1886 ccb->ccb_direction = dir;
1887 ccb->ccb_xs = xs;
1888 ccb->ccb_done = mfi_mgmt_done;
1889
1890 ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE;
1891
1892 /* handle special opcodes */
1893 if (mbox)
1894 memcpy(dcmd->mdf_mbox.b, mbox, MFI_MBOX_SIZE);
1895
1896 if (dir != MFI_DATA_NONE) {
1897 dcmd->mdf_header.mfh_data_len = len;
1898 ccb->ccb_data = buf;
1899 ccb->ccb_len = len;
1900 ccb->ccb_sgl = &dcmd->mdf_sgl;
1901
1902 if (mfi_create_sgl(ccb, BUS_DMA_WAITOK))
1903 return 1;
1904 }
1905 return 0;
1906 }
1907
1908 static void
1909 mfi_mgmt_done(struct mfi_ccb *ccb)
1910 {
1911 struct scsipi_xfer *xs = ccb->ccb_xs;
1912 struct mfi_softc *sc = ccb->ccb_sc;
1913 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
1914
1915 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n",
1916 DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1917
1918 if (ccb->ccb_data != NULL) {
1919 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1920 DEVNAME(sc));
1921 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1922 ccb->ccb_dmamap->dm_mapsize,
1923 (ccb->ccb_direction & MFI_DATA_IN) ?
1924 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1925
1926 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1927 }
1928
1929 if (hdr->mfh_cmd_status != MFI_STAT_OK)
1930 ccb->ccb_flags |= MFI_CCB_F_ERR;
1931
1932 ccb->ccb_state = MFI_CCB_DONE;
1933 if (xs) {
1934 if (hdr->mfh_cmd_status != MFI_STAT_OK) {
1935 xs->error = XS_DRIVER_STUFFUP;
1936 } else {
1937 xs->error = XS_NOERROR;
1938 xs->status = SCSI_OK;
1939 xs->resid = 0;
1940 }
1941 mfi_put_ccb(ccb);
1942 scsipi_done(xs);
1943 } else
1944 wakeup(ccb);
1945 }
1946
1947 #if NBIO > 0
1948 int
1949 mfi_ioctl(device_t dev, u_long cmd, void *addr)
1950 {
1951 struct mfi_softc *sc = device_private(dev);
1952 int error = 0;
1953 int s;
1954
1955 KERNEL_LOCK(1, curlwp);
1956 s = splbio();
1957
1958 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc));
1959
1960 switch (cmd) {
1961 case BIOCINQ:
1962 DNPRINTF(MFI_D_IOCTL, "inq\n");
1963 error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr);
1964 break;
1965
1966 case BIOCVOL:
1967 DNPRINTF(MFI_D_IOCTL, "vol\n");
1968 error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr);
1969 break;
1970
1971 case BIOCDISK:
1972 DNPRINTF(MFI_D_IOCTL, "disk\n");
1973 error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr);
1974 break;
1975
1976 case BIOCALARM:
1977 DNPRINTF(MFI_D_IOCTL, "alarm\n");
1978 error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr);
1979 break;
1980
1981 case BIOCBLINK:
1982 DNPRINTF(MFI_D_IOCTL, "blink\n");
1983 error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr);
1984 break;
1985
1986 case BIOCSETSTATE:
1987 DNPRINTF(MFI_D_IOCTL, "setstate\n");
1988 error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr);
1989 break;
1990
1991 default:
1992 DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n");
1993 error = EINVAL;
1994 }
1995 splx(s);
1996 KERNEL_UNLOCK_ONE(curlwp);
1997
1998 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error);
1999 return error;
2000 }
2001
2002 static int
2003 mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi)
2004 {
2005 struct mfi_conf *cfg;
2006 int rv = EINVAL;
2007
2008 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc));
2009
2010 if (mfi_get_info(sc)) {
2011 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n",
2012 DEVNAME(sc));
2013 return EIO;
2014 }
2015
2016 /* get figures */
2017 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2018 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2019 sizeof *cfg, cfg, NULL, false))
2020 goto freeme;
2021
2022 strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
2023 bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs;
2024 bi->bi_nodisk = sc->sc_info.mci_pd_disks_present;
2025
2026 rv = 0;
2027 freeme:
2028 free(cfg, M_DEVBUF);
2029 return rv;
2030 }
2031
2032 static int
2033 mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv)
2034 {
2035 int i, per, rv = EINVAL;
2036 uint8_t mbox[MFI_MBOX_SIZE];
2037
2038 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n",
2039 DEVNAME(sc), bv->bv_volid);
2040
2041 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
2042 sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false))
2043 goto done;
2044
2045 i = bv->bv_volid;
2046 mbox[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target;
2047 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n",
2048 DEVNAME(sc), mbox[0]);
2049
2050 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN,
2051 sizeof(sc->sc_ld_details), &sc->sc_ld_details, mbox, false))
2052 goto done;
2053
2054 if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) {
2055 /* go do hotspares */
2056 rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv);
2057 goto done;
2058 }
2059
2060 strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev));
2061
2062 switch(sc->sc_ld_list.mll_list[i].mll_state) {
2063 case MFI_LD_OFFLINE:
2064 bv->bv_status = BIOC_SVOFFLINE;
2065 break;
2066
2067 case MFI_LD_PART_DEGRADED:
2068 case MFI_LD_DEGRADED:
2069 bv->bv_status = BIOC_SVDEGRADED;
2070 break;
2071
2072 case MFI_LD_ONLINE:
2073 bv->bv_status = BIOC_SVONLINE;
2074 break;
2075
2076 default:
2077 bv->bv_status = BIOC_SVINVALID;
2078 DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n",
2079 DEVNAME(sc),
2080 sc->sc_ld_list.mll_list[i].mll_state);
2081 }
2082
2083 /* additional status can modify MFI status */
2084 switch (sc->sc_ld_details.mld_progress.mlp_in_prog) {
2085 case MFI_LD_PROG_CC:
2086 case MFI_LD_PROG_BGI:
2087 bv->bv_status = BIOC_SVSCRUB;
2088 per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress;
2089 bv->bv_percent = (per * 100) / 0xffff;
2090 bv->bv_seconds =
2091 sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds;
2092 break;
2093
2094 case MFI_LD_PROG_FGI:
2095 case MFI_LD_PROG_RECONSTRUCT:
2096 /* nothing yet */
2097 break;
2098 }
2099
2100 /*
2101 * The RAID levels are determined per the SNIA DDF spec, this is only
2102 * a subset that is valid for the MFI contrller.
