Home | History | Annotate | Line # | Download | only in ic
mfi.c revision 1.64
      1 /* $NetBSD: mfi.c,v 1.64 2021/04/24 23:36:55 thorpej Exp $ */
      2 /* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2012 Manuel Bouyer.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 /*
     29  * Copyright (c) 2006 Marco Peereboom <marco (at) peereboom.us>
     30  *
     31  * Permission to use, copy, modify, and distribute this software for any
     32  * purpose with or without fee is hereby granted, provided that the above
     33  * copyright notice and this permission notice appear in all copies.
     34  *
     35  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     36  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     37  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     38  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     39  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     40  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     41  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     42  */
     43 
     44  /*-
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  *
     49  *            Copyright 1994-2009 The FreeBSD Project.
     50  *            All rights reserved.
     51  *
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  *
     58  *    THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     60  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FREEBSD PROJECT OR
     62  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     63  * EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     64  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     65  * PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY
     66  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     67  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     68  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     69  *
     70  * The views and conclusions contained in the software and documentation
     71  * are those of the authors and should not be interpreted as representing
     72  * official policies,either expressed or implied, of the FreeBSD Project.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.64 2021/04/24 23:36:55 thorpej Exp $");
     77 
     78 #include "bio.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/buf.h>
     83 #include <sys/ioctl.h>
     84 #include <sys/device.h>
     85 #include <sys/kernel.h>
     86 #include <sys/malloc.h>
     87 #include <sys/proc.h>
     88 #include <sys/cpu.h>
     89 #include <sys/conf.h>
     90 #include <sys/kauth.h>
     91 
     92 #include <uvm/uvm_param.h>
     93 
     94 #include <sys/bus.h>
     95 
     96 #include <dev/scsipi/scsipi_all.h>
     97 #include <dev/scsipi/scsi_all.h>
     98 #include <dev/scsipi/scsi_spc.h>
     99 #include <dev/scsipi/scsipi_disk.h>
    100 #include <dev/scsipi/scsi_disk.h>
    101 #include <dev/scsipi/scsiconf.h>
    102 
    103 #include <dev/ic/mfireg.h>
    104 #include <dev/ic/mfivar.h>
    105 #include <dev/ic/mfiio.h>
    106 
    107 #if NBIO > 0
    108 #include <dev/biovar.h>
    109 #endif /* NBIO > 0 */
    110 
    111 #include "ioconf.h"
    112 
    113 #ifdef MFI_DEBUG
    114 uint32_t	mfi_debug = 0
    115 /*		    | MFI_D_CMD  */
    116 /*		    | MFI_D_INTR */
    117 /*		    | MFI_D_MISC */
    118 /*		    | MFI_D_DMA */
    119 /*		    | MFI_D_IOCTL */
    120 /*		    | MFI_D_RW */
    121 /*		    | MFI_D_MEM */
    122 /*		    | MFI_D_CCB */
    123 /*		    | MFI_D_SYNC */
    124 		;
    125 #endif
    126 
    127 static void		mfi_scsipi_request(struct scsipi_channel *,
    128 				scsipi_adapter_req_t, void *);
    129 static void		mfiminphys(struct buf *bp);
    130 
    131 static struct mfi_ccb	*mfi_get_ccb(struct mfi_softc *);
    132 static void		mfi_put_ccb(struct mfi_ccb *);
    133 static int		mfi_init_ccb(struct mfi_softc *);
    134 
    135 static struct mfi_mem	*mfi_allocmem(struct mfi_softc *, size_t);
    136 static void		mfi_freemem(struct mfi_softc *, struct mfi_mem **);
    137 
    138 static int		mfi_transition_firmware(struct mfi_softc *);
    139 static int		mfi_initialize_firmware(struct mfi_softc *);
    140 static int		mfi_get_info(struct mfi_softc *);
    141 static int		mfi_get_bbu(struct mfi_softc *,
    142 			    struct mfi_bbu_status *);
    143 /* return codes for mfi_get_bbu */
    144 #define MFI_BBU_GOOD	0
    145 #define MFI_BBU_BAD	1
    146 #define MFI_BBU_UNKNOWN	2
    147 static uint32_t		mfi_read(struct mfi_softc *, bus_size_t);
    148 static void		mfi_write(struct mfi_softc *, bus_size_t, uint32_t);
    149 static int		mfi_poll(struct mfi_ccb *);
    150 static int		mfi_create_sgl(struct mfi_ccb *, int);
    151 
    152 /* commands */
    153 static int		mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *);
    154 static int		mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
    155 				uint64_t, uint32_t);
    156 static void		mfi_scsi_ld_done(struct mfi_ccb *);
    157 static void		mfi_scsi_xs_done(struct mfi_ccb *, int, int);
    158 static int		mfi_mgmt_internal(struct mfi_softc *, uint32_t,
    159 			    uint32_t, uint32_t, void *, uint8_t *, bool);
    160 static int		mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *,
    161 			    uint32_t, uint32_t, uint32_t, void *, uint8_t *);
    162 static void		mfi_mgmt_done(struct mfi_ccb *);
    163 
    164 #if NBIO > 0
    165 static int		mfi_ioctl(device_t, u_long, void *);
    166 static int		mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *);
    167 static int		mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *);
    168 static int		mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *);
    169 static int		mfi_ioctl_alarm(struct mfi_softc *,
    170 				struct bioc_alarm *);
    171 static int		mfi_ioctl_blink(struct mfi_softc *sc,
    172 				struct bioc_blink *);
    173 static int		mfi_ioctl_setstate(struct mfi_softc *,
    174 				struct bioc_setstate *);
    175 static int		mfi_bio_hs(struct mfi_softc *, int, int, void *);
    176 static int		mfi_create_sensors(struct mfi_softc *);
    177 static int		mfi_destroy_sensors(struct mfi_softc *);
    178 static void		mfi_sensor_refresh(struct sysmon_envsys *,
    179 				envsys_data_t *);
    180 #endif /* NBIO > 0 */
    181 static bool		mfi_shutdown(device_t, int);
    182 static bool		mfi_suspend(device_t, const pmf_qual_t *);
    183 static bool		mfi_resume(device_t, const pmf_qual_t *);
    184 
    185 static dev_type_open(mfifopen);
    186 static dev_type_close(mfifclose);
    187 static dev_type_ioctl(mfifioctl);
    188 const struct cdevsw mfi_cdevsw = {
    189 	.d_open = mfifopen,
    190 	.d_close = mfifclose,
    191 	.d_read = noread,
    192 	.d_write = nowrite,
    193 	.d_ioctl = mfifioctl,
    194 	.d_stop = nostop,
    195 	.d_tty = notty,
    196 	.d_poll = nopoll,
    197 	.d_mmap = nommap,
    198 	.d_kqfilter = nokqfilter,
    199 	.d_discard = nodiscard,
    200 	.d_flag = D_OTHER
    201 };
    202 
    203 static uint32_t 	mfi_xscale_fw_state(struct mfi_softc *sc);
    204 static void 		mfi_xscale_intr_ena(struct mfi_softc *sc);
    205 static void 		mfi_xscale_intr_dis(struct mfi_softc *sc);
    206 static int 		mfi_xscale_intr(struct mfi_softc *sc);
    207 static void 		mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
    208 
    209 static const struct mfi_iop_ops mfi_iop_xscale = {
    210 	mfi_xscale_fw_state,
    211 	mfi_xscale_intr_dis,
    212 	mfi_xscale_intr_ena,
    213 	mfi_xscale_intr,
    214 	mfi_xscale_post,
    215 	mfi_scsi_ld_io,
    216 };
    217 
    218 static uint32_t 	mfi_ppc_fw_state(struct mfi_softc *sc);
    219 static void 		mfi_ppc_intr_ena(struct mfi_softc *sc);
    220 static void 		mfi_ppc_intr_dis(struct mfi_softc *sc);
    221 static int 		mfi_ppc_intr(struct mfi_softc *sc);
    222 static void 		mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
    223 
    224 static const struct mfi_iop_ops mfi_iop_ppc = {
    225 	mfi_ppc_fw_state,
    226 	mfi_ppc_intr_dis,
    227 	mfi_ppc_intr_ena,
    228 	mfi_ppc_intr,
    229 	mfi_ppc_post,
    230 	mfi_scsi_ld_io,
    231 };
    232 
    233 uint32_t	mfi_gen2_fw_state(struct mfi_softc *sc);
    234 void		mfi_gen2_intr_ena(struct mfi_softc *sc);
    235 void		mfi_gen2_intr_dis(struct mfi_softc *sc);
    236 int		mfi_gen2_intr(struct mfi_softc *sc);
    237 void		mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
    238 
    239 static const struct mfi_iop_ops mfi_iop_gen2 = {
    240 	mfi_gen2_fw_state,
    241 	mfi_gen2_intr_dis,
    242 	mfi_gen2_intr_ena,
    243 	mfi_gen2_intr,
    244 	mfi_gen2_post,
    245 	mfi_scsi_ld_io,
    246 };
    247 
    248 u_int32_t	mfi_skinny_fw_state(struct mfi_softc *);
    249 void		mfi_skinny_intr_dis(struct mfi_softc *);
    250 void		mfi_skinny_intr_ena(struct mfi_softc *);
    251 int		mfi_skinny_intr(struct mfi_softc *);
    252 void		mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *);
    253 
    254 static const struct mfi_iop_ops mfi_iop_skinny = {
    255 	mfi_skinny_fw_state,
    256 	mfi_skinny_intr_dis,
    257 	mfi_skinny_intr_ena,
    258 	mfi_skinny_intr,
    259 	mfi_skinny_post,
    260 	mfi_scsi_ld_io,
    261 };
    262 
    263 static int	mfi_tbolt_init_desc_pool(struct mfi_softc *);
    264 static int	mfi_tbolt_init_MFI_queue(struct mfi_softc *);
    265 static void	mfi_tbolt_build_mpt_ccb(struct mfi_ccb *);
    266 int		mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
    267 		    uint64_t, uint32_t);
    268 static void	mfi_tbolt_scsi_ld_done(struct mfi_ccb *);
    269 static int	mfi_tbolt_create_sgl(struct mfi_ccb *, int);
    270 void		mfi_tbolt_sync_map_info(struct work *, void *);
    271 static void	mfi_sync_map_complete(struct mfi_ccb *);
    272 
    273 u_int32_t	mfi_tbolt_fw_state(struct mfi_softc *);
    274 void		mfi_tbolt_intr_dis(struct mfi_softc *);
    275 void		mfi_tbolt_intr_ena(struct mfi_softc *);
    276 int		mfi_tbolt_intr(struct mfi_softc *sc);
    277 void		mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *);
    278 
    279 static const struct mfi_iop_ops mfi_iop_tbolt = {
    280 	mfi_tbolt_fw_state,
    281 	mfi_tbolt_intr_dis,
    282 	mfi_tbolt_intr_ena,
    283 	mfi_tbolt_intr,
    284 	mfi_tbolt_post,
    285 	mfi_tbolt_scsi_ld_io,
    286 };
    287 
    288 #define mfi_fw_state(_s) 	((_s)->sc_iop->mio_fw_state(_s))
    289 #define mfi_intr_enable(_s) 	((_s)->sc_iop->mio_intr_ena(_s))
    290 #define mfi_intr_disable(_s) 	((_s)->sc_iop->mio_intr_dis(_s))
    291 #define mfi_my_intr(_s) 	((_s)->sc_iop->mio_intr(_s))
    292 #define mfi_post(_s, _c) 	((_s)->sc_iop->mio_post((_s), (_c)))
    293 
    294 static struct mfi_ccb *
    295 mfi_get_ccb(struct mfi_softc *sc)
    296 {
    297 	struct mfi_ccb		*ccb;
    298 	int			s;
    299 
    300 	s = splbio();
    301 	ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
    302 	if (ccb) {
    303 		TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
    304 		ccb->ccb_state = MFI_CCB_READY;
    305 	}
    306 	splx(s);
    307 
    308 	DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb);
    309 	if (__predict_false(ccb == NULL && sc->sc_running))
    310 		aprint_error_dev(sc->sc_dev, "out of ccb\n");
    311 
    312 	return ccb;
    313 }
    314 
    315 static void
    316 mfi_put_ccb(struct mfi_ccb *ccb)
    317 {
    318 	struct mfi_softc	*sc = ccb->ccb_sc;
    319 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
    320 	int			s;
    321 
    322 	DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb);
    323 
    324 	hdr->mfh_cmd_status = 0x0;
    325 	hdr->mfh_flags = 0x0;
    326 	ccb->ccb_state = MFI_CCB_FREE;
    327 	ccb->ccb_xs = NULL;
    328 	ccb->ccb_flags = 0;
    329 	ccb->ccb_done = NULL;
    330 	ccb->ccb_direction = 0;
    331 	ccb->ccb_frame_size = 0;
    332 	ccb->ccb_extra_frames = 0;
    333 	ccb->ccb_sgl = NULL;
    334 	ccb->ccb_data = NULL;
    335 	ccb->ccb_len = 0;
    336 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
    337 		/* erase tb_request_desc but preserve SMID */
    338 		int index = ccb->ccb_tb_request_desc.header.SMID;
    339 		ccb->ccb_tb_request_desc.words = 0;
    340 		ccb->ccb_tb_request_desc.header.SMID = index;
    341 	}
    342 	s = splbio();
    343 	TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
    344 	splx(s);
    345 }
    346 
    347 static int
    348 mfi_destroy_ccb(struct mfi_softc *sc)
    349 {
    350 	struct mfi_ccb		*ccb;
    351 	uint32_t		i;
    352 
    353 	DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc));
    354 
    355 
    356 	for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) {
    357 		/* create a dma map for transfer */
    358 		bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
    359 	}
    360 
    361 	if (i < sc->sc_max_cmds)
    362 		return EBUSY;
    363 
    364 	free(sc->sc_ccb, M_DEVBUF);
    365 
    366 	return 0;
    367 }
    368 
    369 static int
    370 mfi_init_ccb(struct mfi_softc *sc)
    371 {
    372 	struct mfi_ccb		*ccb;
    373 	uint32_t		i;
    374 	int			error;
    375 	bus_addr_t		io_req_base_phys;
    376 	uint8_t			*io_req_base;
    377 	int offset;
    378 
    379 	DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc));
    380 
    381 	sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds,
    382 	    M_DEVBUF, M_WAITOK|M_ZERO);
    383 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
    384 		/*
    385 		 * The first 256 bytes (SMID 0) is not used.
    386 		 * Don't add to the cmd list.
