mfi.c revision 1.64 1 /* $NetBSD: mfi.c,v 1.64 2021/04/24 23:36:55 thorpej Exp $ */
2 /* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */
3
4 /*
5 * Copyright (c) 2012 Manuel Bouyer.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * Copyright (c) 2006 Marco Peereboom <marco (at) peereboom.us>
30 *
31 * Permission to use, copy, modify, and distribute this software for any
32 * purpose with or without fee is hereby granted, provided that the above
33 * copyright notice and this permission notice appear in all copies.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
36 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
37 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
38 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
39 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
40 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
41 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
42 */
43
44 /*-
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 *
49 * Copyright 1994-2009 The FreeBSD Project.
50 * All rights reserved.
51 *
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
60 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR
62 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
63 * EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
64 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
65 * PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY
66 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
67 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
68 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 *
70 * The views and conclusions contained in the software and documentation
71 * are those of the authors and should not be interpreted as representing
72 * official policies,either expressed or implied, of the FreeBSD Project.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.64 2021/04/24 23:36:55 thorpej Exp $");
77
78 #include "bio.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/ioctl.h>
84 #include <sys/device.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc.h>
88 #include <sys/cpu.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91
92 #include <uvm/uvm_param.h>
93
94 #include <sys/bus.h>
95
96 #include <dev/scsipi/scsipi_all.h>
97 #include <dev/scsipi/scsi_all.h>
98 #include <dev/scsipi/scsi_spc.h>
99 #include <dev/scsipi/scsipi_disk.h>
100 #include <dev/scsipi/scsi_disk.h>
101 #include <dev/scsipi/scsiconf.h>
102
103 #include <dev/ic/mfireg.h>
104 #include <dev/ic/mfivar.h>
105 #include <dev/ic/mfiio.h>
106
107 #if NBIO > 0
108 #include <dev/biovar.h>
109 #endif /* NBIO > 0 */
110
111 #include "ioconf.h"
112
113 #ifdef MFI_DEBUG
114 uint32_t mfi_debug = 0
115 /* | MFI_D_CMD */
116 /* | MFI_D_INTR */
117 /* | MFI_D_MISC */
118 /* | MFI_D_DMA */
119 /* | MFI_D_IOCTL */
120 /* | MFI_D_RW */
121 /* | MFI_D_MEM */
122 /* | MFI_D_CCB */
123 /* | MFI_D_SYNC */
124 ;
125 #endif
126
127 static void mfi_scsipi_request(struct scsipi_channel *,
128 scsipi_adapter_req_t, void *);
129 static void mfiminphys(struct buf *bp);
130
131 static struct mfi_ccb *mfi_get_ccb(struct mfi_softc *);
132 static void mfi_put_ccb(struct mfi_ccb *);
133 static int mfi_init_ccb(struct mfi_softc *);
134
135 static struct mfi_mem *mfi_allocmem(struct mfi_softc *, size_t);
136 static void mfi_freemem(struct mfi_softc *, struct mfi_mem **);
137
138 static int mfi_transition_firmware(struct mfi_softc *);
139 static int mfi_initialize_firmware(struct mfi_softc *);
140 static int mfi_get_info(struct mfi_softc *);
141 static int mfi_get_bbu(struct mfi_softc *,
142 struct mfi_bbu_status *);
143 /* return codes for mfi_get_bbu */
144 #define MFI_BBU_GOOD 0
145 #define MFI_BBU_BAD 1
146 #define MFI_BBU_UNKNOWN 2
147 static uint32_t mfi_read(struct mfi_softc *, bus_size_t);
148 static void mfi_write(struct mfi_softc *, bus_size_t, uint32_t);
149 static int mfi_poll(struct mfi_ccb *);
150 static int mfi_create_sgl(struct mfi_ccb *, int);
151
152 /* commands */
153 static int mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *);
154 static int mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
155 uint64_t, uint32_t);
156 static void mfi_scsi_ld_done(struct mfi_ccb *);
157 static void mfi_scsi_xs_done(struct mfi_ccb *, int, int);
158 static int mfi_mgmt_internal(struct mfi_softc *, uint32_t,
159 uint32_t, uint32_t, void *, uint8_t *, bool);
160 static int mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *,
161 uint32_t, uint32_t, uint32_t, void *, uint8_t *);
162 static void mfi_mgmt_done(struct mfi_ccb *);
163
164 #if NBIO > 0
165 static int mfi_ioctl(device_t, u_long, void *);
166 static int mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *);
167 static int mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *);
168 static int mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *);
169 static int mfi_ioctl_alarm(struct mfi_softc *,
170 struct bioc_alarm *);
171 static int mfi_ioctl_blink(struct mfi_softc *sc,
172 struct bioc_blink *);
173 static int mfi_ioctl_setstate(struct mfi_softc *,
174 struct bioc_setstate *);
175 static int mfi_bio_hs(struct mfi_softc *, int, int, void *);
176 static int mfi_create_sensors(struct mfi_softc *);
177 static int mfi_destroy_sensors(struct mfi_softc *);
178 static void mfi_sensor_refresh(struct sysmon_envsys *,
179 envsys_data_t *);
180 #endif /* NBIO > 0 */
181 static bool mfi_shutdown(device_t, int);
182 static bool mfi_suspend(device_t, const pmf_qual_t *);
183 static bool mfi_resume(device_t, const pmf_qual_t *);
184
185 static dev_type_open(mfifopen);
186 static dev_type_close(mfifclose);
187 static dev_type_ioctl(mfifioctl);
188 const struct cdevsw mfi_cdevsw = {
189 .d_open = mfifopen,
190 .d_close = mfifclose,
191 .d_read = noread,
192 .d_write = nowrite,
193 .d_ioctl = mfifioctl,
194 .d_stop = nostop,
195 .d_tty = notty,
196 .d_poll = nopoll,
197 .d_mmap = nommap,
198 .d_kqfilter = nokqfilter,
199 .d_discard = nodiscard,
200 .d_flag = D_OTHER
201 };
202
203 static uint32_t mfi_xscale_fw_state(struct mfi_softc *sc);
204 static void mfi_xscale_intr_ena(struct mfi_softc *sc);
205 static void mfi_xscale_intr_dis(struct mfi_softc *sc);
206 static int mfi_xscale_intr(struct mfi_softc *sc);
207 static void mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
208
209 static const struct mfi_iop_ops mfi_iop_xscale = {
210 mfi_xscale_fw_state,
211 mfi_xscale_intr_dis,
212 mfi_xscale_intr_ena,
213 mfi_xscale_intr,
214 mfi_xscale_post,
215 mfi_scsi_ld_io,
216 };
217
218 static uint32_t mfi_ppc_fw_state(struct mfi_softc *sc);
219 static void mfi_ppc_intr_ena(struct mfi_softc *sc);
220 static void mfi_ppc_intr_dis(struct mfi_softc *sc);
221 static int mfi_ppc_intr(struct mfi_softc *sc);
222 static void mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
223
224 static const struct mfi_iop_ops mfi_iop_ppc = {
225 mfi_ppc_fw_state,
226 mfi_ppc_intr_dis,
227 mfi_ppc_intr_ena,
228 mfi_ppc_intr,
229 mfi_ppc_post,
230 mfi_scsi_ld_io,
231 };
232
233 uint32_t mfi_gen2_fw_state(struct mfi_softc *sc);
234 void mfi_gen2_intr_ena(struct mfi_softc *sc);
235 void mfi_gen2_intr_dis(struct mfi_softc *sc);
236 int mfi_gen2_intr(struct mfi_softc *sc);
237 void mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
238
239 static const struct mfi_iop_ops mfi_iop_gen2 = {
240 mfi_gen2_fw_state,
241 mfi_gen2_intr_dis,
242 mfi_gen2_intr_ena,
243 mfi_gen2_intr,
244 mfi_gen2_post,
245 mfi_scsi_ld_io,
246 };
247
248 u_int32_t mfi_skinny_fw_state(struct mfi_softc *);
249 void mfi_skinny_intr_dis(struct mfi_softc *);
250 void mfi_skinny_intr_ena(struct mfi_softc *);
251 int mfi_skinny_intr(struct mfi_softc *);
252 void mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *);
253
254 static const struct mfi_iop_ops mfi_iop_skinny = {
255 mfi_skinny_fw_state,
256 mfi_skinny_intr_dis,
257 mfi_skinny_intr_ena,
258 mfi_skinny_intr,
259 mfi_skinny_post,
260 mfi_scsi_ld_io,
261 };
262
263 static int mfi_tbolt_init_desc_pool(struct mfi_softc *);
264 static int mfi_tbolt_init_MFI_queue(struct mfi_softc *);
265 static void mfi_tbolt_build_mpt_ccb(struct mfi_ccb *);
266 int mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
267 uint64_t, uint32_t);
268 static void mfi_tbolt_scsi_ld_done(struct mfi_ccb *);
269 static int mfi_tbolt_create_sgl(struct mfi_ccb *, int);
270 void mfi_tbolt_sync_map_info(struct work *, void *);
271 static void mfi_sync_map_complete(struct mfi_ccb *);
272
273 u_int32_t mfi_tbolt_fw_state(struct mfi_softc *);
274 void mfi_tbolt_intr_dis(struct mfi_softc *);
275 void mfi_tbolt_intr_ena(struct mfi_softc *);
276 int mfi_tbolt_intr(struct mfi_softc *sc);
277 void mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *);
278
279 static const struct mfi_iop_ops mfi_iop_tbolt = {
280 mfi_tbolt_fw_state,
281 mfi_tbolt_intr_dis,
282 mfi_tbolt_intr_ena,
283 mfi_tbolt_intr,
284 mfi_tbolt_post,
285 mfi_tbolt_scsi_ld_io,
286 };
287
288 #define mfi_fw_state(_s) ((_s)->sc_iop->mio_fw_state(_s))
289 #define mfi_intr_enable(_s) ((_s)->sc_iop->mio_intr_ena(_s))
290 #define mfi_intr_disable(_s) ((_s)->sc_iop->mio_intr_dis(_s))
291 #define mfi_my_intr(_s) ((_s)->sc_iop->mio_intr(_s))
292 #define mfi_post(_s, _c) ((_s)->sc_iop->mio_post((_s), (_c)))
293
294 static struct mfi_ccb *
295 mfi_get_ccb(struct mfi_softc *sc)
296 {
297 struct mfi_ccb *ccb;
298 int s;
299
300 s = splbio();
301 ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
302 if (ccb) {
303 TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
304 ccb->ccb_state = MFI_CCB_READY;
305 }
306 splx(s);
307
308 DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb);
309 if (__predict_false(ccb == NULL && sc->sc_running))
310 aprint_error_dev(sc->sc_dev, "out of ccb\n");
311
312 return ccb;
313 }
314
315 static void
316 mfi_put_ccb(struct mfi_ccb *ccb)
317 {
318 struct mfi_softc *sc = ccb->ccb_sc;
319 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
320 int s;
321
322 DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb);
323
324 hdr->mfh_cmd_status = 0x0;
325 hdr->mfh_flags = 0x0;
326 ccb->ccb_state = MFI_CCB_FREE;
327 ccb->ccb_xs = NULL;
328 ccb->ccb_flags = 0;
329 ccb->ccb_done = NULL;
330 ccb->ccb_direction = 0;
331 ccb->ccb_frame_size = 0;
332 ccb->ccb_extra_frames = 0;
333 ccb->ccb_sgl = NULL;
334 ccb->ccb_data = NULL;
335 ccb->ccb_len = 0;
336 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
337 /* erase tb_request_desc but preserve SMID */
338 int index = ccb->ccb_tb_request_desc.header.SMID;
339 ccb->ccb_tb_request_desc.words = 0;
340 ccb->ccb_tb_request_desc.header.SMID = index;
341 }
342 s = splbio();
343 TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
344 splx(s);
345 }
346
347 static int
348 mfi_destroy_ccb(struct mfi_softc *sc)
349 {
350 struct mfi_ccb *ccb;
351 uint32_t i;
352
353 DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc));
354
355
356 for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) {
357 /* create a dma map for transfer */
358 bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
359 }
360
361 if (i < sc->sc_max_cmds)
362 return EBUSY;
363
364 free(sc->sc_ccb, M_DEVBUF);
365
366 return 0;
367 }
368
369 static int
370 mfi_init_ccb(struct mfi_softc *sc)
371 {
372 struct mfi_ccb *ccb;
373 uint32_t i;
374 int error;
375 bus_addr_t io_req_base_phys;
376 uint8_t *io_req_base;
377 int offset;
378
379 DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc));
380
381 sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds,
382 M_DEVBUF, M_WAITOK|M_ZERO);
383 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
384 /*
385 * The first 256 bytes (SMID 0) is not used.
386 * Don't add to the cmd list.