2103 */
2104 bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid;
2105 if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid ==
2106 MFI_DDF_SRL_SPANNED)
2107 bv->bv_level *= 10;
2108
2109 bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span *
2110 sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth;
2111
2112 bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */
2113
2114 rv = 0;
2115 done:
2116 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n",
2117 DEVNAME(sc), rv);
2118 return rv;
2119 }
2120
2121 static int
2122 mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd)
2123 {
2124 struct mfi_conf *cfg;
2125 struct mfi_array *ar;
2126 struct mfi_ld_cfg *ld;
2127 struct mfi_pd_details *pd;
2128 struct scsipi_inquiry_data *inqbuf;
2129 char vend[8+16+4+1];
2130 int i, rv = EINVAL;
2131 int arr, vol, disk;
2132 uint32_t size;
2133 uint8_t mbox[MFI_MBOX_SIZE];
2134
2135 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n",
2136 DEVNAME(sc), bd->bd_diskid);
2137
2138 pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2139
2140 /* send single element command to retrieve size for full structure */
2141 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2142 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2143 sizeof *cfg, cfg, NULL, false))
2144 goto freeme;
2145
2146 size = cfg->mfc_size;
2147 free(cfg, M_DEVBUF);
2148
2149 /* memory for read config */
2150 cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2151 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2152 size, cfg, NULL, false))
2153 goto freeme;
2154
2155 ar = cfg->mfc_array;
2156
2157 /* calculate offset to ld structure */
2158 ld = (struct mfi_ld_cfg *)(
2159 ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2160 cfg->mfc_array_size * cfg->mfc_no_array);
2161
2162 vol = bd->bd_volid;
2163
2164 if (vol >= cfg->mfc_no_ld) {
2165 /* do hotspares */
2166 rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd);
2167 goto freeme;
2168 }
2169
2170 /* find corresponding array for ld */
2171 for (i = 0, arr = 0; i < vol; i++)
2172 arr += ld[i].mlc_parm.mpa_span_depth;
2173
2174 /* offset disk into pd list */
2175 disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span;
2176
2177 /* offset array index into the next spans */
2178 arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span;
2179
2180 bd->bd_target = ar[arr].pd[disk].mar_enc_slot;
2181 switch (ar[arr].pd[disk].mar_pd_state){
2182 case MFI_PD_UNCONFIG_GOOD:
2183 bd->bd_status = BIOC_SDUNUSED;
2184 break;
2185
2186 case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */
2187 bd->bd_status = BIOC_SDHOTSPARE;
2188 break;
2189
2190 case MFI_PD_OFFLINE:
2191 bd->bd_status = BIOC_SDOFFLINE;
2192 break;
2193
2194 case MFI_PD_FAILED:
2195 bd->bd_status = BIOC_SDFAILED;
2196 break;
2197
2198 case MFI_PD_REBUILD:
2199 bd->bd_status = BIOC_SDREBUILD;
2200 break;
2201
2202 case MFI_PD_ONLINE:
2203 bd->bd_status = BIOC_SDONLINE;
2204 break;
2205
2206 case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */
2207 default:
2208 bd->bd_status = BIOC_SDINVALID;
2209 break;
2210
2211 }
2212
2213 /* get the remaining fields */
2214 *((uint16_t *)&mbox) = ar[arr].pd[disk].mar_pd.mfp_id;
2215 memset(pd, 0, sizeof(*pd));
2216 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2217 sizeof *pd, pd, mbox, false))
2218 goto freeme;
2219
2220 bd->bd_size = pd->mpd_size * 512; /* bytes per block */
2221
2222 /* if pd->mpd_enc_idx is 0 then it is not in an enclosure */
2223 bd->bd_channel = pd->mpd_enc_idx;
2224
2225 inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2226 memcpy(vend, inqbuf->vendor, sizeof vend - 1);
2227 vend[sizeof vend - 1] = '\0';
2228 strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
2229
2230 /* XXX find a way to retrieve serial nr from drive */
2231 /* XXX find a way to get bd_procdev */
2232
2233 rv = 0;
2234 freeme:
2235 free(pd, M_DEVBUF);
2236 free(cfg, M_DEVBUF);
2237
2238 return rv;
2239 }
2240
2241 static int
2242 mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba)
2243 {
2244 uint32_t opc, dir = MFI_DATA_NONE;
2245 int rv = 0;
2246 int8_t ret;
2247
2248 switch(ba->ba_opcode) {
2249 case BIOC_SADISABLE:
2250 opc = MR_DCMD_SPEAKER_DISABLE;
2251 break;
2252
2253 case BIOC_SAENABLE:
2254 opc = MR_DCMD_SPEAKER_ENABLE;
2255 break;
2256
2257 case BIOC_SASILENCE:
2258 opc = MR_DCMD_SPEAKER_SILENCE;
2259 break;
2260
2261 case BIOC_GASTATUS:
2262 opc = MR_DCMD_SPEAKER_GET;
2263 dir = MFI_DATA_IN;
2264 break;
2265
2266 case BIOC_SATEST:
2267 opc = MR_DCMD_SPEAKER_TEST;
2268 break;
2269
2270 default:
2271 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid "
2272 "opcode %x\n", DEVNAME(sc), ba->ba_opcode);
2273 return EINVAL;
2274 }
2275
2276 if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false))
2277 rv = EINVAL;
2278 else
2279 if (ba->ba_opcode == BIOC_GASTATUS)
2280 ba->ba_status = ret;
2281 else
2282 ba->ba_status = 0;
2283
2284 return rv;
2285 }
2286
2287 static int
2288 mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb)
2289 {
2290 int i, found, rv = EINVAL;
2291 uint8_t mbox[MFI_MBOX_SIZE];
2292 uint32_t cmd;
2293 struct mfi_pd_list *pd;
2294
2295 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc),
2296 bb->bb_status);
2297
2298 /* channel 0 means not in an enclosure so can't be blinked */
2299 if (bb->bb_channel == 0)
2300 return EINVAL;
2301
2302 pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2303
2304 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2305 MFI_PD_LIST_SIZE, pd, NULL, false))
2306 goto done;
2307
2308 for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2309 if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index &&
2310 bb->bb_target == pd->mpl_address[i].mpa_enc_slot) {
2311 found = 1;
2312 break;
2313 }
2314
2315 if (!found)
2316 goto done;
2317
2318 memset(mbox, 0, sizeof mbox);
2319
2320 *((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2321
2322 switch (bb->bb_status) {
2323 case BIOC_SBUNBLINK:
2324 cmd = MR_DCMD_PD_UNBLINK;
2325 break;
2326
2327 case BIOC_SBBLINK:
2328 cmd = MR_DCMD_PD_BLINK;
2329 break;
2330
2331 case BIOC_SBALARM:
2332 default:
2333 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid "
2334 "opcode %x\n", DEVNAME(sc), bb->bb_status);
2335 goto done;
2336 }
2337
2338
2339 if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, mbox, false))
2340 goto done;
2341
2342 rv = 0;
2343 done:
2344 free(pd, M_DEVBUF);
2345 return rv;
2346 }
2347
2348 static int
2349 mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs)
