Home | History | Annotate | Line # | Download | only in ic
mpt_netbsd.c revision 1.18.2.4
      1 /*	$NetBSD: mpt_netbsd.c,v 1.18.2.4 2017/12/03 11:37:03 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2000, 2001 by Greg Ansley
     40  * Partially derived from Matt Jacob's ISP driver.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice immediately at the beginning of the file, without modification,
     47  *    this list of conditions, and the following disclaimer.
     48  * 2. The name of the author may not be used to endorse or promote products
     49  *    derived from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
     55  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 /*
     64  * Additional Copyright (c) 2002 by Matthew Jacob under same license.
     65  */
     66 
     67 /*
     68  * mpt_netbsd.c:
     69  *
     70  * NetBSD-specific routines for LSI Fusion adapters.  Includes some
     71  * bus_dma glue, and SCSIPI glue.
     72  *
     73  * Adapted from the FreeBSD "mpt" driver by Jason R. Thorpe for
     74  * Wasabi Systems, Inc.
     75  *
     76  * Additional contributions by Garrett D'Amore on behalf of TELES AG.
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: mpt_netbsd.c,v 1.18.2.4 2017/12/03 11:37:03 jdolecek Exp $");
     81 
     82 #include "bio.h"
     83 
     84 #include <dev/ic/mpt.h>			/* pulls in all headers */
     85 #include <sys/scsiio.h>
     86 
     87 #if NBIO > 0
     88 #include <dev/biovar.h>
     89 #endif
     90 
     91 static int	mpt_poll(mpt_softc_t *, struct scsipi_xfer *, int);
     92 static void	mpt_timeout(void *);
     93 static void	mpt_restart(mpt_softc_t *, request_t *);
     94 static void	mpt_done(mpt_softc_t *, uint32_t);
     95 static int	mpt_drain_queue(mpt_softc_t *);
     96 static void	mpt_run_xfer(mpt_softc_t *, struct scsipi_xfer *);
     97 static void	mpt_set_xfer_mode(mpt_softc_t *, struct scsipi_xfer_mode *);
     98 static void	mpt_get_xfer_mode(mpt_softc_t *, struct scsipi_periph *);
     99 static void	mpt_ctlop(mpt_softc_t *, void *vmsg, uint32_t);
    100 static void	mpt_event_notify_reply(mpt_softc_t *, MSG_EVENT_NOTIFY_REPLY *);
    101 static void  mpt_bus_reset(mpt_softc_t *);
    102 
    103 static void	mpt_scsipi_request(struct scsipi_channel *,
    104 		    scsipi_adapter_req_t, void *);
    105 static void	mpt_minphys(struct buf *);
    106 static int 	mpt_ioctl(struct scsipi_channel *, u_long, void *, int,
    107 	struct proc *);
    108 
    109 #if NBIO > 0
    110 static bool	mpt_is_raid(mpt_softc_t *);
    111 static int	mpt_bio_ioctl(device_t, u_long, void *);
    112 static int	mpt_bio_ioctl_inq(mpt_softc_t *, struct bioc_inq *);
    113 static int	mpt_bio_ioctl_vol(mpt_softc_t *, struct bioc_vol *);
    114 static int	mpt_bio_ioctl_disk(mpt_softc_t *, struct bioc_disk *);
    115 static int	mpt_bio_ioctl_disk_novol(mpt_softc_t *, struct bioc_disk *);
    116 static int	mpt_bio_ioctl_setstate(mpt_softc_t *, struct bioc_setstate *);
    117 #endif
    118 
    119 void
    120 mpt_scsipi_attach(mpt_softc_t *mpt)
    121 {
    122 	struct scsipi_adapter *adapt = &mpt->sc_adapter;
    123 	struct scsipi_channel *chan = &mpt->sc_channel;
    124 	int maxq;
    125 
    126 	mpt->bus = 0;		/* XXX ?? */
    127 
    128 	maxq = (mpt->mpt_global_credits < MPT_MAX_REQUESTS(mpt)) ?