387 */
388 io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool) +
389 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
390 io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) +
391 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
392 } else {
393 io_req_base = NULL; /* XXX: gcc */
394 io_req_base_phys = 0; /* XXX: gcc */
395 }
396
397 for (i = 0; i < sc->sc_max_cmds; i++) {
398 ccb = &sc->sc_ccb[i];
399
400 ccb->ccb_sc = sc;
401
402 /* select i'th frame */
403 ccb->ccb_frame = (union mfi_frame *)
404 ((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i);
405 ccb->ccb_pframe =
406 MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i;
407 ccb->ccb_frame->mfr_header.mfh_context = i;
408
409 /* select i'th sense */
410 ccb->ccb_sense = (struct mfi_sense *)
411 ((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
412 ccb->ccb_psense =
413 (MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
414
415 /* create a dma map for transfer */
416 error = bus_dmamap_create(sc->sc_datadmat,
417 MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0,
418 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
419 if (error) {
420 aprint_error_dev(sc->sc_dev,
421 "cannot create ccb dmamap (%d)\n", error);
422 goto destroy;
423 }
424 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
425 offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i;
426 ccb->ccb_tb_io_request =
427 (struct mfi_mpi2_request_raid_scsi_io *)
428 (io_req_base + offset);
429 ccb->ccb_tb_pio_request =
430 io_req_base_phys + offset;
431 offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i;
432 ccb->ccb_tb_sg_frame =
433 (mpi2_sge_io_union *)(sc->sc_reply_pool_limit +
434 offset);
435 ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr +
436 offset;
437 /* SMID 0 is reserved. Set SMID/index from 1 */
438 ccb->ccb_tb_request_desc.header.SMID = i + 1;
439 }
440
441 DNPRINTF(MFI_D_CCB,
442 "ccb(%d): %p frame: %#lx (%#lx) sense: %#lx (%#lx) map: %#lx\n",
443 ccb->ccb_frame->mfr_header.mfh_context, ccb,
444 (u_long)ccb->ccb_frame, (u_long)ccb->ccb_pframe,
445 (u_long)ccb->ccb_sense, (u_long)ccb->ccb_psense,
446 (u_long)ccb->ccb_dmamap);
447
448 /* add ccb to queue */
449 mfi_put_ccb(ccb);
450 }
451
452 return 0;
453 destroy:
454 /* free dma maps and ccb memory */
455 while (i) {
456 i--;
457 ccb = &sc->sc_ccb[i];
458 bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
459 }
460
461 free(sc->sc_ccb, M_DEVBUF);
462
463 return 1;
464 }
465
466 static uint32_t
467 mfi_read(struct mfi_softc *sc, bus_size_t r)
468 {
469 uint32_t rv;
470
471 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
472 BUS_SPACE_BARRIER_READ);
473 rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
474
475 DNPRINTF(MFI_D_RW, "%s: mr 0x%lx 0x08%x ", DEVNAME(sc), (u_long)r, rv);
476 return rv;
477 }
478
479 static void
480 mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v)
481 {
482 DNPRINTF(MFI_D_RW, "%s: mw 0x%lx 0x%08x", DEVNAME(sc), (u_long)r, v);
483
484 bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
485 bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
486 BUS_SPACE_BARRIER_WRITE);
487 }
488
489 static struct mfi_mem *
490 mfi_allocmem(struct mfi_softc *sc, size_t size)
491 {
492 struct mfi_mem *mm;
493 int nsegs;
494
495 DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %ld\n", DEVNAME(sc),
496 (long)size);
497
498 mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_WAITOK|M_ZERO);
499 mm->am_size = size;
500
501 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
502 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0)
503 goto amfree;
504
505 if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1,
506 &nsegs, BUS_DMA_NOWAIT) != 0)
507 goto destroy;
508
509 if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva,
510 BUS_DMA_NOWAIT) != 0)
511 goto free;
512
513 if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL,
514 BUS_DMA_NOWAIT) != 0)
515 goto unmap;
516
517 DNPRINTF(MFI_D_MEM, " kva: %p dva: %p map: %p\n",
518 mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map);
519
520 memset(mm->am_kva, 0, size);
521 return mm;
522
523 unmap:
524 bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size);
525 free:
526 bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
527 destroy:
528 bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
529 amfree:
530 free(mm, M_DEVBUF);
531
532 return NULL;
533 }
534
535 static void
536 mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp)
537 {
538 struct mfi_mem *mm = *mmp;
539
540 if (mm == NULL)
541 return;
542
543 *mmp = NULL;
544
545 DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm);
546
547 bus_dmamap_unload(sc->sc_dmat, mm->am_map);
548 bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size);
549 bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
550 bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
551 free(mm, M_DEVBUF);
552 }
553
554 static int
555 mfi_transition_firmware(struct mfi_softc *sc)
556 {
557 uint32_t fw_state, cur_state;
558 int max_wait, i;
559
560 fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
561
562 DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc),
563 fw_state);
564
565 while (fw_state != MFI_STATE_READY) {
566 DNPRINTF(MFI_D_MISC,
567 "%s: waiting for firmware to become ready\n",
568 DEVNAME(sc));
569 cur_state = fw_state;
570 switch (fw_state) {
571 case MFI_STATE_FAULT:
572 aprint_error_dev(sc->sc_dev, "firmware fault\n");
573 return 1;
574 case MFI_STATE_WAIT_HANDSHAKE:
575 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
576 sc->sc_ioptype == MFI_IOP_TBOLT)
577 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE);
578 else
579 mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE);
580 max_wait = 2;
581 break;
582 case MFI_STATE_OPERATIONAL:
583 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
584 sc->sc_ioptype == MFI_IOP_TBOLT)
585 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_READY);
586 else
587 mfi_write(sc, MFI_IDB, MFI_INIT_READY);
588 max_wait = 10;
589 break;
590 case MFI_STATE_UNDEFINED:
591 case MFI_STATE_BB_INIT:
592 max_wait = 2;
593 break;
594 case MFI_STATE_FW_INIT:
595 case MFI_STATE_DEVICE_SCAN:
596 case MFI_STATE_FLUSH_CACHE:
597 max_wait = 20;
598 break;
599 case MFI_STATE_BOOT_MESSAGE_PENDING:
600 if (sc->sc_ioptype == MFI_IOP_SKINNY ||
601 sc->sc_ioptype == MFI_IOP_TBOLT) {
602 mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG);
603 } else {
604 mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG);
605 }
606 max_wait = 180;
607 break;
608 default:
609 aprint_error_dev(sc->sc_dev,
610 "unknown firmware state %d\n", fw_state);
611 return 1;
612 }
613 for (i = 0; i < (max_wait * 10); i++) {
614 fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
615 if (fw_state == cur_state)
616 DELAY(100000);
617 else
618 break;
619 }
620 if (fw_state == cur_state) {
621 aprint_error_dev(sc->sc_dev,
622 "firmware stuck in state %#x\n", fw_state);
623 return 1;
624 }
625 }
626
627 return 0;
628 }
629
630 static int
631 mfi_initialize_firmware(struct mfi_softc *sc)
632 {
633 struct mfi_ccb *ccb;
634 struct mfi_init_frame *init;
635 struct mfi_init_qinfo *qinfo;
636
637 DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc));
638
639 if ((ccb = mfi_get_ccb(sc)) == NULL)
640 return 1;
641
642 init = &ccb->ccb_frame->mfr_init;
643 qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE);
644
645 memset(qinfo, 0, sizeof *qinfo);
646 qinfo->miq_rq_entries = sc->sc_max_cmds + 1;
647 qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
648 offsetof(struct mfi_prod_cons, mpc_reply_q));
649 qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
650 offsetof(struct mfi_prod_cons, mpc_producer));
651 qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
652 offsetof(struct mfi_prod_cons, mpc_consumer));
653
654 init->mif_header.mfh_cmd = MFI_CMD_INIT;
655 init->mif_header.mfh_data_len = sizeof *qinfo;
656 init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE);
657
658 DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n",
659 DEVNAME(sc),
660 qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo,
661 qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo);
662
663 if (mfi_poll(ccb)) {
664 aprint_error_dev(sc->sc_dev,
665 "mfi_initialize_firmware failed\n");
666 return 1;
667 }
668
669 mfi_put_ccb(ccb);
670
671 return 0;
672 }
673
674 static int
675 mfi_get_info(struct mfi_softc *sc)
676 {
677 #ifdef MFI_DEBUG
678 int i;
679 #endif
680 DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc));
681
682 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN,
683 sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false))
684 return 1;
685
686 #ifdef MFI_DEBUG
687
688 for (i = 0; i < sc->sc_info.mci_image_component_count; i++) {
689 printf("%s: active FW %s Version %s date %s time %s\n",
690 DEVNAME(sc),
691 sc->sc_info.mci_image_component[i].mic_name,
692 sc->sc_info.mci_image_component[i].mic_version,
693 sc->sc_info.mci_image_component[i].mic_build_date,
694 sc->sc_info.mci_image_component[i].mic_build_time);
695 }
696
697 for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) {
698 printf("%s: pending FW %s Version %s date %s time %s\n",
699 DEVNAME(sc),
700 sc->sc_info.mci_pending_image_component[i].mic_name,
701 sc->sc_info.mci_pending_image_component[i].mic_version,
702 sc->sc_info.mci_pending_image_component[i].mic_build_date,
703 sc->sc_info.mci_pending_image_component[i].mic_build_time);
704 }
705
706 printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n",
707 DEVNAME(sc),
708 sc->sc_info.mci_max_arms,
709 sc->sc_info.mci_max_spans,
710 sc->sc_info.mci_max_arrays,
711 sc->sc_info.mci_max_lds,
712 sc->sc_info.mci_product_name);
713
714 printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n",
715 DEVNAME(sc),
716 sc->sc_info.mci_serial_number,
717 sc->sc_info.mci_hw_present,
718 sc->sc_info.mci_current_fw_time,
719 sc->sc_info.mci_max_cmds,
720 sc->sc_info.mci_max_sg_elements);
721
722 printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n",
723 DEVNAME(sc),
724 sc->sc_info.mci_max_request_size,
725 sc->sc_info.mci_lds_present,
726 sc->sc_info.mci_lds_degraded,
727 sc->sc_info.mci_lds_offline,
728 sc->sc_info.mci_pd_present);
729
730 printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n",
731 DEVNAME(sc),
732 sc->sc_info.mci_pd_disks_present,
733 sc->sc_info.mci_pd_disks_pred_failure,
734 sc->sc_info.mci_pd_disks_failed);
735
736 printf("%s: nvram %d mem %d flash %d\n",
737 DEVNAME(sc),
738 sc->sc_info.mci_nvram_size,
739 sc->sc_info.mci_memory_size,
740 sc->sc_info.mci_flash_size);
741
742 printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n",
743 DEVNAME(sc),
744 sc->sc_info.mci_ram_correctable_errors,
745 sc->sc_info.mci_ram_uncorrectable_errors,
746 sc->sc_info.mci_cluster_allowed,
747 sc->sc_info.mci_cluster_active);
748
749 printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n",
750 DEVNAME(sc),
751 sc->sc_info.mci_max_strips_per_io,
752 sc->sc_info.mci_raid_levels,
753 sc->sc_info.mci_adapter_ops,
754 sc->sc_info.mci_ld_ops);
755
756 printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n",
757 DEVNAME(sc),
758 sc->sc_info.mci_stripe_sz_ops.min,
759 sc->sc_info.mci_stripe_sz_ops.max,
760 sc->sc_info.mci_pd_ops,
761 sc->sc_info.mci_pd_mix_support);
762
763 printf("%s: ecc_bucket %d pckg_prop %s\n",
764 DEVNAME(sc),
765 sc->sc_info.mci_ecc_bucket_count,
766 sc->sc_info.mci_package_version);
767
768 printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n",
769 DEVNAME(sc),
770 sc->sc_info.mci_properties.mcp_seq_num,
771 sc->sc_info.mci_properties.mcp_pred_fail_poll_interval,
772 sc->sc_info.mci_properties.mcp_intr_throttle_cnt,
773 sc->sc_info.mci_properties.mcp_intr_throttle_timeout);
774
775 printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n",
776 DEVNAME(sc),
777 sc->sc_info.mci_properties.mcp_rebuild_rate,
778 sc->sc_info.mci_properties.mcp_patrol_read_rate,
779 sc->sc_info.mci_properties.mcp_bgi_rate,
780 sc->sc_info.mci_properties.mcp_cc_rate);
781
782 printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n",
783 DEVNAME(sc),
784 sc->sc_info.mci_properties.mcp_recon_rate,
785 sc->sc_info.mci_properties.mcp_cache_flush_interval,
786 sc->sc_info.mci_properties.mcp_spinup_drv_cnt,
787 sc->sc_info.mci_properties.mcp_spinup_delay,
788 sc->sc_info.mci_properties.mcp_cluster_enable);
789
790 printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n",
791 DEVNAME(sc),
792 sc->sc_info.mci_properties.mcp_coercion_mode,
793 sc->sc_info.mci_properties.mcp_alarm_enable,
794 sc->sc_info.mci_properties.mcp_disable_auto_rebuild,
795 sc->sc_info.mci_properties.mcp_disable_battery_warn,
796 sc->sc_info.mci_properties.mcp_ecc_bucket_size);
797
798 printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n",
799 DEVNAME(sc),
800 sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate,
801 sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion,
802 sc->sc_info.mci_properties.mcp_expose_encl_devices);
803
804 printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n",
805 DEVNAME(sc),
806 sc->sc_info.mci_pci.mip_vendor,
807 sc->sc_info.mci_pci.mip_device,
808 sc->sc_info.mci_pci.mip_subvendor,
809 sc->sc_info.mci_pci.mip_subdevice);
810
811 printf("%s: type %#x port_count %d port_addr ",
812 DEVNAME(sc),
813 sc->sc_info.mci_host.mih_type,
814 sc->sc_info.mci_host.mih_port_count);
815
816 for (i = 0; i < 8; i++)
817 printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]);
818 printf("\n");
819
820 printf("%s: type %.x port_count %d port_addr ",
821 DEVNAME(sc),
822 sc->sc_info.mci_device.mid_type,
823 sc->sc_info.mci_device.mid_port_count);
824
825 for (i = 0; i < 8; i++) {
826 printf("%.0" PRIx64 " ",
827 sc->sc_info.mci_device.mid_port_addr[i]);
828 }
829 printf("\n");
830 #endif /* MFI_DEBUG */
831
832 return 0;
833 }
834
835 static int
836 mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat)
837 {
838 DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc));
839
840 if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN,
841 sizeof(*stat), stat, NULL, cold ? true : false))
842 return MFI_BBU_UNKNOWN;
843 #ifdef MFI_DEBUG
844 printf("bbu type %d, voltage %d, current %d, temperature %d, "
845 "status 0x%x\n", stat->battery_type, stat->voltage, stat->current,
846 stat->temperature, stat->fw_status);
847 printf("details: ");
848 switch(stat->battery_type) {
849 case MFI_BBU_TYPE_IBBU:
850 printf("guage %d relative charge %d charger state %d "
851 "charger ctrl %d\n", stat->detail.ibbu.gas_guage_status,
852 stat->detail.ibbu.relative_charge ,
853 stat->detail.ibbu.charger_system_state ,
854 stat->detail.ibbu.charger_system_ctrl);
855 printf("\tcurrent %d abs charge %d max error %d\n",
856 stat->detail.ibbu.charging_current ,
857 stat->detail.ibbu.absolute_charge ,
858 stat->detail.ibbu.max_error);
859 break;
860 case MFI_BBU_TYPE_BBU:
861 printf("guage %d relative charge %d charger state %d\n",
862 stat->detail.ibbu.gas_guage_status,
863 stat->detail.bbu.relative_charge ,
864 stat->detail.bbu.charger_status );
865 printf("\trem capacity %d fyll capacity %d SOH %d\n",
866 stat->detail.bbu.remaining_capacity ,
867 stat->detail.bbu.full_charge_capacity ,
868 stat->detail.bbu.is_SOH_good);
869 break;
870 default:
871 printf("\n");
872 }
873 #endif
874 switch(stat->battery_type) {
875 case MFI_BBU_TYPE_BBU:
876 return (stat->detail.bbu.is_SOH_good ?