    387 		 */
    388 		io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool) +
    389 		    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
    390 		io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) +
    391 		    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
    392 	} else {
    393 		io_req_base = NULL;	/* XXX: gcc */
    394 		io_req_base_phys = 0;	/* XXX: gcc */
    395 	}
    396 
    397 	for (i = 0; i < sc->sc_max_cmds; i++) {
    398 		ccb = &sc->sc_ccb[i];
    399 
    400 		ccb->ccb_sc = sc;
    401 
    402 		/* select i'th frame */
    403 		ccb->ccb_frame = (union mfi_frame *)
    404 		    ((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i);
    405 		ccb->ccb_pframe =
    406 		    MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i;
    407 		ccb->ccb_frame->mfr_header.mfh_context = i;
    408 
    409 		/* select i'th sense */
    410 		ccb->ccb_sense = (struct mfi_sense *)
    411 		    ((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
    412 		ccb->ccb_psense =
    413 		    (MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
    414 
    415 		/* create a dma map for transfer */
    416 		error = bus_dmamap_create(sc->sc_datadmat,
    417 		    MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0,
    418 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
    419 		if (error) {
    420 			aprint_error_dev(sc->sc_dev,
    421 			    "cannot create ccb dmamap (%d)\n", error);
    422 			goto destroy;
    423 		}
    424 		if (sc->sc_ioptype == MFI_IOP_TBOLT) {
    425 			offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i;
    426 			ccb->ccb_tb_io_request =
    427 			    (struct mfi_mpi2_request_raid_scsi_io *)
    428 			    (io_req_base + offset);
    429 			ccb->ccb_tb_pio_request =
    430 			    io_req_base_phys + offset;
    431 			offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i;
    432 			ccb->ccb_tb_sg_frame =
    433 			    (mpi2_sge_io_union *)(sc->sc_reply_pool_limit +
    434 			    offset);
    435 			ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr +
    436 			    offset;
    437 			/* SMID 0 is reserved. Set SMID/index from 1 */
    438 			ccb->ccb_tb_request_desc.header.SMID = i + 1;
    439 		}
    440 
    441 		DNPRINTF(MFI_D_CCB,
    442 		    "ccb(%d): %p frame: %#lx (%#lx) sense: %#lx (%#lx) map: %#lx\n",
    443 		    ccb->ccb_frame->mfr_header.mfh_context, ccb,
    444 		    (u_long)ccb->ccb_frame, (u_long)ccb->ccb_pframe,
    445 		    (u_long)ccb->ccb_sense, (u_long)ccb->ccb_psense,
    446 		    (u_long)ccb->ccb_dmamap);
    447 
    448 		/* add ccb to queue */
    449 		mfi_put_ccb(ccb);
    450 	}
    451 
    452 	return 0;
    453 destroy:
    454 	/* free dma maps and ccb memory */
    455 	while (i) {
    456 		i--;
    457 		ccb = &sc->sc_ccb[i];
    458 		bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
    459 	}
    460 
    461 	free(sc->sc_ccb, M_DEVBUF);
    462 
    463 	return 1;
    464 }
    465 
    466 static uint32_t
    467 mfi_read(struct mfi_softc *sc, bus_size_t r)
    468 {
    469 	uint32_t rv;
    470 
    471 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
    472 	    BUS_SPACE_BARRIER_READ);
    473 	rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
    474 
    475 	DNPRINTF(MFI_D_RW, "%s: mr 0x%lx 0x08%x ", DEVNAME(sc), (u_long)r, rv);
    476 	return rv;
    477 }
    478 
    479 static void
    480 mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v)
    481 {
    482 	DNPRINTF(MFI_D_RW, "%s: mw 0x%lx 0x%08x", DEVNAME(sc), (u_long)r, v);
    483 
    484 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
    485 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
    486 	    BUS_SPACE_BARRIER_WRITE);
    487 }
    488 
    489 static struct mfi_mem *
    490 mfi_allocmem(struct mfi_softc *sc, size_t size)
    491 {
    492 	struct mfi_mem		*mm;
    493 	int			nsegs;
    494 
    495 	DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %ld\n", DEVNAME(sc),
    496 	    (long)size);
    497 
    498 	mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_WAITOK|M_ZERO);
    499 	mm->am_size = size;
    500 
    501 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
    502 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0)
    503 		goto amfree;
    504 
    505 	if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1,
    506 	    &nsegs, BUS_DMA_NOWAIT) != 0)
    507 		goto destroy;
    508 
    509 	if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva,
    510 	    BUS_DMA_NOWAIT) != 0)
    511 		goto free;
    512 
    513 	if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL,
    514 	    BUS_DMA_NOWAIT) != 0)
    515 		goto unmap;
    516 
    517 	DNPRINTF(MFI_D_MEM, "  kva: %p  dva: %p  map: %p\n",
    518 	    mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map);
    519 
    520 	memset(mm->am_kva, 0, size);
    521 	return mm;
    522 
    523 unmap:
    524 	bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size);
    525 free:
    526 	bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
    527 destroy:
    528 	bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
    529 amfree:
    530 	free(mm, M_DEVBUF);
    531 
    532 	return NULL;
    533 }
    534 
    535 static void
    536 mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp)
    537 {
    538 	struct mfi_mem *mm = *mmp;
    539 
    540 	if (mm == NULL)
    541 		return;
    542 
    543 	*mmp = NULL;
    544 
    545 	DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm);
    546 
    547 	bus_dmamap_unload(sc->sc_dmat, mm->am_map);
    548 	bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size);
    549 	bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
    550 	bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
    551 	free(mm, M_DEVBUF);
    552 }
    553 
    554 static int
    555 mfi_transition_firmware(struct mfi_softc *sc)
    556 {
    557 	uint32_t		fw_state, cur_state;
    558 	int			max_wait, i;
    559 
    560 	fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
    561 
    562 	DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc),
    563 	    fw_state);
    564 
    565 	while (fw_state != MFI_STATE_READY) {
    566 		DNPRINTF(MFI_D_MISC,
    567 		    "%s: waiting for firmware to become ready\n",
    568 		    DEVNAME(sc));
    569 		cur_state = fw_state;
    570 		switch (fw_state) {
    571 		case MFI_STATE_FAULT:
    572 			aprint_error_dev(sc->sc_dev, "firmware fault\n");
    573 			return 1;
    574 		case MFI_STATE_WAIT_HANDSHAKE:
    575 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
    576 			    sc->sc_ioptype == MFI_IOP_TBOLT)
    577 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE);
    578 			else
    579 				mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE);
    580 			max_wait = 2;
    581 			break;
    582 		case MFI_STATE_OPERATIONAL:
    583 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
    584 			    sc->sc_ioptype == MFI_IOP_TBOLT)
    585 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_READY);
    586 			else
    587 				mfi_write(sc, MFI_IDB, MFI_INIT_READY);
    588 			max_wait = 10;
    589 			break;
    590 		case MFI_STATE_UNDEFINED:
    591 		case MFI_STATE_BB_INIT:
    592 			max_wait = 2;
    593 			break;
    594 		case MFI_STATE_FW_INIT:
    595 		case MFI_STATE_DEVICE_SCAN:
    596 		case MFI_STATE_FLUSH_CACHE:
    597 			max_wait = 20;
    598 			break;
    599 		case MFI_STATE_BOOT_MESSAGE_PENDING:
    600 			if (sc->sc_ioptype == MFI_IOP_SKINNY ||
    601 			    sc->sc_ioptype == MFI_IOP_TBOLT) {
    602 				mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG);
    603 			} else {
    604 				mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG);
    605 			}
    606 			max_wait = 180;
    607 			break;
    608 		default:
    609 			aprint_error_dev(sc->sc_dev,
    610 			    "unknown firmware state %d\n", fw_state);
    611 			return 1;
    612 		}
    613 		for (i = 0; i < (max_wait * 10); i++) {
    614 			fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
    615 			if (fw_state == cur_state)
    616 				DELAY(100000);
    617 			else
    618 				break;
    619 		}
    620 		if (fw_state == cur_state) {
    621 			aprint_error_dev(sc->sc_dev,
    622 			    "firmware stuck in state %#x\n", fw_state);
    623 			return 1;
    624 		}
    625 	}
    626 
    627 	return 0;
    628 }
    629 
    630 static int
    631 mfi_initialize_firmware(struct mfi_softc *sc)
    632 {
    633 	struct mfi_ccb		*ccb;
    634 	struct mfi_init_frame	*init;
    635 	struct mfi_init_qinfo	*qinfo;
    636 
    637 	DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc));
    638 
    639 	if ((ccb = mfi_get_ccb(sc)) == NULL)
    640 		return 1;
    641 
    642 	init = &ccb->ccb_frame->mfr_init;
    643 	qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE);
    644 
    645 	memset(qinfo, 0, sizeof *qinfo);
    646 	qinfo->miq_rq_entries = sc->sc_max_cmds + 1;
    647 	qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
    648 	    offsetof(struct mfi_prod_cons, mpc_reply_q));
    649 	qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
    650 	    offsetof(struct mfi_prod_cons, mpc_producer));
    651 	qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
    652 	    offsetof(struct mfi_prod_cons, mpc_consumer));
    653 
    654 	init->mif_header.mfh_cmd = MFI_CMD_INIT;
    655 	init->mif_header.mfh_data_len = sizeof *qinfo;
    656 	init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE);
    657 
    658 	DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n",
    659 	    DEVNAME(sc),
    660 	    qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo,
    661 	    qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo);
    662 
    663 	if (mfi_poll(ccb)) {
    664 		aprint_error_dev(sc->sc_dev,
    665 		    "mfi_initialize_firmware failed\n");
    666 		return 1;
    667 	}
    668 
    669 	mfi_put_ccb(ccb);
    670 
    671 	return 0;
    672 }
    673 
    674 static int
    675 mfi_get_info(struct mfi_softc *sc)
    676 {
    677 #ifdef MFI_DEBUG
    678 	int i;
    679 #endif
    680 	DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc));
    681 
    682 	if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN,
    683 	    sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false))
    684 		return 1;
    685 
    686 #ifdef MFI_DEBUG
    687 
    688 	for (i = 0; i < sc->sc_info.mci_image_component_count; i++) {
    689 		printf("%s: active FW %s Version %s date %s time %s\n",
    690 		    DEVNAME(sc),
    691 		    sc->sc_info.mci_image_component[i].mic_name,
    692 		    sc->sc_info.mci_image_component[i].mic_version,
    693 		    sc->sc_info.mci_image_component[i].mic_build_date,
    694 		    sc->sc_info.mci_image_component[i].mic_build_time);
    695 	}
    696 
    697 	for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) {
    698 		printf("%s: pending FW %s Version %s date %s time %s\n",
    699 		    DEVNAME(sc),
    700 		    sc->sc_info.mci_pending_image_component[i].mic_name,
    701 		    sc->sc_info.mci_pending_image_component[i].mic_version,
    702 		    sc->sc_info.mci_pending_image_component[i].mic_build_date,
    703 		    sc->sc_info.mci_pending_image_component[i].mic_build_time);
    704 	}
    705 
    706 	printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n",
    707 	    DEVNAME(sc),
    708 	    sc->sc_info.mci_max_arms,
    709 	    sc->sc_info.mci_max_spans,
    710 	    sc->sc_info.mci_max_arrays,
    711 	    sc->sc_info.mci_max_lds,
    712 	    sc->sc_info.mci_product_name);
    713 
    714 	printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n",
    715 	    DEVNAME(sc),
    716 	    sc->sc_info.mci_serial_number,
    717 	    sc->sc_info.mci_hw_present,
    718 	    sc->sc_info.mci_current_fw_time,
    719 	    sc->sc_info.mci_max_cmds,
    720 	    sc->sc_info.mci_max_sg_elements);
    721 
    722 	printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n",
    723 	    DEVNAME(sc),
    724 	    sc->sc_info.mci_max_request_size,
    725 	    sc->sc_info.mci_lds_present,
    726 	    sc->sc_info.mci_lds_degraded,
    727 	    sc->sc_info.mci_lds_offline,
    728 	    sc->sc_info.mci_pd_present);
    729 
    730 	printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n",
    731 	    DEVNAME(sc),
    732 	    sc->sc_info.mci_pd_disks_present,
    733 	    sc->sc_info.mci_pd_disks_pred_failure,
    734 	    sc->sc_info.mci_pd_disks_failed);
    735 
    736 	printf("%s: nvram %d mem %d flash %d\n",
    737 	    DEVNAME(sc),
    738 	    sc->sc_info.mci_nvram_size,
    739 	    sc->sc_info.mci_memory_size,
    740 	    sc->sc_info.mci_flash_size);
    741 
    742 	printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n",
    743 	    DEVNAME(sc),
    744 	    sc->sc_info.mci_ram_correctable_errors,
    745 	    sc->sc_info.mci_ram_uncorrectable_errors,
    746 	    sc->sc_info.mci_cluster_allowed,
    747 	    sc->sc_info.mci_cluster_active);
    748 
    749 	printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n",
    750 	    DEVNAME(sc),
    751 	    sc->sc_info.mci_max_strips_per_io,
    752 	    sc->sc_info.mci_raid_levels,
    753 	    sc->sc_info.mci_adapter_ops,
    754 	    sc->sc_info.mci_ld_ops);
    755 
    756 	printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n",
    757 	    DEVNAME(sc),
    758 	    sc->sc_info.mci_stripe_sz_ops.min,
    759 	    sc->sc_info.mci_stripe_sz_ops.max,
    760 	    sc->sc_info.mci_pd_ops,
    761 	    sc->sc_info.mci_pd_mix_support);
    762 
    763 	printf("%s: ecc_bucket %d pckg_prop %s\n",
    764 	    DEVNAME(sc),
    765 	    sc->sc_info.mci_ecc_bucket_count,
    766 	    sc->sc_info.mci_package_version);
    767 
    768 	printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n",
    769 	    DEVNAME(sc),
    770 	    sc->sc_info.mci_properties.mcp_seq_num,
    771 	    sc->sc_info.mci_properties.mcp_pred_fail_poll_interval,
    772 	    sc->sc_info.mci_properties.mcp_intr_throttle_cnt,
    773 	    sc->sc_info.mci_properties.mcp_intr_throttle_timeout);
    774 
    775 	printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n",
    776 	    DEVNAME(sc),
    777 	    sc->sc_info.mci_properties.mcp_rebuild_rate,
    778 	    sc->sc_info.mci_properties.mcp_patrol_read_rate,
    779 	    sc->sc_info.mci_properties.mcp_bgi_rate,
    780 	    sc->sc_info.mci_properties.mcp_cc_rate);
    781 
    782 	printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n",
    783 	    DEVNAME(sc),
    784 	    sc->sc_info.mci_properties.mcp_recon_rate,
    785 	    sc->sc_info.mci_properties.mcp_cache_flush_interval,
    786 	    sc->sc_info.mci_properties.mcp_spinup_drv_cnt,
    787 	    sc->sc_info.mci_properties.mcp_spinup_delay,
    788 	    sc->sc_info.mci_properties.mcp_cluster_enable);
    789 
    790 	printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n",
    791 	    DEVNAME(sc),
    792 	    sc->sc_info.mci_properties.mcp_coercion_mode,
    793 	    sc->sc_info.mci_properties.mcp_alarm_enable,
    794 	    sc->sc_info.mci_properties.mcp_disable_auto_rebuild,
    795 	    sc->sc_info.mci_properties.mcp_disable_battery_warn,
    796 	    sc->sc_info.mci_properties.mcp_ecc_bucket_size);
    797 
    798 	printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n",
    799 	    DEVNAME(sc),
    800 	    sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate,
    801 	    sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion,
    802 	    sc->sc_info.mci_properties.mcp_expose_encl_devices);
    803 
    804 	printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n",
    805 	    DEVNAME(sc),
    806 	    sc->sc_info.mci_pci.mip_vendor,
    807 	    sc->sc_info.mci_pci.mip_device,
    808 	    sc->sc_info.mci_pci.mip_subvendor,
    809 	    sc->sc_info.mci_pci.mip_subdevice);
    810 
    811 	printf("%s: type %#x port_count %d port_addr ",
    812 	    DEVNAME(sc),
    813 	    sc->sc_info.mci_host.mih_type,
    814 	    sc->sc_info.mci_host.mih_port_count);
    815 
    816 	for (i = 0; i < 8; i++)
    817 		printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]);
    818 	printf("\n");
    819 
    820 	printf("%s: type %.x port_count %d port_addr ",
    821 	    DEVNAME(sc),
    822 	    sc->sc_info.mci_device.mid_type,
    823 	    sc->sc_info.mci_device.mid_port_count);
    824 
    825 	for (i = 0; i < 8; i++) {
    826 		printf("%.0" PRIx64 " ",
    827 		    sc->sc_info.mci_device.mid_port_addr[i]);
    828 	}
    829 	printf("\n");
    830 #endif /* MFI_DEBUG */
    831 
    832 	return 0;
    833 }
    834 
    835 static int
    836 mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat)
    837 {
    838 	DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc));
    839 
    840 	if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN,
    841 	    sizeof(*stat), stat, NULL, cold ? true : false))
    842 		return MFI_BBU_UNKNOWN;
    843 #ifdef MFI_DEBUG
    844 	printf("bbu type %d, voltage %d, current %d, temperature %d, "
    845 	    "status 0x%x\n", stat->battery_type, stat->voltage, stat->current,
    846 	    stat->temperature, stat->fw_status);
    847 	printf("details: ");
    848 	switch(stat->battery_type) {
    849 	case MFI_BBU_TYPE_IBBU:
    850 		printf("guage %d relative charge %d charger state %d "
    851 		    "charger ctrl %d\n", stat->detail.ibbu.gas_guage_status,
    852 		    stat->detail.ibbu.relative_charge ,
    853 		    stat->detail.ibbu.charger_system_state ,
    854 		    stat->detail.ibbu.charger_system_ctrl);
    855 		printf("\tcurrent %d abs charge %d max error %d\n",
    856 		    stat->detail.ibbu.charging_current ,
    857 		    stat->detail.ibbu.absolute_charge ,
    858 		    stat->detail.ibbu.max_error);
    859 		break;
    860 	case MFI_BBU_TYPE_BBU:
    861 		printf("guage %d relative charge %d charger state %d\n",
    862 		    stat->detail.ibbu.gas_guage_status,
    863 		    stat->detail.bbu.relative_charge ,
    864 		    stat->detail.bbu.charger_status );
    865 		printf("\trem capacity %d fyll capacity %d SOH %d\n",
    866 		    stat->detail.bbu.remaining_capacity ,
    867 		    stat->detail.bbu.full_charge_capacity ,
    868 		    stat->detail.bbu.is_SOH_good);
    869 		break;
    870 	default:
    871 		printf("\n");
    872 	}
    873 #endif
    874 	switch(stat->battery_type) {
    875 	case MFI_BBU_TYPE_BBU:
    876 		return (stat->detail.bbu.is_SOH_good ?
