Home | History | Annotate | Line # | Download | only in ic
mm58167.c revision 1.12
      1 /*	$NetBSD: mm58167.c,v 1.12 2009/12/11 11:07:04 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Matthew Fredette.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * National Semiconductor MM58167 time-of-day chip subroutines.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: mm58167.c,v 1.12 2009/12/11 11:07:04 tsutsui Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/malloc.h>
     41 #include <sys/systm.h>
     42 #include <sys/errno.h>
     43 #include <sys/device.h>
     44 
     45 #include <sys/bus.h>
     46 #include <dev/clock_subr.h>
     47 #include <dev/ic/mm58167var.h>
     48 
     49 int mm58167_gettime(todr_chip_handle_t, volatile struct timeval *);
     50 int mm58167_settime(todr_chip_handle_t, volatile struct timeval *);
     51 
     52 /*
     53  * To quote SunOS's todreg.h:
     54  * "This brain damaged chip insists on keeping the time in
     55  *  MM/DD HH:MM:SS format, even though it doesn't know about
     56  *  leap years and Feb. 29, thus making it nearly worthless."
     57  */
     58 #define mm58167_read(sc, r)	\
     59 	bus_space_read_1(sc->mm58167_regt, sc->mm58167_regh, sc-> r)
     60 #define mm58167_write(sc, r, v)	\
     61 	bus_space_write_1(sc->mm58167_regt, sc->mm58167_regh, sc-> r, v)
     62 
     63 todr_chip_handle_t
     64 mm58167_attach(struct mm58167_softc *sc)
     65 {
     66 	struct todr_chip_handle *handle;
     67 
     68 	aprint_normal(": mm58167");
     69 
     70 	handle = &sc->_mm58167_todr_handle;
     71 	memset(handle, 0, sizeof(handle));
     72 	handle->cookie = sc;
     73 	handle->todr_gettime = mm58167_gettime;
     74 	handle->todr_settime = mm58167_settime;
     75 	return handle;
     76 }
     77 
     78 /*
     79  * Set up the system's time, given a `reasonable' time value.
     80  */
     81 int
     82 mm58167_gettime(todr_chip_handle_t handle, volatile struct timeval *tv)
     83 {
     84 	struct mm58167_softc *sc = handle->cookie;
     85 	struct clock_ymdhms dt_hardware;
     86 	struct clock_ymdhms dt_reasonable;
     87 	struct timeval now;
     88 	int s;
     89 	uint8_t byte_value;
     90 	int leap_year, had_leap_day;
     91 
     92 	/* First, read the date out of the chip. */
     93 
     94 	/* No interrupts while we're in the chip. */
     95 	s = splhigh();
     96 
     97 	/* Reset the status bit: */
     98 	byte_value = mm58167_read(sc, mm58167_status);
     99 
    100 	/*
    101 	 * Read the date values until we get a coherent read (one
    102 	 * where the status stays zero, indicating no increment was
    103 	 * rippling through while we were reading).
    104 	 */
    105 	do {
    106 #define _MM58167_GET(dt_f, mm_f)					\
    107 	byte_value = mm58167_read(sc, mm_f);				\
    108 	dt_hardware.dt_f = FROMBCD(byte_value)
    109 
    110 		_MM58167_GET(dt_mon, mm58167_mon);
    111 		_MM58167_GET(dt_day, mm58167_day);
    112 		_MM58167_GET(dt_hour, mm58167_hour);
    113 		_MM58167_GET(dt_min, mm58167_min);
    114 		_MM58167_GET(dt_sec, mm58167_sec);
    115 #undef _MM58167_GET
    116 	} while ((mm58167_read(sc, mm58167_status) & 1) == 0);
    117 
    118 	splx(s);
    119 
    120 	/* Convert the reasonable time into a date: */
    121 	getmicrotime(&now);
    122 	clock_secs_to_ymdhms(now.tv_sec, &dt_reasonable);
    123 	if (dt_reasonable.dt_year == POSIX_BASE_YEAR) {
    124 		/*
    125 		 * Not a reasonable year.
    126 		 * Assume called from inittodr(9) on boot and
    127 		 * use file system time set in inittodr(9).
    128 		 */
    129 		clock_secs_to_ymdhms(handle->base_time, &dt_reasonable);
    130 	}
    131 
    132 	/*
    133 	 * We need to fake a hardware year.  if the hardware MM/DD
    134 	 * HH:MM:SS date is less than the reasonable MM/DD
    135 	 * HH:MM:SS, call it the reasonable year plus one, else call
    136 	 * it the reasonable year.