2350 {
2351 struct mfi_pd_list *pd;
2352 int i, found, rv = EINVAL;
2353 uint8_t mbox[MFI_MBOX_SIZE];
2354
2355 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc),
2356 bs->bs_status);
2357
2358 pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2359
2360 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2361 MFI_PD_LIST_SIZE, pd, NULL, false))
2362 goto done;
2363
2364 for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2365 if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index &&
2366 bs->bs_target == pd->mpl_address[i].mpa_enc_slot) {
2367 found = 1;
2368 break;
2369 }
2370
2371 if (!found)
2372 goto done;
2373
2374 memset(mbox, 0, sizeof mbox);
2375
2376 *((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2377
2378 switch (bs->bs_status) {
2379 case BIOC_SSONLINE:
2380 mbox[2] = MFI_PD_ONLINE;
2381 break;
2382
2383 case BIOC_SSOFFLINE:
2384 mbox[2] = MFI_PD_OFFLINE;
2385 break;
2386
2387 case BIOC_SSHOTSPARE:
2388 mbox[2] = MFI_PD_HOTSPARE;
2389 break;
2390 /*
2391 case BIOC_SSREBUILD:
2392 break;
2393 */
2394 default:
2395 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid "
2396 "opcode %x\n", DEVNAME(sc), bs->bs_status);
2397 goto done;
2398 }
2399
2400
2401 if (mfi_mgmt_internal(sc, MR_DCMD_PD_SET_STATE, MFI_DATA_NONE,
2402 0, NULL, mbox, false))
2403 goto done;
2404
2405 rv = 0;
2406 done:
2407 free(pd, M_DEVBUF);
2408 return rv;
2409 }
2410
2411 static int
2412 mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs)
2413 {
2414 struct mfi_conf *cfg;
2415 struct mfi_hotspare *hs;
2416 struct mfi_pd_details *pd;
2417 struct bioc_disk *sdhs;
2418 struct bioc_vol *vdhs;
2419 struct scsipi_inquiry_data *inqbuf;
2420 char vend[8+16+4+1];
2421 int i, rv = EINVAL;
2422 uint32_t size;
2423 uint8_t mbox[MFI_MBOX_SIZE];
2424
2425 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid);
2426
2427 if (!bio_hs)
2428 return EINVAL;
2429
2430 pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2431
2432 /* send single element command to retrieve size for full structure */
2433 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2434 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2435 sizeof *cfg, cfg, NULL, false))
2436 goto freeme;
2437
2438 size = cfg->mfc_size;
2439 free(cfg, M_DEVBUF);
2440
2441 /* memory for read config */
2442 cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2443 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2444 size, cfg, NULL, false))
2445 goto freeme;
2446
2447 /* calculate offset to hs structure */
2448 hs = (struct mfi_hotspare *)(
2449 ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2450 cfg->mfc_array_size * cfg->mfc_no_array +
2451 cfg->mfc_ld_size * cfg->mfc_no_ld);
2452
2453 if (volid < cfg->mfc_no_ld)
2454 goto freeme; /* not a hotspare */
2455
2456 if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs))
2457 goto freeme; /* not a hotspare */
2458
2459 /* offset into hotspare structure */
2460 i = volid - cfg->mfc_no_ld;
2461
2462 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d "
2463 "hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld,
2464 cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id);
2465
2466 /* get pd fields */
2467 memset(mbox, 0, sizeof mbox);
2468 *((uint16_t *)&mbox) = hs[i].mhs_pd.mfp_id;
2469 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2470 sizeof *pd, pd, mbox, false)) {
2471 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n",
2472 DEVNAME(sc));
2473 goto freeme;
2474 }
2475
2476 switch (type) {
2477 case MFI_MGMT_VD:
2478 vdhs = bio_hs;
2479 vdhs->bv_status = BIOC_SVONLINE;
2480 vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */
2481 vdhs->bv_level = -1; /* hotspare */
2482 vdhs->bv_nodisk = 1;
2483 break;
2484
2485 case MFI_MGMT_SD:
2486 sdhs = bio_hs;
2487 sdhs->bd_status = BIOC_SDHOTSPARE;
2488 sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */
2489 sdhs->bd_channel = pd->mpd_enc_idx;
2490 sdhs->bd_target = pd->mpd_enc_slot;
2491 inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2492 memcpy(vend, inqbuf->vendor, sizeof(vend) - 1);
2493 vend[sizeof vend - 1] = '\0';
2494 strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor));
2495 break;
2496
2497 default:
2498 goto freeme;
2499 }
2500
2501 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc));
2502 rv = 0;
2503 freeme:
2504 free(pd, M_DEVBUF);
2505 free(cfg, M_DEVBUF);
2506
2507 return rv;
2508 }
2509
2510 static int
2511 mfi_destroy_sensors(struct mfi_softc *sc)
2512 {
2513 if (sc->sc_sme == NULL)
2514 return 0;
2515 sysmon_envsys_unregister(sc->sc_sme);
2516 sc->sc_sme = NULL;
2517 free(sc->sc_sensor, M_DEVBUF);
2518 return 0;
2519 }
2520
2521 static int
2522 mfi_create_sensors(struct mfi_softc *sc)
2523 {
2524 int i;
2525 int nsensors = sc->sc_ld_cnt + 1;
2526 int rv;
2527
2528 sc->sc_sme = sysmon_envsys_create();
2529 sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
2530 M_DEVBUF, M_WAITOK | M_ZERO);
2531
2532 /* BBU */
2533 sc->sc_sensor[0].units = ENVSYS_INDICATOR;
2534 sc->sc_sensor[0].state = ENVSYS_SINVALID;
2535 sc->sc_sensor[0].value_cur = 0;
2536 /* Enable monitoring for BBU state changes, if present */
2537 if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU)
2538 sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
2539 snprintf(sc->sc_sensor[0].desc,
2540 sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc));
2541 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0]))
2542 goto out;
2543
2544 for (i = 1; i < nsensors; i++) {
2545 sc->sc_sensor[i].units = ENVSYS_DRIVE;
2546 sc->sc_sensor[i].state = ENVSYS_SINVALID;
2547 sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
2548 /* Enable monitoring for drive state changes */
2549 sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
2550 /* logical drives */
2551 snprintf(sc->sc_sensor[i].desc,
2552 sizeof(sc->sc_sensor[i].desc), "%s:%d",
2553 DEVNAME(sc), i - 1);
2554 if (sysmon_envsys_sensor_attach(sc->sc_sme,
2555 &sc->sc_sensor[i]))
2556 goto out;
2557 }
2558
2559 sc->sc_sme->sme_name = DEVNAME(sc);
2560 sc->sc_sme->sme_cookie = sc;
2561 sc->sc_sme->sme_refresh = mfi_sensor_refresh;
2562 rv = sysmon_envsys_register(sc->sc_sme);
2563 if (rv != 0) {
2564 aprint_error_dev(sc->sc_dev,
2565 "unable to register with sysmon (rv = %d)\n", rv);
2566 goto out;
2567 }
2568 return 0;
2569
2570 out:
2571 free(sc->sc_sensor, M_DEVBUF);
2572 sysmon_envsys_destroy(sc->sc_sme);
2573 sc->sc_sme = NULL;
2574 return EINVAL;
2575 }
2576
2577 static void