    877 		    MFI_BBU_GOOD : MFI_BBU_BAD);
    878 	case MFI_BBU_TYPE_NONE:
    879 		return MFI_BBU_UNKNOWN;
    880 	default:
    881 		if (stat->fw_status &
    882 		    (MFI_BBU_STATE_PACK_MISSING |
    883 		     MFI_BBU_STATE_VOLTAGE_LOW |
    884 		     MFI_BBU_STATE_TEMPERATURE_HIGH |
    885 		     MFI_BBU_STATE_LEARN_CYC_FAIL |
    886 		     MFI_BBU_STATE_LEARN_CYC_TIMEOUT |
    887 		     MFI_BBU_STATE_I2C_ERR_DETECT))
    888 			return MFI_BBU_BAD;
    889 		return MFI_BBU_GOOD;
    890 	}
    891 }
    892 
    893 static void
    894 mfiminphys(struct buf *bp)
    895 {
    896 	DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount);
    897 
    898 	/* XXX currently using MFI_MAXFER = MAXPHYS */
    899 	if (bp->b_bcount > MFI_MAXFER)
    900 		bp->b_bcount = MFI_MAXFER;
    901 	minphys(bp);
    902 }
    903 
    904 int
    905 mfi_rescan(device_t self, const char *ifattr, const int *locators)
    906 {
    907 	struct mfi_softc *sc = device_private(self);
    908 
    909 	if (sc->sc_child != NULL)
    910 		return 0;
    911 
    912 	sc->sc_child = config_found(self, &sc->sc_chan, scsiprint, CFARG_EOL);
    913 
    914 	return 0;
    915 }
    916 
    917 void
    918 mfi_childdetached(device_t self, device_t child)
    919 {
    920 	struct mfi_softc *sc = device_private(self);
    921 
    922 	KASSERT(self == sc->sc_dev);
    923 	KASSERT(child == sc->sc_child);
    924 
    925 	if (child == sc->sc_child)
    926 		sc->sc_child = NULL;
    927 }
    928 
    929 int
    930 mfi_detach(struct mfi_softc *sc, int flags)
    931 {
    932 	int			error;
    933 
    934 	DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc));
    935 
    936 	if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
    937 		return error;
    938 
    939 #if NBIO > 0
    940 	mfi_destroy_sensors(sc);
    941 	bio_unregister(sc->sc_dev);
    942 #endif /* NBIO > 0 */
    943 
    944 	mfi_intr_disable(sc);
    945 	mfi_shutdown(sc->sc_dev, 0);
    946 
    947 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
    948 		workqueue_destroy(sc->sc_ldsync_wq);
    949 		mfi_put_ccb(sc->sc_ldsync_ccb);
    950 		mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
    951 		mfi_freemem(sc, &sc->sc_tbolt_ioc_init);
    952 		mfi_freemem(sc, &sc->sc_tbolt_verbuf);
    953 	}
    954 
    955 	if ((error = mfi_destroy_ccb(sc)) != 0)
    956 		return error;
    957 
    958 	mfi_freemem(sc, &sc->sc_sense);
    959 
    960 	mfi_freemem(sc, &sc->sc_frames);
    961 
    962 	mfi_freemem(sc, &sc->sc_pcq);
    963 
    964 	return 0;
    965 }
    966 
    967 static bool
    968 mfi_shutdown(device_t dev, int how)
    969 {
    970 	struct mfi_softc	*sc = device_private(dev);
    971 	uint8_t			mbox[MFI_MBOX_SIZE];
    972 	int s = splbio();
    973 	DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc));
    974 	if (sc->sc_running) {
    975 		mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
    976 		if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH,
    977 		    MFI_DATA_NONE, 0, NULL, mbox, true)) {
    978 			aprint_error_dev(dev, "shutdown: cache flush failed\n");
    979 			goto fail;
    980 		}
    981 
    982 		mbox[0] = 0;
    983 		if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN,
    984 		    MFI_DATA_NONE, 0, NULL, mbox, true)) {
    985 			aprint_error_dev(dev, "shutdown: "
    986 			    "firmware shutdown failed\n");
    987 			goto fail;
    988 		}
    989 		sc->sc_running = false;
    990 	}
    991 	splx(s);
    992 	return true;
    993 fail:
    994 	splx(s);
    995 	return false;
    996 }
    997 
    998 static bool
    999 mfi_suspend(device_t dev, const pmf_qual_t *q)
   1000 {
   1001 	/* XXX to be implemented */
   1002 	return false;
   1003 }
   1004 
   1005 static bool
   1006 mfi_resume(device_t dev, const pmf_qual_t *q)
   1007 {
   1008 	/* XXX to be implemented */
   1009 	return false;
   1010 }
   1011 
   1012 int
   1013 mfi_attach(struct mfi_softc *sc, enum mfi_iop iop)
   1014 {
   1015 	struct scsipi_adapter *adapt = &sc->sc_adapt;
   1016 	struct scsipi_channel *chan = &sc->sc_chan;
   1017 	uint32_t		status, frames, max_sgl;
   1018 	int			i;
   1019 
   1020 	DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc));
   1021 
   1022 	sc->sc_ioptype = iop;
   1023 
   1024 	switch (iop) {
   1025 	case MFI_IOP_XSCALE:
   1026 		sc->sc_iop = &mfi_iop_xscale;
   1027 		break;
   1028 	case MFI_IOP_PPC:
   1029 		sc->sc_iop = &mfi_iop_ppc;
   1030 		break;
   1031 	case MFI_IOP_GEN2:
   1032 		sc->sc_iop = &mfi_iop_gen2;
   1033 		break;
   1034 	case MFI_IOP_SKINNY:
   1035 		sc->sc_iop = &mfi_iop_skinny;
   1036 		break;
   1037 	case MFI_IOP_TBOLT:
   1038 		sc->sc_iop = &mfi_iop_tbolt;
   1039 		break;
   1040 	default:
   1041 		 panic("%s: unknown iop %d", DEVNAME(sc), iop);
   1042 	}
   1043 
   1044 	if (mfi_transition_firmware(sc))
   1045 		return 1;
   1046 
   1047 	TAILQ_INIT(&sc->sc_ccb_freeq);
   1048 
   1049 	status = mfi_fw_state(sc);
   1050 	sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK;
   1051 	max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16;
   1052 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
   1053 		sc->sc_max_sgl = uimin(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
   1054 		sc->sc_sgl_size = sizeof(struct mfi_sg_ieee);
   1055 	} else if (sc->sc_64bit_dma) {
   1056 		sc->sc_max_sgl = uimin(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
   1057 		sc->sc_sgl_size = sizeof(struct mfi_sg64);
   1058 	} else {
   1059 		sc->sc_max_sgl = max_sgl;
   1060 		sc->sc_sgl_size = sizeof(struct mfi_sg32);
   1061 	}
   1062 	DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n",
   1063 	    DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl);
   1064 
   1065 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
   1066 		uint32_t tb_mem_size;
   1067 		/* for Alignment */
   1068 		tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALLIGNMENT;
   1069 
   1070 		tb_mem_size +=
   1071 		    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1);
   1072 		sc->sc_reply_pool_size =
   1073 		    ((sc->sc_max_cmds + 1 + 15) / 16) * 16;
   1074 		tb_mem_size +=
   1075 		    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
   1076 
   1077 		/* this is for SGL's */
   1078 		tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds;
   1079 		sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size);
   1080 		if (sc->sc_tbolt_reqmsgpool == NULL) {
   1081 			aprint_error_dev(sc->sc_dev,
   1082 			    "unable to allocate thunderbolt "
   1083 			    "request message pool\n");
   1084 			goto nopcq;
   1085 		}
   1086 		if (mfi_tbolt_init_desc_pool(sc)) {
   1087 			aprint_error_dev(sc->sc_dev,
   1088 			    "Thunderbolt pool preparation error\n");
   1089 			goto nopcq;
   1090 		}
   1091 
   1092 		/*
   1093 		 * Allocate DMA memory mapping for MPI2 IOC Init descriptor,
   1094 		 * we are taking it diffrent from what we have allocated for
   1095 		 * Request and reply descriptors to avoid confusion later
   1096 		 */
   1097 		sc->sc_tbolt_ioc_init = mfi_allocmem(sc,
   1098 		    sizeof(struct mpi2_ioc_init_request));
   1099 		if (sc->sc_tbolt_ioc_init == NULL) {
   1100 			aprint_error_dev(sc->sc_dev,
   1101 			    "unable to allocate thunderbolt IOC init memory");
   1102 			goto nopcq;
   1103 		}
   1104 
   1105 		sc->sc_tbolt_verbuf = mfi_allocmem(sc,
   1106 		    MEGASAS_MAX_NAME*sizeof(bus_addr_t));
   1107 		if (sc->sc_tbolt_verbuf == NULL) {
   1108 			aprint_error_dev(sc->sc_dev,
   1109 			    "unable to allocate thunderbolt version buffer\n");
   1110 			goto nopcq;
   1111 		}
   1112 
   1113 	}
   1114 	/* consumer/producer and reply queue memory */
   1115 	sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) +
   1116 	    sizeof(struct mfi_prod_cons));
   1117 	if (sc->sc_pcq == NULL) {
   1118 		aprint_error_dev(sc->sc_dev,
   1119 		    "unable to allocate reply queue memory\n");
   1120 		goto nopcq;
   1121 	}
   1122 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
   1123 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
   1124 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1125 
   1126 	/* frame memory */
   1127 	frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) /
   1128 	    MFI_FRAME_SIZE + 1;
   1129 	sc->sc_frames_size = frames * MFI_FRAME_SIZE;
   1130 	sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds);
   1131 	if (sc->sc_frames == NULL) {
   1132 		aprint_error_dev(sc->sc_dev,
   1133 		    "unable to allocate frame memory\n");
   1134 		goto noframe;
   1135 	}
   1136 	/* XXX hack, fix this */
   1137 	if (MFIMEM_DVA(sc->sc_frames) & 0x3f) {
   1138 		aprint_error_dev(sc->sc_dev,
   1139 		    "improper frame alignment (%#llx) FIXME\n",
   1140 		    (long long int)MFIMEM_DVA(sc->sc_frames));
   1141 		goto noframe;
   1142 	}
   1143 
   1144 	/* sense memory */
   1145 	sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE);
   1146 	if (sc->sc_sense == NULL) {
   1147 		aprint_error_dev(sc->sc_dev,
   1148 		    "unable to allocate sense memory\n");
   1149 		goto nosense;
   1150 	}
   1151 
   1152 	/* now that we have all memory bits go initialize ccbs */
   1153 	if (mfi_init_ccb(sc)) {
   1154 		aprint_error_dev(sc->sc_dev, "could not init ccb list\n");
   1155 		goto noinit;
   1156 	}
   1157 
   1158 	/* kickstart firmware with all addresses and pointers */
   1159 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
   1160 		if (mfi_tbolt_init_MFI_queue(sc)) {
   1161 			aprint_error_dev(sc->sc_dev,
   1162 			    "could not initialize firmware\n");
   1163 			goto noinit;
   1164 		}
   1165 	} else {
   1166 		if (mfi_initialize_firmware(sc)) {
   1167 			aprint_error_dev(sc->sc_dev,
   1168 			    "could not initialize firmware\n");
   1169 			goto noinit;
   1170 		}
   1171 	}
   1172 	sc->sc_running = true;
   1173 
   1174 	if (mfi_get_info(sc)) {
   1175 		aprint_error_dev(sc->sc_dev,
   1176 		    "could not retrieve controller information\n");
   1177 		goto noinit;
   1178 	}
   1179 	aprint_normal_dev(sc->sc_dev,
   1180 	    "%s version %s\n",
   1181 	    sc->sc_info.mci_product_name,
   1182 	    sc->sc_info.mci_package_version);
   1183 
   1184 
   1185 	aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ",
   1186 	    sc->sc_info.mci_lds_present,
   1187 	    sc->sc_info.mci_memory_size);
   1188 	sc->sc_bbuok = false;
   1189 	if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) {
   1190 		struct mfi_bbu_status	bbu_stat;
   1191 		int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat);
   1192 		aprint_normal("BBU type ");
   1193 		switch (bbu_stat.battery_type) {
   1194 		case MFI_BBU_TYPE_BBU:
   1195 			aprint_normal("BBU");
   1196 			break;
   1197 		case MFI_BBU_TYPE_IBBU:
   1198 			aprint_normal("IBBU");
   1199 			break;
   1200 		default:
   1201 			aprint_normal("unknown type %d", bbu_stat.battery_type);
   1202 		}
   1203 		aprint_normal(", status ");
   1204 		switch(mfi_bbu_status) {
   1205 		case MFI_BBU_GOOD:
   1206 			aprint_normal("good\n");
   1207 			sc->sc_bbuok = true;
   1208 			break;
   1209 		case MFI_BBU_BAD:
   1210 			aprint_normal("bad\n");
   1211 			break;
   1212 		case MFI_BBU_UNKNOWN:
   1213 			aprint_normal("unknown\n");
   1214 			break;
   1215 		default:
   1216 			panic("mfi_bbu_status");
   1217 		}
   1218 	} else {
   1219 		aprint_normal("BBU not present\n");
   1220 	}
   1221 
   1222 	sc->sc_ld_cnt = sc->sc_info.mci_lds_present;
   1223 	sc->sc_max_ld = sc->sc_ld_cnt;
   1224 	for (i = 0; i < sc->sc_ld_cnt; i++)
   1225 		sc->sc_ld[i].ld_present = 1;
   1226 
   1227 	memset(adapt, 0, sizeof(*adapt));
   1228 	adapt->adapt_dev = sc->sc_dev;
   1229 	adapt->adapt_nchannels = 1;
   1230 	/* keep a few commands for management */
   1231 	if (sc->sc_max_cmds > 4)
   1232 		adapt->adapt_openings = sc->sc_max_cmds - 4;
   1233 	else
   1234 		adapt->adapt_openings = sc->sc_max_cmds;
   1235 	adapt->adapt_max_periph = adapt->adapt_openings;
   1236 	adapt->adapt_request = mfi_scsipi_request;
   1237 	adapt->adapt_minphys = mfiminphys;
   1238 
   1239 	memset(chan, 0, sizeof(*chan));
   1240 	chan->chan_adapter = adapt;
   1241 	chan->chan_bustype = &scsi_sas_bustype;
   1242 	chan->chan_channel = 0;
   1243 	chan->chan_flags = 0;
   1244 	chan->chan_nluns = 8;
   1245 	chan->chan_ntargets = MFI_MAX_LD;
   1246 	chan->chan_id = MFI_MAX_LD;
   1247 
   1248 	mfi_rescan(sc->sc_dev, NULL, NULL);
   1249 
   1250 	/* enable interrupts */
   1251 	mfi_intr_enable(sc);
   1252 
   1253 #if NBIO > 0
   1254 	if (bio_register(sc->sc_dev, mfi_ioctl) != 0)
   1255 		panic("%s: controller registration failed", DEVNAME(sc));
   1256 	if (mfi_create_sensors(sc) != 0)
   1257 		aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
   1258 #endif /* NBIO > 0 */
   1259 	if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume,
   1260 	    mfi_shutdown)) {
   1261 		aprint_error_dev(sc->sc_dev,
   1262 		    "couldn't establish power handler\n");
   1263 	}
   1264 
   1265 	return 0;
   1266 noinit:
   1267 	mfi_freemem(sc, &sc->sc_sense);
   1268 nosense:
   1269 	mfi_freemem(sc, &sc->sc_frames);
   1270 noframe:
   1271 	mfi_freemem(sc, &sc->sc_pcq);
   1272 nopcq:
   1273 	if (sc->sc_ioptype == MFI_IOP_TBOLT) {
   1274 		if (sc->sc_tbolt_reqmsgpool)
   1275 			mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
   1276 		if (sc->sc_tbolt_verbuf)
   1277 			mfi_freemem(sc, &sc->sc_tbolt_verbuf);
   1278 	}
   1279 	return 1;
   1280 }
   1281 
   1282 static int
   1283 mfi_poll(struct mfi_ccb *ccb)
   1284 {
   1285 	struct mfi_softc *sc = ccb->ccb_sc;
   1286 	struct mfi_frame_header	*hdr;
   1287 	int			to = 0;
   1288 	int			rv = 0;
   1289 
   1290 	DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc));
   1291 
   1292 	hdr = &ccb->ccb_frame->mfr_header;
   1293 	hdr->mfh_cmd_status = 0xff;
   1294 	if (!sc->sc_MFA_enabled)
   1295 		hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
   1296 
   1297 	/* no callback, caller is supposed to do the cleanup */
   1298 	ccb->ccb_done = NULL;
   1299 
   1300 	mfi_post(sc, ccb);
   1301 	if (sc->sc_MFA_enabled) {
   1302 		/*
   1303 		 * depending on the command type, result may be posted
   1304 		 * to *hdr, or not. In addition it seems there's
   1305 		 * no way to avoid posting the SMID to the reply queue.
   1306 		 * So pool using the interrupt routine.