877 MFI_BBU_GOOD : MFI_BBU_BAD);
878 case MFI_BBU_TYPE_NONE:
879 return MFI_BBU_UNKNOWN;
880 default:
881 if (stat->fw_status &
882 (MFI_BBU_STATE_PACK_MISSING |
883 MFI_BBU_STATE_VOLTAGE_LOW |
884 MFI_BBU_STATE_TEMPERATURE_HIGH |
885 MFI_BBU_STATE_LEARN_CYC_FAIL |
886 MFI_BBU_STATE_LEARN_CYC_TIMEOUT |
887 MFI_BBU_STATE_I2C_ERR_DETECT))
888 return MFI_BBU_BAD;
889 return MFI_BBU_GOOD;
890 }
891 }
892
893 static void
894 mfiminphys(struct buf *bp)
895 {
896 DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount);
897
898 /* XXX currently using MFI_MAXFER = MAXPHYS */
899 if (bp->b_bcount > MFI_MAXFER)
900 bp->b_bcount = MFI_MAXFER;
901 minphys(bp);
902 }
903
904 int
905 mfi_rescan(device_t self, const char *ifattr, const int *locators)
906 {
907 struct mfi_softc *sc = device_private(self);
908
909 if (sc->sc_child != NULL)
910 return 0;
911
912 sc->sc_child = config_found(self, &sc->sc_chan, scsiprint, CFARG_EOL);
913
914 return 0;
915 }
916
917 void
918 mfi_childdetached(device_t self, device_t child)
919 {
920 struct mfi_softc *sc = device_private(self);
921
922 KASSERT(self == sc->sc_dev);
923 KASSERT(child == sc->sc_child);
924
925 if (child == sc->sc_child)
926 sc->sc_child = NULL;
927 }
928
929 int
930 mfi_detach(struct mfi_softc *sc, int flags)
931 {
932 int error;
933
934 DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc));
935
936 if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
937 return error;
938
939 #if NBIO > 0
940 mfi_destroy_sensors(sc);
941 bio_unregister(sc->sc_dev);
942 #endif /* NBIO > 0 */
943
944 mfi_intr_disable(sc);
945 mfi_shutdown(sc->sc_dev, 0);
946
947 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
948 workqueue_destroy(sc->sc_ldsync_wq);
949 mfi_put_ccb(sc->sc_ldsync_ccb);
950 mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
951 mfi_freemem(sc, &sc->sc_tbolt_ioc_init);
952 mfi_freemem(sc, &sc->sc_tbolt_verbuf);
953 }
954
955 if ((error = mfi_destroy_ccb(sc)) != 0)
956 return error;
957
958 mfi_freemem(sc, &sc->sc_sense);
959
960 mfi_freemem(sc, &sc->sc_frames);
961
962 mfi_freemem(sc, &sc->sc_pcq);
963
964 return 0;
965 }
966
967 static bool
968 mfi_shutdown(device_t dev, int how)
969 {
970 struct mfi_softc *sc = device_private(dev);
971 uint8_t mbox[MFI_MBOX_SIZE];
972 int s = splbio();
973 DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc));
974 if (sc->sc_running) {
975 mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
976 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH,
977 MFI_DATA_NONE, 0, NULL, mbox, true)) {
978 aprint_error_dev(dev, "shutdown: cache flush failed\n");
979 goto fail;
980 }
981
982 mbox[0] = 0;
983 if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN,
984 MFI_DATA_NONE, 0, NULL, mbox, true)) {
985 aprint_error_dev(dev, "shutdown: "
986 "firmware shutdown failed\n");
987 goto fail;
988 }
989 sc->sc_running = false;
990 }
991 splx(s);
992 return true;
993 fail:
994 splx(s);
995 return false;
996 }
997
998 static bool
999 mfi_suspend(device_t dev, const pmf_qual_t *q)
1000 {
1001 /* XXX to be implemented */
1002 return false;
1003 }
1004
1005 static bool
1006 mfi_resume(device_t dev, const pmf_qual_t *q)
1007 {
1008 /* XXX to be implemented */
1009 return false;
1010 }
1011
1012 int
1013 mfi_attach(struct mfi_softc *sc, enum mfi_iop iop)
1014 {
1015 struct scsipi_adapter *adapt = &sc->sc_adapt;
1016 struct scsipi_channel *chan = &sc->sc_chan;
1017 uint32_t status, frames, max_sgl;
1018 int i;
1019
1020 DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc));
1021
1022 sc->sc_ioptype = iop;
1023
1024 switch (iop) {
1025 case MFI_IOP_XSCALE:
1026 sc->sc_iop = &mfi_iop_xscale;
1027 break;
1028 case MFI_IOP_PPC:
1029 sc->sc_iop = &mfi_iop_ppc;
1030 break;
1031 case MFI_IOP_GEN2:
1032 sc->sc_iop = &mfi_iop_gen2;
1033 break;
1034 case MFI_IOP_SKINNY:
1035 sc->sc_iop = &mfi_iop_skinny;
1036 break;
1037 case MFI_IOP_TBOLT:
1038 sc->sc_iop = &mfi_iop_tbolt;
1039 break;
1040 default:
1041 panic("%s: unknown iop %d", DEVNAME(sc), iop);
1042 }
1043
1044 if (mfi_transition_firmware(sc))
1045 return 1;
1046
1047 TAILQ_INIT(&sc->sc_ccb_freeq);
1048
1049 status = mfi_fw_state(sc);
1050 sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK;
1051 max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16;
1052 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1053 sc->sc_max_sgl = uimin(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1054 sc->sc_sgl_size = sizeof(struct mfi_sg_ieee);
1055 } else if (sc->sc_64bit_dma) {
1056 sc->sc_max_sgl = uimin(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
1057 sc->sc_sgl_size = sizeof(struct mfi_sg64);
1058 } else {
1059 sc->sc_max_sgl = max_sgl;
1060 sc->sc_sgl_size = sizeof(struct mfi_sg32);
1061 }
1062 DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n",
1063 DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl);
1064
1065 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1066 uint32_t tb_mem_size;
1067 /* for Alignment */
1068 tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALLIGNMENT;
1069
1070 tb_mem_size +=
1071 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1);
1072 sc->sc_reply_pool_size =
1073 ((sc->sc_max_cmds + 1 + 15) / 16) * 16;
1074 tb_mem_size +=
1075 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
1076
1077 /* this is for SGL's */
1078 tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds;
1079 sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size);
1080 if (sc->sc_tbolt_reqmsgpool == NULL) {
1081 aprint_error_dev(sc->sc_dev,
1082 "unable to allocate thunderbolt "
1083 "request message pool\n");
1084 goto nopcq;
1085 }
1086 if (mfi_tbolt_init_desc_pool(sc)) {
1087 aprint_error_dev(sc->sc_dev,
1088 "Thunderbolt pool preparation error\n");
1089 goto nopcq;
1090 }
1091
1092 /*
1093 * Allocate DMA memory mapping for MPI2 IOC Init descriptor,
1094 * we are taking it diffrent from what we have allocated for
1095 * Request and reply descriptors to avoid confusion later
1096 */
1097 sc->sc_tbolt_ioc_init = mfi_allocmem(sc,
1098 sizeof(struct mpi2_ioc_init_request));
1099 if (sc->sc_tbolt_ioc_init == NULL) {
1100 aprint_error_dev(sc->sc_dev,
1101 "unable to allocate thunderbolt IOC init memory");
1102 goto nopcq;
1103 }
1104
1105 sc->sc_tbolt_verbuf = mfi_allocmem(sc,
1106 MEGASAS_MAX_NAME*sizeof(bus_addr_t));
1107 if (sc->sc_tbolt_verbuf == NULL) {
1108 aprint_error_dev(sc->sc_dev,
1109 "unable to allocate thunderbolt version buffer\n");
1110 goto nopcq;
1111 }
1112
1113 }
1114 /* consumer/producer and reply queue memory */
1115 sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) +
1116 sizeof(struct mfi_prod_cons));
1117 if (sc->sc_pcq == NULL) {
1118 aprint_error_dev(sc->sc_dev,
1119 "unable to allocate reply queue memory\n");
1120 goto nopcq;
1121 }
1122 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1123 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1124 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1125
1126 /* frame memory */
1127 frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) /
1128 MFI_FRAME_SIZE + 1;
1129 sc->sc_frames_size = frames * MFI_FRAME_SIZE;
1130 sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds);
1131 if (sc->sc_frames == NULL) {
1132 aprint_error_dev(sc->sc_dev,
1133 "unable to allocate frame memory\n");
1134 goto noframe;
1135 }
1136 /* XXX hack, fix this */
1137 if (MFIMEM_DVA(sc->sc_frames) & 0x3f) {
1138 aprint_error_dev(sc->sc_dev,
1139 "improper frame alignment (%#llx) FIXME\n",
1140 (long long int)MFIMEM_DVA(sc->sc_frames));
1141 goto noframe;
1142 }
1143
1144 /* sense memory */
1145 sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE);
1146 if (sc->sc_sense == NULL) {
1147 aprint_error_dev(sc->sc_dev,
1148 "unable to allocate sense memory\n");
1149 goto nosense;
1150 }
1151
1152 /* now that we have all memory bits go initialize ccbs */
1153 if (mfi_init_ccb(sc)) {
1154 aprint_error_dev(sc->sc_dev, "could not init ccb list\n");
1155 goto noinit;
1156 }
1157
1158 /* kickstart firmware with all addresses and pointers */
1159 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1160 if (mfi_tbolt_init_MFI_queue(sc)) {
1161 aprint_error_dev(sc->sc_dev,
1162 "could not initialize firmware\n");
1163 goto noinit;
1164 }
1165 } else {
1166 if (mfi_initialize_firmware(sc)) {
1167 aprint_error_dev(sc->sc_dev,
1168 "could not initialize firmware\n");
1169 goto noinit;
1170 }
1171 }
1172 sc->sc_running = true;
1173
1174 if (mfi_get_info(sc)) {
1175 aprint_error_dev(sc->sc_dev,
1176 "could not retrieve controller information\n");
1177 goto noinit;
1178 }
1179 aprint_normal_dev(sc->sc_dev,
1180 "%s version %s\n",
1181 sc->sc_info.mci_product_name,
1182 sc->sc_info.mci_package_version);
1183
1184
1185 aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ",
1186 sc->sc_info.mci_lds_present,
1187 sc->sc_info.mci_memory_size);
1188 sc->sc_bbuok = false;
1189 if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) {
1190 struct mfi_bbu_status bbu_stat;
1191 int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat);
1192 aprint_normal("BBU type ");
1193 switch (bbu_stat.battery_type) {
1194 case MFI_BBU_TYPE_BBU:
1195 aprint_normal("BBU");
1196 break;
1197 case MFI_BBU_TYPE_IBBU:
1198 aprint_normal("IBBU");
1199 break;
1200 default:
1201 aprint_normal("unknown type %d", bbu_stat.battery_type);
1202 }
1203 aprint_normal(", status ");
1204 switch(mfi_bbu_status) {
1205 case MFI_BBU_GOOD:
1206 aprint_normal("good\n");
1207 sc->sc_bbuok = true;
1208 break;
1209 case MFI_BBU_BAD:
1210 aprint_normal("bad\n");
1211 break;
1212 case MFI_BBU_UNKNOWN:
1213 aprint_normal("unknown\n");
1214 break;
1215 default:
1216 panic("mfi_bbu_status");
1217 }
1218 } else {
1219 aprint_normal("BBU not present\n");
1220 }
1221
1222 sc->sc_ld_cnt = sc->sc_info.mci_lds_present;
1223 sc->sc_max_ld = sc->sc_ld_cnt;
1224 for (i = 0; i < sc->sc_ld_cnt; i++)
1225 sc->sc_ld[i].ld_present = 1;
1226
1227 memset(adapt, 0, sizeof(*adapt));
1228 adapt->adapt_dev = sc->sc_dev;
1229 adapt->adapt_nchannels = 1;
1230 /* keep a few commands for management */
1231 if (sc->sc_max_cmds > 4)
1232 adapt->adapt_openings = sc->sc_max_cmds - 4;
1233 else
1234 adapt->adapt_openings = sc->sc_max_cmds;
1235 adapt->adapt_max_periph = adapt->adapt_openings;
1236 adapt->adapt_request = mfi_scsipi_request;
1237 adapt->adapt_minphys = mfiminphys;
1238
1239 memset(chan, 0, sizeof(*chan));
1240 chan->chan_adapter = adapt;
1241 chan->chan_bustype = &scsi_sas_bustype;
1242 chan->chan_channel = 0;
1243 chan->chan_flags = 0;
1244 chan->chan_nluns = 8;
1245 chan->chan_ntargets = MFI_MAX_LD;
1246 chan->chan_id = MFI_MAX_LD;
1247
1248 mfi_rescan(sc->sc_dev, NULL, NULL);
1249
1250 /* enable interrupts */
1251 mfi_intr_enable(sc);
1252
1253 #if NBIO > 0
1254 if (bio_register(sc->sc_dev, mfi_ioctl) != 0)
1255 panic("%s: controller registration failed", DEVNAME(sc));
1256 if (mfi_create_sensors(sc) != 0)
1257 aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
1258 #endif /* NBIO > 0 */
1259 if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume,
1260 mfi_shutdown)) {
1261 aprint_error_dev(sc->sc_dev,
1262 "couldn't establish power handler\n");
1263 }
1264
1265 return 0;
1266 noinit:
1267 mfi_freemem(sc, &sc->sc_sense);
1268 nosense:
1269 mfi_freemem(sc, &sc->sc_frames);
1270 noframe:
1271 mfi_freemem(sc, &sc->sc_pcq);
1272 nopcq:
1273 if (sc->sc_ioptype == MFI_IOP_TBOLT) {
1274 if (sc->sc_tbolt_reqmsgpool)
1275 mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
1276 if (sc->sc_tbolt_verbuf)
1277 mfi_freemem(sc, &sc->sc_tbolt_verbuf);
1278 }
1279 return 1;
1280 }
1281
1282 static int
1283 mfi_poll(struct mfi_ccb *ccb)
1284 {
1285 struct mfi_softc *sc = ccb->ccb_sc;
1286 struct mfi_frame_header *hdr;
1287 int to = 0;
1288 int rv = 0;
1289
1290 DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc));
1291
1292 hdr = &ccb->ccb_frame->mfr_header;
1293 hdr->mfh_cmd_status = 0xff;
1294 if (!sc->sc_MFA_enabled)
1295 hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
1296
1297 /* no callback, caller is supposed to do the cleanup */
1298 ccb->ccb_done = NULL;
1299
1300 mfi_post(sc, ccb);
1301 if (sc->sc_MFA_enabled) {
1302 /*
1303 * depending on the command type, result may be posted
1304 * to *hdr, or not. In addition it seems there's
1305 * no way to avoid posting the SMID to the reply queue.
