mm58167.c revision 1.9.20.1 1 1.9.20.1 yamt /* $NetBSD: mm58167.c,v 1.9.20.1 2008/05/16 02:24:05 yamt Exp $ */
2 1.1 fredette
3 1.1 fredette /*
4 1.1 fredette * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 1.1 fredette * All rights reserved.
6 1.1 fredette *
7 1.1 fredette * This code is derived from software contributed to The NetBSD Foundation
8 1.1 fredette * by Matthew Fredette.
9 1.1 fredette *
10 1.1 fredette * Redistribution and use in source and binary forms, with or without
11 1.1 fredette * modification, are permitted provided that the following conditions
12 1.1 fredette * are met:
13 1.1 fredette * 1. Redistributions of source code must retain the above copyright
14 1.1 fredette * notice, this list of conditions and the following disclaimer.
15 1.1 fredette * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 fredette * notice, this list of conditions and the following disclaimer in the
17 1.1 fredette * documentation and/or other materials provided with the distribution.
18 1.1 fredette *
19 1.1 fredette * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 fredette * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 fredette * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 fredette * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 fredette * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 fredette * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 fredette * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 fredette * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 fredette * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 fredette * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 fredette * POSSIBILITY OF SUCH DAMAGE.
30 1.1 fredette */
31 1.1 fredette
32 1.1 fredette /*
33 1.1 fredette * National Semiconductor MM58167 time-of-day chip subroutines.
34 1.1 fredette */
35 1.3 lukem
36 1.3 lukem #include <sys/cdefs.h>
37 1.9.20.1 yamt __KERNEL_RCSID(0, "$NetBSD: mm58167.c,v 1.9.20.1 2008/05/16 02:24:05 yamt Exp $");
38 1.1 fredette
39 1.1 fredette #include <sys/param.h>
40 1.1 fredette #include <sys/malloc.h>
41 1.1 fredette #include <sys/systm.h>
42 1.1 fredette #include <sys/errno.h>
43 1.1 fredette #include <sys/device.h>
44 1.1 fredette
45 1.9 ad #include <sys/bus.h>
46 1.1 fredette #include <dev/clock_subr.h>
47 1.1 fredette #include <dev/ic/mm58167var.h>
48 1.1 fredette
49 1.6 he int mm58167_gettime(todr_chip_handle_t, volatile struct timeval *);
50 1.6 he int mm58167_settime(todr_chip_handle_t, volatile struct timeval *);
51 1.1 fredette
52 1.1 fredette /*
53 1.1 fredette * To quote SunOS's todreg.h:
54 1.1 fredette * "This brain damaged chip insists on keeping the time in
55 1.1 fredette * MM/DD HH:MM:SS format, even though it doesn't know about
56 1.1 fredette * leap years and Feb. 29, thus making it nearly worthless."
57 1.1 fredette */
58 1.1 fredette #define mm58167_read(sc, r) bus_space_read_1(sc->mm58167_regt, sc->mm58167_regh, sc-> r)
59 1.1 fredette #define mm58167_write(sc, r, v) bus_space_write_1(sc->mm58167_regt, sc->mm58167_regh, sc-> r, v)
60 1.1 fredette
61 1.1 fredette todr_chip_handle_t
62 1.1 fredette mm58167_attach(sc)
63 1.1 fredette struct mm58167_softc *sc;
64 1.1 fredette {
65 1.1 fredette struct todr_chip_handle *handle;
66 1.5 perry
67 1.1 fredette printf(": mm58167");
68 1.1 fredette
69 1.1 fredette handle = &sc->_mm58167_todr_handle;
70 1.2 thorpej memset(handle, 0, sizeof(handle));
71 1.1 fredette handle->cookie = sc;
72 1.1 fredette handle->todr_gettime = mm58167_gettime;
73 1.1 fredette handle->todr_settime = mm58167_settime;
74 1.1 fredette return (handle);
75 1.1 fredette }
76 1.1 fredette
77 1.1 fredette /*
78 1.1 fredette * Set up the system's time, given a `reasonable' time value.
79 1.1 fredette */
80 1.1 fredette int
81 1.1 fredette mm58167_gettime(handle, tv)
82 1.1 fredette todr_chip_handle_t handle;
83 1.6 he volatile struct timeval *tv;
84 1.1 fredette {
85 1.1 fredette struct mm58167_softc *sc = handle->cookie;
86 1.1 fredette struct clock_ymdhms dt_hardware;
87 1.1 fredette struct clock_ymdhms dt_reasonable;
88 1.1 fredette int s;
89 1.1 fredette u_int8_t byte_value;
90 1.1 fredette int leap_year, had_leap_day;
91 1.1 fredette
92 1.1 fredette /* First, read the date out of the chip. */
93 1.1 fredette
94 1.1 fredette /* No interrupts while we're in the chip. */
95 1.1 fredette s = splhigh();
96 1.1 fredette
97 1.1 fredette /* Reset the status bit: */
98 1.1 fredette byte_value = mm58167_read(sc, mm58167_status);
99 1.1 fredette
100 1.1 fredette /*
101 1.1 fredette * Read the date values until we get a coherent read (one
102 1.1 fredette * where the status stays zero, indicating no increment was
103 1.1 fredette * rippling through while we were reading).
