mm58167.c revision 1.2 1 /* $NetBSD: mm58167.c,v 1.2 2001/07/07 16:13:49 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matthew Fredette.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * National Semiconductor MM58167 time-of-day chip subroutines.
41 */
42
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/device.h>
48
49 #include <machine/bus.h>
50 #include <dev/clock_subr.h>
51 #include <dev/ic/mm58167var.h>
52
53 int mm58167_gettime __P((todr_chip_handle_t, struct timeval *));
54 int mm58167_settime __P((todr_chip_handle_t, struct timeval *));
55 int mm58167_getcal __P((todr_chip_handle_t, int *));
56 int mm58167_setcal __P((todr_chip_handle_t, int));
57
58 /*
59 * To quote SunOS's todreg.h:
60 * "This brain damaged chip insists on keeping the time in
61 * MM/DD HH:MM:SS format, even though it doesn't know about
62 * leap years and Feb. 29, thus making it nearly worthless."
63 */
64 #define mm58167_read(sc, r) bus_space_read_1(sc->mm58167_regt, sc->mm58167_regh, sc-> r)
65 #define mm58167_write(sc, r, v) bus_space_write_1(sc->mm58167_regt, sc->mm58167_regh, sc-> r, v)
66
67 todr_chip_handle_t
68 mm58167_attach(sc)
69 struct mm58167_softc *sc;
70 {
71 struct todr_chip_handle *handle;
72
73 printf(": mm58167");
74
75 handle = &sc->_mm58167_todr_handle;
76 memset(handle, 0, sizeof(handle));
77 handle->cookie = sc;
78 handle->todr_gettime = mm58167_gettime;
79 handle->todr_settime = mm58167_settime;
80 handle->todr_getcal = mm58167_getcal;
81 handle->todr_setcal = mm58167_setcal;
82 return (handle);
83 }
84
85 /*
86 * Set up the system's time, given a `reasonable' time value.
87 */
88 int
89 mm58167_gettime(handle, tv)
90 todr_chip_handle_t handle;
91 struct timeval *tv;
92 {
93 struct mm58167_softc *sc = handle->cookie;
94 struct clock_ymdhms dt_hardware;
95 struct clock_ymdhms dt_reasonable;
96 int s;
97 u_int8_t byte_value;
98 int leap_year, had_leap_day;
99
100 /* First, read the date out of the chip. */
101
102 /* No interrupts while we're in the chip. */
103 s = splhigh();
104
105 /* Reset the status bit: */
106 byte_value = mm58167_read(sc, mm58167_status);
107
108 /*
109 * Read the date values until we get a coherent read (one
110 * where the status stays zero, indicating no increment was
111 * rippling through while we were reading).
112 */
113 do {
114 #define _MM58167_GET(dt_f, mm_f) byte_value = mm58167_read(sc, mm_f); dt_hardware.dt_f = FROMBCD(byte_value)
115 _MM58167_GET(dt_mon, mm58167_mon);
116 _MM58167_GET(dt_day, mm58167_day);
117 _MM58167_GET(dt_hour, mm58167_hour);
118 _MM58167_GET(dt_min, mm58167_min);
119 _MM58167_GET(dt_sec, mm58167_sec);
120 #undef _MM58167_GET
121 } while ((mm58167_read(sc, mm58167_status) & 1) == 0);
122
123 splx(s);
124
125 /* Convert the reasonable time into a date: */
126 clock_secs_to_ymdhms(tv->tv_sec, &dt_reasonable);
127
128 /*
129 * We need to fake a hardware year. if the hardware MM/DD
130 * HH:MM:SS date is less than the reasonable MM/DD
131 * HH:MM:SS, call it the reasonable year plus one, else call
132 * it the reasonable year.
133 */
134 if (dt_hardware.dt_mon < dt_reasonable.dt_mon ||
135 (dt_hardware.dt_mon == dt_reasonable.dt_mon &&
136 (dt_hardware.dt_day < dt_reasonable.dt_day ||
137 (dt_hardware.dt_day == dt_reasonable.dt_day &&
138 (dt_hardware.dt_hour < dt_reasonable.dt_hour ||
139 (dt_hardware.dt_hour == dt_reasonable.dt_hour &&
140 (dt_hardware.dt_min < dt_reasonable.dt_min ||
141 (dt_hardware.dt_min == dt_reasonable.dt_min &&
142 (dt_hardware.dt_sec < dt_reasonable.dt_sec))))))))) {
143 dt_hardware.dt_year = dt_reasonable.dt_year + 1;
144 } else {
145 dt_hardware.dt_year = dt_reasonable.dt_year;
146 }
147
148 /* convert the hardware date into a time: */
149 tv->tv_sec = clock_ymdhms_to_secs(&dt_hardware);
150 tv->tv_usec = 0;
151
152 /*
153 * Make a reasonable effort to see if a leap day has passed
154 * that we need to account for. This does the right thing
155 * only when the system was shut down before a leap day, and
156 * it is now after that leap day. It doesn't do the right
157 * thing when a leap day happened while the machine was last
158 * up. When that happens, the hardware clock becomes
159 * instantly wrong forever, until it gets fixed for some
160 * reason. Use NTP to deal.