2578 mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
2579 {
2580 struct mfi_softc *sc = sme->sme_cookie;
2581 struct bioc_vol bv;
2582 int s;
2583 int error;
2584
2585 if (edata->sensor >= sc->sc_ld_cnt + 1)
2586 return;
2587
2588 if (edata->sensor == 0) {
2589 /* BBU */
2590 struct mfi_bbu_status bbu_stat;
2591 int bbu_status;
2592 if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0)
2593 return;
2594
2595 KERNEL_LOCK(1, curlwp);
2596 s = splbio();
2597 bbu_status = mfi_get_bbu(sc, &bbu_stat);
2598 splx(s);
2599 KERNEL_UNLOCK_ONE(curlwp);
2600 switch(bbu_status) {
2601 case MFI_BBU_GOOD:
2602 edata->value_cur = 1;
2603 edata->state = ENVSYS_SVALID;
2604 if (!sc->sc_bbuok)
2605 aprint_normal_dev(sc->sc_dev,
2606 "BBU state changed to good\n");
2607 sc->sc_bbuok = true;
2608 break;
2609 case MFI_BBU_BAD:
2610 edata->value_cur = 0;
2611 edata->state = ENVSYS_SCRITICAL;
2612 if (sc->sc_bbuok)
2613 aprint_normal_dev(sc->sc_dev,
2614 "BBU state changed to bad\n");
2615 sc->sc_bbuok = false;
2616 break;
2617 case MFI_BBU_UNKNOWN:
2618 default:
2619 edata->value_cur = 0;
2620 edata->state = ENVSYS_SINVALID;
2621 sc->sc_bbuok = false;
2622 break;
2623 }
2624 return;
2625 }
2626
2627 memset(&bv, 0, sizeof(bv));
2628 bv.bv_volid = edata->sensor - 1;
2629 KERNEL_LOCK(1, curlwp);
2630 s = splbio();
2631 error = mfi_ioctl_vol(sc, &bv);
2632 splx(s);
2633 KERNEL_UNLOCK_ONE(curlwp);
2634 if (error)
2635 bv.bv_status = BIOC_SVINVALID;
2636
2637 bio_vol_to_envsys(edata, &bv);
2638 }
2639
2640 #endif /* NBIO > 0 */
2641
2642 static uint32_t
2643 mfi_xscale_fw_state(struct mfi_softc *sc)
2644 {
2645 return mfi_read(sc, MFI_OMSG0);
2646 }
2647
2648 static void
2649 mfi_xscale_intr_dis(struct mfi_softc *sc)
2650 {
2651 mfi_write(sc, MFI_OMSK, 0);
2652 }
2653
2654 static void
2655 mfi_xscale_intr_ena(struct mfi_softc *sc)
2656 {
2657 mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR);
2658 }
2659
2660 static int
2661 mfi_xscale_intr(struct mfi_softc *sc)
2662 {
2663 uint32_t status;
2664
2665 status = mfi_read(sc, MFI_OSTS);
2666 if (!ISSET(status, MFI_OSTS_INTR_VALID))
2667 return 0;
2668
2669 /* write status back to acknowledge interrupt */
2670 mfi_write(sc, MFI_OSTS, status);
2671 return 1;
2672 }
2673
2674 static void
2675 mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2676 {
2677 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
2678 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
2679 sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2680 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
2681 ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
2682 MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD);
2683
2684 mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) |
2685 ccb->ccb_extra_frames);
2686 ccb->ccb_state = MFI_CCB_RUNNING;
2687 }
2688
2689 static uint32_t
2690 mfi_ppc_fw_state(struct mfi_softc *sc)
2691 {
2692 return mfi_read(sc, MFI_OSP);
2693 }
2694
2695 static void
2696 mfi_ppc_intr_dis(struct mfi_softc *sc)
2697 {
2698 /* Taking a wild guess --dyoung */
2699 mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0);
2700 mfi_write(sc, MFI_ODC, 0xffffffff);
2701 }
2702
2703 static void
2704 mfi_ppc_intr_ena(struct mfi_softc *sc)
2705 {
2706 mfi_write(sc, MFI_ODC, 0xffffffff);
2707 mfi_write(sc, MFI_OMSK, ~0x80000004);
2708 }
2709
2710 static int
2711 mfi_ppc_intr(struct mfi_softc *sc)
2712 {
2713 uint32_t status;
2714
2715 status = mfi_read(sc, MFI_OSTS);
2716 if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID))
2717 return 0;
2718
2719 /* write status back to acknowledge interrupt */
2720 mfi_write(sc, MFI_ODC, status);
2721 return 1;
2722 }
2723
2724 static void
2725 mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2726 {
2727 mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2728 (ccb->ccb_extra_frames << 1));
2729 ccb->ccb_state = MFI_CCB_RUNNING;
2730 }
2731
2732 u_int32_t
2733 mfi_gen2_fw_state(struct mfi_softc *sc)
2734 {
2735 return (mfi_read(sc, MFI_OSP));
2736 }
2737
2738 void
2739 mfi_gen2_intr_dis(struct mfi_softc *sc)
2740 {
2741 mfi_write(sc, MFI_OMSK, 0xffffffff);
2742 mfi_write(sc, MFI_ODC, 0xffffffff);
2743 }
2744
2745 void
2746 mfi_gen2_intr_ena(struct mfi_softc *sc)
2747 {
2748 mfi_write(sc, MFI_ODC, 0xffffffff);
2749 mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID);
2750 }
2751
2752 int
2753 mfi_gen2_intr(struct mfi_softc *sc)
2754 {
2755 u_int32_t status;
2756
2757 status = mfi_read(sc, MFI_OSTS);
2758 if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID))
2759 return (0);
2760
2761 /* write status back to acknowledge interrupt */
2762 mfi_write(sc, MFI_ODC, status);
2763
2764 return (1);
2765 }
2766
2767 void
2768 mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2769 {
2770 mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2771 (ccb->ccb_extra_frames << 1));
2772 ccb->ccb_state = MFI_CCB_RUNNING;
2773 }
2774
2775 u_int32_t
2776 mfi_skinny_fw_state(struct mfi_softc *sc)
2777 {
2778 return (mfi_read(sc, MFI_OSP));
2779 }
2780
2781 void
2782 mfi_skinny_intr_dis(struct mfi_softc *sc)
2783 {
2784 mfi_write(sc, MFI_OMSK, 0);
2785 }
2786
2787 void
2788 mfi_skinny_intr_ena(struct mfi_softc *sc)
2789 {
2790 mfi_write(sc, MFI_OMSK, ~0x00000001);
2791 }
2792
2793 int
2794 mfi_skinny_intr(struct mfi_softc *sc)
2795 {
2796 u_int32_t status;
2797
2798 status = mfi_read(sc, MFI_OSTS);
2799 if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID))
2800 return (0);
2801
2802 /* write status back to acknowledge interrupt */
2803 mfi_write(sc, MFI_OSTS, status);
2804
2805 return (1);
2806 }
2807
2808 void
2809 mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2810 {
2811 mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe |
2812 (ccb->ccb_extra_frames << 1));
2813 mfi_write(sc, MFI_IQPH, 0x00000000);
2814 ccb->ccb_state = MFI_CCB_RUNNING;
2815 }
2816
2817 #define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000008)
2818
2819 void
2820 mfi_tbolt_intr_ena(struct mfi_softc *sc)
2821 {
2822 mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK);
2823 mfi_read(sc, MFI_OMSK);
2824 }
2825
2826 void
2827 mfi_tbolt_intr_dis(struct mfi_softc *sc)
2828 {
2829 mfi_write(sc, MFI_OMSK, 0xFFFFFFFF);
2830 mfi_read(sc, MFI_OMSK);
2831 }
2832
2833 int
2834 mfi_tbolt_intr(struct mfi_softc *sc)
2835 {
2836 int32_t status;
2837
2838 status = mfi_read(sc, MFI_OSTS);
2839
2840 if (ISSET(status, 0x1)) {
2841 mfi_write(sc, MFI_OSTS, status);
2842 mfi_read(sc, MFI_OSTS);
2843 if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT))