   1307 		 */
   1308 		 while (ccb->ccb_state != MFI_CCB_DONE) {
   1309 			delay(1000);
   1310 			if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
   1311 				rv = 1;
   1312 				break;
   1313 			}
   1314 			mfi_tbolt_intrh(sc);
   1315 		 }
   1316 	} else {
   1317 		bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
   1318 		    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
   1319 		    sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
   1320 
   1321 		while (hdr->mfh_cmd_status == 0xff) {
   1322 			delay(1000);
   1323 			if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
   1324 				rv = 1;
   1325 				break;
   1326 			}
   1327 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
   1328 			    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
   1329 			    sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
   1330 		}
   1331 	}
   1332 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
   1333 	    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
   1334 	    sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1335 
   1336 	if (ccb->ccb_data != NULL) {
   1337 		DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
   1338 		    DEVNAME(sc));
   1339 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
   1340 		    ccb->ccb_dmamap->dm_mapsize,
   1341 		    (ccb->ccb_direction & MFI_DATA_IN) ?
   1342 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1343 
   1344 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
   1345 	}
   1346 
   1347 	if (rv != 0) {
   1348 		aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n",
   1349 		    hdr->mfh_context);
   1350 		ccb->ccb_flags |= MFI_CCB_F_ERR;
   1351 		return 1;
   1352 	}
   1353 
   1354 	return 0;
   1355 }
   1356 
   1357 int
   1358 mfi_intr(void *arg)
   1359 {
   1360 	struct mfi_softc	*sc = arg;
   1361 	struct mfi_prod_cons	*pcq;
   1362 	struct mfi_ccb		*ccb;
   1363 	uint32_t		producer, consumer, ctx;
   1364 	int			claimed = 0;
   1365 
   1366 	if (!mfi_my_intr(sc))
   1367 		return 0;
   1368 
   1369 	pcq = MFIMEM_KVA(sc->sc_pcq);
   1370 
   1371 	DNPRINTF(MFI_D_INTR, "%s: mfi_intr %#lx %#lx\n", DEVNAME(sc),
   1372 	    (u_long)sc, (u_long)pcq);
   1373 
   1374 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
   1375 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
   1376 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1377 
   1378 	producer = pcq->mpc_producer;
   1379 	consumer = pcq->mpc_consumer;
   1380 
   1381 	while (consumer != producer) {
   1382 		DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n",
   1383 		    DEVNAME(sc), producer, consumer);
   1384 
   1385 		ctx = pcq->mpc_reply_q[consumer];
   1386 		pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX;
   1387 		if (ctx == MFI_INVALID_CTX)
   1388 			aprint_error_dev(sc->sc_dev,
   1389 			    "invalid context, p: %d c: %d\n",
   1390 			    producer, consumer);
   1391 		else {
   1392 			/* XXX remove from queue and call scsi_done */
   1393 			ccb = &sc->sc_ccb[ctx];
   1394 			DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n",
   1395 			    DEVNAME(sc), ctx);
   1396 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
   1397 			    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
   1398 			    sc->sc_frames_size,
   1399 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1400 			ccb->ccb_done(ccb);
   1401 
   1402 			claimed = 1;
   1403 		}
   1404 		consumer++;
   1405 		if (consumer == (sc->sc_max_cmds + 1))
   1406 			consumer = 0;
   1407 	}
   1408 
   1409 	pcq->mpc_consumer = consumer;
   1410 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
   1411 	    sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
   1412 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1413 
   1414 	return claimed;
   1415 }
   1416 
   1417 static int
   1418 mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno,
   1419     uint32_t blockcnt)
   1420 {
   1421 	struct scsipi_periph *periph = xs->xs_periph;
   1422 	struct mfi_io_frame   *io;
   1423 
   1424 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n",
   1425 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
   1426 	    periph->periph_target);
   1427 
   1428 	if (!xs->data)
   1429 		return 1;
   1430 
   1431 	io = &ccb->ccb_frame->mfr_io;
   1432 	if (xs->xs_control & XS_CTL_DATA_IN) {
   1433 		io->mif_header.mfh_cmd = MFI_CMD_LD_READ;
   1434 		ccb->ccb_direction = MFI_DATA_IN;
   1435 	} else {
   1436 		io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE;
   1437 		ccb->ccb_direction = MFI_DATA_OUT;
   1438 	}
   1439 	io->mif_header.mfh_target_id = periph->periph_target;
   1440 	io->mif_header.mfh_timeout = 0;
   1441 	io->mif_header.mfh_flags = 0;
   1442 	io->mif_header.mfh_sense_len = MFI_SENSE_SIZE;
   1443 	io->mif_header.mfh_data_len= blockcnt;
   1444 	io->mif_lba_hi = (blockno >> 32);
   1445 	io->mif_lba_lo = (blockno & 0xffffffff);
   1446 	io->mif_sense_addr_lo = htole32(ccb->ccb_psense);
   1447 	io->mif_sense_addr_hi = 0;
   1448 
   1449 	ccb->ccb_done = mfi_scsi_ld_done;
   1450 	ccb->ccb_xs = xs;
   1451 	ccb->ccb_frame_size = MFI_IO_FRAME_SIZE;
   1452 	ccb->ccb_sgl = &io->mif_sgl;
   1453 	ccb->ccb_data = xs->data;
   1454 	ccb->ccb_len = xs->datalen;
   1455 
   1456 	if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
   1457 	    BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
   1458 		return 1;
   1459 
   1460 	return 0;
   1461 }
   1462 
   1463 static void
   1464 mfi_scsi_ld_done(struct mfi_ccb *ccb)
   1465 {
   1466 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
   1467 	mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status);
   1468 }
   1469 
   1470 static void
   1471 mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status)
   1472 {
   1473 	struct scsipi_xfer	*xs = ccb->ccb_xs;
   1474 	struct mfi_softc	*sc = ccb->ccb_sc;
   1475 
   1476 	DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %#lx %#lx\n",
   1477 	    DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
   1478 
   1479 	if (xs->data != NULL) {
   1480 		DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n",
   1481 		    DEVNAME(sc));
   1482 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
   1483 		    ccb->ccb_dmamap->dm_mapsize,
   1484 		    (xs->xs_control & XS_CTL_DATA_IN) ?
   1485 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1486 
   1487 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
   1488 	}
   1489 
   1490 	if (status != MFI_STAT_OK) {
   1491 		xs->error = XS_DRIVER_STUFFUP;
   1492 		DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n",
   1493 		    DEVNAME(sc), status);
   1494 
   1495 		if (scsi_status != 0) {
   1496 			bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
   1497 			    ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
   1498 			    MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD);
   1499 			DNPRINTF(MFI_D_INTR,
   1500 			    "%s: mfi_scsi_xs_done sense %#x %lx %lx\n",
   1501 			    DEVNAME(sc), scsi_status,
   1502 			    (u_long)&xs->sense, (u_long)ccb->ccb_sense);
   1503 			memset(&xs->sense, 0, sizeof(xs->sense));
   1504 			memcpy(&xs->sense, ccb->ccb_sense,
   1505 			    sizeof(struct scsi_sense_data));
   1506 			xs->error = XS_SENSE;
   1507 		}
   1508 	} else {
   1509 		xs->error = XS_NOERROR;
   1510 		xs->status = SCSI_OK;
   1511 		xs->resid = 0;
   1512 	}
   1513 
   1514 	mfi_put_ccb(ccb);
   1515 	scsipi_done(xs);
   1516 }
   1517 
   1518 static int
   1519 mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs)
   1520 {
   1521 	struct mfi_pass_frame	*pf;
   1522 	struct scsipi_periph *periph = xs->xs_periph;
   1523 
   1524 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n",
   1525 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
   1526 	    periph->periph_target);
   1527 
   1528 	pf = &ccb->ccb_frame->mfr_pass;
   1529 	pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO;
   1530 	pf->mpf_header.mfh_target_id = periph->periph_target;
   1531 	pf->mpf_header.mfh_lun_id = 0;
   1532 	pf->mpf_header.mfh_cdb_len = xs->cmdlen;
   1533 	pf->mpf_header.mfh_timeout = 0;
   1534 	pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */
   1535 	pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE;
   1536 
   1537 	pf->mpf_sense_addr_hi = 0;
   1538 	pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense);
   1539 
   1540 	memset(pf->mpf_cdb, 0, 16);
   1541 	memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen);
   1542 
   1543 	ccb->ccb_done = mfi_scsi_ld_done;
   1544 	ccb->ccb_xs = xs;
   1545 	ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE;
   1546 	ccb->ccb_sgl = &pf->mpf_sgl;
   1547 
   1548 	if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT))
   1549 		ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ?
   1550 		    MFI_DATA_IN : MFI_DATA_OUT;
   1551 	else
   1552 		ccb->ccb_direction = MFI_DATA_NONE;
   1553 
   1554 	if (xs->data) {
   1555 		ccb->ccb_data = xs->data;
   1556 		ccb->ccb_len = xs->datalen;
   1557 
   1558 		if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
   1559 		    BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
   1560 			return 1;
   1561 	}
   1562 
   1563 	return 0;
   1564 }
   1565 
   1566 static void
   1567 mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
   1568     void *arg)
   1569 {
   1570 	struct scsipi_periph	*periph;
   1571 	struct scsipi_xfer	*xs;
   1572 	struct scsipi_adapter	*adapt = chan->chan_adapter;
   1573 	struct mfi_softc	*sc = device_private(adapt->adapt_dev);
   1574 	struct mfi_ccb		*ccb;
   1575 	struct scsi_rw_6	*rw;
   1576 	struct scsipi_rw_10	*rwb;
   1577 	struct scsipi_rw_12	*rw12;
   1578 	struct scsipi_rw_16	*rw16;
   1579 	uint64_t		blockno;
   1580 	uint32_t		blockcnt;
   1581 	uint8_t			target;
   1582 	uint8_t			mbox[MFI_MBOX_SIZE];
   1583 	int			s;
   1584 
   1585 	switch (req) {
   1586 	case ADAPTER_REQ_GROW_RESOURCES:
   1587 		/* Not supported. */
   1588 		return;
   1589 	case ADAPTER_REQ_SET_XFER_MODE:
   1590 	{
   1591 		struct scsipi_xfer_mode *xm = arg;
   1592 		xm->xm_mode = PERIPH_CAP_TQING;
   1593 		xm->xm_period = 0;
   1594 		xm->xm_offset = 0;
   1595 		scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
   1596 		return;
   1597 	}
   1598 	case ADAPTER_REQ_RUN_XFER:
   1599 		break;
   1600 	}
   1601 
   1602 	xs = arg;
   1603 
   1604 	periph = xs->xs_periph;
   1605 	target = periph->periph_target;
   1606 
   1607 	DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x "
   1608 	    "target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode,
   1609 	    periph->periph_target, periph->periph_lun);
   1610 
   1611 	s = splbio();
   1612 	if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present ||
   1613 	    periph->periph_lun != 0) {
   1614 		DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n",
   1615 		    DEVNAME(sc), target);
   1616 		xs->error = XS_SELTIMEOUT;
   1617 		scsipi_done(xs);
   1618 		splx(s);
   1619 		return;
   1620 	}
   1621 	if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 ||
   1622 	    xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) {
   1623 		/* the cache is stable storage, don't flush */
   1624 		xs->error = XS_NOERROR;
   1625 		xs->status = SCSI_OK;
   1626 		xs->resid = 0;
   1627 		scsipi_done(xs);
   1628 		splx(s);
   1629 		return;
   1630 	}
   1631 
   1632 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
   1633 		DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc));
   1634 		xs->error = XS_RESOURCE_SHORTAGE;
   1635 		scsipi_done(xs);
   1636 		splx(s);
   1637 		return;
   1638 	}
   1639 
   1640 	switch (xs->cmd->opcode) {
   1641 	/* IO path */
   1642 	case READ_16:
   1643 	case WRITE_16:
   1644 		rw16 = (struct scsipi_rw_16 *)xs->cmd;
   1645 		blockno = _8btol(rw16->addr);
   1646 		blockcnt = _4btol(rw16->length);
   1647 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
   1648 			goto stuffup;
   1649 		}
   1650 		break;
   1651 
   1652 	case READ_12:
   1653 	case WRITE_12:
   1654 		rw12 = (struct scsipi_rw_12 *)xs->cmd;
   1655 		blockno = _4btol(rw12->addr);
   1656 		blockcnt = _4btol(rw12->length);
   1657 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
   1658 			goto stuffup;
   1659 		}
   1660 		break;
   1661 
   1662 	case READ_10:
   1663 	case WRITE_10:
   1664 		rwb = (struct scsipi_rw_10 *)xs->cmd;
   1665 		blockno = _4btol(rwb->addr);
   1666 		blockcnt = _2btol(rwb->length);
   1667 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
   1668 			goto stuffup;
   1669 		}
   1670 		break;
   1671 
   1672 	case SCSI_READ_6_COMMAND:
   1673 	case SCSI_WRITE_6_COMMAND:
   1674 		rw = (struct scsi_rw_6 *)xs->cmd;
   1675 		blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
   1676 		blockcnt = rw->length ? rw->length : 0x100;
   1677 		if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
   1678 			goto stuffup;
   1679 		}
   1680 		break;
   1681 
   1682 	case SCSI_SYNCHRONIZE_CACHE_10:
   1683 	case SCSI_SYNCHRONIZE_CACHE_16:
   1684 		mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
   1685 		if (mfi_mgmt(ccb, xs,
   1686 		    MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, mbox)) {
   1687 			goto stuffup;
   1688 		}
   1689 		break;
   1690 
   1691 	/* hand it of to the firmware and let it deal with it */
   1692 	case SCSI_TEST_UNIT_READY:
   1693 		/* save off sd? after autoconf */
   1694 		if (!cold)	/* XXX bogus */
   1695 			strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev),
   1696 			    sizeof(sc->sc_ld[target].ld_dev));
   1697 		/* FALLTHROUGH */
   1698 
   1699 	default:
   1700 		if (mfi_scsi_ld(ccb, xs)) {
   1701 			goto stuffup;
   1702 		}
   1703 		break;
   1704 	}
   1705 
   1706 	DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target);
   1707 
   1708 	if (xs->xs_control & XS_CTL_POLL) {
   1709 		if (mfi_poll(ccb)) {
   1710 			/* XXX check for sense in ccb->ccb_sense? */
   1711 			aprint_error_dev(sc->sc_dev,
   1712 			    "mfi_scsipi_request poll failed\n");
   1713 			memset(&xs->sense, 0, sizeof(xs->sense));
   1714 			xs->sense.scsi_sense.response_code =
   1715 			    SSD_RCODE_VALID | SSD_RCODE_CURRENT;
   1716 			xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
   1717 			xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */
   1718 			xs->error = XS_SENSE;
   1719 			xs->status = SCSI_CHECK;
   1720 		} else {
   1721 			DNPRINTF(MFI_D_DMA,
   1722 			    "%s: mfi_scsipi_request poll complete %d\n",
   1723 			    DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs);
   1724 			xs->error = XS_NOERROR;
   1725 			xs->status = SCSI_OK;
   1726 			xs->resid = 0;
   1727 		}
   1728 		mfi_put_ccb(ccb);
   1729 		scsipi_done(xs);
   1730 		splx(s);
   1731 		return;
   1732 	}
   1733 
   1734 	mfi_post(sc, ccb);
   1735 
   1736 	DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc),
   1737 	    ccb->ccb_dmamap->dm_nsegs);
   1738 
   1739 	splx(s);
   1740 	return;
   1741 
   1742 stuffup:
   1743 	mfi_put_ccb(ccb);
   1744 	xs->error = XS_DRIVER_STUFFUP;
   1745 	scsipi_done(xs);
   1746 	splx(s);
   1747 }
   1748 
   1749 static int
   1750 mfi_create_sgl(struct mfi_ccb *ccb, int flags)
   1751 {
   1752 	struct mfi_softc	*sc = ccb->ccb_sc;
   1753 	struct mfi_frame_header	*hdr;
   1754 	bus_dma_segment_t	*sgd;
   1755 	union mfi_sgl		*sgl;
   1756 	int			error, i;
   1757 
   1758 	DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %#lx\n", DEVNAME(sc),
   1759 	    (u_long)ccb->ccb_data);
   1760 
   1761 	if (!ccb->ccb_data)
   1762 		return 1;
   1763 
   1764 	KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
   1765 	error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
   1766 	    ccb->ccb_data, ccb->ccb_len, NULL, flags);
   1767 	if (error) {
   1768 		if (error == EFBIG) {
   1769 			aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