161 */
162
163 /*
164 * This may have happened if the hardware says we're into
165 * March in the following year. Check that following year for
166 * a leap day.
167 */
168 if (dt_hardware.dt_year > dt_reasonable.dt_year &&
169 dt_hardware.dt_mon >= 3) {
170 leap_year = dt_hardware.dt_year;
171 }
172
173 /*
174 * This may have happened if the hardware says we're in the
175 * following year, and the system was shut down before March
176 * the previous year. check that previous year for a leap
177 * day.
178 */
179 else if (dt_hardware.dt_year > dt_reasonable.dt_year &&
180 dt_reasonable.dt_mon < 3) {
181 leap_year = dt_reasonable.dt_year;
182 }
183
184 /*
185 * This may have happened if the hardware says we're in the
186 * same year, but we weren't to March before, and we're in or
187 * past March now. Check this year for a leap day.
188 */
189 else if (dt_hardware.dt_year == dt_reasonable.dt_year
190 && dt_reasonable.dt_mon < 3
191 && dt_hardware.dt_mon >= 3) {
192 leap_year = dt_reasonable.dt_year;
193 }
194
195 /*
196 * Otherwise, no leap year to check.
197 */
198 else {
199 leap_year = 0;
200 }
201
202 /* Do the real leap day check. */
203 had_leap_day = 0;
204 if (leap_year > 0) {
205 if ((leap_year & 3) == 0) {
206 had_leap_day = 1;
207 if ((leap_year % 100) == 0) {
208 had_leap_day = 0;
209 if ((leap_year % 400) == 0)
210 had_leap_day = 1;
211 }
212 }
213 }
214
215 /*
216 * If we had a leap day, adjust the value we will return, and
217 * also update the hardware clock.
218 */
219 /*
220 * XXX - Since this update just writes back a corrected
221 * version of what we read out above, we lose whatever
222 * amount of time the clock has advanced since that read.
223 * Use NTP to deal.
224 */
225 if (had_leap_day) {
226 tv->tv_sec += SECDAY;
227 todr_settime(handle, tv);
228 }
229
230 return (0);
231 }
232
233 int
234 mm58167_settime(handle, tv)
235 todr_chip_handle_t handle;
236 struct timeval *tv;
237 {
238 struct mm58167_softc *sc = handle->cookie;
239 struct clock_ymdhms dt_hardware;
240 int s;
241 u_int8_t byte_value;
242
243 /* Convert the seconds into ymdhms. */
244 clock_secs_to_ymdhms(tv->tv_sec, &dt_hardware);
245
246 /* No interrupts while we're in the chip. */
247 s = splhigh();
248
249 /*
250 * Issue a GO command to reset everything less significant
251 * than the minutes to zero.
252 */
253 mm58167_write(sc, mm58167_go, 0xFF);
254
255 /* Load everything. */
256 #define _MM58167_PUT(dt_f, mm_f) byte_value = TOBCD(dt_hardware.dt_f); mm58167_write(sc, mm_f, byte_value)
257 _MM58167_PUT(dt_mon, mm58167_mon);
258 _MM58167_PUT(dt_day, mm58167_day);
259 _MM58167_PUT(dt_hour, mm58167_hour);
260 _MM58167_PUT(dt_min, mm58167_min);
261 _MM58167_PUT(dt_sec, mm58167_sec);
262 #undef _MM58167_PUT
263
264 splx(s);
265 return (0);
266 }
267
268 int
269 mm58167_getcal(handle, vp)
270 todr_chip_handle_t handle;
271 int *vp;
272 {
273 return (EOPNOTSUPP);
274 }
275
276 int
277 mm58167_setcal(handle, v)
278 todr_chip_handle_t handle;
279 int v;
280 {
281 return (EOPNOTSUPP);
282 }
283