2844 return 0;
2845 return 1;
2846 }
2847 if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK))
2848 return 0;
2849 mfi_read(sc, MFI_OSTS);
2850 return 1;
2851 }
2852
2853 u_int32_t
2854 mfi_tbolt_fw_state(struct mfi_softc *sc)
2855 {
2856 return mfi_read(sc, MFI_OSP);
2857 }
2858
2859 void
2860 mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2861 {
2862 if (sc->sc_MFA_enabled) {
2863 if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0)
2864 mfi_tbolt_build_mpt_ccb(ccb);
2865 mfi_write(sc, MFI_IQPL,
2866 ccb->ccb_tb_request_desc.words & 0xFFFFFFFF);
2867 mfi_write(sc, MFI_IQPH,
2868 ccb->ccb_tb_request_desc.words >> 32);
2869 ccb->ccb_state = MFI_CCB_RUNNING;
2870 return;
2871 }
2872 uint64_t bus_add = ccb->ccb_pframe;
2873 bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA
2874 << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2875 mfi_write(sc, MFI_IQPL, bus_add);
2876 mfi_write(sc, MFI_IQPH, bus_add >> 32);
2877 ccb->ccb_state = MFI_CCB_RUNNING;
2878 }
2879
2880 static void
2881 mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb)
2882 {
2883 union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc;
2884 struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
2885 struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain;
2886
2887 io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
2888 io_req->SGLOffset0 =
2889 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
2890 io_req->ChainOffset =
2891 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16;
2892
2893 mpi25_ieee_chain =
2894 (struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain;
2895 mpi25_ieee_chain->Address = ccb->ccb_pframe;
2896
2897 /*
2898 In MFI pass thru, nextChainOffset will always be zero to
2899 indicate the end of the chain.
2900 */
2901 mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
2902 | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
2903
2904 /* setting the length to the maximum length */
2905 mpi25_ieee_chain->Length = 1024;
2906
2907 req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
2908 MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2909 ccb->ccb_flags |= MFI_CCB_F_TBOLT;
2910 bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
2911 MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2912 ccb->ccb_tb_pio_request -
2913 MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2914 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
2915 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2916 }
2917
2918 /*
2919 * Description:
2920 * This function will prepare message pools for the Thunderbolt controller
2921 */
2922 static int
2923 mfi_tbolt_init_desc_pool(struct mfi_softc *sc)
2924 {
2925 uint32_t offset = 0;
2926 uint8_t *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2927
2928 /* Request Decriptors alignment restrictions */
2929 KASSERT(((uintptr_t)addr & 0xFF) == 0);
2930
2931 /* Skip request message pool */
2932 addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)];
2933
2934 /* Reply Frame Pool is initialized */
2935 sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr;
2936 KASSERT(((uintptr_t)addr & 0xFF) == 0);
2937
2938 offset = (uintptr_t)sc->sc_reply_frame_pool
2939 - (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2940 sc->sc_reply_frame_busaddr =
2941 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset;
2942
2943 /* initializing reply address to 0xFFFFFFFF */
2944 memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF,
2945 (MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size));
2946
2947 /* Skip Reply Frame Pool */
2948 addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2949 sc->sc_reply_pool_limit = (void *)addr;
2950
2951 offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2952 sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset;
2953
2954 /* initialize the last_reply_idx to 0 */
2955 sc->sc_last_reply_idx = 0;
2956 offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME *
2957 sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
2958 KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size);
2959 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0,
2960 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize,
2961 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2962 return 0;
2963 }
2964
2965 /*
2966 * This routine prepare and issue INIT2 frame to the Firmware
2967 */
2968
2969 static int
2970 mfi_tbolt_init_MFI_queue(struct mfi_softc *sc)
2971 {
2972 struct mpi2_ioc_init_request *mpi2IocInit;
2973 struct mfi_init_frame *mfi_init;
2974 struct mfi_ccb *ccb;
2975 bus_addr_t phyAddress;
2976 mfi_address *mfiAddressTemp;
2977 int s;
2978 char *verbuf;
2979 char wqbuf[10];
2980
2981 /* Check if initialization is already completed */
2982 if (sc->sc_MFA_enabled) {
2983 return 1;
2984 }
2985
2986 mpi2IocInit =
2987 (struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init);
2988
2989 s = splbio();
2990 if ((ccb = mfi_get_ccb(sc)) == NULL) {
2991 splx(s);
2992 return (EBUSY);
2993 }
2994
2995
2996 mfi_init = &ccb->ccb_frame->mfr_init;
2997
2998 memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request));
2999 mpi2IocInit->Function = MPI2_FUNCTION_IOC_INIT;
3000 mpi2IocInit->WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3001
3002 /* set MsgVersion and HeaderVersion host driver was built with */
3003 mpi2IocInit->MsgVersion = MPI2_VERSION;
3004 mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION;
3005 mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4;
3006 mpi2IocInit->ReplyDescriptorPostQueueDepth =
3007 (uint16_t)sc->sc_reply_pool_size;
3008 mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */
3009
3010 /* Get physical address of reply frame pool */
3011 phyAddress = sc->sc_reply_frame_busaddr;
3012 mfiAddressTemp =
3013 (mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress;
3014 mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3015 mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3016
3017 /* Get physical address of request message pool */
3018 phyAddress = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
3019 mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress;
3020 mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3021 mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3022
3023 mpi2IocInit->ReplyFreeQueueAddress = 0; /* Not supported by MR. */
3024 mpi2IocInit->TimeStamp = time_uptime;
3025
3026 verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf);