   1770 			    sc->sc_max_sgl);
   1771 		} else {
   1772 			aprint_error_dev(sc->sc_dev,
   1773 			    "error %d loading dma map\n", error);
   1774 		}
   1775 		return 1;
   1776 	}
   1777 
   1778 	hdr = &ccb->ccb_frame->mfr_header;
   1779 	sgl = ccb->ccb_sgl;
   1780 	sgd = ccb->ccb_dmamap->dm_segs;
   1781 	for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
   1782 		if (sc->sc_ioptype == MFI_IOP_TBOLT &&
   1783 		    (hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO ||
   1784 		     hdr->mfh_cmd == MFI_CMD_LD_READ ||
   1785 		     hdr->mfh_cmd == MFI_CMD_LD_WRITE)) {
   1786 			sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr);
   1787 			sgl->sg_ieee[i].len = htole32(sgd[i].ds_len);
   1788 			sgl->sg_ieee[i].flags = 0;
   1789 			DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
   1790 			    PRIx32 "\n",
   1791 			    DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
   1792 			hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
   1793 		} else if (sc->sc_64bit_dma) {
   1794 			sgl->sg64[i].addr = htole64(sgd[i].ds_addr);
   1795 			sgl->sg64[i].len = htole32(sgd[i].ds_len);
   1796 			DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
   1797 			    PRIx32 "\n",
   1798 			    DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
   1799 			hdr->mfh_flags |= MFI_FRAME_SGL64;
   1800 		} else {
   1801 			sgl->sg32[i].addr = htole32(sgd[i].ds_addr);
   1802 			sgl->sg32[i].len = htole32(sgd[i].ds_len);
   1803 			DNPRINTF(MFI_D_DMA, "%s: addr: %#x  len: %#x\n",
   1804 			    DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len);
   1805 			hdr->mfh_flags |= MFI_FRAME_SGL32;
   1806 		}
   1807 	}
   1808 
   1809 	if (ccb->ccb_direction == MFI_DATA_IN) {
   1810 		hdr->mfh_flags |= MFI_FRAME_DIR_READ;
   1811 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
   1812 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1813 	} else {
   1814 		hdr->mfh_flags |= MFI_FRAME_DIR_WRITE;
   1815 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
   1816 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1817 	}
   1818 
   1819 	hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs;
   1820 	ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs;
   1821 	ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE;
   1822 
   1823 	DNPRINTF(MFI_D_DMA, "%s: sg_count: %d  frame_size: %d  frames_size: %d"
   1824 	    "  dm_nsegs: %d  extra_frames: %d\n",
   1825 	    DEVNAME(sc),
   1826 	    hdr->mfh_sg_count,
   1827 	    ccb->ccb_frame_size,
   1828 	    sc->sc_frames_size,
   1829 	    ccb->ccb_dmamap->dm_nsegs,
   1830 	    ccb->ccb_extra_frames);
   1831 
   1832 	return 0;
   1833 }
   1834 
   1835 static int
   1836 mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir,
   1837     uint32_t len, void *buf, uint8_t *mbox, bool poll)
   1838 {
   1839 	struct mfi_ccb		*ccb;
   1840 	int			rv = 1;
   1841 
   1842 	if ((ccb = mfi_get_ccb(sc)) == NULL)
   1843 		return rv;
   1844 	rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox);
   1845 	if (rv)
   1846 		return rv;
   1847 
   1848 	if (poll) {
   1849 		rv = 1;
   1850 		if (mfi_poll(ccb))
   1851 			goto done;
   1852 	} else {
   1853 		mfi_post(sc, ccb);
   1854 
   1855 		DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n",
   1856 		    DEVNAME(sc));
   1857 		while (ccb->ccb_state != MFI_CCB_DONE)
   1858 			tsleep(ccb, PRIBIO, "mfi_mgmt", 0);
   1859 
   1860 		if (ccb->ccb_flags & MFI_CCB_F_ERR)
   1861 			goto done;
   1862 	}
   1863 	rv = 0;
   1864 
   1865 done:
   1866 	mfi_put_ccb(ccb);
   1867 	return rv;
   1868 }
   1869 
   1870 static int
   1871 mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
   1872     uint32_t opc, uint32_t dir, uint32_t len, void *buf, uint8_t *mbox)
   1873 {
   1874 	struct mfi_dcmd_frame	*dcmd;
   1875 
   1876 	DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc);
   1877 
   1878 	dcmd = &ccb->ccb_frame->mfr_dcmd;
   1879 	memset(dcmd->mdf_mbox.b, 0, MFI_MBOX_SIZE);
   1880 	dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD;
   1881 	dcmd->mdf_header.mfh_timeout = 0;
   1882 
   1883 	dcmd->mdf_opcode = opc;
   1884 	dcmd->mdf_header.mfh_data_len = 0;
   1885 	ccb->ccb_direction = dir;
   1886 	ccb->ccb_xs = xs;
   1887 	ccb->ccb_done = mfi_mgmt_done;
   1888 
   1889 	ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE;
   1890 
   1891 	/* handle special opcodes */
   1892 	if (mbox)
   1893 		memcpy(dcmd->mdf_mbox.b, mbox, MFI_MBOX_SIZE);
   1894 
   1895 	if (dir != MFI_DATA_NONE) {
   1896 		dcmd->mdf_header.mfh_data_len = len;
   1897 		ccb->ccb_data = buf;
   1898 		ccb->ccb_len = len;
   1899 		ccb->ccb_sgl = &dcmd->mdf_sgl;
   1900 
   1901 		if (mfi_create_sgl(ccb, BUS_DMA_WAITOK))
   1902 			return 1;
   1903 	}
   1904 	return 0;
   1905 }
   1906 
   1907 static void
   1908 mfi_mgmt_done(struct mfi_ccb *ccb)
   1909 {
   1910 	struct scsipi_xfer	*xs = ccb->ccb_xs;
   1911 	struct mfi_softc	*sc = ccb->ccb_sc;
   1912 	struct mfi_frame_header	*hdr = &ccb->ccb_frame->mfr_header;
   1913 
   1914 	DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n",
   1915 	    DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
   1916 
   1917 	if (ccb->ccb_data != NULL) {
   1918 		DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
   1919 		    DEVNAME(sc));
   1920 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
   1921 		    ccb->ccb_dmamap->dm_mapsize,
   1922 		    (ccb->ccb_direction & MFI_DATA_IN) ?
   1923 		    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
   1924 
   1925 		bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
   1926 	}
   1927 
   1928 	if (hdr->mfh_cmd_status != MFI_STAT_OK)
   1929 		ccb->ccb_flags |= MFI_CCB_F_ERR;
   1930 
   1931 	ccb->ccb_state = MFI_CCB_DONE;
   1932 	if (xs) {
   1933 		if (hdr->mfh_cmd_status != MFI_STAT_OK) {
   1934 			xs->error = XS_DRIVER_STUFFUP;
   1935 		} else {
   1936 			xs->error = XS_NOERROR;
   1937 			xs->status = SCSI_OK;
   1938 			xs->resid = 0;
   1939 		}
   1940 		mfi_put_ccb(ccb);
   1941 		scsipi_done(xs);
   1942 	} else
   1943 		wakeup(ccb);
   1944 }
   1945 
   1946 #if NBIO > 0
   1947 int
   1948 mfi_ioctl(device_t dev, u_long cmd, void *addr)
   1949 {
   1950 	struct mfi_softc *sc = device_private(dev);
   1951 	int error = 0;
   1952 	int s;
   1953 
   1954 	KERNEL_LOCK(1, curlwp);
   1955 	s = splbio();
   1956 
   1957 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc));
   1958 
   1959 	switch (cmd) {
   1960 	case BIOCINQ:
   1961 		DNPRINTF(MFI_D_IOCTL, "inq\n");
   1962 		error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr);
   1963 		break;
   1964 
   1965 	case BIOCVOL:
   1966 		DNPRINTF(MFI_D_IOCTL, "vol\n");
   1967 		error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr);
   1968 		break;
   1969 
   1970 	case BIOCDISK:
   1971 		DNPRINTF(MFI_D_IOCTL, "disk\n");
   1972 		error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr);
   1973 		break;
   1974 
   1975 	case BIOCALARM:
   1976 		DNPRINTF(MFI_D_IOCTL, "alarm\n");
   1977 		error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr);
   1978 		break;
   1979 
   1980 	case BIOCBLINK:
   1981 		DNPRINTF(MFI_D_IOCTL, "blink\n");
   1982 		error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr);
   1983 		break;
   1984 
   1985 	case BIOCSETSTATE:
   1986 		DNPRINTF(MFI_D_IOCTL, "setstate\n");
   1987 		error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr);
   1988 		break;
   1989 
   1990 	default:
   1991 		DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n");
   1992 		error = EINVAL;
   1993 	}
   1994 	splx(s);
   1995 	KERNEL_UNLOCK_ONE(curlwp);
   1996 
   1997 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error);
   1998 	return error;
   1999 }
   2000 
   2001 static int
   2002 mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi)
   2003 {
   2004 	struct mfi_conf		*cfg;
   2005 	int			rv = EINVAL;
   2006 
   2007 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc));
   2008 
   2009 	if (mfi_get_info(sc)) {
   2010 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n",
   2011 		    DEVNAME(sc));
   2012 		return EIO;
   2013 	}
   2014 
   2015 	/* get figures */
   2016 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
   2017 	if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
   2018 	    sizeof *cfg, cfg, NULL, false))
   2019 		goto freeme;
   2020 
   2021 	strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
   2022 	bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs;
   2023 	bi->bi_nodisk = sc->sc_info.mci_pd_disks_present;
   2024 
   2025 	rv = 0;
   2026 freeme:
   2027 	free(cfg, M_DEVBUF);
   2028 	return rv;
   2029 }
   2030 
   2031 static int
   2032 mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv)
   2033 {
   2034 	int			i, per, rv = EINVAL;
   2035 	uint8_t			mbox[MFI_MBOX_SIZE];
   2036 
   2037 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n",
   2038 	    DEVNAME(sc), bv->bv_volid);
   2039 
   2040 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
   2041 	    sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false))
   2042 		goto done;
   2043 
   2044 	i = bv->bv_volid;
   2045 	mbox[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target;
   2046 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n",
   2047 	    DEVNAME(sc), mbox[0]);
   2048 
   2049 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN,
   2050 	    sizeof(sc->sc_ld_details), &sc->sc_ld_details, mbox, false))
   2051 		goto done;
   2052 
   2053 	if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) {
   2054 		/* go do hotspares */
   2055 		rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv);
   2056 		goto done;
   2057 	}
   2058 
   2059 	strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev));
   2060 
   2061 	switch(sc->sc_ld_list.mll_list[i].mll_state) {
   2062 	case MFI_LD_OFFLINE:
   2063 		bv->bv_status = BIOC_SVOFFLINE;
   2064 		break;
   2065 
   2066 	case MFI_LD_PART_DEGRADED:
   2067 	case MFI_LD_DEGRADED:
   2068 		bv->bv_status = BIOC_SVDEGRADED;
   2069 		break;
   2070 
   2071 	case MFI_LD_ONLINE:
   2072 		bv->bv_status = BIOC_SVONLINE;
   2073 		break;
   2074 
   2075 	default:
   2076 		bv->bv_status = BIOC_SVINVALID;
   2077 		DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n",
   2078 		    DEVNAME(sc),
   2079 		    sc->sc_ld_list.mll_list[i].mll_state);
   2080 	}
   2081 
   2082 	/* additional status can modify MFI status */
   2083 	switch (sc->sc_ld_details.mld_progress.mlp_in_prog) {
   2084 	case MFI_LD_PROG_CC:
   2085 	case MFI_LD_PROG_BGI:
   2086 		bv->bv_status = BIOC_SVSCRUB;
   2087 		per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress;
   2088 		bv->bv_percent = (per * 100) / 0xffff;
   2089 		bv->bv_seconds =
   2090 		    sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds;
   2091 		break;
   2092 
   2093 	case MFI_LD_PROG_FGI:
   2094 	case MFI_LD_PROG_RECONSTRUCT:
   2095 		/* nothing yet */
   2096 		break;
   2097 	}
   2098 
   2099 	/*
   2100 	 * The RAID levels are determined per the SNIA DDF spec, this is only
   2101 	 * a subset that is valid for the MFI contrller.
   2102 	 */
   2103 	bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid;
   2104 	if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid ==
   2105 	    MFI_DDF_SRL_SPANNED)
   2106 		bv->bv_level *= 10;
   2107 
   2108 	bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span *
   2109 	    sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth;
   2110 
   2111 	bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */
   2112 
   2113 	rv = 0;
   2114 done:
   2115 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n",
   2116 	    DEVNAME(sc), rv);
   2117 	return rv;
   2118 }
   2119 
   2120 static int
   2121 mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd)
   2122 {
   2123 	struct mfi_conf		*cfg;
   2124 	struct mfi_array	*ar;
   2125 	struct mfi_ld_cfg	*ld;
   2126 	struct mfi_pd_details	*pd;
   2127 	struct scsipi_inquiry_data *inqbuf;
   2128 	char			vend[8+16+4+1];
   2129 	int			i, rv = EINVAL;
   2130 	int			arr, vol, disk;
   2131 	uint32_t		size;
   2132 	uint8_t			mbox[MFI_MBOX_SIZE];
   2133 
   2134 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n",
   2135 	    DEVNAME(sc), bd->bd_diskid);
   2136 
   2137 	pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
   2138 
   2139 	/* send single element command to retrieve size for full structure */
   2140 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
   2141 	if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
   2142 	    sizeof *cfg, cfg, NULL, false))
   2143 		goto freeme;
   2144 
   2145 	size = cfg->mfc_size;
   2146 	free(cfg, M_DEVBUF);
   2147 
   2148 	/* memory for read config */
   2149 	cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
   2150 	if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
   2151 	    size, cfg, NULL, false))
   2152 		goto freeme;
   2153 
   2154 	ar = cfg->mfc_array;
   2155 
   2156 	/* calculate offset to ld structure */
   2157 	ld = (struct mfi_ld_cfg *)(
   2158 	    ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
   2159 	    cfg->mfc_array_size * cfg->mfc_no_array);
   2160 
   2161 	vol = bd->bd_volid;
   2162 
   2163 	if (vol >= cfg->mfc_no_ld) {
   2164 		/* do hotspares */
   2165 		rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd);
   2166 		goto freeme;
   2167 	}
   2168 
   2169 	/* find corresponding array for ld */
   2170 	for (i = 0, arr = 0; i < vol; i++)
   2171 		arr += ld[i].mlc_parm.mpa_span_depth;
   2172 
   2173 	/* offset disk into pd list */
   2174 	disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span;
   2175 
   2176 	/* offset array index into the next spans */
   2177 	arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span;
   2178 
   2179 	bd->bd_target = ar[arr].pd[disk].mar_enc_slot;
   2180 	switch (ar[arr].pd[disk].mar_pd_state){
   2181 	case MFI_PD_UNCONFIG_GOOD:
   2182 		bd->bd_status = BIOC_SDUNUSED;
   2183 		break;
   2184 
   2185 	case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */
   2186 		bd->bd_status = BIOC_SDHOTSPARE;
   2187 		break;
   2188 
   2189 	case MFI_PD_OFFLINE:
   2190 		bd->bd_status = BIOC_SDOFFLINE;
   2191 		break;
   2192 
   2193 	case MFI_PD_FAILED:
   2194 		bd->bd_status = BIOC_SDFAILED;
   2195 		break;
   2196 
   2197 	case MFI_PD_REBUILD:
   2198 		bd->bd_status = BIOC_SDREBUILD;
   2199 		break;
   2200 
   2201 	case MFI_PD_ONLINE:
   2202 		bd->bd_status = BIOC_SDONLINE;
   2203 		break;
   2204 
   2205 	case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */
   2206 	default:
   2207 		bd->bd_status = BIOC_SDINVALID;
   2208 		break;
   2209 
   2210 	}
   2211 
   2212 	/* get the remaining fields */
   2213 	*((uint16_t *)&mbox) = ar[arr].pd[disk].mar_pd.mfp_id;
   2214 	memset(pd, 0, sizeof(*pd));
   2215 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
   2216 	    sizeof *pd, pd, mbox, false))
   2217 		goto freeme;
   2218 
   2219 	bd->bd_size = pd->mpd_size * 512; /* bytes per block */
   2220 
   2221 	/* if pd->mpd_enc_idx is 0 then it is not in an enclosure */
   2222 	bd->bd_channel = pd->mpd_enc_idx;
   2223 
   2224 	inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
   2225 	memcpy(vend, inqbuf->vendor, sizeof vend - 1);
   2226 	vend[sizeof vend - 1] = '\0';
   2227 	strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
   2228 
   2229 	/* XXX find a way to retrieve serial nr from drive */
   2230 	/* XXX find a way to get bd_procdev */
   2231 
   2232 	rv = 0;
   2233 freeme:
   2234 	free(pd, M_DEVBUF);
   2235 	free(cfg, M_DEVBUF);
   2236 
   2237 	return rv;
   2238 }
   2239 
   2240 static int
   2241 mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba)
   2242 {
   2243 	uint32_t		opc, dir = MFI_DATA_NONE;