104 1.1 fredette */
105 1.1 fredette do {
106 1.1 fredette #define _MM58167_GET(dt_f, mm_f) byte_value = mm58167_read(sc, mm_f); dt_hardware.dt_f = FROMBCD(byte_value)
107 1.1 fredette _MM58167_GET(dt_mon, mm58167_mon);
108 1.1 fredette _MM58167_GET(dt_day, mm58167_day);
109 1.1 fredette _MM58167_GET(dt_hour, mm58167_hour);
110 1.1 fredette _MM58167_GET(dt_min, mm58167_min);
111 1.1 fredette _MM58167_GET(dt_sec, mm58167_sec);
112 1.1 fredette #undef _MM58167_GET
113 1.1 fredette } while ((mm58167_read(sc, mm58167_status) & 1) == 0);
114 1.1 fredette
115 1.1 fredette splx(s);
116 1.1 fredette
117 1.1 fredette /* Convert the reasonable time into a date: */
118 1.1 fredette clock_secs_to_ymdhms(tv->tv_sec, &dt_reasonable);
119 1.1 fredette
120 1.1 fredette /*
121 1.1 fredette * We need to fake a hardware year. if the hardware MM/DD
122 1.1 fredette * HH:MM:SS date is less than the reasonable MM/DD
123 1.1 fredette * HH:MM:SS, call it the reasonable year plus one, else call
124 1.1 fredette * it the reasonable year.
125 1.1 fredette */
126 1.1 fredette if (dt_hardware.dt_mon < dt_reasonable.dt_mon ||
127 1.1 fredette (dt_hardware.dt_mon == dt_reasonable.dt_mon &&
128 1.1 fredette (dt_hardware.dt_day < dt_reasonable.dt_day ||
129 1.1 fredette (dt_hardware.dt_day == dt_reasonable.dt_day &&
130 1.1 fredette (dt_hardware.dt_hour < dt_reasonable.dt_hour ||
131 1.1 fredette (dt_hardware.dt_hour == dt_reasonable.dt_hour &&
132 1.1 fredette (dt_hardware.dt_min < dt_reasonable.dt_min ||
133 1.1 fredette (dt_hardware.dt_min == dt_reasonable.dt_min &&
134 1.1 fredette (dt_hardware.dt_sec < dt_reasonable.dt_sec))))))))) {
135 1.1 fredette dt_hardware.dt_year = dt_reasonable.dt_year + 1;
136 1.1 fredette } else {
137 1.1 fredette dt_hardware.dt_year = dt_reasonable.dt_year;
138 1.1 fredette }
139 1.1 fredette
140 1.1 fredette /* convert the hardware date into a time: */
141 1.1 fredette tv->tv_sec = clock_ymdhms_to_secs(&dt_hardware);
142 1.1 fredette tv->tv_usec = 0;
143 1.5 perry
144 1.1 fredette /*
145 1.1 fredette * Make a reasonable effort to see if a leap day has passed
146 1.1 fredette * that we need to account for. This does the right thing
147 1.1 fredette * only when the system was shut down before a leap day, and
148 1.1 fredette * it is now after that leap day. It doesn't do the right
149 1.1 fredette * thing when a leap day happened while the machine was last
150 1.1 fredette * up. When that happens, the hardware clock becomes
151 1.1 fredette * instantly wrong forever, until it gets fixed for some
152 1.1 fredette * reason. Use NTP to deal.
153 1.1 fredette */
154 1.1 fredette
155 1.1 fredette /*
156 1.1 fredette * This may have happened if the hardware says we're into
157 1.1 fredette * March in the following year. Check that following year for
158 1.1 fredette * a leap day.
159 1.1 fredette */
160 1.1 fredette if (dt_hardware.dt_year > dt_reasonable.dt_year &&
161 1.1 fredette dt_hardware.dt_mon >= 3) {
162 1.1 fredette leap_year = dt_hardware.dt_year;
163 1.1 fredette }
164 1.1 fredette
165 1.1 fredette /*
166 1.1 fredette * This may have happened if the hardware says we're in the
167 1.1 fredette * following year, and the system was shut down before March
168 1.1 fredette * the previous year. check that previous year for a leap
169 1.1 fredette * day.