3027 snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3028 MEGASAS_VERSION);
3029 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3030 MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE);
3031 mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf));
3032 mfi_init->driver_ver_hi =
3033 htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32);
3034
3035 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3036 MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3037 BUS_DMASYNC_PREWRITE);
3038 /* Get the physical address of the mpi2 ioc init command */
3039 phyAddress = MFIMEM_DVA(sc->sc_tbolt_ioc_init);
3040 mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress);
3041 mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32);
3042
3043 mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT;
3044 mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request);
3045 if (mfi_poll(ccb) != 0) {
3046 aprint_error_dev(sc->sc_dev, "failed to send IOC init2 "
3047 "command at 0x%" PRIx64 "\n",
3048 (uint64_t)ccb->ccb_pframe);
3049 splx(s);
3050 return 1;
3051 }
3052 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3053 MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3054 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3055 MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3056 BUS_DMASYNC_POSTWRITE);
3057 mfi_put_ccb(ccb);
3058 splx(s);
3059
3060 if (mfi_init->mif_header.mfh_cmd_status == 0) {
3061 sc->sc_MFA_enabled = 1;
3062 }
3063 else {
3064 aprint_error_dev(sc->sc_dev, "Init command Failed %x\n",
3065 mfi_init->mif_header.mfh_cmd_status);
3066 return 1;
3067 }
3068
3069 snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc));
3070 if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info,
3071 sc, PRIBIO, IPL_BIO, 0) != 0) {
3072 aprint_error_dev(sc->sc_dev, "workqueue_create failed\n");
3073 return 1;
3074 }
3075 workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3076 return 0;
3077 }
3078
3079 int
3080 mfi_tbolt_intrh(void *arg)
3081 {
3082 struct mfi_softc *sc = arg;
3083 struct mfi_ccb *ccb;
3084 union mfi_mpi2_reply_descriptor *desc;
3085 int smid, num_completed;
3086
3087 if (!mfi_tbolt_intr(sc))
3088 return 0;
3089
3090 DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc),
3091 (u_long)sc, (u_long)sc->sc_last_reply_idx);
3092
3093 KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size);
3094
3095 desc = (union mfi_mpi2_reply_descriptor *)
3096 ((uintptr_t)sc->sc_reply_frame_pool +
3097 sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3098
3099 bus_dmamap_sync(sc->sc_dmat,
3100 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3101 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3102 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3103 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3104 num_completed = 0;
3105 while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) !=
3106 MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
3107 smid = desc->header.SMID;
3108 KASSERT(smid > 0 && smid <= sc->sc_max_cmds);
3109 ccb = &sc->sc_ccb[smid - 1];
3110 DNPRINTF(MFI_D_INTR,
3111 "%s: mfi_tbolt_intr SMID %#x reply_idx %#x "
3112 "desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid,
3113 sc->sc_last_reply_idx, desc->words, ccb);
3114 KASSERT(ccb->ccb_state == MFI_CCB_RUNNING);
3115 if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO &&
3116 ccb->ccb_tb_io_request->ChainOffset != 0) {
3117 bus_dmamap_sync(sc->sc_dmat,
3118 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3119 ccb->ccb_tb_psg_frame -
3120 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3121 MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_POSTREAD);
3122 }
3123 if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) {
3124 bus_dmamap_sync(sc->sc_dmat,
3125 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3126 ccb->ccb_tb_pio_request -
3127 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3128 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3129 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3130 }
3131 if (ccb->ccb_done)
3132 ccb->ccb_done(ccb);
3133 else
3134 ccb->ccb_state = MFI_CCB_DONE;
3135 sc->sc_last_reply_idx++;
3136 if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) {
3137 sc->sc_last_reply_idx = 0;
3138 }
3139 desc->words = ~0x0;
3140 /* Get the next reply descriptor */
3141 desc = (union mfi_mpi2_reply_descriptor *)
3142 ((uintptr_t)sc->sc_reply_frame_pool +
3143 sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3144 num_completed++;
3145 }
3146 if (num_completed == 0)
3147 return 0;
3148
3149 bus_dmamap_sync(sc->sc_dmat,
3150 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3151 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3152 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3153 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3154 mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx);
3155 return 1;
3156 }
3157
3158
3159 int
3160 mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
3161 uint64_t blockno, uint32_t blockcnt)
3162 {
3163 struct scsipi_periph *periph = xs->xs_periph;
3164 struct mfi_mpi2_request_raid_scsi_io *io_req;
3165 int sge_count;
3166
3167 DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n",
3168 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
3169 periph->periph_target);
3170
3171 if (!xs->data)
3172 return 1;
3173
3174 ccb->ccb_done = mfi_tbolt_scsi_ld_done;
3175 ccb->ccb_xs = xs;
3176 ccb->ccb_data = xs->data;
3177 ccb->ccb_len = xs->datalen;
3178
3179 io_req = ccb->ccb_tb_io_request;
3180
3181 /* Just the CDB length,rest of the Flags are zero */
3182 io_req->IoFlags = xs->cmdlen;
3183 memset(io_req->CDB.CDB32, 0, 32);
3184 memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen);
3185
3186 io_req->RaidContext.TargetID = periph->periph_target;
3187 io_req->RaidContext.Status = 0;
3188 io_req->RaidContext.exStatus = 0;
3189 io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT;
3190 io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST;
3191 io_req->DevHandle = periph->periph_target;
3192
3193 ccb->ccb_tb_request_desc.header.RequestFlags =
3194 (MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
3195 io_req->DataLength = blockcnt * MFI_SECTOR_LEN;
3196
3197 if (xs->xs_control & XS_CTL_DATA_IN) {
3198 io_req->Control = MPI2_SCSIIO_CONTROL_READ;
3199 ccb->ccb_direction = MFI_DATA_IN;
3200 } else {
3201 io_req->Control = MPI2_SCSIIO_CONTROL_WRITE;
3202 ccb->ccb_direction = MFI_DATA_OUT;