1306 * So pool using the interrupt routine.
1307 */
1308 while (ccb->ccb_state != MFI_CCB_DONE) {
1309 delay(1000);
1310 if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1311 rv = 1;
1312 break;
1313 }
1314 mfi_tbolt_intrh(sc);
1315 }
1316 } else {
1317 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1318 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1319 sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1320
1321 while (hdr->mfh_cmd_status == 0xff) {
1322 delay(1000);
1323 if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
1324 rv = 1;
1325 break;
1326 }
1327 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1328 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1329 sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
1330 }
1331 }
1332 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1333 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1334 sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1335
1336 if (ccb->ccb_data != NULL) {
1337 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1338 DEVNAME(sc));
1339 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1340 ccb->ccb_dmamap->dm_mapsize,
1341 (ccb->ccb_direction & MFI_DATA_IN) ?
1342 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1343
1344 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1345 }
1346
1347 if (rv != 0) {
1348 aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n",
1349 hdr->mfh_context);
1350 ccb->ccb_flags |= MFI_CCB_F_ERR;
1351 return 1;
1352 }
1353
1354 return 0;
1355 }
1356
1357 int
1358 mfi_intr(void *arg)
1359 {
1360 struct mfi_softc *sc = arg;
1361 struct mfi_prod_cons *pcq;
1362 struct mfi_ccb *ccb;
1363 uint32_t producer, consumer, ctx;
1364 int claimed = 0;
1365
1366 if (!mfi_my_intr(sc))
1367 return 0;
1368
1369 pcq = MFIMEM_KVA(sc->sc_pcq);
1370
1371 DNPRINTF(MFI_D_INTR, "%s: mfi_intr %#lx %#lx\n", DEVNAME(sc),
1372 (u_long)sc, (u_long)pcq);
1373
1374 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1375 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1376 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1377
1378 producer = pcq->mpc_producer;
1379 consumer = pcq->mpc_consumer;
1380
1381 while (consumer != producer) {
1382 DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n",
1383 DEVNAME(sc), producer, consumer);
1384
1385 ctx = pcq->mpc_reply_q[consumer];
1386 pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX;
1387 if (ctx == MFI_INVALID_CTX)
1388 aprint_error_dev(sc->sc_dev,
1389 "invalid context, p: %d c: %d\n",
1390 producer, consumer);
1391 else {
1392 /* XXX remove from queue and call scsi_done */
1393 ccb = &sc->sc_ccb[ctx];
1394 DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n",
1395 DEVNAME(sc), ctx);
1396 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
1397 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
1398 sc->sc_frames_size,
1399 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1400 ccb->ccb_done(ccb);
1401
1402 claimed = 1;
1403 }
1404 consumer++;
1405 if (consumer == (sc->sc_max_cmds + 1))
1406 consumer = 0;
1407 }
1408
1409 pcq->mpc_consumer = consumer;
1410 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
1411 sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
1412 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1413
1414 return claimed;
1415 }
1416
1417 static int
1418 mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno,
1419 uint32_t blockcnt)
1420 {
1421 struct scsipi_periph *periph = xs->xs_periph;
1422 struct mfi_io_frame *io;
1423
1424 DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n",
1425 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1426 periph->periph_target);
1427
1428 if (!xs->data)
1429 return 1;
1430
1431 io = &ccb->ccb_frame->mfr_io;
1432 if (xs->xs_control & XS_CTL_DATA_IN) {
1433 io->mif_header.mfh_cmd = MFI_CMD_LD_READ;
1434 ccb->ccb_direction = MFI_DATA_IN;
1435 } else {
1436 io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE;
1437 ccb->ccb_direction = MFI_DATA_OUT;
1438 }
1439 io->mif_header.mfh_target_id = periph->periph_target;
1440 io->mif_header.mfh_timeout = 0;
1441 io->mif_header.mfh_flags = 0;
1442 io->mif_header.mfh_sense_len = MFI_SENSE_SIZE;
1443 io->mif_header.mfh_data_len= blockcnt;
1444 io->mif_lba_hi = (blockno >> 32);
1445 io->mif_lba_lo = (blockno & 0xffffffff);
1446 io->mif_sense_addr_lo = htole32(ccb->ccb_psense);
1447 io->mif_sense_addr_hi = 0;
1448
1449 ccb->ccb_done = mfi_scsi_ld_done;
1450 ccb->ccb_xs = xs;
1451 ccb->ccb_frame_size = MFI_IO_FRAME_SIZE;
1452 ccb->ccb_sgl = &io->mif_sgl;
1453 ccb->ccb_data = xs->data;
1454 ccb->ccb_len = xs->datalen;
1455
1456 if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1457 BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1458 return 1;
1459
1460 return 0;
1461 }
1462
1463 static void
1464 mfi_scsi_ld_done(struct mfi_ccb *ccb)
1465 {
1466 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
1467 mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status);
1468 }
1469
1470 static void
1471 mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status)
1472 {
1473 struct scsipi_xfer *xs = ccb->ccb_xs;
1474 struct mfi_softc *sc = ccb->ccb_sc;
1475
1476 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %#lx %#lx\n",
1477 DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1478
1479 if (xs->data != NULL) {
1480 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n",
1481 DEVNAME(sc));
1482 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1483 ccb->ccb_dmamap->dm_mapsize,
1484 (xs->xs_control & XS_CTL_DATA_IN) ?
1485 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1486
1487 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1488 }
1489
1490 if (status != MFI_STAT_OK) {
1491 xs->error = XS_DRIVER_STUFFUP;
1492 DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n",
1493 DEVNAME(sc), status);
1494
1495 if (scsi_status != 0) {
1496 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
1497 ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
1498 MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD);
1499 DNPRINTF(MFI_D_INTR,
1500 "%s: mfi_scsi_xs_done sense %#x %lx %lx\n",
1501 DEVNAME(sc), scsi_status,
1502 (u_long)&xs->sense, (u_long)ccb->ccb_sense);
1503 memset(&xs->sense, 0, sizeof(xs->sense));
1504 memcpy(&xs->sense, ccb->ccb_sense,
1505 sizeof(struct scsi_sense_data));
1506 xs->error = XS_SENSE;
1507 }
1508 } else {
1509 xs->error = XS_NOERROR;
1510 xs->status = SCSI_OK;
1511 xs->resid = 0;
1512 }
1513
1514 mfi_put_ccb(ccb);
1515 scsipi_done(xs);
1516 }
1517
1518 static int
1519 mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs)
1520 {
1521 struct mfi_pass_frame *pf;
1522 struct scsipi_periph *periph = xs->xs_periph;
1523
1524 DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n",
1525 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
1526 periph->periph_target);
1527
1528 pf = &ccb->ccb_frame->mfr_pass;
1529 pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO;
1530 pf->mpf_header.mfh_target_id = periph->periph_target;
1531 pf->mpf_header.mfh_lun_id = 0;
1532 pf->mpf_header.mfh_cdb_len = xs->cmdlen;
1533 pf->mpf_header.mfh_timeout = 0;
1534 pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */
1535 pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE;
1536
1537 pf->mpf_sense_addr_hi = 0;
1538 pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense);
1539
1540 memset(pf->mpf_cdb, 0, 16);
1541 memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen);
1542
1543 ccb->ccb_done = mfi_scsi_ld_done;
1544 ccb->ccb_xs = xs;
1545 ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE;
1546 ccb->ccb_sgl = &pf->mpf_sgl;
1547
1548 if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT))
1549 ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ?
1550 MFI_DATA_IN : MFI_DATA_OUT;
1551 else
1552 ccb->ccb_direction = MFI_DATA_NONE;
1553
1554 if (xs->data) {
1555 ccb->ccb_data = xs->data;
1556 ccb->ccb_len = xs->datalen;
1557
1558 if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
1559 BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
1560 return 1;
1561 }
1562
1563 return 0;
1564 }
1565
1566 static void
1567 mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1568 void *arg)
1569 {
1570 struct scsipi_periph *periph;
1571 struct scsipi_xfer *xs;
1572 struct scsipi_adapter *adapt = chan->chan_adapter;
1573 struct mfi_softc *sc = device_private(adapt->adapt_dev);
1574 struct mfi_ccb *ccb;
1575 struct scsi_rw_6 *rw;
1576 struct scsipi_rw_10 *rwb;
1577 struct scsipi_rw_12 *rw12;
1578 struct scsipi_rw_16 *rw16;
1579 uint64_t blockno;
1580 uint32_t blockcnt;
1581 uint8_t target;
1582 uint8_t mbox[MFI_MBOX_SIZE];
1583 int s;
1584
1585 switch (req) {
1586 case ADAPTER_REQ_GROW_RESOURCES:
1587 /* Not supported. */
1588 return;
1589 case ADAPTER_REQ_SET_XFER_MODE:
1590 {
1591 struct scsipi_xfer_mode *xm = arg;
1592 xm->xm_mode = PERIPH_CAP_TQING;
1593 xm->xm_period = 0;
1594 xm->xm_offset = 0;
1595 scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
1596 return;
1597 }
1598 case ADAPTER_REQ_RUN_XFER:
1599 break;
1600 }
1601
1602 xs = arg;
1603
1604 periph = xs->xs_periph;
1605 target = periph->periph_target;
1606
1607 DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x "
1608 "target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode,
1609 periph->periph_target, periph->periph_lun);
1610
1611 s = splbio();
1612 if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present ||
1613 periph->periph_lun != 0) {
1614 DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n",
1615 DEVNAME(sc), target);
1616 xs->error = XS_SELTIMEOUT;
1617 scsipi_done(xs);
1618 splx(s);
1619 return;
1620 }
1621 if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 ||
1622 xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) {
1623 /* the cache is stable storage, don't flush */
1624 xs->error = XS_NOERROR;
1625 xs->status = SCSI_OK;
1626 xs->resid = 0;
1627 scsipi_done(xs);
1628 splx(s);
1629 return;
1630 }
1631
1632 if ((ccb = mfi_get_ccb(sc)) == NULL) {
1633 DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc));
1634 xs->error = XS_RESOURCE_SHORTAGE;
1635 scsipi_done(xs);
1636 splx(s);
1637 return;
1638 }
1639
1640 switch (xs->cmd->opcode) {
1641 /* IO path */
1642 case READ_16:
1643 case WRITE_16:
1644 rw16 = (struct scsipi_rw_16 *)xs->cmd;
1645 blockno = _8btol(rw16->addr);
1646 blockcnt = _4btol(rw16->length);
1647 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1648 goto stuffup;
1649 }
1650 break;
1651
1652 case READ_12:
1653 case WRITE_12:
1654 rw12 = (struct scsipi_rw_12 *)xs->cmd;
1655 blockno = _4btol(rw12->addr);
1656 blockcnt = _4btol(rw12->length);
1657 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1658 goto stuffup;
1659 }
1660 break;
1661
1662 case READ_10:
1663 case WRITE_10:
1664 rwb = (struct scsipi_rw_10 *)xs->cmd;
1665 blockno = _4btol(rwb->addr);
1666 blockcnt = _2btol(rwb->length);
1667 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1668 goto stuffup;
1669 }
1670 break;
1671
1672 case SCSI_READ_6_COMMAND:
1673 case SCSI_WRITE_6_COMMAND:
1674 rw = (struct scsi_rw_6 *)xs->cmd;
1675 blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
1676 blockcnt = rw->length ? rw->length : 0x100;
1677 if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
1678 goto stuffup;
1679 }
1680 break;
1681
1682 case SCSI_SYNCHRONIZE_CACHE_10:
1683 case SCSI_SYNCHRONIZE_CACHE_16:
1684 mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
1685 if (mfi_mgmt(ccb, xs,
1686 MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, mbox)) {
1687 goto stuffup;
1688 }
1689 break;
1690
1691 /* hand it of to the firmware and let it deal with it */
1692 case SCSI_TEST_UNIT_READY:
1693 /* save off sd? after autoconf */
1694 if (!cold) /* XXX bogus */