170 1.1 fredette */
171 1.1 fredette else if (dt_hardware.dt_year > dt_reasonable.dt_year &&
172 1.1 fredette dt_reasonable.dt_mon < 3) {
173 1.1 fredette leap_year = dt_reasonable.dt_year;
174 1.1 fredette }
175 1.1 fredette
176 1.1 fredette /*
177 1.1 fredette * This may have happened if the hardware says we're in the
178 1.1 fredette * same year, but we weren't to March before, and we're in or
179 1.1 fredette * past March now. Check this year for a leap day.
180 1.1 fredette */
181 1.1 fredette else if (dt_hardware.dt_year == dt_reasonable.dt_year
182 1.1 fredette && dt_reasonable.dt_mon < 3
183 1.1 fredette && dt_hardware.dt_mon >= 3) {
184 1.1 fredette leap_year = dt_reasonable.dt_year;
185 1.1 fredette }
186 1.1 fredette
187 1.1 fredette /*
188 1.1 fredette * Otherwise, no leap year to check.
189 1.1 fredette */
190 1.1 fredette else {
191 1.1 fredette leap_year = 0;
192 1.1 fredette }
193 1.1 fredette
194 1.1 fredette /* Do the real leap day check. */
195 1.1 fredette had_leap_day = 0;
196 1.1 fredette if (leap_year > 0) {
197 1.1 fredette if ((leap_year & 3) == 0) {
198 1.1 fredette had_leap_day = 1;
199 1.1 fredette if ((leap_year % 100) == 0) {
200 1.1 fredette had_leap_day = 0;
201 1.1 fredette if ((leap_year % 400) == 0)
202 1.1 fredette had_leap_day = 1;
203 1.1 fredette }
204 1.1 fredette }
205 1.1 fredette }
206 1.1 fredette
207 1.1 fredette /*
208 1.1 fredette * If we had a leap day, adjust the value we will return, and
209 1.1 fredette * also update the hardware clock.
210 1.5 perry */
211 1.5 perry /*
212 1.1 fredette * XXX - Since this update just writes back a corrected
213 1.5 perry * version of what we read out above, we lose whatever
214 1.1 fredette * amount of time the clock has advanced since that read.
215 1.1 fredette * Use NTP to deal.
216 1.1 fredette */
217 1.1 fredette if (had_leap_day) {
218 1.1 fredette tv->tv_sec += SECDAY;
219 1.1 fredette todr_settime(handle, tv);
220 1.1 fredette }
221 1.1 fredette
222 1.1 fredette return (0);
223 1.1 fredette }
224 1.1 fredette
225 1.1 fredette int
226 1.1 fredette mm58167_settime(handle, tv)
227 1.1 fredette todr_chip_handle_t handle;
228 1.6 he volatile struct timeval *tv;
229 1.1 fredette {
230 1.1 fredette struct mm58167_softc *sc = handle->cookie;
231 1.1 fredette struct clock_ymdhms dt_hardware;
232 1.1 fredette int s;
233 1.1 fredette u_int8_t byte_value;
234 1.1 fredette
235 1.1 fredette /* Convert the seconds into ymdhms. */
236 1.1 fredette clock_secs_to_ymdhms(tv->tv_sec, &dt_hardware);
237 1.1 fredette
238 1.1 fredette /* No interrupts while we're in the chip. */
239 1.1 fredette s = splhigh();
240 1.1 fredette
241 1.5 perry /*
242 1.1 fredette * Issue a GO command to reset everything less significant
243 1.1 fredette * than the minutes to zero.
244 1.1 fredette */
245 1.1 fredette mm58167_write(sc, mm58167_go, 0xFF);
246 1.5 perry
247 1.1 fredette /* Load everything. */
248 1.1 fredette #define _MM58167_PUT(dt_f, mm_f) byte_value = TOBCD(dt_hardware.dt_f); mm58167_write(sc, mm_f, byte_value)
249 1.1 fredette _MM58167_PUT(dt_mon, mm58167_mon);
250 1.1 fredette _MM58167_PUT(dt_day, mm58167_day);
251 1.1 fredette _MM58167_PUT(dt_hour, mm58167_hour);
252 1.1 fredette _MM58167_PUT(dt_min, mm58167_min);
253 1.1 fredette _MM58167_PUT(dt_sec, mm58167_sec);
254 1.1 fredette #undef _MM58167_PUT
255 1.1 fredette
256 1.1 fredette splx(s);
257 1.1 fredette return (0);
258 1.1 fredette }
259