   2244 	int			rv = 0;
   2245 	int8_t			ret;
   2246 
   2247 	switch(ba->ba_opcode) {
   2248 	case BIOC_SADISABLE:
   2249 		opc = MR_DCMD_SPEAKER_DISABLE;
   2250 		break;
   2251 
   2252 	case BIOC_SAENABLE:
   2253 		opc = MR_DCMD_SPEAKER_ENABLE;
   2254 		break;
   2255 
   2256 	case BIOC_SASILENCE:
   2257 		opc = MR_DCMD_SPEAKER_SILENCE;
   2258 		break;
   2259 
   2260 	case BIOC_GASTATUS:
   2261 		opc = MR_DCMD_SPEAKER_GET;
   2262 		dir = MFI_DATA_IN;
   2263 		break;
   2264 
   2265 	case BIOC_SATEST:
   2266 		opc = MR_DCMD_SPEAKER_TEST;
   2267 		break;
   2268 
   2269 	default:
   2270 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid "
   2271 		    "opcode %x\n", DEVNAME(sc), ba->ba_opcode);
   2272 		return EINVAL;
   2273 	}
   2274 
   2275 	if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false))
   2276 		rv = EINVAL;
   2277 	else
   2278 		if (ba->ba_opcode == BIOC_GASTATUS)
   2279 			ba->ba_status = ret;
   2280 		else
   2281 			ba->ba_status = 0;
   2282 
   2283 	return rv;
   2284 }
   2285 
   2286 static int
   2287 mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb)
   2288 {
   2289 	int			i, found, rv = EINVAL;
   2290 	uint8_t			mbox[MFI_MBOX_SIZE];
   2291 	uint32_t		cmd;
   2292 	struct mfi_pd_list	*pd;
   2293 
   2294 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc),
   2295 	    bb->bb_status);
   2296 
   2297 	/* channel 0 means not in an enclosure so can't be blinked */
   2298 	if (bb->bb_channel == 0)
   2299 		return EINVAL;
   2300 
   2301 	pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
   2302 
   2303 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
   2304 	    MFI_PD_LIST_SIZE, pd, NULL, false))
   2305 		goto done;
   2306 
   2307 	for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
   2308 		if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index &&
   2309 		    bb->bb_target == pd->mpl_address[i].mpa_enc_slot) {
   2310 		    	found = 1;
   2311 			break;
   2312 		}
   2313 
   2314 	if (!found)
   2315 		goto done;
   2316 
   2317 	memset(mbox, 0, sizeof mbox);
   2318 
   2319 	*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
   2320 
   2321 	switch (bb->bb_status) {
   2322 	case BIOC_SBUNBLINK:
   2323 		cmd = MR_DCMD_PD_UNBLINK;
   2324 		break;
   2325 
   2326 	case BIOC_SBBLINK:
   2327 		cmd = MR_DCMD_PD_BLINK;
   2328 		break;
   2329 
   2330 	case BIOC_SBALARM:
   2331 	default:
   2332 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid "
   2333 		    "opcode %x\n", DEVNAME(sc), bb->bb_status);
   2334 		goto done;
   2335 	}
   2336 
   2337 
   2338 	if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, mbox, false))
   2339 		goto done;
   2340 
   2341 	rv = 0;
   2342 done:
   2343 	free(pd, M_DEVBUF);
   2344 	return rv;
   2345 }
   2346 
   2347 static int
   2348 mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs)
   2349 {
   2350 	struct mfi_pd_list	*pd;
   2351 	int			i, found, rv = EINVAL;
   2352 	uint8_t			mbox[MFI_MBOX_SIZE];
   2353 
   2354 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc),
   2355 	    bs->bs_status);
   2356 
   2357 	pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
   2358 
   2359 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
   2360 	    MFI_PD_LIST_SIZE, pd, NULL, false))
   2361 		goto done;
   2362 
   2363 	for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
   2364 		if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index &&
   2365 		    bs->bs_target == pd->mpl_address[i].mpa_enc_slot) {
   2366 		    	found = 1;
   2367 			break;
   2368 		}
   2369 
   2370 	if (!found)
   2371 		goto done;
   2372 
   2373 	memset(mbox, 0, sizeof mbox);
   2374 
   2375 	*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
   2376 
   2377 	switch (bs->bs_status) {
   2378 	case BIOC_SSONLINE:
   2379 		mbox[2] = MFI_PD_ONLINE;
   2380 		break;
   2381 
   2382 	case BIOC_SSOFFLINE:
   2383 		mbox[2] = MFI_PD_OFFLINE;
   2384 		break;
   2385 
   2386 	case BIOC_SSHOTSPARE:
   2387 		mbox[2] = MFI_PD_HOTSPARE;
   2388 		break;
   2389 /*
   2390 	case BIOC_SSREBUILD:
   2391 		break;
   2392 */
   2393 	default:
   2394 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid "
   2395 		    "opcode %x\n", DEVNAME(sc), bs->bs_status);
   2396 		goto done;
   2397 	}
   2398 
   2399 
   2400 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_SET_STATE, MFI_DATA_NONE,
   2401 	    0, NULL, mbox, false))
   2402 		goto done;
   2403 
   2404 	rv = 0;
   2405 done:
   2406 	free(pd, M_DEVBUF);
   2407 	return rv;
   2408 }
   2409 
   2410 static int
   2411 mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs)
   2412 {
   2413 	struct mfi_conf		*cfg;
   2414 	struct mfi_hotspare	*hs;
   2415 	struct mfi_pd_details	*pd;
   2416 	struct bioc_disk	*sdhs;
   2417 	struct bioc_vol		*vdhs;
   2418 	struct scsipi_inquiry_data *inqbuf;
   2419 	char			vend[8+16+4+1];
   2420 	int			i, rv = EINVAL;
   2421 	uint32_t		size;
   2422 	uint8_t			mbox[MFI_MBOX_SIZE];
   2423 
   2424 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid);
   2425 
   2426 	if (!bio_hs)
   2427 		return EINVAL;
   2428 
   2429 	pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
   2430 
   2431 	/* send single element command to retrieve size for full structure */
   2432 	cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
   2433 	if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
   2434 	    sizeof *cfg, cfg, NULL, false))
   2435 		goto freeme;
   2436 
   2437 	size = cfg->mfc_size;
   2438 	free(cfg, M_DEVBUF);
   2439 
   2440 	/* memory for read config */
   2441 	cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
   2442 	if (mfi_mgmt_internal(sc, MR_DCMD_CONF_GET, MFI_DATA_IN,
   2443 	    size, cfg, NULL, false))
   2444 		goto freeme;
   2445 
   2446 	/* calculate offset to hs structure */
   2447 	hs = (struct mfi_hotspare *)(
   2448 	    ((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
   2449 	    cfg->mfc_array_size * cfg->mfc_no_array +
   2450 	    cfg->mfc_ld_size * cfg->mfc_no_ld);
   2451 
   2452 	if (volid < cfg->mfc_no_ld)
   2453 		goto freeme; /* not a hotspare */
   2454 
   2455 	if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs))
   2456 		goto freeme; /* not a hotspare */
   2457 
   2458 	/* offset into hotspare structure */
   2459 	i = volid - cfg->mfc_no_ld;
   2460 
   2461 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d "
   2462 	    "hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld,
   2463 	    cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id);
   2464 
   2465 	/* get pd fields */
   2466 	memset(mbox, 0, sizeof mbox);
   2467 	*((uint16_t *)&mbox) = hs[i].mhs_pd.mfp_id;
   2468 	if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
   2469 	    sizeof *pd, pd, mbox, false)) {
   2470 		DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n",
   2471 		    DEVNAME(sc));
   2472 		goto freeme;
   2473 	}
   2474 
   2475 	switch (type) {
   2476 	case MFI_MGMT_VD:
   2477 		vdhs = bio_hs;
   2478 		vdhs->bv_status = BIOC_SVONLINE;
   2479 		vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */
   2480 		vdhs->bv_level = -1; /* hotspare */
   2481 		vdhs->bv_nodisk = 1;
   2482 		break;
   2483 
   2484 	case MFI_MGMT_SD:
   2485 		sdhs = bio_hs;
   2486 		sdhs->bd_status = BIOC_SDHOTSPARE;
   2487 		sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */
   2488 		sdhs->bd_channel = pd->mpd_enc_idx;
   2489 		sdhs->bd_target = pd->mpd_enc_slot;
   2490 		inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
   2491 		memcpy(vend, inqbuf->vendor, sizeof(vend) - 1);
   2492 		vend[sizeof vend - 1] = '\0';
   2493 		strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor));
   2494 		break;
   2495 
   2496 	default:
   2497 		goto freeme;
   2498 	}
   2499 
   2500 	DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc));
   2501 	rv = 0;
   2502 freeme:
   2503 	free(pd, M_DEVBUF);
   2504 	free(cfg, M_DEVBUF);
   2505 
   2506 	return rv;
   2507 }
   2508 
   2509 static int
   2510 mfi_destroy_sensors(struct mfi_softc *sc)
   2511 {
   2512 	if (sc->sc_sme == NULL)
   2513 		return 0;
   2514 	sysmon_envsys_unregister(sc->sc_sme);
   2515 	sc->sc_sme = NULL;
   2516 	free(sc->sc_sensor, M_DEVBUF);
   2517 	return 0;
   2518 }
   2519 
   2520 static int
   2521 mfi_create_sensors(struct mfi_softc *sc)
   2522 {
   2523 	int i;
   2524 	int nsensors = sc->sc_ld_cnt + 1;
   2525 	int rv;
   2526 
   2527 	sc->sc_sme = sysmon_envsys_create();
   2528 	sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
   2529 	    M_DEVBUF, M_WAITOK | M_ZERO);
   2530 
   2531 	/* BBU */
   2532 	sc->sc_sensor[0].units = ENVSYS_INDICATOR;
   2533 	sc->sc_sensor[0].state = ENVSYS_SINVALID;
   2534 	sc->sc_sensor[0].value_cur = 0;
   2535 	/* Enable monitoring for BBU state changes, if present */
   2536 	if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU)
   2537 		sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
   2538 	snprintf(sc->sc_sensor[0].desc,
   2539 	    sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc));
   2540 	if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0]))
   2541 		goto out;
   2542 
   2543 	for (i = 1; i < nsensors; i++) {
   2544 		sc->sc_sensor[i].units = ENVSYS_DRIVE;
   2545 		sc->sc_sensor[i].state = ENVSYS_SINVALID;
   2546 		sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
   2547 		/* Enable monitoring for drive state changes */
   2548 		sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
   2549 		/* logical drives */
   2550 		snprintf(sc->sc_sensor[i].desc,
   2551 		    sizeof(sc->sc_sensor[i].desc), "%s:%d",
   2552 		    DEVNAME(sc), i - 1);
   2553 		if (sysmon_envsys_sensor_attach(sc->sc_sme,
   2554 						&sc->sc_sensor[i]))
   2555 			goto out;
   2556 	}
   2557 
   2558 	sc->sc_sme->sme_name = DEVNAME(sc);
   2559 	sc->sc_sme->sme_cookie = sc;
   2560 	sc->sc_sme->sme_refresh = mfi_sensor_refresh;
   2561 	rv = sysmon_envsys_register(sc->sc_sme);
   2562 	if (rv != 0) {
   2563 		aprint_error_dev(sc->sc_dev,
   2564 		    "unable to register with sysmon (rv = %d)\n", rv);
   2565 		goto out;
   2566 	}
   2567 	return 0;
   2568 
   2569 out:
   2570 	free(sc->sc_sensor, M_DEVBUF);
   2571 	sysmon_envsys_destroy(sc->sc_sme);
   2572 	sc->sc_sme = NULL;
   2573 	return EINVAL;
   2574 }
   2575 
   2576 static void
   2577 mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
   2578 {
   2579 	struct mfi_softc	*sc = sme->sme_cookie;
   2580 	struct bioc_vol		bv;
   2581 	int s;
   2582 	int error;
   2583 
   2584 	if (edata->sensor >= sc->sc_ld_cnt + 1)
   2585 		return;
   2586 
   2587 	if (edata->sensor == 0) {
   2588 		/* BBU */
   2589 		struct mfi_bbu_status	bbu_stat;
   2590 		int bbu_status;
   2591 		if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0)
   2592 			return;
   2593 
   2594 		KERNEL_LOCK(1, curlwp);
   2595 		s = splbio();
   2596 		bbu_status = mfi_get_bbu(sc, &bbu_stat);
   2597 		splx(s);
   2598 		KERNEL_UNLOCK_ONE(curlwp);
   2599 		switch(bbu_status) {
   2600 		case MFI_BBU_GOOD:
   2601 			edata->value_cur = 1;
   2602 			edata->state = ENVSYS_SVALID;
   2603 			if (!sc->sc_bbuok)
   2604 				aprint_normal_dev(sc->sc_dev,
   2605 				    "BBU state changed to good\n");
   2606 			sc->sc_bbuok = true;
   2607 			break;
   2608 		case MFI_BBU_BAD:
   2609 			edata->value_cur = 0;
   2610 			edata->state = ENVSYS_SCRITICAL;
   2611 			if (sc->sc_bbuok)
   2612 				aprint_normal_dev(sc->sc_dev,
   2613 				    "BBU state changed to bad\n");
   2614 			sc->sc_bbuok = false;
   2615 			break;
   2616 		case MFI_BBU_UNKNOWN:
   2617 		default:
   2618 			edata->value_cur = 0;
   2619 			edata->state = ENVSYS_SINVALID;
   2620 			sc->sc_bbuok = false;
   2621 			break;
   2622 		}
   2623 		return;
   2624 	}
   2625 
   2626 	memset(&bv, 0, sizeof(bv));
   2627 	bv.bv_volid = edata->sensor - 1;
   2628 	KERNEL_LOCK(1, curlwp);
   2629 	s = splbio();
   2630 	error = mfi_ioctl_vol(sc, &bv);
   2631 	splx(s);
   2632 	KERNEL_UNLOCK_ONE(curlwp);
   2633 	if (error)
   2634 		bv.bv_status = BIOC_SVINVALID;
   2635 
   2636 	bio_vol_to_envsys(edata, &bv);
   2637 }
   2638 
   2639 #endif /* NBIO > 0 */
   2640 
   2641 static uint32_t
   2642 mfi_xscale_fw_state(struct mfi_softc *sc)
   2643 {
   2644 	return mfi_read(sc, MFI_OMSG0);
   2645 }
   2646 
   2647 static void
   2648 mfi_xscale_intr_dis(struct mfi_softc *sc)
   2649 {
   2650 	mfi_write(sc, MFI_OMSK, 0);
   2651 }
   2652 
   2653 static void
   2654 mfi_xscale_intr_ena(struct mfi_softc *sc)
   2655 {
   2656 	mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR);
   2657 }
   2658 
   2659 static int
   2660 mfi_xscale_intr(struct mfi_softc *sc)
   2661 {
   2662 	uint32_t status;
   2663 
   2664 	status = mfi_read(sc, MFI_OSTS);
   2665 	if (!ISSET(status, MFI_OSTS_INTR_VALID))
   2666 		return 0;
   2667 
   2668 	/* write status back to acknowledge interrupt */
   2669 	mfi_write(sc, MFI_OSTS, status);
   2670 	return 1;
   2671 }
   2672 
   2673 static void
   2674 mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
   2675 {
   2676 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
   2677 	    ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
   2678 	    sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2679 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
   2680 	    ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
   2681 	    MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD);
   2682 
   2683 	mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) |
   2684 	    ccb->ccb_extra_frames);
   2685 	ccb->ccb_state = MFI_CCB_RUNNING;
   2686 }
   2687 
   2688 static uint32_t
   2689 mfi_ppc_fw_state(struct mfi_softc *sc)
   2690 {
   2691 	return mfi_read(sc, MFI_OSP);
   2692 }
   2693 
   2694 static void
   2695 mfi_ppc_intr_dis(struct mfi_softc *sc)
   2696 {
   2697 	/* Taking a wild guess --dyoung */
   2698 	mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0);
   2699 	mfi_write(sc, MFI_ODC, 0xffffffff);
   2700 }
   2701 
   2702 static void
   2703 mfi_ppc_intr_ena(struct mfi_softc *sc)
   2704 {
   2705 	mfi_write(sc, MFI_ODC, 0xffffffff);
   2706 	mfi_write(sc, MFI_OMSK, ~0x80000004);
   2707 }
   2708 
   2709 static int
   2710 mfi_ppc_intr(struct mfi_softc *sc)
   2711 {
   2712 	uint32_t status;
   2713 
   2714 	status = mfi_read(sc, MFI_OSTS);
   2715 	if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID))
   2716 		return 0;
   2717 
   2718 	/* write status back to acknowledge interrupt */
   2719 	mfi_write(sc, MFI_ODC, status);
   2720 	return 1;
   2721 }
   2722 
   2723 static void
   2724 mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
   2725 {
   2726 	mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
   2727 	    (ccb->ccb_extra_frames << 1));
   2728 	ccb->ccb_state = MFI_CCB_RUNNING;
   2729 }
   2730 
   2731 u_int32_t
   2732 mfi_gen2_fw_state(struct mfi_softc *sc)
   2733 {
   2734 	return (mfi_read(sc, MFI_OSP));
   2735 }
   2736 
   2737 void
   2738 mfi_gen2_intr_dis(struct mfi_softc *sc)
   2739 {
   2740 	mfi_write(sc, MFI_OMSK, 0xffffffff);
   2741 	mfi_write(sc, MFI_ODC, 0xffffffff);
   2742 }
   2743 
   2744 void
   2745 mfi_gen2_intr_ena(struct mfi_softc *sc)
   2746 {
   2747 	mfi_write(sc, MFI_ODC, 0xffffffff);
   2748 	mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID);
   2749 }
   2750 
   2751 int
   2752 mfi_gen2_intr(struct mfi_softc *sc)
   2753 {
   2754 	u_int32_t status;
   2755 
   2756 	status = mfi_read(sc, MFI_OSTS);
   2757 	if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID))
   2758 		return (0);
   2759 
   2760 	/* write status back to acknowledge interrupt */
   2761 	mfi_write(sc, MFI_ODC, status);
   2762 
   2763 	return (1);
   2764 }
   2765 
   2766 void
   2767 mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
   2768 {