1695 strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev),
1696 sizeof(sc->sc_ld[target].ld_dev));
1697 /* FALLTHROUGH */
1698
1699 default:
1700 if (mfi_scsi_ld(ccb, xs)) {
1701 goto stuffup;
1702 }
1703 break;
1704 }
1705
1706 DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target);
1707
1708 if (xs->xs_control & XS_CTL_POLL) {
1709 if (mfi_poll(ccb)) {
1710 /* XXX check for sense in ccb->ccb_sense? */
1711 aprint_error_dev(sc->sc_dev,
1712 "mfi_scsipi_request poll failed\n");
1713 memset(&xs->sense, 0, sizeof(xs->sense));
1714 xs->sense.scsi_sense.response_code =
1715 SSD_RCODE_VALID | SSD_RCODE_CURRENT;
1716 xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
1717 xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */
1718 xs->error = XS_SENSE;
1719 xs->status = SCSI_CHECK;
1720 } else {
1721 DNPRINTF(MFI_D_DMA,
1722 "%s: mfi_scsipi_request poll complete %d\n",
1723 DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs);
1724 xs->error = XS_NOERROR;
1725 xs->status = SCSI_OK;
1726 xs->resid = 0;
1727 }
1728 mfi_put_ccb(ccb);
1729 scsipi_done(xs);
1730 splx(s);
1731 return;
1732 }
1733
1734 mfi_post(sc, ccb);
1735
1736 DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc),
1737 ccb->ccb_dmamap->dm_nsegs);
1738
1739 splx(s);
1740 return;
1741
1742 stuffup:
1743 mfi_put_ccb(ccb);
1744 xs->error = XS_DRIVER_STUFFUP;
1745 scsipi_done(xs);
1746 splx(s);
1747 }
1748
1749 static int
1750 mfi_create_sgl(struct mfi_ccb *ccb, int flags)
1751 {
1752 struct mfi_softc *sc = ccb->ccb_sc;
1753 struct mfi_frame_header *hdr;
1754 bus_dma_segment_t *sgd;
1755 union mfi_sgl *sgl;
1756 int error, i;
1757
1758 DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %#lx\n", DEVNAME(sc),
1759 (u_long)ccb->ccb_data);
1760
1761 if (!ccb->ccb_data)
1762 return 1;
1763
1764 KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
1765 error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
1766 ccb->ccb_data, ccb->ccb_len, NULL, flags);
1767 if (error) {
1768 if (error == EFBIG) {
1769 aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
1770 sc->sc_max_sgl);
1771 } else {
1772 aprint_error_dev(sc->sc_dev,
1773 "error %d loading dma map\n", error);
1774 }
1775 return 1;
1776 }
1777
1778 hdr = &ccb->ccb_frame->mfr_header;
1779 sgl = ccb->ccb_sgl;
1780 sgd = ccb->ccb_dmamap->dm_segs;
1781 for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
1782 if (sc->sc_ioptype == MFI_IOP_TBOLT &&
1783 (hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO ||
1784 hdr->mfh_cmd == MFI_CMD_LD_READ ||
1785 hdr->mfh_cmd == MFI_CMD_LD_WRITE)) {
1786 sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr);
1787 sgl->sg_ieee[i].len = htole32(sgd[i].ds_len);
1788 sgl->sg_ieee[i].flags = 0;
1789 DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1790 PRIx32 "\n",
1791 DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1792 hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
1793 } else if (sc->sc_64bit_dma) {
1794 sgl->sg64[i].addr = htole64(sgd[i].ds_addr);
1795 sgl->sg64[i].len = htole32(sgd[i].ds_len);
1796 DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
1797 PRIx32 "\n",
1798 DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
1799 hdr->mfh_flags |= MFI_FRAME_SGL64;
1800 } else {
1801 sgl->sg32[i].addr = htole32(sgd[i].ds_addr);
1802 sgl->sg32[i].len = htole32(sgd[i].ds_len);
1803 DNPRINTF(MFI_D_DMA, "%s: addr: %#x len: %#x\n",
1804 DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len);
1805 hdr->mfh_flags |= MFI_FRAME_SGL32;
1806 }
1807 }
1808
1809 if (ccb->ccb_direction == MFI_DATA_IN) {
1810 hdr->mfh_flags |= MFI_FRAME_DIR_READ;
1811 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1812 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1813 } else {
1814 hdr->mfh_flags |= MFI_FRAME_DIR_WRITE;
1815 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1816 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1817 }
1818
1819 hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs;
1820 ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs;
1821 ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE;
1822
1823 DNPRINTF(MFI_D_DMA, "%s: sg_count: %d frame_size: %d frames_size: %d"
1824 " dm_nsegs: %d extra_frames: %d\n",
1825 DEVNAME(sc),
1826 hdr->mfh_sg_count,
1827 ccb->ccb_frame_size,
1828 sc->sc_frames_size,
1829 ccb->ccb_dmamap->dm_nsegs,
1830 ccb->ccb_extra_frames);
1831
1832 return 0;
1833 }
1834
1835 static int
1836 mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir,
1837 uint32_t len, void *buf, uint8_t *mbox, bool poll)
1838 {
1839 struct mfi_ccb *ccb;
1840 int rv = 1;
1841
1842 if ((ccb = mfi_get_ccb(sc)) == NULL)
1843 return rv;
1844 rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox);
1845 if (rv)
1846 return rv;
1847
1848 if (poll) {
1849 rv = 1;
1850 if (mfi_poll(ccb))
1851 goto done;
1852 } else {
1853 mfi_post(sc, ccb);
1854
1855 DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n",
1856 DEVNAME(sc));
1857 while (ccb->ccb_state != MFI_CCB_DONE)
1858 tsleep(ccb, PRIBIO, "mfi_mgmt", 0);
1859
1860 if (ccb->ccb_flags & MFI_CCB_F_ERR)
1861 goto done;
1862 }
1863 rv = 0;
1864
1865 done:
1866 mfi_put_ccb(ccb);
1867 return rv;
1868 }
1869
1870 static int
1871 mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
1872 uint32_t opc, uint32_t dir, uint32_t len, void *buf, uint8_t *mbox)
1873 {
1874 struct mfi_dcmd_frame *dcmd;
1875
1876 DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc);
1877
1878 dcmd = &ccb->ccb_frame->mfr_dcmd;
1879 memset(dcmd->mdf_mbox.b, 0, MFI_MBOX_SIZE);
1880 dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD;
1881 dcmd->mdf_header.mfh_timeout = 0;
1882
1883 dcmd->mdf_opcode = opc;
1884 dcmd->mdf_header.mfh_data_len = 0;
1885 ccb->ccb_direction = dir;
1886 ccb->ccb_xs = xs;
1887 ccb->ccb_done = mfi_mgmt_done;
1888
1889 ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE;
1890
1891 /* handle special opcodes */
1892 if (mbox)
1893 memcpy(dcmd->mdf_mbox.b, mbox, MFI_MBOX_SIZE);
1894
1895 if (dir != MFI_DATA_NONE) {
1896 dcmd->mdf_header.mfh_data_len = len;
1897 ccb->ccb_data = buf;
1898 ccb->ccb_len = len;
1899 ccb->ccb_sgl = &dcmd->mdf_sgl;
1900
1901 if (mfi_create_sgl(ccb, BUS_DMA_WAITOK))
1902 return 1;
1903 }
1904 return 0;
1905 }
1906
1907 static void
1908 mfi_mgmt_done(struct mfi_ccb *ccb)
1909 {
1910 struct scsipi_xfer *xs = ccb->ccb_xs;
1911 struct mfi_softc *sc = ccb->ccb_sc;
1912 struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
1913
1914 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n",
1915 DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
1916
1917 if (ccb->ccb_data != NULL) {
1918 DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
1919 DEVNAME(sc));
1920 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
1921 ccb->ccb_dmamap->dm_mapsize,
1922 (ccb->ccb_direction & MFI_DATA_IN) ?
1923 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1924
1925 bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
1926 }
1927
1928 if (hdr->mfh_cmd_status != MFI_STAT_OK)
1929 ccb->ccb_flags |= MFI_CCB_F_ERR;
1930
1931 ccb->ccb_state = MFI_CCB_DONE;
1932 if (xs) {
1933 if (hdr->mfh_cmd_status != MFI_STAT_OK) {
1934 xs->error = XS_DRIVER_STUFFUP;
1935 } else {
1936 xs->error = XS_NOERROR;
1937 xs->status = SCSI_OK;
1938 xs->resid = 0;
1939 }
1940 mfi_put_ccb(ccb);
1941 scsipi_done(xs);
1942 } else
1943 wakeup(ccb);
1944 }
1945
1946 #if NBIO > 0
1947 int
1948 mfi_ioctl(device_t dev, u_long cmd, void *addr)
1949 {
1950 struct mfi_softc *sc = device_private(dev);
1951 int error = 0;
1952 int s;
1953
1954 KERNEL_LOCK(1, curlwp);
1955 s = splbio();
1956
1957 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc));
1958
1959 switch (cmd) {
1960 case BIOCINQ:
1961 DNPRINTF(MFI_D_IOCTL, "inq\n");
1962 error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr);
1963 break;
1964
1965 case BIOCVOL:
1966 DNPRINTF(MFI_D_IOCTL, "vol\n");
1967 error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr);
1968 break;
1969
1970 case BIOCDISK:
1971 DNPRINTF(MFI_D_IOCTL, "disk\n");
1972 error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr);
1973 break;
1974
1975 case BIOCALARM:
1976 DNPRINTF(MFI_D_IOCTL, "alarm\n");
1977 error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr);
1978 break;
1979
1980 case BIOCBLINK:
1981 DNPRINTF(MFI_D_IOCTL, "blink\n");
1982 error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr);
1983 break;
1984
1985 case BIOCSETSTATE:
1986 DNPRINTF(MFI_D_IOCTL, "setstate\n");
1987 error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr);
1988 break;
1989
1990 default:
1991 DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n");
1992 error = EINVAL;
1993 }
1994 splx(s);
1995 KERNEL_UNLOCK_ONE(curlwp);
1996
1997 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error);
1998 return error;
1999 }
2000
2001 static int
2002 mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi)
2003 {
2004 struct mfi_conf *cfg;
2005 int rv = EINVAL;
2006
2007 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc));
2008
2009 if (mfi_get_info(sc)) {
2010 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n",
2011 DEVNAME(sc));
2012 return EIO;
2013 }
2014
2015 /* get figures */
2016 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2017 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2018 sizeof *cfg, cfg, NULL, false))
2019 goto freeme;
2020
2021 strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
2022 bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs;
2023 bi->bi_nodisk = sc->sc_info.mci_pd_disks_present;
2024
2025 rv = 0;
2026 freeme:
2027 free(cfg, M_DEVBUF);
2028 return rv;
2029 }
2030
2031 static int
2032 mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv)
2033 {
2034 int i, per, rv = EINVAL;
2035 uint8_t mbox[MFI_MBOX_SIZE];
2036
2037 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n",
2038 DEVNAME(sc), bv->bv_volid);
2039
2040 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
2041 sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false))
2042 goto done;
2043
2044 i = bv->bv_volid;
2045 mbox[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target;
2046 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n",
2047 DEVNAME(sc), mbox[0]);
2048
2049 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN,
2050 sizeof(sc->sc_ld_details), &sc->sc_ld_details, mbox, false))
2051 goto done;
2052
2053 if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) {
2054 /* go do hotspares */
2055 rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv);
2056 goto done;
2057 }
2058
2059 strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev));
2060
2061 switch(sc->sc_ld_list.mll_list[i].mll_state) {
2062 case MFI_LD_OFFLINE:
2063 bv->bv_status = BIOC_SVOFFLINE;
2064 break;
2065
2066 case MFI_LD_PART_DEGRADED:
2067 case MFI_LD_DEGRADED:
2068 bv->bv_status = BIOC_SVDEGRADED;
2069 break;
2070
2071 case MFI_LD_ONLINE:
2072 bv->bv_status = BIOC_SVONLINE;
2073 break;
2074
2075 default:
2076 bv->bv_status = BIOC_SVINVALID;
2077 DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n",
2078 DEVNAME(sc),
2079 sc->sc_ld_list.mll_list[i].mll_state);
2080 }
2081
2082 /* additional status can modify MFI status */
2083 switch (sc->sc_ld_details.mld_progress.mlp_in_prog) {
2084 case MFI_LD_PROG_CC:
2085 case MFI_LD_PROG_BGI:
2086 bv->bv_status = BIOC_SVSCRUB;
2087 per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress;
2088 bv->bv_percent = (per * 100) / 0xffff;
2089 bv->bv_seconds =
2090 sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds;
2091 break;
2092
2093 case MFI_LD_PROG_FGI:
2094 case MFI_LD_PROG_RECONSTRUCT:
2095 /* nothing yet */
2096 break;
2097 }
2098
2099 /*
2100 * The RAID levels are determined per the SNIA DDF spec, this is only
2101 * a subset that is valid for the MFI contrller.