3203 }
3204
3205 sge_count = mfi_tbolt_create_sgl(ccb,
3206 (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK
3207 );
3208 if (sge_count < 0)
3209 return 1;
3210 KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl);
3211 io_req->RaidContext.numSGE = sge_count;
3212 io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3213 io_req->SGLOffset0 =
3214 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
3215
3216 io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense);
3217 io_req->SenseBufferLength = MFI_SENSE_SIZE;
3218
3219 ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO;
3220 bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
3221 MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3222 ccb->ccb_tb_pio_request -
3223 MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3224 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3225 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3226
3227 return 0;
3228 }
3229
3230
3231 static void
3232 mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb)
3233 {
3234 struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
3235 mfi_scsi_xs_done(ccb, io_req->RaidContext.Status,
3236 io_req->RaidContext.exStatus);
3237 }
3238
3239 static int
3240 mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags)
3241 {
3242 struct mfi_softc *sc = ccb->ccb_sc;
3243 bus_dma_segment_t *sgd;
3244 int error, i, sge_idx, sge_count;
3245 struct mfi_mpi2_request_raid_scsi_io *io_req;
3246 struct mpi25_ieee_sge_chain64 *sgl_ptr;
3247
3248 DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc),
3249 (u_long)ccb->ccb_data);
3250
3251 if (!ccb->ccb_data)
3252 return -1;
3253
3254 KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
3255 error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
3256 ccb->ccb_data, ccb->ccb_len, NULL, flags);
3257 if (error) {
3258 if (error == EFBIG)
3259 aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
3260 sc->sc_max_sgl);
3261 else
3262 aprint_error_dev(sc->sc_dev,
3263 "error %d loading dma map\n", error);
3264 return -1;
3265 }
3266
3267 io_req = ccb->ccb_tb_io_request;
3268 sgl_ptr = &io_req->SGL.IeeeChain.Chain64;
3269 sge_count = ccb->ccb_dmamap->dm_nsegs;
3270 sgd = ccb->ccb_dmamap->dm_segs;
3271 KASSERT(sge_count <= sc->sc_max_sgl);
3272 KASSERT(sge_count <=
3273 (MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 +
3274 MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG));
3275
3276 if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) {
3277 /* One element to store the chain info */
3278 sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1;
3279 DNPRINTF(MFI_D_DMA,
3280 "mfi sge_idx %d sge_count %d io_req paddr 0x%" PRIx64 "\n",
3281 sge_idx, sge_count, ccb->ccb_tb_pio_request);
3282 } else {
3283 sge_idx = sge_count;
3284 }
3285
3286 for (i = 0; i < sge_idx; i++) {
3287 sgl_ptr->Address = htole64(sgd[i].ds_addr);
3288 sgl_ptr->Length = htole32(sgd[i].ds_len);
3289 sgl_ptr->Flags = 0;
3290 if (sge_idx < sge_count) {
3291 DNPRINTF(MFI_D_DMA,
3292 "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3293 " flags 0x%x\n", sgl_ptr, i,
3294 sgl_ptr->Address, sgl_ptr->Length,
3295 sgl_ptr->Flags);
3296 }
3297 sgl_ptr++;
3298 }
3299 io_req->ChainOffset = 0;
3300 if (sge_idx < sge_count) {
3301 struct mpi25_ieee_sge_chain64 *sg_chain;
3302 io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG;
3303 sg_chain = sgl_ptr;
3304 /* Prepare chain element */
3305 sg_chain->NextChainOffset = 0;
3306 sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3307 MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
3308 sg_chain->Length = (sizeof(mpi2_sge_io_union) *
3309 (sge_count - sge_idx));
3310 sg_chain->Address = ccb->ccb_tb_psg_frame;
3311 DNPRINTF(MFI_D_DMA,
3312 "sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32
3313 " flags 0x%x\n", sg_chain, sg_chain->Address,
3314 sg_chain->Length, sg_chain->Flags);
3315 sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64;
3316 for (; i < sge_count; i++) {
3317 sgl_ptr->Address = htole64(sgd[i].ds_addr);
3318 sgl_ptr->Length = htole32(sgd[i].ds_len);
3319 sgl_ptr->Flags = 0;
3320 DNPRINTF(MFI_D_DMA,
3321 "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3322 " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address,
3323 sgl_ptr->Length, sgl_ptr->Flags);
3324 sgl_ptr++;
3325 }
3326 bus_dmamap_sync(sc->sc_dmat,
3327 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3328 ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3329 MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_PREREAD);
3330 }
3331
3332 if (ccb->ccb_direction == MFI_DATA_IN) {
3333 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3334 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3335 } else {
3336 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3337 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3338 }
3339 return sge_count;
3340 }
3341
3342 /*
3343 * The ThunderBolt HW has an option for the driver to directly
3344 * access the underlying disks and operate on the RAID. To
3345 * do this there needs to be a capability to keep the RAID controller
3346 * and driver in sync. The FreeBSD driver does not take advantage
3347 * of this feature since it adds a lot of complexity and slows down
3348 * performance. Performance is gained by using the controller's
3349 * cache etc.
3350 *
3351 * Even though this driver doesn't access the disks directly, an
3352 * AEN like command is used to inform the RAID firmware to "sync"
3353 * with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command. This
3354 * command in write mode will return when the RAID firmware has
3355 * detected a change to the RAID state. Examples of this type
3356 * of change are removing a disk. Once the command returns then
3357 * the driver needs to acknowledge this and "sync" all LD's again.
3358 * This repeats until we shutdown. Then we need to cancel this
3359 * pending command.
3360 *
3361 * If this is not done right the RAID firmware will not remove a
3362 * pulled drive and the RAID won't go degraded etc. Effectively,
3363 * stopping any RAID mangement to functions.
3364 *
3365 * Doing another LD sync, requires the use of an event since the
3366 * driver needs to do a mfi_wait_command and can't do that in an
3367 * interrupt thread.
3368 *
3369 * The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO
3370 * That requires a bunch of structure and it is simplier to just do
3371 * the MFI_DCMD_LD_GET_LIST versus walking the RAID map.