    137 	 */
    138 	if (dt_hardware.dt_mon < dt_reasonable.dt_mon ||
    139 	    (dt_hardware.dt_mon == dt_reasonable.dt_mon &&
    140 	     (dt_hardware.dt_day < dt_reasonable.dt_day ||
    141 	      (dt_hardware.dt_day == dt_reasonable.dt_day &&
    142 	       (dt_hardware.dt_hour < dt_reasonable.dt_hour ||
    143 	        (dt_hardware.dt_hour == dt_reasonable.dt_hour &&
    144 	         (dt_hardware.dt_min < dt_reasonable.dt_min ||
    145 	          (dt_hardware.dt_min == dt_reasonable.dt_min &&
    146 	           (dt_hardware.dt_sec < dt_reasonable.dt_sec))))))))) {
    147 		dt_hardware.dt_year = dt_reasonable.dt_year + 1;
    148 	} else {
    149 		dt_hardware.dt_year = dt_reasonable.dt_year;
    150 	}
    151 
    152 	/* convert the hardware date into a time: */
    153 	tv->tv_sec = clock_ymdhms_to_secs(&dt_hardware);
    154 	tv->tv_usec = 0;
    155 
    156 	/*
    157 	 * Make a reasonable effort to see if a leap day has passed
    158 	 * that we need to account for.  This does the right thing
    159 	 * only when the system was shut down before a leap day, and
    160 	 * it is now after that leap day.  It doesn't do the right
    161 	 * thing when a leap day happened while the machine was last
    162 	 * up.  When that happens, the hardware clock becomes
    163 	 * instantly wrong forever, until it gets fixed for some
    164 	 * reason.  Use NTP to deal.
    165 	 */
    166 
    167 	/*
    168 	 * This may have happened if the hardware says we're into
    169 	 * March in the following year.  Check that following year for
    170 	 * a leap day.
    171 	 */
    172 	if (dt_hardware.dt_year > dt_reasonable.dt_year &&
    173 	    dt_hardware.dt_mon >= 3) {
    174 		leap_year = dt_hardware.dt_year;
    175 	}
    176 
    177 	/*
    178 	 * This may have happened if the hardware says we're in the
    179 	 * following year, and the system was shut down before March
    180 	 * the previous year.  check that previous year for a leap
    181 	 * day.
    182 	 */
    183 	else if (dt_hardware.dt_year > dt_reasonable.dt_year &&
    184 	    dt_reasonable.dt_mon < 3) {
    185 		leap_year = dt_reasonable.dt_year;
    186 	}
    187 
    188 	/*
    189 	 * This may have happened if the hardware says we're in the
    190 	 * same year, but we weren't to March before, and we're in or
    191 	 * past March now.  Check this year for a leap day.
    192 	 */
    193 	else if (dt_hardware.dt_year == dt_reasonable.dt_year
    194 	    && dt_reasonable.dt_mon < 3
    195 	    && dt_hardware.dt_mon >= 3) {
    196 		leap_year = dt_reasonable.dt_year;
    197 	}
    198 
    199 	/*
    200 	 * Otherwise, no leap year to check.
    201 	 */
    202 	else {
    203 		leap_year = 0;
    204 	}
    205 
    206 	/* Do the real leap day check. */
    207 	had_leap_day = 0;
    208 	if (leap_year > 0) {
    209 		if ((leap_year & 3) == 0) {
    210 			had_leap_day = 1;
    211 			if ((leap_year % 100) == 0) {
    212 				had_leap_day = 0;
    213 				if ((leap_year % 400) == 0)
    214 					had_leap_day = 1;
    215 			}
    216 		}
    217 	}
    218 
    219 	/*
    220 	 * If we had a leap day, adjust the value we will return, and
    221 	 * also update the hardware clock.
    222 	 */
    223 	/*
    224 	 * XXX - Since this update just writes back a corrected
    225 	 * version of what we read out above, we lose whatever
    226 	 * amount of time the clock has advanced since that read.
    227 	 * Use NTP to deal.
    228 	 */
    229 	if (had_leap_day) {
    230 		tv->tv_sec += SECDAY;
    231 		todr_settime(handle, tv);
    232 	}
    233 
    234 	return 0;
    235 }
    236 
    237 int
    238 mm58167_settime(todr_chip_handle_t handle, volatile struct timeval *tv)
    239 {
    240 	struct mm58167_softc *sc = handle->cookie;
    241 	struct clock_ymdhms dt_hardware;
    242 	int s;
    243 	uint8_t byte_value;
    244 
    245 	/* Convert the seconds into ymdhms. */
    246 	clock_secs_to_ymdhms(tv->tv_sec, &dt_hardware);
    247 
    248 	/* No interrupts while we're in the chip. */
    249 	s = splhigh();
    250 
    251 	/*
    252 	 * Issue a GO command to reset everything less significant
    253 	 * than the minutes to zero.
    254 	 */
    255 	mm58167_write(sc, mm58167_go, 0xFF);
    256 
    257 	/* Load everything. */
    258 #define _MM58167_PUT(dt_f, mm_f)					\
    259 	byte_value = TOBCD(dt_hardware.dt_f);				\
    260 	mm58167_write(sc, mm_f, byte_value)
    261 
    262 	_MM58167_PUT(dt_mon, mm58167_mon);
    263 	_MM58167_PUT(dt_day, mm58167_day);
    264 	_MM58167_PUT(dt_hour, mm58167_hour);
    265 	_MM58167_PUT(dt_min, mm58167_min);
    266 	_MM58167_PUT(dt_sec, mm58167_sec);
    267 #undef _MM58167_PUT
    268 
    269 	splx(s);
    270 	return 0;
    271 }
    272