2102 */
2103 bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid;
2104 if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid ==
2105 MFI_DDF_SRL_SPANNED)
2106 bv->bv_level *= 10;
2107
2108 bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span *
2109 sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth;
2110
2111 bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */
2112
2113 rv = 0;
2114 done:
2115 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n",
2116 DEVNAME(sc), rv);
2117 return rv;
2118 }
2119
2120 static int
2121 mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd)
2122 {
2123 struct mfi_conf *cfg;
2124 struct mfi_array *ar;
2125 struct mfi_ld_cfg *ld;
2126 struct mfi_pd_details *pd;
2127 struct scsipi_inquiry_data *inqbuf;
2128 char vend[8+16+4+1];
2129 int i, rv = EINVAL;
2130 int arr, vol, disk;
2131 uint32_t size;
2132 uint8_t mbox[MFI_MBOX_SIZE];
2133
2134 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n",
2135 DEVNAME(sc), bd->bd_diskid);
2136
2137 pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2138
2139 /* send single element command to retrieve size for full structure */
2140 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2141 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2142 sizeof *cfg, cfg, NULL, false))
2143 goto freeme;
2144
2145 size = cfg->mfc_size;
2146 free(cfg, M_DEVBUF);
2147
2148 /* memory for read config */
2149 cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2150 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2151 size, cfg, NULL, false))
2152 goto freeme;
2153
2154 ar = cfg->mfc_array;
2155
2156 /* calculate offset to ld structure */
2157 ld = (struct mfi_ld_cfg *)(
2158 ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2159 cfg->mfc_array_size * cfg->mfc_no_array);
2160
2161 vol = bd->bd_volid;
2162
2163 if (vol >= cfg->mfc_no_ld) {
2164 /* do hotspares */
2165 rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd);
2166 goto freeme;
2167 }
2168
2169 /* find corresponding array for ld */
2170 for (i = 0, arr = 0; i < vol; i++)
2171 arr += ld[i].mlc_parm.mpa_span_depth;
2172
2173 /* offset disk into pd list */
2174 disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span;
2175
2176 /* offset array index into the next spans */
2177 arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span;
2178
2179 bd->bd_target = ar[arr].pd[disk].mar_enc_slot;
2180 switch (ar[arr].pd[disk].mar_pd_state){
2181 case MFI_PD_UNCONFIG_GOOD:
2182 bd->bd_status = BIOC_SDUNUSED;
2183 break;
2184
2185 case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */
2186 bd->bd_status = BIOC_SDHOTSPARE;
2187 break;
2188
2189 case MFI_PD_OFFLINE:
2190 bd->bd_status = BIOC_SDOFFLINE;
2191 break;
2192
2193 case MFI_PD_FAILED:
2194 bd->bd_status = BIOC_SDFAILED;
2195 break;
2196
2197 case MFI_PD_REBUILD:
2198 bd->bd_status = BIOC_SDREBUILD;
2199 break;
2200
2201 case MFI_PD_ONLINE:
2202 bd->bd_status = BIOC_SDONLINE;
2203 break;
2204
2205 case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */
2206 default:
2207 bd->bd_status = BIOC_SDINVALID;
2208 break;
2209
2210 }
2211
2212 /* get the remaining fields */
2213 *((uint16_t *)&mbox) = ar[arr].pd[disk].mar_pd.mfp_id;
2214 memset(pd, 0, sizeof(*pd));
2215 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2216 sizeof *pd, pd, mbox, false))
2217 goto freeme;
2218
2219 bd->bd_size = pd->mpd_size * 512; /* bytes per block */
2220
2221 /* if pd->mpd_enc_idx is 0 then it is not in an enclosure */
2222 bd->bd_channel = pd->mpd_enc_idx;
2223
2224 inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2225 memcpy(vend, inqbuf->vendor, sizeof vend - 1);
2226 vend[sizeof vend - 1] = '\0';
2227 strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
2228
2229 /* XXX find a way to retrieve serial nr from drive */
2230 /* XXX find a way to get bd_procdev */
2231
2232 rv = 0;
2233 freeme:
2234 free(pd, M_DEVBUF);
2235 free(cfg, M_DEVBUF);
2236
2237 return rv;
2238 }
2239
2240 static int
2241 mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba)
2242 {
2243 uint32_t opc, dir = MFI_DATA_NONE;
2244 int rv = 0;
2245 int8_t ret;
2246
2247 switch(ba->ba_opcode) {
2248 case BIOC_SADISABLE:
2249 opc = MR_DCMD_SPEAKER_DISABLE;
2250 break;
2251
2252 case BIOC_SAENABLE:
2253 opc = MR_DCMD_SPEAKER_ENABLE;
2254 break;
2255
2256 case BIOC_SASILENCE:
2257 opc = MR_DCMD_SPEAKER_SILENCE;
2258 break;
2259
2260 case BIOC_GASTATUS:
2261 opc = MR_DCMD_SPEAKER_GET;
2262 dir = MFI_DATA_IN;
2263 break;
2264
2265 case BIOC_SATEST:
2266 opc = MR_DCMD_SPEAKER_TEST;
2267 break;
2268
2269 default:
2270 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid "
2271 "opcode %x\n", DEVNAME(sc), ba->ba_opcode);
2272 return EINVAL;
2273 }
2274
2275 if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false))
2276 rv = EINVAL;
2277 else
2278 if (ba->ba_opcode == BIOC_GASTATUS)
2279 ba->ba_status = ret;
2280 else
2281 ba->ba_status = 0;
2282
2283 return rv;
2284 }
2285
2286 static int
2287 mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb)
2288 {
2289 int i, found, rv = EINVAL;
2290 uint8_t mbox[MFI_MBOX_SIZE];
2291 uint32_t cmd;
2292 struct mfi_pd_list *pd;
2293
2294 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc),
2295 bb->bb_status);
2296
2297 /* channel 0 means not in an enclosure so can't be blinked */
2298 if (bb->bb_channel == 0)
2299 return EINVAL;
2300
2301 pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2302
2303 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2304 MFI_PD_LIST_SIZE, pd, NULL, false))
2305 goto done;
2306
2307 for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2308 if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index &&
2309 bb->bb_target == pd->mpl_address[i].mpa_enc_slot) {
2310 found = 1;
2311 break;
2312 }
2313
2314 if (!found)
2315 goto done;
2316
2317 memset(mbox, 0, sizeof mbox);
2318
2319 *((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2320
2321 switch (bb->bb_status) {
2322 case BIOC_SBUNBLINK:
2323 cmd = MR_DCMD_PD_UNBLINK;
2324 break;
2325
2326 case BIOC_SBBLINK:
2327 cmd = MR_DCMD_PD_BLINK;
2328 break;
2329
2330 case BIOC_SBALARM:
2331 default:
2332 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid "
2333 "opcode %x\n", DEVNAME(sc), bb->bb_status);
2334 goto done;
2335 }
2336
2337
2338 if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, mbox, false))
2339 goto done;
2340
2341 rv = 0;
2342 done:
2343 free(pd, M_DEVBUF);
2344 return rv;
2345 }
2346
2347 static int
2348 mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs)
2349 {
2350 struct mfi_pd_list *pd;
2351 int i, found, rv = EINVAL;
2352 uint8_t mbox[MFI_MBOX_SIZE];
2353
2354 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc),
2355 bs->bs_status);
2356
2357 pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
2358
2359 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
2360 MFI_PD_LIST_SIZE, pd, NULL, false))
2361 goto done;
2362
2363 for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
2364 if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index &&
2365 bs->bs_target == pd->mpl_address[i].mpa_enc_slot) {
2366 found = 1;
2367 break;
2368 }
2369
2370 if (!found)
2371 goto done;
2372
2373 memset(mbox, 0, sizeof mbox);
2374
2375 *((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
2376
2377 switch (bs->bs_status) {
2378 case BIOC_SSONLINE:
2379 mbox[2] = MFI_PD_ONLINE;
2380 break;
2381
2382 case BIOC_SSOFFLINE:
2383 mbox[2] = MFI_PD_OFFLINE;
2384 break;
2385
2386 case BIOC_SSHOTSPARE:
2387 mbox[2] = MFI_PD_HOTSPARE;
2388 break;
2389 /*
2390 case BIOC_SSREBUILD:
2391 break;
2392 */
2393 default:
2394 DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid "
2395 "opcode %x\n", DEVNAME(sc), bs->bs_status);
2396 goto done;
2397 }
2398
2399
2400 if (mfi_mgmt_internal(sc, MR_DCMD_PD_SET_STATE, MFI_DATA_NONE,
2401 0, NULL, mbox, false))
2402 goto done;
2403
2404 rv = 0;
2405 done:
2406 free(pd, M_DEVBUF);
2407 return rv;
2408 }
2409
2410 static int
2411 mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs)
2412 {
2413 struct mfi_conf *cfg;
2414 struct mfi_hotspare *hs;
2415 struct mfi_pd_details *pd;
2416 struct bioc_disk *sdhs;
2417 struct bioc_vol *vdhs;
2418 struct scsipi_inquiry_data *inqbuf;
2419 char vend[8+16+4+1];
2420 int i, rv = EINVAL;
2421 uint32_t size;
2422 uint8_t mbox[MFI_MBOX_SIZE];
2423
2424 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid);
2425
2426 if (!bio_hs)
2427 return EINVAL;
2428
2429 pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
2430
2431 /* send single element command to retrieve size for full structure */
2432 cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
2433 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2434 sizeof *cfg, cfg, NULL, false))
2435 goto freeme;
2436
2437 size = cfg->mfc_size;
2438 free(cfg, M_DEVBUF);
2439
2440 /* memory for read config */
2441 cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
2442 if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
2443 size, cfg, NULL, false))
2444 goto freeme;
2445
2446 /* calculate offset to hs structure */
2447 hs = (struct mfi_hotspare *)(
2448 ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
2449 cfg->mfc_array_size * cfg->mfc_no_array +
2450 cfg->mfc_ld_size * cfg->mfc_no_ld);
2451
2452 if (volid < cfg->mfc_no_ld)
2453 goto freeme; /* not a hotspare */
2454
2455 if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs))
2456 goto freeme; /* not a hotspare */
2457
2458 /* offset into hotspare structure */
2459 i = volid - cfg->mfc_no_ld;
2460
2461 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d "
2462 "hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld,
2463 cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id);
2464
2465 /* get pd fields */
2466 memset(mbox, 0, sizeof mbox);
2467 *((uint16_t *)&mbox) = hs[i].mhs_pd.mfp_id;
2468 if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
2469 sizeof *pd, pd, mbox, false)) {
2470 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n",
2471 DEVNAME(sc));
2472 goto freeme;
2473 }
2474
2475 switch (type) {
2476 case MFI_MGMT_VD:
2477 vdhs = bio_hs;
2478 vdhs->bv_status = BIOC_SVONLINE;
2479 vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */
2480 vdhs->bv_level = -1; /* hotspare */
2481 vdhs->bv_nodisk = 1;
2482 break;
2483
2484 case MFI_MGMT_SD:
2485 sdhs = bio_hs;
2486 sdhs->bd_status = BIOC_SDHOTSPARE;
2487 sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */
2488 sdhs->bd_channel = pd->mpd_enc_idx;
2489 sdhs->bd_target = pd->mpd_enc_slot;
2490 inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
2491 memcpy(vend, inqbuf->vendor, sizeof(vend) - 1);
2492 vend[sizeof vend - 1] = '\0';
2493 strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor));
2494 break;
2495
2496 default:
2497 goto freeme;
2498 }
2499
2500 DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc));
2501 rv = 0;
2502 freeme:
2503 free(pd, M_DEVBUF);
2504 free(cfg, M_DEVBUF);
2505
2506 return rv;
2507 }
2508
2509 static int
2510 mfi_destroy_sensors(struct mfi_softc *sc)
2511 {
2512 if (sc->sc_sme == NULL)
2513 return 0;
2514 sysmon_envsys_unregister(sc->sc_sme);
2515 sc->sc_sme = NULL;
2516 free(sc->sc_sensor, M_DEVBUF);
2517 return 0;
2518 }
2519
2520 static int
2521 mfi_create_sensors(struct mfi_softc *sc)
2522 {
2523 int i;
2524 int nsensors = sc->sc_ld_cnt + 1;
2525 int rv;
2526
2527 sc->sc_sme = sysmon_envsys_create();
2528 sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
2529 M_DEVBUF, M_WAITOK | M_ZERO);
2530
2531 /* BBU */
2532 sc->sc_sensor[0].units = ENVSYS_INDICATOR;
2533 sc->sc_sensor[0].state = ENVSYS_SINVALID;
2534 sc->sc_sensor[0].value_cur = 0;
2535 /* Enable monitoring for BBU state changes, if present */
2536 if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU)
2537 sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
2538 snprintf(sc->sc_sensor[0].desc,
2539 sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc));
2540 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0]))
2541 goto out;
2542
2543 for (i = 1; i < nsensors; i++) {
2544 sc->sc_sensor[i].units = ENVSYS_DRIVE;
2545 sc->sc_sensor[i].state = ENVSYS_SINVALID;
2546 sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
2547 /* Enable monitoring for drive state changes */
2548 sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
2549 /* logical drives */
2550 snprintf(sc->sc_sensor[i].desc,
2551 sizeof(sc->sc_sensor[i].desc), "%s:%d",
2552 DEVNAME(sc), i - 1);
2553 if (sysmon_envsys_sensor_attach(sc->sc_sme,
2554 &sc->sc_sensor[i]))
2555 goto out;
2556 }
2557
2558 sc->sc_sme->sme_name = DEVNAME(sc);
2559 sc->sc_sme->sme_cookie = sc;
2560 sc->sc_sme->sme_refresh = mfi_sensor_refresh;
2561 rv = sysmon_envsys_register(sc->sc_sme);
2562 if (rv != 0) {
2563 aprint_error_dev(sc->sc_dev,
2564 "unable to register with sysmon (rv = %d)\n", rv);
2565 goto out;
2566 }
2567 return 0;
2568
2569 out:
2570 free(sc->sc_sensor, M_DEVBUF);
2571 sysmon_envsys_destroy(sc->sc_sme);
2572 sc->sc_sme = NULL;
2573 return EINVAL;
2574 }
2575
2576 static void
2577 mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
2578 {
2579 struct mfi_softc *sc = sme->sme_cookie;
2580 struct bioc_vol bv;
2581 int s;
2582 int error;
2583
2584 if (edata->sensor >= sc->sc_ld_cnt + 1)
2585 return;
2586
2587 if (edata->sensor == 0) {
2588 /* BBU */
2589 struct mfi_bbu_status bbu_stat;
2590 int bbu_status;
2591 if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0)
2592 return;
2593
2594 KERNEL_LOCK(1, curlwp);
2595 s = splbio();
2596 bbu_status = mfi_get_bbu(sc, &bbu_stat);
2597 splx(s);
2598 KERNEL_UNLOCK_ONE(curlwp);
2599 switch(bbu_status) {
2600 case MFI_BBU_GOOD:
2601 edata->value_cur = 1;
2602 edata->state = ENVSYS_SVALID;
2603 if (!sc->sc_bbuok)
2604 aprint_normal_dev(sc->sc_dev,
2605 "BBU state changed to good\n");
2606 sc->sc_bbuok = true;
2607 break;
2608 case MFI_BBU_BAD:
2609 edata->value_cur = 0;
2610 edata->state = ENVSYS_SCRITICAL;
2611 if (sc->sc_bbuok)
2612 aprint_normal_dev(sc->sc_dev,
2613 "BBU state changed to bad\n");
2614 sc->sc_bbuok = false;
2615 break;
2616 case MFI_BBU_UNKNOWN:
2617 default:
2618 edata->value_cur = 0;
2619 edata->state = ENVSYS_SINVALID;
2620 sc->sc_bbuok = false;
2621 break;
2622 }
2623 return;
2624 }
2625
2626 memset(&bv, 0, sizeof(bv));
2627 bv.bv_volid = edata->sensor - 1;
2628 KERNEL_LOCK(1, curlwp);
2629 s = splbio();
2630 error = mfi_ioctl_vol(sc, &bv);
2631 splx(s);
2632 KERNEL_UNLOCK_ONE(curlwp);
2633 if (error)
2634 bv.bv_status = BIOC_SVINVALID;
2635
2636 bio_vol_to_envsys(edata, &bv);
2637 }
2638
2639 #endif /* NBIO > 0 */
2640
2641 static uint32_t
2642 mfi_xscale_fw_state(struct mfi_softc *sc)
2643 {
2644 return mfi_read(sc, MFI_OMSG0);
2645 }
2646
2647 static void
2648 mfi_xscale_intr_dis(struct mfi_softc *sc)
2649 {
2650 mfi_write(sc, MFI_OMSK, 0);
2651 }
2652
2653 static void
2654 mfi_xscale_intr_ena(struct mfi_softc *sc)
2655 {
2656 mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR);
2657 }
2658
2659 static int
2660 mfi_xscale_intr(struct mfi_softc *sc)
2661 {
2662 uint32_t status;
2663
2664 status = mfi_read(sc, MFI_OSTS);
2665 if (!ISSET(status, MFI_OSTS_INTR_VALID))
2666 return 0;
2667
2668 /* write status back to acknowledge interrupt */
2669 mfi_write(sc, MFI_OSTS, status);
2670 return 1;
2671 }
2672
2673 static void