   2769 	mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
   2770 	    (ccb->ccb_extra_frames << 1));
   2771 	ccb->ccb_state = MFI_CCB_RUNNING;
   2772 }
   2773 
   2774 u_int32_t
   2775 mfi_skinny_fw_state(struct mfi_softc *sc)
   2776 {
   2777 	return (mfi_read(sc, MFI_OSP));
   2778 }
   2779 
   2780 void
   2781 mfi_skinny_intr_dis(struct mfi_softc *sc)
   2782 {
   2783 	mfi_write(sc, MFI_OMSK, 0);
   2784 }
   2785 
   2786 void
   2787 mfi_skinny_intr_ena(struct mfi_softc *sc)
   2788 {
   2789 	mfi_write(sc, MFI_OMSK, ~0x00000001);
   2790 }
   2791 
   2792 int
   2793 mfi_skinny_intr(struct mfi_softc *sc)
   2794 {
   2795 	u_int32_t status;
   2796 
   2797 	status = mfi_read(sc, MFI_OSTS);
   2798 	if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID))
   2799 		return (0);
   2800 
   2801 	/* write status back to acknowledge interrupt */
   2802 	mfi_write(sc, MFI_OSTS, status);
   2803 
   2804 	return (1);
   2805 }
   2806 
   2807 void
   2808 mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
   2809 {
   2810 	mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe |
   2811 	    (ccb->ccb_extra_frames << 1));
   2812 	mfi_write(sc, MFI_IQPH, 0x00000000);
   2813 	ccb->ccb_state = MFI_CCB_RUNNING;
   2814 }
   2815 
   2816 #define MFI_FUSION_ENABLE_INTERRUPT_MASK	(0x00000008)
   2817 
   2818 void
   2819 mfi_tbolt_intr_ena(struct mfi_softc *sc)
   2820 {
   2821 	mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK);
   2822 	mfi_read(sc, MFI_OMSK);
   2823 }
   2824 
   2825 void
   2826 mfi_tbolt_intr_dis(struct mfi_softc *sc)
   2827 {
   2828 	mfi_write(sc, MFI_OMSK, 0xFFFFFFFF);
   2829 	mfi_read(sc, MFI_OMSK);
   2830 }
   2831 
   2832 int
   2833 mfi_tbolt_intr(struct mfi_softc *sc)
   2834 {
   2835 	int32_t status;
   2836 
   2837 	status = mfi_read(sc, MFI_OSTS);
   2838 
   2839 	if (ISSET(status, 0x1)) {
   2840 		mfi_write(sc, MFI_OSTS, status);
   2841 		mfi_read(sc, MFI_OSTS);
   2842 		if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT))
   2843 			return 0;
   2844 		return 1;
   2845 	}
   2846 	if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK))
   2847 		return 0;
   2848 	mfi_read(sc, MFI_OSTS);
   2849 	return 1;
   2850 }
   2851 
   2852 u_int32_t
   2853 mfi_tbolt_fw_state(struct mfi_softc *sc)
   2854 {
   2855 	return mfi_read(sc, MFI_OSP);
   2856 }
   2857 
   2858 void
   2859 mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
   2860 {
   2861 	if (sc->sc_MFA_enabled) {
   2862 		if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0)
   2863 			mfi_tbolt_build_mpt_ccb(ccb);
   2864 		mfi_write(sc, MFI_IQPL,
   2865 		    ccb->ccb_tb_request_desc.words & 0xFFFFFFFF);
   2866 		mfi_write(sc, MFI_IQPH,
   2867 		    ccb->ccb_tb_request_desc.words >> 32);
   2868 		ccb->ccb_state = MFI_CCB_RUNNING;
   2869 		return;
   2870 	}
   2871 	uint64_t bus_add = ccb->ccb_pframe;
   2872 	bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA
   2873 	    << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
   2874 	mfi_write(sc, MFI_IQPL, bus_add);
   2875 	mfi_write(sc, MFI_IQPH, bus_add >> 32);
   2876 	ccb->ccb_state = MFI_CCB_RUNNING;
   2877 }
   2878 
   2879 static void
   2880 mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb)
   2881 {
   2882 	union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc;
   2883 	struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
   2884 	struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain;
   2885 
   2886 	io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
   2887 	io_req->SGLOffset0 =
   2888 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
   2889 	io_req->ChainOffset =
   2890 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16;
   2891 
   2892 	mpi25_ieee_chain =
   2893 	    (struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain;
   2894 	mpi25_ieee_chain->Address = ccb->ccb_pframe;
   2895 
   2896 	/*
   2897 	  In MFI pass thru, nextChainOffset will always be zero to
   2898 	  indicate the end of the chain.
   2899 	*/
   2900 	mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
   2901 		| MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
   2902 
   2903 	/* setting the length to the maximum length */
   2904 	mpi25_ieee_chain->Length = 1024;
   2905 
   2906 	req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
   2907 	    MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
   2908 	ccb->ccb_flags |= MFI_CCB_F_TBOLT;
   2909 	bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
   2910 	    MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
   2911 	    ccb->ccb_tb_pio_request -
   2912 	     MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
   2913 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
   2914 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2915 }
   2916 
   2917 /*
   2918  * Description:
   2919  *      This function will prepare message pools for the Thunderbolt controller
   2920  */
   2921 static int
   2922 mfi_tbolt_init_desc_pool(struct mfi_softc *sc)
   2923 {
   2924 	uint32_t     offset = 0;
   2925 	uint8_t      *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
   2926 
   2927 	/* Request Decriptors alignment restrictions */
   2928 	KASSERT(((uintptr_t)addr & 0xFF) == 0);
   2929 
   2930 	/* Skip request message pool */
   2931 	addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)];
   2932 
   2933 	/* Reply Frame Pool is initialized */
   2934 	sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr;
   2935 	KASSERT(((uintptr_t)addr & 0xFF) == 0);
   2936 
   2937 	offset = (uintptr_t)sc->sc_reply_frame_pool
   2938 	    - (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
   2939 	sc->sc_reply_frame_busaddr =
   2940 	    MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset;
   2941 
   2942 	/* initializing reply address to 0xFFFFFFFF */
   2943 	memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF,
   2944 	       (MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size));
   2945 
   2946 	/* Skip Reply Frame Pool */
   2947 	addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
   2948 	sc->sc_reply_pool_limit = (void *)addr;
   2949 
   2950 	offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
   2951 	sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset;
   2952 
   2953 	/* initialize the last_reply_idx to 0 */
   2954 	sc->sc_last_reply_idx = 0;
   2955 	offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME *
   2956 	    sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
   2957 	KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size);
   2958 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0,
   2959 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize,
   2960 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2961 	return 0;
   2962 }
   2963 
   2964 /*
   2965  * This routine prepare and issue INIT2 frame to the Firmware
   2966  */
   2967 
   2968 static int
   2969 mfi_tbolt_init_MFI_queue(struct mfi_softc *sc)
   2970 {
   2971 	struct mpi2_ioc_init_request   *mpi2IocInit;
   2972 	struct mfi_init_frame		*mfi_init;
   2973 	struct mfi_ccb			*ccb;
   2974 	bus_addr_t			phyAddress;
   2975 	mfi_address			*mfiAddressTemp;
   2976 	int				s;
   2977 	char				*verbuf;
   2978 	char				wqbuf[10];
   2979 
   2980 	/* Check if initialization is already completed */
   2981 	if (sc->sc_MFA_enabled) {
   2982 		return 1;
   2983 	}
   2984 
   2985 	mpi2IocInit =
   2986 	    (struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init);
   2987 
   2988 	s = splbio();
   2989 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
   2990 		splx(s);
   2991 		return (EBUSY);
   2992 	}
   2993 
   2994 
   2995 	mfi_init = &ccb->ccb_frame->mfr_init;
   2996 
   2997 	memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request));
   2998 	mpi2IocInit->Function  = MPI2_FUNCTION_IOC_INIT;
   2999 	mpi2IocInit->WhoInit   = MPI2_WHOINIT_HOST_DRIVER;
   3000 
   3001 	/* set MsgVersion and HeaderVersion host driver was built with */
   3002 	mpi2IocInit->MsgVersion = MPI2_VERSION;
   3003 	mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION;
   3004 	mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4;
   3005 	mpi2IocInit->ReplyDescriptorPostQueueDepth =
   3006 	    (uint16_t)sc->sc_reply_pool_size;
   3007 	mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */
   3008 
   3009 	/* Get physical address of reply frame pool */
   3010 	phyAddress = sc->sc_reply_frame_busaddr;
   3011 	mfiAddressTemp =
   3012 	    (mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress;
   3013 	mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
   3014 	mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
   3015 
   3016 	/* Get physical address of request message pool */
   3017 	phyAddress =  MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
   3018 	mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress;
   3019 	mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
   3020 	mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
   3021 
   3022 	mpi2IocInit->ReplyFreeQueueAddress =  0; /* Not supported by MR. */
   3023 	mpi2IocInit->TimeStamp = time_uptime;
   3024 
   3025 	verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf);
   3026 	snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n",
   3027                 MEGASAS_VERSION);
   3028 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
   3029 	    MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3030 	mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf));
   3031 	mfi_init->driver_ver_hi =
   3032 		    htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32);
   3033 
   3034 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
   3035 	    MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
   3036 	    BUS_DMASYNC_PREWRITE);
   3037 	/* Get the physical address of the mpi2 ioc init command */
   3038 	phyAddress =  MFIMEM_DVA(sc->sc_tbolt_ioc_init);
   3039 	mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress);
   3040 	mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32);
   3041 
   3042 	mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT;
   3043 	mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request);
   3044 	if (mfi_poll(ccb) != 0) {
   3045 		aprint_error_dev(sc->sc_dev, "failed to send IOC init2 "
   3046 		    "command at 0x%" PRIx64 "\n",
   3047 		    (uint64_t)ccb->ccb_pframe);
   3048 		splx(s);
   3049 		return 1;
   3050 	}
   3051 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
   3052 	    MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3053 	bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
   3054 	    MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
   3055 	    BUS_DMASYNC_POSTWRITE);
   3056 	mfi_put_ccb(ccb);
   3057 	splx(s);
   3058 
   3059 	if (mfi_init->mif_header.mfh_cmd_status == 0) {
   3060 		sc->sc_MFA_enabled = 1;
   3061 	}
   3062 	else {
   3063 		aprint_error_dev(sc->sc_dev, "Init command Failed %x\n",
   3064 		    mfi_init->mif_header.mfh_cmd_status);
   3065 		return 1;
   3066 	}
   3067 
   3068 	snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc));
   3069 	if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info,
   3070 	    sc, PRIBIO, IPL_BIO, 0) != 0) {
   3071 		aprint_error_dev(sc->sc_dev, "workqueue_create failed\n");
   3072 		return 1;
   3073 	}
   3074 	workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
   3075 	return 0;
   3076 }
   3077 
   3078 int
   3079 mfi_tbolt_intrh(void *arg)
   3080 {
   3081 	struct mfi_softc	*sc = arg;
   3082 	struct mfi_ccb		*ccb;
   3083 	union mfi_mpi2_reply_descriptor *desc;
   3084 	int smid, num_completed;
   3085 
   3086 	if (!mfi_tbolt_intr(sc))
   3087 		return 0;
   3088 
   3089 	DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc),
   3090 	    (u_long)sc, (u_long)sc->sc_last_reply_idx);
   3091 
   3092 	KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size);
   3093 
   3094 	desc = (union mfi_mpi2_reply_descriptor *)
   3095 	    ((uintptr_t)sc->sc_reply_frame_pool +
   3096 	     sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
   3097 
   3098 	bus_dmamap_sync(sc->sc_dmat,
   3099 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
   3100 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
   3101 	    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
   3102 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   3103 	num_completed = 0;
   3104 	while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) !=
   3105 	    MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
   3106 		smid = desc->header.SMID;
   3107 		KASSERT(smid > 0 && smid <= sc->sc_max_cmds);
   3108 		ccb = &sc->sc_ccb[smid - 1];
   3109 		DNPRINTF(MFI_D_INTR,
   3110 		    "%s: mfi_tbolt_intr SMID %#x reply_idx %#x "
   3111 		    "desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid,
   3112 		    sc->sc_last_reply_idx, desc->words, ccb);
   3113 		KASSERT(ccb->ccb_state == MFI_CCB_RUNNING);
   3114 		if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO &&
   3115 		    ccb->ccb_tb_io_request->ChainOffset != 0) {
   3116 			bus_dmamap_sync(sc->sc_dmat,
   3117 			    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
   3118 			    ccb->ccb_tb_psg_frame -
   3119 				MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
   3120 			    MEGASAS_MAX_SZ_CHAIN_FRAME,  BUS_DMASYNC_POSTREAD);
   3121 		}
   3122 		if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) {
   3123 			bus_dmamap_sync(sc->sc_dmat,
   3124 			    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
   3125 			    ccb->ccb_tb_pio_request -
   3126 				MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
   3127 			    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
   3128 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   3129 		}
   3130 		if (ccb->ccb_done)
   3131 			ccb->ccb_done(ccb);
   3132 		else
   3133 			ccb->ccb_state = MFI_CCB_DONE;
   3134 		sc->sc_last_reply_idx++;
   3135 		if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) {
   3136 			sc->sc_last_reply_idx = 0;
   3137 		}
   3138 		desc->words = ~0x0;
   3139 		/* Get the next reply descriptor */
   3140 		desc = (union mfi_mpi2_reply_descriptor *)
   3141 		    ((uintptr_t)sc->sc_reply_frame_pool +
   3142 		     sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
   3143 		num_completed++;
   3144 	}
   3145 	if (num_completed == 0)
   3146 		return 0;
   3147 
   3148 	bus_dmamap_sync(sc->sc_dmat,
   3149 	    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
   3150 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
   3151 	    MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
   3152 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3153 	mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx);
   3154 	return 1;
   3155 }
   3156 
   3157 
   3158 int
   3159 mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
   3160     uint64_t blockno, uint32_t blockcnt)
   3161 {
   3162 	struct scsipi_periph *periph = xs->xs_periph;
   3163 	struct mfi_mpi2_request_raid_scsi_io    *io_req;
   3164 	int sge_count;
   3165 
   3166 	DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n",
   3167 	    device_xname(periph->periph_channel->chan_adapter->adapt_dev),
   3168 	    periph->periph_target);
   3169 
   3170 	if (!xs->data)
   3171 		return 1;
   3172 
   3173 	ccb->ccb_done = mfi_tbolt_scsi_ld_done;
   3174 	ccb->ccb_xs = xs;
   3175 	ccb->ccb_data = xs->data;
   3176 	ccb->ccb_len = xs->datalen;
   3177 
   3178 	io_req = ccb->ccb_tb_io_request;
   3179 
   3180 	/* Just the CDB length,rest of the Flags are zero */
   3181 	io_req->IoFlags = xs->cmdlen;
   3182 	memset(io_req->CDB.CDB32, 0, 32);
   3183 	memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen);
   3184 
   3185 	io_req->RaidContext.TargetID = periph->periph_target;