3372 */
3373
3374 void
3375 mfi_tbolt_sync_map_info(struct work *w, void *v)
3376 {
3377 struct mfi_softc *sc = v;
3378 int i;
3379 struct mfi_ccb *ccb = NULL;
3380 uint8_t mbox[MFI_MBOX_SIZE];
3381 struct mfi_ld *ld_sync = NULL;
3382 size_t ld_size;
3383 int s;
3384
3385 DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc));
3386 again:
3387 s = splbio();
3388 if (sc->sc_ldsync_ccb != NULL) {
3389 splx(s);
3390 return;
3391 }
3392
3393 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
3394 sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) {
3395 aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n");
3396 goto err;
3397 }
3398
3399 ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld;
3400
3401 ld_sync = malloc(ld_size, M_DEVBUF, M_WAITOK | M_ZERO);
3402 if (ld_sync == NULL) {
3403 aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n");
3404 goto err;
3405 }
3406 for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) {
3407 ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld;
3408 }
3409
3410 if ((ccb = mfi_get_ccb(sc)) == NULL) {
3411 aprint_error_dev(sc->sc_dev, "Failed to get sync command\n");
3412 goto err;
3413 }
3414 sc->sc_ldsync_ccb = ccb;
3415
3416 memset(mbox, 0, MFI_MBOX_SIZE);
3417 mbox[0] = sc->sc_ld_list.mll_no_ld;
3418 mbox[1] = MFI_DCMD_MBOX_PEND_FLAG;
3419 if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT,
3420 ld_size, ld_sync, mbox)) {
3421 aprint_error_dev(sc->sc_dev, "Failed to create sync command\n");
3422 goto err;
3423 }
3424 /*
3425 * we won't sleep on this command, so we have to override
3426 * the callback set up by mfi_mgmt()
3427 */
3428 ccb->ccb_done = mfi_sync_map_complete;
3429
3430 mfi_post(sc, ccb);
3431 splx(s);
3432 return;
3433
3434 err:
3435 if (ld_sync)
3436 free(ld_sync, M_DEVBUF);
3437 if (ccb)
3438 mfi_put_ccb(ccb);
3439 sc->sc_ldsync_ccb = NULL;
3440 splx(s);
3441 kpause("ldsyncp", 0, hz, NULL);
3442 goto again;
3443 }
3444
3445 static void
3446 mfi_sync_map_complete(struct mfi_ccb *ccb)
3447 {
3448 struct mfi_softc *sc = ccb->ccb_sc;
3449 bool aborted = !sc->sc_running;
3450
3451 DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n",
3452 DEVNAME(ccb->ccb_sc));
3453 KASSERT(sc->sc_ldsync_ccb == ccb);
3454 mfi_mgmt_done(ccb);
3455 free(ccb->ccb_data, M_DEVBUF);
3456 if (ccb->ccb_flags & MFI_CCB_F_ERR) {
3457 aprint_error_dev(sc->sc_dev, "sync command failed\n");
3458 aborted = true;
3459 }
3460 mfi_put_ccb(ccb);
3461 sc->sc_ldsync_ccb = NULL;
3462
3463 /* set it up again so the driver can catch more events */
3464 if (!aborted) {
3465 workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3466 }
3467 }
3468
3469 static int
3470 mfifopen(dev_t dev, int flag, int mode, struct lwp *l)
3471 {
3472 struct mfi_softc *sc;
3473
3474 if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL)
3475 return (ENXIO);
3476 return (0);
3477 }
3478
3479 static int
3480 mfifclose(dev_t dev, int flag, int mode, struct lwp *l)
3481 {
3482 return (0);
3483 }
3484
3485 static int
3486 mfifioctl(dev_t dev, u_long cmd, void *data, int flag,
3487 struct lwp *l)
3488 {
3489 struct mfi_softc *sc;
3490 struct mfi_ioc_packet *ioc = data;
3491 uint8_t *udata;
3492 struct mfi_ccb *ccb = NULL;
3493 int ctx, i, s, error;
3494 union mfi_sense_ptr sense_ptr;
3495
3496 switch(cmd) {
3497 case MFI_CMD:
3498 sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no);
3499 break;
3500 default:
3501 return ENOTTY;
3502 }
3503 if (sc == NULL)
3504 return (ENXIO);
3505 if (sc->sc_opened)
3506 return (EBUSY);
3507
3508 switch(cmd) {
3509 case MFI_CMD:
3510 error = kauth_authorize_device_passthru(l->l_cred, dev,
3511 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
3512 if (error)
3513 return error;
3514 if (ioc->mfi_sge_count > MAX_IOCTL_SGE)
3515 return EINVAL;
3516 s = splbio();
3517 if ((ccb = mfi_get_ccb(sc)) == NULL)
3518 return ENOMEM;
3519 ccb->ccb_data = NULL;
3520 ctx = ccb->ccb_frame->mfr_header.mfh_context;
3521 memcpy(ccb->ccb_frame, ioc->mfi_frame.raw,
3522 sizeof(*ccb->ccb_frame));
3523 ccb->ccb_frame->mfr_header.mfh_context = ctx;
3524 ccb->ccb_frame->mfr_header.mfh_scsi_status = 0;
3525 ccb->ccb_frame->mfr_header.mfh_pad0 = 0;
3526 ccb->ccb_frame_size =
3527 (sizeof(union mfi_sgl) * ioc->mfi_sge_count) +
3528 ioc->mfi_sgl_off;
3529 if (ioc->mfi_sge_count > 0) {
3530 ccb->ccb_sgl = (union mfi_sgl *)
3531 &ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off];
3532 }
3533 if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ)
3534 ccb->ccb_direction = MFI_DATA_IN;
3535 if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE)
3536 ccb->ccb_direction = MFI_DATA_OUT;
3537 ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len;
3538 if (ccb->ccb_len > MAXPHYS) {
3539 error = ENOMEM;
3540 goto out;
3541 }
3542 if (ccb->ccb_len &&
3543 (ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) {
3544 udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO);
3545 if (udata == NULL) {
3546 error = ENOMEM;
3547 goto out;
3548 }
3549 ccb->ccb_data = udata;
3550 if (ccb->ccb_direction & MFI_DATA_OUT) {
3551 for (i = 0; i < ioc->mfi_sge_count; i++) {
3552 error = copyin(ioc->mfi_sgl[i].iov_base,
3553 udata, ioc->mfi_sgl[i].iov_len);
3554 if (error)
3555 goto out;
3556 udata = &udata[
3557 ioc->mfi_sgl[i].iov_len];
3558 }
3559 }
3560 if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) {
3561 error = EIO;
3562 goto out;
3563 }
3564 }
3565 if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) {
3566 ccb->ccb_frame->mfr_io.mif_sense_addr_lo =
3567 htole32(ccb->ccb_psense);
3568 ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0;
3569 }
3570 ccb->ccb_done = mfi_mgmt_done;
3571 mfi_post(sc, ccb);
3572 while (ccb->ccb_state != MFI_CCB_DONE)
3573 tsleep(ccb, PRIBIO, "mfi_fioc", 0);
3574
3575 if (ccb->ccb_direction & MFI_DATA_IN) {
3576 udata = ccb->ccb_data;
3577 for (i = 0; i < ioc->mfi_sge_count; i++) {
3578 error = copyout(udata,
3579 ioc->mfi_sgl[i].iov_base,
3580 ioc->mfi_sgl[i].iov_len);
3581 if (error)
3582 goto out;
3583 udata = &udata[
3584 ioc->mfi_sgl[i].iov_len];
3585 }
3586 }
3587 if (ioc->mfi_sense_len) {
3588 memcpy(&sense_ptr.sense_ptr_data[0],
3589 &ioc->mfi_frame.raw[ioc->mfi_sense_off],
3590 sizeof(sense_ptr.sense_ptr_data));
3591 error = copyout(ccb->ccb_sense,
3592 sense_ptr.user_space,
3593 sizeof(sense_ptr.sense_ptr_data));
3594 if (error)
3595 goto out;
3596 }
3597 memcpy(ioc->mfi_frame.raw, ccb->ccb_frame,
3598 sizeof(*ccb->ccb_frame));
3599 break;
3600 default:
3601 printf("mfifioctl unhandled cmd 0x%lx\n", cmd);
3602 return ENOTTY;
3603 }
3604
3605 out:
3606 if (ccb->ccb_data)
3607 free(ccb->ccb_data, M_DEVBUF);
3608 if (ccb)
3609 mfi_put_ccb(ccb);
3610 splx(s);
3611 return error;
3612 }
3613