2674 mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2675 {
2676 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
2677 ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
2678 sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2679 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
2680 ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
2681 MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD);
2682
2683 mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) |
2684 ccb->ccb_extra_frames);
2685 ccb->ccb_state = MFI_CCB_RUNNING;
2686 }
2687
2688 static uint32_t
2689 mfi_ppc_fw_state(struct mfi_softc *sc)
2690 {
2691 return mfi_read(sc, MFI_OSP);
2692 }
2693
2694 static void
2695 mfi_ppc_intr_dis(struct mfi_softc *sc)
2696 {
2697 /* Taking a wild guess --dyoung */
2698 mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0);
2699 mfi_write(sc, MFI_ODC, 0xffffffff);
2700 }
2701
2702 static void
2703 mfi_ppc_intr_ena(struct mfi_softc *sc)
2704 {
2705 mfi_write(sc, MFI_ODC, 0xffffffff);
2706 mfi_write(sc, MFI_OMSK, ~0x80000004);
2707 }
2708
2709 static int
2710 mfi_ppc_intr(struct mfi_softc *sc)
2711 {
2712 uint32_t status;
2713
2714 status = mfi_read(sc, MFI_OSTS);
2715 if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID))
2716 return 0;
2717
2718 /* write status back to acknowledge interrupt */
2719 mfi_write(sc, MFI_ODC, status);
2720 return 1;
2721 }
2722
2723 static void
2724 mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2725 {
2726 mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2727 (ccb->ccb_extra_frames << 1));
2728 ccb->ccb_state = MFI_CCB_RUNNING;
2729 }
2730
2731 u_int32_t
2732 mfi_gen2_fw_state(struct mfi_softc *sc)
2733 {
2734 return (mfi_read(sc, MFI_OSP));
2735 }
2736
2737 void
2738 mfi_gen2_intr_dis(struct mfi_softc *sc)
2739 {
2740 mfi_write(sc, MFI_OMSK, 0xffffffff);
2741 mfi_write(sc, MFI_ODC, 0xffffffff);
2742 }
2743
2744 void
2745 mfi_gen2_intr_ena(struct mfi_softc *sc)
2746 {
2747 mfi_write(sc, MFI_ODC, 0xffffffff);
2748 mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID);
2749 }
2750
2751 int
2752 mfi_gen2_intr(struct mfi_softc *sc)
2753 {
2754 u_int32_t status;
2755
2756 status = mfi_read(sc, MFI_OSTS);
2757 if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID))
2758 return (0);
2759
2760 /* write status back to acknowledge interrupt */
2761 mfi_write(sc, MFI_ODC, status);
2762
2763 return (1);
2764 }
2765
2766 void
2767 mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2768 {
2769 mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
2770 (ccb->ccb_extra_frames << 1));
2771 ccb->ccb_state = MFI_CCB_RUNNING;
2772 }
2773
2774 u_int32_t
2775 mfi_skinny_fw_state(struct mfi_softc *sc)
2776 {
2777 return (mfi_read(sc, MFI_OSP));
2778 }
2779
2780 void
2781 mfi_skinny_intr_dis(struct mfi_softc *sc)
2782 {
2783 mfi_write(sc, MFI_OMSK, 0);
2784 }
2785
2786 void
2787 mfi_skinny_intr_ena(struct mfi_softc *sc)
2788 {
2789 mfi_write(sc, MFI_OMSK, ~0x00000001);
2790 }
2791
2792 int
2793 mfi_skinny_intr(struct mfi_softc *sc)
2794 {
2795 u_int32_t status;
2796
2797 status = mfi_read(sc, MFI_OSTS);
2798 if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID))
2799 return (0);
2800
2801 /* write status back to acknowledge interrupt */
2802 mfi_write(sc, MFI_OSTS, status);
2803
2804 return (1);
2805 }
2806
2807 void
2808 mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2809 {
2810 mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe |
2811 (ccb->ccb_extra_frames << 1));
2812 mfi_write(sc, MFI_IQPH, 0x00000000);
2813 ccb->ccb_state = MFI_CCB_RUNNING;
2814 }
2815
2816 #define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000008)
2817
2818 void
2819 mfi_tbolt_intr_ena(struct mfi_softc *sc)
2820 {
2821 mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK);
2822 mfi_read(sc, MFI_OMSK);
2823 }
2824
2825 void
2826 mfi_tbolt_intr_dis(struct mfi_softc *sc)
2827 {
2828 mfi_write(sc, MFI_OMSK, 0xFFFFFFFF);
2829 mfi_read(sc, MFI_OMSK);
2830 }
2831
2832 int
2833 mfi_tbolt_intr(struct mfi_softc *sc)
2834 {
2835 int32_t status;
2836
2837 status = mfi_read(sc, MFI_OSTS);
2838
2839 if (ISSET(status, 0x1)) {
2840 mfi_write(sc, MFI_OSTS, status);
2841 mfi_read(sc, MFI_OSTS);
2842 if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT))
2843 return 0;
2844 return 1;
2845 }
2846 if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK))
2847 return 0;
2848 mfi_read(sc, MFI_OSTS);
2849 return 1;
2850 }
2851
2852 u_int32_t
2853 mfi_tbolt_fw_state(struct mfi_softc *sc)
2854 {
2855 return mfi_read(sc, MFI_OSP);
2856 }
2857
2858 void
2859 mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
2860 {
2861 if (sc->sc_MFA_enabled) {
2862 if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0)
2863 mfi_tbolt_build_mpt_ccb(ccb);
2864 mfi_write(sc, MFI_IQPL,
2865 ccb->ccb_tb_request_desc.words & 0xFFFFFFFF);
2866 mfi_write(sc, MFI_IQPH,
2867 ccb->ccb_tb_request_desc.words >> 32);
2868 ccb->ccb_state = MFI_CCB_RUNNING;
2869 return;
2870 }
2871 uint64_t bus_add = ccb->ccb_pframe;
2872 bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA
2873 << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2874 mfi_write(sc, MFI_IQPL, bus_add);
2875 mfi_write(sc, MFI_IQPH, bus_add >> 32);
2876 ccb->ccb_state = MFI_CCB_RUNNING;
2877 }
2878
2879 static void
2880 mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb)
2881 {
2882 union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc;
2883 struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
2884 struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain;
2885
2886 io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
2887 io_req->SGLOffset0 =
2888 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
2889 io_req->ChainOffset =
2890 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16;
2891
2892 mpi25_ieee_chain =
2893 (struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain;
2894 mpi25_ieee_chain->Address = ccb->ccb_pframe;
2895
2896 /*
2897 In MFI pass thru, nextChainOffset will always be zero to
2898 indicate the end of the chain.
2899 */
2900 mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
2901 | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
2902
2903 /* setting the length to the maximum length */
2904 mpi25_ieee_chain->Length = 1024;
2905
2906 req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
2907 MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
2908 ccb->ccb_flags |= MFI_CCB_F_TBOLT;
2909 bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
2910 MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2911 ccb->ccb_tb_pio_request -
2912 MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
2913 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
2914 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2915 }
2916
2917 /*
2918 * Description:
2919 * This function will prepare message pools for the Thunderbolt controller
2920 */
2921 static int
2922 mfi_tbolt_init_desc_pool(struct mfi_softc *sc)
2923 {
2924 uint32_t offset = 0;
2925 uint8_t *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2926
2927 /* Request Decriptors alignment restrictions */
2928 KASSERT(((uintptr_t)addr & 0xFF) == 0);
2929
2930 /* Skip request message pool */
2931 addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)];
2932
2933 /* Reply Frame Pool is initialized */
2934 sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr;
2935 KASSERT(((uintptr_t)addr & 0xFF) == 0);
2936
2937 offset = (uintptr_t)sc->sc_reply_frame_pool
2938 - (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
2939 sc->sc_reply_frame_busaddr =
2940 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset;
2941
2942 /* initializing reply address to 0xFFFFFFFF */
2943 memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF,
2944 (MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size));
2945
2946 /* Skip Reply Frame Pool */
2947 addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2948 sc->sc_reply_pool_limit = (void *)addr;
2949
2950 offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
2951 sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset;
2952
2953 /* initialize the last_reply_idx to 0 */
2954 sc->sc_last_reply_idx = 0;
2955 offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME *
2956 sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
2957 KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size);
2958 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0,
2959 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize,
2960 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2961 return 0;
2962 }
2963
2964 /*
2965 * This routine prepare and issue INIT2 frame to the Firmware
2966 */
2967
2968 static int
2969 mfi_tbolt_init_MFI_queue(struct mfi_softc *sc)
2970 {
2971 struct mpi2_ioc_init_request *mpi2IocInit;
2972 struct mfi_init_frame *mfi_init;
2973 struct mfi_ccb *ccb;
2974 bus_addr_t phyAddress;
2975 mfi_address *mfiAddressTemp;
2976 int s;
2977 char *verbuf;
2978 char wqbuf[10];
2979
2980 /* Check if initialization is already completed */
2981 if (sc->sc_MFA_enabled) {
2982 return 1;
2983 }
2984
2985 mpi2IocInit =
2986 (struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init);
2987
2988 s = splbio();
2989 if ((ccb = mfi_get_ccb(sc)) == NULL) {
2990 splx(s);
2991 return (EBUSY);
2992 }
2993
2994
2995 mfi_init = &ccb->ccb_frame->mfr_init;
2996
2997 memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request));
2998 mpi2IocInit->Function = MPI2_FUNCTION_IOC_INIT;
2999 mpi2IocInit->WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3000
3001 /* set MsgVersion and HeaderVersion host driver was built with */
3002 mpi2IocInit->MsgVersion = MPI2_VERSION;
3003 mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION;
3004 mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4;
3005 mpi2IocInit->ReplyDescriptorPostQueueDepth =
3006 (uint16_t)sc->sc_reply_pool_size;
3007 mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */
3008
3009 /* Get physical address of reply frame pool */
3010 phyAddress = sc->sc_reply_frame_busaddr;
3011 mfiAddressTemp =
3012 (mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress;
3013 mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3014 mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3015
3016 /* Get physical address of request message pool */
3017 phyAddress = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
3018 mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress;
3019 mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
3020 mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
3021
3022 mpi2IocInit->ReplyFreeQueueAddress = 0; /* Not supported by MR. */
3023 mpi2IocInit->TimeStamp = time_uptime;
3024
3025 verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf);
3026 snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3027 MEGASAS_VERSION);
3028 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3029 MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE);
3030 mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf));
3031 mfi_init->driver_ver_hi =
3032 htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32);
3033
3034 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3035 MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3036 BUS_DMASYNC_PREWRITE);
3037 /* Get the physical address of the mpi2 ioc init command */
3038 phyAddress = MFIMEM_DVA(sc->sc_tbolt_ioc_init);
3039 mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress);
3040 mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32);
3041
3042 mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT;
3043 mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request);
3044 if (mfi_poll(ccb) != 0) {
3045 aprint_error_dev(sc->sc_dev, "failed to send IOC init2 "
3046 "command at 0x%" PRIx64 "\n",
3047 (uint64_t)ccb->ccb_pframe);
3048 splx(s);
3049 return 1;
3050 }
3051 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
3052 MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3053 bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
3054 MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
3055 BUS_DMASYNC_POSTWRITE);
3056 mfi_put_ccb(ccb);
3057 splx(s);
3058
3059 if (mfi_init->mif_header.mfh_cmd_status == 0) {
3060 sc->sc_MFA_enabled = 1;
3061 }
3062 else {
3063 aprint_error_dev(sc->sc_dev, "Init command Failed %x\n",
3064 mfi_init->mif_header.mfh_cmd_status);
3065 return 1;
3066 }
3067
3068 snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc));
3069 if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info,
3070 sc, PRIBIO, IPL_BIO, 0) != 0) {
3071 aprint_error_dev(sc->sc_dev, "workqueue_create failed\n");
3072 return 1;
3073 }
3074 workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3075 return 0;
3076 }
3077
3078 int
3079 mfi_tbolt_intrh(void *arg)
3080 {
3081 struct mfi_softc *sc = arg;
3082 struct mfi_ccb *ccb;
3083 union mfi_mpi2_reply_descriptor *desc;
3084 int smid, num_completed;
3085
3086 if (!mfi_tbolt_intr(sc))
3087 return 0;
3088
3089 DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc),
3090 (u_long)sc, (u_long)sc->sc_last_reply_idx);
3091
3092 KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size);
3093
3094 desc = (union mfi_mpi2_reply_descriptor *)
3095 ((uintptr_t)sc->sc_reply_frame_pool +
3096 sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3097
3098 bus_dmamap_sync(sc->sc_dmat,
3099 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3100 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3101 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3102 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3103 num_completed = 0;
3104 while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) !=
3105 MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
3106 smid = desc->header.SMID;
3107 KASSERT(smid > 0 && smid <= sc->sc_max_cmds);
3108 ccb = &sc->sc_ccb[smid - 1];
3109 DNPRINTF(MFI_D_INTR,
3110 "%s: mfi_tbolt_intr SMID %#x reply_idx %#x "
3111 "desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid,
3112 sc->sc_last_reply_idx, desc->words, ccb);
3113 KASSERT(ccb->ccb_state == MFI_CCB_RUNNING);
3114 if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO &&
3115 ccb->ccb_tb_io_request->ChainOffset != 0) {
3116 bus_dmamap_sync(sc->sc_dmat,
3117 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3118 ccb->ccb_tb_psg_frame -
3119 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3120 MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_POSTREAD);
3121 }
3122 if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) {
3123 bus_dmamap_sync(sc->sc_dmat,
3124 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3125 ccb->ccb_tb_pio_request -
3126 MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3127 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3128 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3129 }
3130 if (ccb->ccb_done)
3131 ccb->ccb_done(ccb);
3132 else
3133 ccb->ccb_state = MFI_CCB_DONE;
3134 sc->sc_last_reply_idx++;
3135 if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) {
3136 sc->sc_last_reply_idx = 0;
3137 }
3138 desc->words = ~0x0;
3139 /* Get the next reply descriptor */
3140 desc = (union mfi_mpi2_reply_descriptor *)
3141 ((uintptr_t)sc->sc_reply_frame_pool +