   3186 	io_req->RaidContext.Status = 0;
   3187 	io_req->RaidContext.exStatus = 0;
   3188 	io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT;
   3189 	io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST;
   3190 	io_req->DevHandle = periph->periph_target;
   3191 
   3192 	ccb->ccb_tb_request_desc.header.RequestFlags =
   3193 	    (MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
   3194 	io_req->DataLength = blockcnt * MFI_SECTOR_LEN;
   3195 
   3196 	if (xs->xs_control & XS_CTL_DATA_IN) {
   3197 		io_req->Control = MPI2_SCSIIO_CONTROL_READ;
   3198 		ccb->ccb_direction = MFI_DATA_IN;
   3199 	} else {
   3200 		io_req->Control = MPI2_SCSIIO_CONTROL_WRITE;
   3201 		ccb->ccb_direction = MFI_DATA_OUT;
   3202 	}
   3203 
   3204 	sge_count = mfi_tbolt_create_sgl(ccb,
   3205 	    (xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK
   3206 	    );
   3207 	if (sge_count < 0)
   3208 		return 1;
   3209 	KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl);
   3210 	io_req->RaidContext.numSGE = sge_count;
   3211 	io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
   3212 	io_req->SGLOffset0 =
   3213 	    offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
   3214 
   3215 	io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense);
   3216 	io_req->SenseBufferLength = MFI_SENSE_SIZE;
   3217 
   3218 	ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO;
   3219 	bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
   3220 	    MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
   3221 	    ccb->ccb_tb_pio_request -
   3222 	     MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
   3223 	    MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
   3224 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3225 
   3226 	return 0;
   3227 }
   3228 
   3229 
   3230 static void
   3231 mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb)
   3232 {
   3233 	struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
   3234 	mfi_scsi_xs_done(ccb, io_req->RaidContext.Status,
   3235 	    io_req->RaidContext.exStatus);
   3236 }
   3237 
   3238 static int
   3239 mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags)
   3240 {
   3241 	struct mfi_softc	*sc = ccb->ccb_sc;
   3242 	bus_dma_segment_t	*sgd;
   3243 	int			error, i, sge_idx, sge_count;
   3244 	struct mfi_mpi2_request_raid_scsi_io *io_req;
   3245 	struct mpi25_ieee_sge_chain64 *sgl_ptr;
   3246 
   3247 	DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc),
   3248 	    (u_long)ccb->ccb_data);
   3249 
   3250 	if (!ccb->ccb_data)
   3251 		return -1;
   3252 
   3253 	KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
   3254 	error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
   3255 	    ccb->ccb_data, ccb->ccb_len, NULL, flags);
   3256 	if (error) {
   3257 		if (error == EFBIG)
   3258 			aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
   3259 			    sc->sc_max_sgl);
   3260 		else
   3261 			aprint_error_dev(sc->sc_dev,
   3262 			    "error %d loading dma map\n", error);
   3263 		return -1;
   3264 	}
   3265 
   3266 	io_req = ccb->ccb_tb_io_request;
   3267 	sgl_ptr = &io_req->SGL.IeeeChain.Chain64;
   3268 	sge_count = ccb->ccb_dmamap->dm_nsegs;
   3269 	sgd = ccb->ccb_dmamap->dm_segs;
   3270 	KASSERT(sge_count <= sc->sc_max_sgl);
   3271 	KASSERT(sge_count <=
   3272 	    (MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 +
   3273 	     MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG));
   3274 
   3275 	if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) {
   3276 		/* One element to store the chain info */
   3277 		sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1;
   3278 		DNPRINTF(MFI_D_DMA,
   3279 		    "mfi sge_idx %d sge_count %d io_req paddr 0x%" PRIx64 "\n",
   3280 		    sge_idx, sge_count, ccb->ccb_tb_pio_request);
   3281 	} else {
   3282 		sge_idx = sge_count;
   3283 	}
   3284 
   3285 	for (i = 0; i < sge_idx; i++) {
   3286 		sgl_ptr->Address = htole64(sgd[i].ds_addr);
   3287 		sgl_ptr->Length = htole32(sgd[i].ds_len);
   3288 		sgl_ptr->Flags = 0;
   3289 		if (sge_idx < sge_count) {
   3290 			DNPRINTF(MFI_D_DMA,
   3291 			    "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
   3292 			    " flags 0x%x\n", sgl_ptr, i,
   3293 			    sgl_ptr->Address, sgl_ptr->Length,
   3294 			    sgl_ptr->Flags);
   3295 		}
   3296 		sgl_ptr++;
   3297 	}
   3298 	io_req->ChainOffset = 0;
   3299 	if (sge_idx < sge_count) {
   3300 		struct mpi25_ieee_sge_chain64 *sg_chain;
   3301 		io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG;
   3302 		sg_chain = sgl_ptr;
   3303 		/* Prepare chain element */
   3304 		sg_chain->NextChainOffset = 0;
   3305 		sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
   3306 		    MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
   3307 		sg_chain->Length =  (sizeof(mpi2_sge_io_union) *
   3308 		    (sge_count - sge_idx));
   3309 		sg_chain->Address = ccb->ccb_tb_psg_frame;
   3310 		DNPRINTF(MFI_D_DMA,
   3311 		    "sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32
   3312 		    " flags 0x%x\n", sg_chain, sg_chain->Address,
   3313 		    sg_chain->Length, sg_chain->Flags);
   3314 		sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64;
   3315 		for (; i < sge_count; i++) {
   3316 			sgl_ptr->Address = htole64(sgd[i].ds_addr);
   3317 			sgl_ptr->Length = htole32(sgd[i].ds_len);
   3318 			sgl_ptr->Flags = 0;
   3319 			DNPRINTF(MFI_D_DMA,
   3320 			    "sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
   3321 			    " flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address,
   3322 			    sgl_ptr->Length, sgl_ptr->Flags);
   3323 			sgl_ptr++;
   3324 		}
   3325 		bus_dmamap_sync(sc->sc_dmat,
   3326 		    MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
   3327 		    ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
   3328 		    MEGASAS_MAX_SZ_CHAIN_FRAME,  BUS_DMASYNC_PREREAD);
   3329 	}
   3330 
   3331 	if (ccb->ccb_direction == MFI_DATA_IN) {
   3332 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
   3333 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3334 	} else {
   3335 		bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
   3336 		    ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3337 	}
   3338 	return sge_count;
   3339 }
   3340 
   3341 /*
   3342  * The ThunderBolt HW has an option for the driver to directly
   3343  * access the underlying disks and operate on the RAID.  To
   3344  * do this there needs to be a capability to keep the RAID controller
   3345  * and driver in sync.  The FreeBSD driver does not take advantage
   3346  * of this feature since it adds a lot of complexity and slows down
   3347  * performance.  Performance is gained by using the controller's
   3348  * cache etc.
   3349  *
   3350  * Even though this driver doesn't access the disks directly, an
   3351  * AEN like command is used to inform the RAID firmware to "sync"
   3352  * with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command.  This
   3353  * command in write mode will return when the RAID firmware has
   3354  * detected a change to the RAID state.  Examples of this type
   3355  * of change are removing a disk.  Once the command returns then
   3356  * the driver needs to acknowledge this and "sync" all LD's again.
   3357  * This repeats until we shutdown.  Then we need to cancel this
   3358  * pending command.
   3359  *
   3360  * If this is not done right the RAID firmware will not remove a
   3361  * pulled drive and the RAID won't go degraded etc.  Effectively,
   3362  * stopping any RAID mangement to functions.
   3363  *
   3364  * Doing another LD sync, requires the use of an event since the
   3365  * driver needs to do a mfi_wait_command and can't do that in an
   3366  * interrupt thread.
   3367  *
   3368  * The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO
   3369  * That requires a bunch of structure and it is simplier to just do
   3370  * the MFI_DCMD_LD_GET_LIST versus walking the RAID map.
   3371  */
   3372 
   3373 void
   3374 mfi_tbolt_sync_map_info(struct work *w, void *v)
   3375 {
   3376 	struct mfi_softc *sc = v;
   3377 	int i;
   3378 	struct mfi_ccb *ccb = NULL;
   3379 	uint8_t mbox[MFI_MBOX_SIZE];
   3380 	struct mfi_ld *ld_sync;
   3381 	size_t ld_size;
   3382 	int s;
   3383 
   3384 	DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc));
   3385 again:
   3386 	ld_sync = NULL;
   3387 	s = splbio();
   3388 	if (sc->sc_ldsync_ccb != NULL) {
   3389 		splx(s);
   3390 		return;
   3391 	}
   3392 
   3393 	if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
   3394 	    sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) {
   3395 		aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n");
   3396 		goto err;
   3397 	}
   3398 
   3399 	ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld;
   3400 
   3401 	ld_sync = malloc(ld_size, M_DEVBUF, M_WAITOK | M_ZERO);
   3402 	if (ld_sync == NULL) {
   3403 		aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n");
   3404 		goto err;
   3405 	}
   3406 	for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) {
   3407 		ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld;
   3408 	}
   3409 
   3410 	if ((ccb = mfi_get_ccb(sc)) == NULL) {
   3411 		aprint_error_dev(sc->sc_dev, "Failed to get sync command\n");
   3412 		goto err;
   3413 	}
   3414 	sc->sc_ldsync_ccb = ccb;
   3415 
   3416 	memset(mbox, 0, MFI_MBOX_SIZE);
   3417 	mbox[0] = sc->sc_ld_list.mll_no_ld;
   3418 	mbox[1] = MFI_DCMD_MBOX_PEND_FLAG;
   3419 	if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT,
   3420 	    ld_size, ld_sync, mbox)) {
   3421 		aprint_error_dev(sc->sc_dev, "Failed to create sync command\n");
   3422 		goto err;
   3423 	}
   3424 	/*
   3425 	 * we won't sleep on this command, so we have to override
   3426 	 * the callback set up by mfi_mgmt()
   3427 	 */
   3428 	ccb->ccb_done = mfi_sync_map_complete;
   3429 
   3430 	mfi_post(sc, ccb);
   3431 	splx(s);
   3432 	return;
   3433 
   3434 err:
   3435 	if (ld_sync)
   3436 		free(ld_sync, M_DEVBUF);
   3437 	if (ccb)
   3438 		mfi_put_ccb(ccb);
   3439 	sc->sc_ldsync_ccb = NULL;
   3440 	splx(s);
   3441 	kpause("ldsyncp", 0, hz, NULL);
   3442 	goto again;
   3443 }
   3444 
   3445 static void
   3446 mfi_sync_map_complete(struct mfi_ccb *ccb)
   3447 {
   3448 	struct mfi_softc *sc = ccb->ccb_sc;
   3449 	bool aborted = !sc->sc_running;
   3450 
   3451 	DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n",
   3452 	    DEVNAME(ccb->ccb_sc));
   3453 	KASSERT(sc->sc_ldsync_ccb == ccb);
   3454 	mfi_mgmt_done(ccb);
   3455 	free(ccb->ccb_data, M_DEVBUF);
   3456 	if (ccb->ccb_flags & MFI_CCB_F_ERR) {
   3457 		aprint_error_dev(sc->sc_dev, "sync command failed\n");
   3458 		aborted = true;
   3459 	}
   3460 	mfi_put_ccb(ccb);
   3461 	sc->sc_ldsync_ccb = NULL;
   3462 
   3463 	/* set it up again so the driver can catch more events */
   3464 	if (!aborted) {
   3465 		workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
   3466 	}
   3467 }
   3468 
   3469 static int
   3470 mfifopen(dev_t dev, int flag, int mode, struct lwp *l)
   3471 {
   3472 	struct mfi_softc *sc;
   3473 
   3474 	if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL)
   3475 		return (ENXIO);
   3476 	return (0);
   3477 }
   3478 
   3479 static int
   3480 mfifclose(dev_t dev, int flag, int mode, struct lwp *l)
   3481 {
   3482 	return (0);
   3483 }
   3484 
   3485 static int
   3486 mfifioctl(dev_t dev, u_long cmd, void *data, int flag,
   3487     struct lwp *l)
   3488 {
   3489 	struct mfi_softc *sc;
   3490 	struct mfi_ioc_packet *ioc = data;
   3491 	uint8_t *udata;
   3492 	struct mfi_ccb *ccb = NULL;
   3493 	int ctx, i, s, error;
   3494 	union mfi_sense_ptr sense_ptr;
   3495 
   3496 	switch(cmd) {
   3497 	case MFI_CMD:
   3498 		sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no);
   3499 		break;
   3500 	default:
   3501 		return ENOTTY;
   3502 	}
   3503 	if (sc == NULL)
   3504 		return (ENXIO);
   3505 	if (sc->sc_opened)
   3506 		return (EBUSY);
   3507 
   3508 	switch(cmd) {
   3509 	case MFI_CMD:
   3510 		error = kauth_authorize_device_passthru(l->l_cred, dev,
   3511 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
   3512 		if (error)
   3513 			return error;
   3514 		if (ioc->mfi_sge_count > MAX_IOCTL_SGE)
   3515 			return EINVAL;
   3516 		s = splbio();
   3517 		if ((ccb = mfi_get_ccb(sc)) == NULL)
   3518 			return ENOMEM;
   3519 		ccb->ccb_data = NULL;
   3520 		ctx = ccb->ccb_frame->mfr_header.mfh_context;
   3521 		memcpy(ccb->ccb_frame, ioc->mfi_frame.raw,
   3522 		   sizeof(*ccb->ccb_frame));
   3523 		ccb->ccb_frame->mfr_header.mfh_context = ctx;
   3524 		ccb->ccb_frame->mfr_header.mfh_scsi_status = 0;
   3525 		ccb->ccb_frame->mfr_header.mfh_pad0 = 0;
   3526 		ccb->ccb_frame_size =
   3527 		    (sizeof(union mfi_sgl) * ioc->mfi_sge_count) +
   3528 		    ioc->mfi_sgl_off;
   3529 		if (ioc->mfi_sge_count > 0) {
   3530 			ccb->ccb_sgl = (union mfi_sgl *)
   3531 			    &ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off];
   3532 		}
   3533 		if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ)
   3534 			ccb->ccb_direction = MFI_DATA_IN;
   3535 		if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE)
   3536 			ccb->ccb_direction = MFI_DATA_OUT;
   3537 		ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len;
   3538 		if (ccb->ccb_len > MAXPHYS) {
   3539 			error = ENOMEM;
   3540 			goto out;
   3541 		}
   3542 		if (ccb->ccb_len &&
   3543 		    (ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) {
   3544 			udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO);
   3545 			if (udata == NULL) {
   3546 				error = ENOMEM;
   3547 				goto out;
   3548 			}
   3549 			ccb->ccb_data = udata;
   3550 			if (ccb->ccb_direction & MFI_DATA_OUT) {
   3551 				for (i = 0; i < ioc->mfi_sge_count; i++) {
   3552 					error = copyin(ioc->mfi_sgl[i].iov_base,
   3553 					    udata, ioc->mfi_sgl[i].iov_len);
   3554 					if (error)
   3555 						goto out;
   3556 					udata = &udata[
   3557 					    ioc->mfi_sgl[i].iov_len];
   3558 				}
   3559 			}
   3560 			if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) {
   3561 				error = EIO;
   3562 				goto out;
   3563 			}
   3564 		}
   3565 		if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) {
   3566 			ccb->ccb_frame->mfr_io.mif_sense_addr_lo =
   3567 			    htole32(ccb->ccb_psense);
   3568 			ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0;
   3569 		}
   3570 		ccb->ccb_done = mfi_mgmt_done;
   3571 		mfi_post(sc, ccb);
   3572 		while (ccb->ccb_state != MFI_CCB_DONE)
   3573 			tsleep(ccb, PRIBIO, "mfi_fioc", 0);
   3574 
   3575 		if (ccb->ccb_direction & MFI_DATA_IN) {
   3576 			udata = ccb->ccb_data;
   3577 			for (i = 0; i < ioc->mfi_sge_count; i++) {
   3578 				error = copyout(udata,
   3579 				    ioc->mfi_sgl[i].iov_base,
   3580 				    ioc->mfi_sgl[i].iov_len);
   3581 				if (error)
   3582 					goto out;
   3583 				udata = &udata[
   3584 				    ioc->mfi_sgl[i].iov_len];
   3585 			}
   3586 		}
   3587 		if (ioc->mfi_sense_len) {
   3588 			memcpy(&sense_ptr.sense_ptr_data[0],
   3589 			&ioc->mfi_frame.raw[ioc->mfi_sense_off],
   3590 			sizeof(sense_ptr.sense_ptr_data));
   3591 			error = copyout(ccb->ccb_sense,
   3592 			    sense_ptr.user_space,
   3593 			    sizeof(sense_ptr.sense_ptr_data));
   3594 			if (error)
   3595 				goto out;
   3596 		}
   3597 		memcpy(ioc->mfi_frame.raw, ccb->ccb_frame,
   3598 		   sizeof(*ccb->ccb_frame));
   3599 		break;
   3600 	default:
   3601 		printf("mfifioctl unhandled cmd 0x%lx\n", cmd);
   3602 		return ENOTTY;
   3603 	}
   3604 
   3605 out:
   3606 	if (ccb->ccb_data)
   3607 		free(ccb->ccb_data, M_DEVBUF);
   3608 	if (ccb)
   3609 		mfi_put_ccb(ccb);
   3610 	splx(s);
   3611 	return error;
   3612 }
   3613