3142 sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
3143 num_completed++;
3144 }
3145 if (num_completed == 0)
3146 return 0;
3147
3148 bus_dmamap_sync(sc->sc_dmat,
3149 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3150 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
3151 MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
3152 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3153 mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx);
3154 return 1;
3155 }
3156
3157
3158 int
3159 mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
3160 uint64_t blockno, uint32_t blockcnt)
3161 {
3162 struct scsipi_periph *periph = xs->xs_periph;
3163 struct mfi_mpi2_request_raid_scsi_io *io_req;
3164 int sge_count;
3165
3166 DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n",
3167 device_xname(periph->periph_channel->chan_adapter->adapt_dev),
3168 periph->periph_target);
3169
3170 if (!xs->data)
3171 return 1;
3172
3173 ccb->ccb_done = mfi_tbolt_scsi_ld_done;
3174 ccb->ccb_xs = xs;
3175 ccb->ccb_data = xs->data;
3176 ccb->ccb_len = xs->datalen;
3177
3178 io_req = ccb->ccb_tb_io_request;
3179
3180 /* Just the CDB length,rest of the Flags are zero */
3181 io_req->IoFlags = xs->cmdlen;
3182 memset(io_req->CDB.CDB32, 0, 32);
3183 memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen);
3184
3185 io_req->RaidContext.TargetID = periph->periph_target;
3186 io_req->RaidContext.Status = 0;
3187 io_req->RaidContext.exStatus = 0;
3188 io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT;
3189 io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST;
3190 io_req->DevHandle = periph->periph_target;
3191
3192 ccb->ccb_tb_request_desc.header.RequestFlags =
3193 (MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
3194 io_req->DataLength = blockcnt * MFI_SECTOR_LEN;
3195
3196 if (xs->xs_control & XS_CTL_DATA_IN) {
3197 io_req->Control = MPI2_SCSIIO_CONTROL_READ;
3198 ccb->ccb_direction = MFI_DATA_IN;
3199 } else {
3200 io_req->Control = MPI2_SCSIIO_CONTROL_WRITE;
3201 ccb->ccb_direction = MFI_DATA_OUT;
3202 }
3203
3204 sge_count = mfi_tbolt_create_sgl(ccb,
3205 (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK
3206 );
3207 if (sge_count < 0)
3208 return 1;
3209 KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl);
3210 io_req->RaidContext.numSGE = sge_count;
3211 io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3212 io_req->SGLOffset0 =
3213 offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
3214
3215 io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense);
3216 io_req->SenseBufferLength = MFI_SENSE_SIZE;
3217
3218 ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO;
3219 bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
3220 MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3221 ccb->ccb_tb_pio_request -
3222 MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
3223 MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
3224 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3225
3226 return 0;
3227 }
3228
3229
3230 static void
3231 mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb)
3232 {
3233 struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
3234 mfi_scsi_xs_done(ccb, io_req->RaidContext.Status,
3235 io_req->RaidContext.exStatus);
3236 }
3237
3238 static int
3239 mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags)
3240 {
3241 struct mfi_softc *sc = ccb->ccb_sc;
3242 bus_dma_segment_t *sgd;
3243 int error, i, sge_idx, sge_count;
3244 struct mfi_mpi2_request_raid_scsi_io *io_req;
3245 struct mpi25_ieee_sge_chain64 *sgl_ptr;
3246
3247 DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc),
3248 (u_long)ccb->ccb_data);
3249
3250 if (!ccb->ccb_data)
3251 return -1;
3252
3253 KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
3254 error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
3255 ccb->ccb_data, ccb->ccb_len, NULL, flags);
3256 if (error) {
3257 if (error == EFBIG)
3258 aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
3259 sc->sc_max_sgl);
3260 else
3261 aprint_error_dev(sc->sc_dev,
3262 "error %d loading dma map\n", error);
3263 return -1;
3264 }
3265
3266 io_req = ccb->ccb_tb_io_request;
3267 sgl_ptr = &io_req->SGL.IeeeChain.Chain64;
3268 sge_count = ccb->ccb_dmamap->dm_nsegs;
3269 sgd = ccb->ccb_dmamap->dm_segs;
3270 KASSERT(sge_count <= sc->sc_max_sgl);
3271 KASSERT(sge_count <=
3272 (MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 +
3273 MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG));
3274
3275 if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) {
3276 /* One element to store the chain info */
3277 sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1;
3278 DNPRINTF(MFI_D_DMA,
3279 "mfi sge_idx %d sge_count %d io_req paddr 0x%" PRIx64 "\n",
3280 sge_idx, sge_count, ccb->ccb_tb_pio_request);
3281 } else {
3282 sge_idx = sge_count;
3283 }
3284
3285 for (i = 0; i < sge_idx; i++) {
3286 sgl_ptr->Address = htole64(sgd[i].ds_addr);
3287 sgl_ptr->Length = htole32(sgd[i].ds_len);
3288 sgl_ptr->Flags = 0;
3289 if (sge_idx < sge_count) {
3290 DNPRINTF(MFI_D_DMA,
3291 "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3292 " flags 0x%x\n", sgl_ptr, i,
3293 sgl_ptr->Address, sgl_ptr->Length,
3294 sgl_ptr->Flags);
3295 }
3296 sgl_ptr++;
3297 }
3298 io_req->ChainOffset = 0;
3299 if (sge_idx < sge_count) {
3300 struct mpi25_ieee_sge_chain64 *sg_chain;
3301 io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG;
3302 sg_chain = sgl_ptr;
3303 /* Prepare chain element */
3304 sg_chain->NextChainOffset = 0;
3305 sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
3306 MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
3307 sg_chain->Length = (sizeof(mpi2_sge_io_union) *
3308 (sge_count - sge_idx));
3309 sg_chain->Address = ccb->ccb_tb_psg_frame;
3310 DNPRINTF(MFI_D_DMA,
3311 "sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32
3312 " flags 0x%x\n", sg_chain, sg_chain->Address,
3313 sg_chain->Length, sg_chain->Flags);
3314 sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64;
3315 for (; i < sge_count; i++) {
3316 sgl_ptr->Address = htole64(sgd[i].ds_addr);
3317 sgl_ptr->Length = htole32(sgd[i].ds_len);
3318 sgl_ptr->Flags = 0;
3319 DNPRINTF(MFI_D_DMA,
3320 "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
3321 " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address,
3322 sgl_ptr->Length, sgl_ptr->Flags);
3323 sgl_ptr++;
3324 }
3325 bus_dmamap_sync(sc->sc_dmat,
3326 MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
3327 ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
3328 MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_PREREAD);
3329 }
3330
3331 if (ccb->ccb_direction == MFI_DATA_IN) {
3332 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3333 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3334 } else {
3335 bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
3336 ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3337 }
3338 return sge_count;
3339 }
3340
3341 /*
3342 * The ThunderBolt HW has an option for the driver to directly
3343 * access the underlying disks and operate on the RAID. To
3344 * do this there needs to be a capability to keep the RAID controller
3345 * and driver in sync. The FreeBSD driver does not take advantage
3346 * of this feature since it adds a lot of complexity and slows down
3347 * performance. Performance is gained by using the controller's
3348 * cache etc.
3349 *
3350 * Even though this driver doesn't access the disks directly, an
3351 * AEN like command is used to inform the RAID firmware to "sync"
3352 * with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command. This
3353 * command in write mode will return when the RAID firmware has
3354 * detected a change to the RAID state. Examples of this type
3355 * of change are removing a disk. Once the command returns then
3356 * the driver needs to acknowledge this and "sync" all LD's again.
3357 * This repeats until we shutdown. Then we need to cancel this
3358 * pending command.
3359 *
3360 * If this is not done right the RAID firmware will not remove a
3361 * pulled drive and the RAID won't go degraded etc. Effectively,
3362 * stopping any RAID mangement to functions.
3363 *
3364 * Doing another LD sync, requires the use of an event since the
3365 * driver needs to do a mfi_wait_command and can't do that in an
3366 * interrupt thread.
3367 *
3368 * The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO
3369 * That requires a bunch of structure and it is simplier to just do
3370 * the MFI_DCMD_LD_GET_LIST versus walking the RAID map.
3371 */
3372
3373 void
3374 mfi_tbolt_sync_map_info(struct work *w, void *v)
3375 {
3376 struct mfi_softc *sc = v;
3377 int i;
3378 struct mfi_ccb *ccb = NULL;
3379 uint8_t mbox[MFI_MBOX_SIZE];
3380 struct mfi_ld *ld_sync;
3381 size_t ld_size;
3382 int s;
3383
3384 DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc));
3385 again:
3386 ld_sync = NULL;
3387 s = splbio();
3388 if (sc->sc_ldsync_ccb != NULL) {
3389 splx(s);
3390 return;
3391 }
3392
3393 if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
3394 sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) {
3395 aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n");
3396 goto err;
3397 }
3398
3399 ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld;
3400
3401 ld_sync = malloc(ld_size, M_DEVBUF, M_WAITOK | M_ZERO);
3402 if (ld_sync == NULL) {
3403 aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n");
3404 goto err;
3405 }
3406 for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) {
3407 ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld;
3408 }
3409
3410 if ((ccb = mfi_get_ccb(sc)) == NULL) {
3411 aprint_error_dev(sc->sc_dev, "Failed to get sync command\n");
3412 goto err;
3413 }
3414 sc->sc_ldsync_ccb = ccb;
3415
3416 memset(mbox, 0, MFI_MBOX_SIZE);
3417 mbox[0] = sc->sc_ld_list.mll_no_ld;
3418 mbox[1] = MFI_DCMD_MBOX_PEND_FLAG;
3419 if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT,
3420 ld_size, ld_sync, mbox)) {
3421 aprint_error_dev(sc->sc_dev, "Failed to create sync command\n");
3422 goto err;
3423 }
3424 /*
3425 * we won't sleep on this command, so we have to override
3426 * the callback set up by mfi_mgmt()
3427 */
3428 ccb->ccb_done = mfi_sync_map_complete;
3429
3430 mfi_post(sc, ccb);
3431 splx(s);
3432 return;
3433
3434 err:
3435 if (ld_sync)
3436 free(ld_sync, M_DEVBUF);
3437 if (ccb)
3438 mfi_put_ccb(ccb);
3439 sc->sc_ldsync_ccb = NULL;
3440 splx(s);
3441 kpause("ldsyncp", 0, hz, NULL);
3442 goto again;
3443 }
3444
3445 static void
3446 mfi_sync_map_complete(struct mfi_ccb *ccb)
3447 {
3448 struct mfi_softc *sc = ccb->ccb_sc;
3449 bool aborted = !sc->sc_running;
3450
3451 DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n",
3452 DEVNAME(ccb->ccb_sc));
3453 KASSERT(sc->sc_ldsync_ccb == ccb);
3454 mfi_mgmt_done(ccb);
3455 free(ccb->ccb_data, M_DEVBUF);
3456 if (ccb->ccb_flags & MFI_CCB_F_ERR) {
3457 aprint_error_dev(sc->sc_dev, "sync command failed\n");
3458 aborted = true;
3459 }
3460 mfi_put_ccb(ccb);
3461 sc->sc_ldsync_ccb = NULL;
3462
3463 /* set it up again so the driver can catch more events */
3464 if (!aborted) {
3465 workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
3466 }
3467 }
3468
3469 static int
3470 mfifopen(dev_t dev, int flag, int mode, struct lwp *l)
3471 {
3472 struct mfi_softc *sc;
3473
3474 if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL)
3475 return (ENXIO);
3476 return (0);
3477 }
3478
3479 static int
3480 mfifclose(dev_t dev, int flag, int mode, struct lwp *l)
3481 {
3482 return (0);
3483 }
3484
3485 static int
3486 mfifioctl(dev_t dev, u_long cmd, void *data, int flag,
3487 struct lwp *l)
3488 {
3489 struct mfi_softc *sc;
3490 struct mfi_ioc_packet *ioc = data;
3491 uint8_t *udata;
3492 struct mfi_ccb *ccb = NULL;
3493 int ctx, i, s, error;
3494 union mfi_sense_ptr sense_ptr;
3495
3496 switch(cmd) {
3497 case MFI_CMD:
3498 sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no);
3499 break;
3500 default:
3501 return ENOTTY;
3502 }
3503 if (sc == NULL)
3504 return (ENXIO);
3505 if (sc->sc_opened)
3506 return (EBUSY);
3507
3508 switch(cmd) {
3509 case MFI_CMD:
3510 error = kauth_authorize_device_passthru(l->l_cred, dev,
3511 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
3512 if (error)
3513 return error;
3514 if (ioc->mfi_sge_count > MAX_IOCTL_SGE)
3515 return EINVAL;
3516 s = splbio();
3517 if ((ccb = mfi_get_ccb(sc)) == NULL)
3518 return ENOMEM;
3519 ccb->ccb_data = NULL;
3520 ctx = ccb->ccb_frame->mfr_header.mfh_context;
3521 memcpy(ccb->ccb_frame, ioc->mfi_frame.raw,
3522 sizeof(*ccb->ccb_frame));
3523 ccb->ccb_frame->mfr_header.mfh_context = ctx;
3524 ccb->ccb_frame->mfr_header.mfh_scsi_status = 0;
3525 ccb->ccb_frame->mfr_header.mfh_pad0 = 0;
3526 ccb->ccb_frame_size =
3527 (sizeof(union mfi_sgl) * ioc->mfi_sge_count) +
3528 ioc->mfi_sgl_off;
3529 if (ioc->mfi_sge_count > 0) {
3530 ccb->ccb_sgl = (union mfi_sgl *)
3531 &ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off];
3532 }
3533 if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ)
3534 ccb->ccb_direction = MFI_DATA_IN;
3535 if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE)
3536 ccb->ccb_direction = MFI_DATA_OUT;
3537 ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len;
3538 if (ccb->ccb_len > MAXPHYS) {
3539 error = ENOMEM;
3540 goto out;
3541 }
3542 if (ccb->ccb_len &&
3543 (ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) {
3544 udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO);
3545 if (udata == NULL) {
3546 error = ENOMEM;
3547 goto out;
3548 }
3549 ccb->ccb_data = udata;
3550 if (ccb->ccb_direction & MFI_DATA_OUT) {
3551 for (i = 0; i < ioc->mfi_sge_count; i++) {
3552 error = copyin(ioc->mfi_sgl[i].iov_base,
3553 udata, ioc->mfi_sgl[i].iov_len);
3554 if (error)
3555 goto out;
3556 udata = &udata[
3557 ioc->mfi_sgl[i].iov_len];
3558 }
3559 }
3560 if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) {
3561 error = EIO;
3562 goto out;
3563 }
3564 }
3565 if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) {
3566 ccb->ccb_frame->mfr_io.mif_sense_addr_lo =
3567 htole32(ccb->ccb_psense);
3568 ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0;
3569 }
3570 ccb->ccb_done = mfi_mgmt_done;
3571 mfi_post(sc, ccb);
3572 while (ccb->ccb_state != MFI_CCB_DONE)
3573 tsleep(ccb, PRIBIO, "mfi_fioc", 0);
3574
3575 if (ccb->ccb_direction & MFI_DATA_IN) {
3576 udata = ccb->ccb_data;
3577 for (i = 0; i < ioc->mfi_sge_count; i++) {
3578 error = copyout(udata,
3579 ioc->mfi_sgl[i].iov_base,
3580 ioc->mfi_sgl[i].iov_len);
3581 if (error)
3582 goto out;
3583 udata = &udata[
3584 ioc->mfi_sgl[i].iov_len];
3585 }
3586 }
3587 if (ioc->mfi_sense_len) {
3588 memcpy(&sense_ptr.sense_ptr_data[0],
3589 &ioc->mfi_frame.raw[ioc->mfi_sense_off],
3590 sizeof(sense_ptr.sense_ptr_data));
3591 error = copyout(ccb->ccb_sense,
3592 sense_ptr.user_space,
3593 sizeof(sense_ptr.sense_ptr_data));
3594 if (error)
3595 goto out;
3596 }
3597 memcpy(ioc->mfi_frame.raw, ccb->ccb_frame,
3598 sizeof(*ccb->ccb_frame));
3599 break;
3600 default:
3601 printf("mfifioctl unhandled cmd 0x%lx\n", cmd);
3602 return ENOTTY;
3603 }
3604
3605 out:
3606 if (ccb->ccb_data)
3607 free(ccb->ccb_data, M_DEVBUF);
3608 if (ccb)
3609 mfi_put_ccb(ccb);
3610 splx(s);
3611 return error;
3612 }
3613