    129 	    mpt->mpt_global_credits : MPT_MAX_REQUESTS(mpt);
    130 
    131 	/* Fill in the scsipi_adapter. */
    132 	memset(adapt, 0, sizeof(*adapt));
    133 	adapt->adapt_dev = mpt->sc_dev;
    134 	adapt->adapt_nchannels = 1;
    135 	adapt->adapt_openings = maxq - 2;	/* Reserve 2 for driver use*/
    136 	adapt->adapt_max_periph = maxq - 2;
    137 	adapt->adapt_request = mpt_scsipi_request;
    138 	adapt->adapt_minphys = mpt_minphys;
    139 	adapt->adapt_ioctl = mpt_ioctl;
    140 
    141 	/* Fill in the scsipi_channel. */
    142 	memset(chan, 0, sizeof(*chan));
    143 	chan->chan_adapter = adapt;
    144 	if (mpt->is_sas) {
    145 		chan->chan_bustype = &scsi_sas_bustype;
    146 	} else if (mpt->is_fc) {
    147 		chan->chan_bustype = &scsi_fc_bustype;
    148 	} else {
    149 		chan->chan_bustype = &scsi_bustype;
    150 	}
    151 	chan->chan_channel = 0;
    152 	chan->chan_flags = 0;
    153 	chan->chan_nluns = 8;
    154 	chan->chan_ntargets = mpt->mpt_max_devices;
    155 	chan->chan_id = mpt->mpt_ini_id;
    156 
    157 	/*
    158 	* Save the output of the config so we can rescan the bus in case of
    159 	* errors
    160 	*/
    161 	mpt->sc_scsibus_dv = config_found(mpt->sc_dev, &mpt->sc_channel,
    162 	scsiprint);
    163 
    164 #if NBIO > 0
    165 	if (mpt_is_raid(mpt)) {
    166 		if (bio_register(mpt->sc_dev, mpt_bio_ioctl) != 0)
    167 			panic("%s: controller registration failed",
    168 			    device_xname(mpt->sc_dev));
    169 	}
    170 #endif
    171 }
    172 
    173 int
    174 mpt_dma_mem_alloc(mpt_softc_t *mpt)
    175 {
    176 	bus_dma_segment_t reply_seg, request_seg;
    177 	int reply_rseg, request_rseg;
    178 	bus_addr_t pptr, end;
    179 	char *vptr;
    180 	size_t len;
    181 	int error, i;
    182 
    183 	/* Check if we have already allocated the reply memory. */
    184 	if (mpt->reply != NULL)
    185 		return (0);
    186 
    187 	/*
    188 	 * Allocate the request pool.  This isn't really DMA'd memory,
    189 	 * but it's a convenient place to do it.
    190 	 */
    191 	len = sizeof(request_t) * MPT_MAX_REQUESTS(mpt);
    192 	mpt->request_pool = malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
    193 	if (mpt->request_pool == NULL) {
    194 		aprint_error_dev(mpt->sc_dev, "unable to allocate request pool\n");
    195 		return (ENOMEM);
    196 	}
    197 
    198 	/*
    199 	 * Allocate DMA resources for reply buffers.
    200 	 */
    201 	error = bus_dmamem_alloc(mpt->sc_dmat, PAGE_SIZE, PAGE_SIZE, 0,
    202 	    &reply_seg, 1, &reply_rseg, 0);
    203 	if (error) {
    204 		aprint_error_dev(mpt->sc_dev, "unable to allocate reply area, error = %d\n",
    205 		    error);
    206 		goto fail_0;
    207 	}
    208 
    209 	error = bus_dmamem_map(mpt->sc_dmat, &reply_seg, reply_rseg, PAGE_SIZE,
    210 	    (void **) &mpt->reply, BUS_DMA_COHERENT/*XXX*/);
    211 	if (error) {
    212 		aprint_error_dev(mpt->sc_dev, "unable to map reply area, error = %d\n",
    213 		    error);
    214 		goto fail_1;
    215 	}
    216 
    217 	error = bus_dmamap_create(mpt->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    218 	    0, 0, &mpt->reply_dmap);
    219 	if (error) {
    220 		aprint_error_dev(mpt->sc_dev, "unable to create reply DMA map, error = %d\n",
    221 		    error);
    222 		goto fail_2;
    223 	}
    224 
    225 	error = bus_dmamap_load(mpt->sc_dmat, mpt->reply_dmap, mpt->reply,
    226 	    PAGE_SIZE, NULL, 0);
    227 	if (error) {
    228 		aprint_error_dev(mpt->sc_dev, "unable to load reply DMA map, error = %d\n",
    229 		    error);
    230 		goto fail_3;
    231 	}
    232 	mpt->reply_phys = mpt->reply_dmap->dm_segs[0].ds_addr;
    233 
    234 	/*
    235 	 * Allocate DMA resources for request buffers.
    236 	 */
    237 	error = bus_dmamem_alloc(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt),
    238 	    PAGE_SIZE, 0, &request_seg, 1, &request_rseg, 0);
    239 	if (error) {
    240 		aprint_error_dev(mpt->sc_dev, "unable to allocate request area, "
    241 		    "error = %d\n", error);
    242 		goto fail_4;
    243 	}
    244 
    245 	error = bus_dmamem_map(mpt->sc_dmat, &request_seg, request_rseg,
    246 	    MPT_REQ_MEM_SIZE(mpt), (void **) &mpt->request, 0);
    247 	if (error) {
    248 		aprint_error_dev(mpt->sc_dev, "unable to map request area, error = %d\n",
    249 		    error);
    250 		goto fail_5;
    251 	}
    252 
    253 	error = bus_dmamap_create(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt), 1,
    254 	    MPT_REQ_MEM_SIZE(mpt), 0, 0, &mpt->request_dmap);
    255 	if (error) {
    256 		aprint_error_dev(mpt->sc_dev, "unable to create request DMA map, "
    257 		    "error = %d\n", error);
    258 		goto fail_6;
    259 	}
    260 
    261 	error = bus_dmamap_load(mpt->sc_dmat, mpt->request_dmap, mpt->request,
    262 	    MPT_REQ_MEM_SIZE(mpt), NULL, 0);
    263 	if (error) {
    264 		aprint_error_dev(mpt->sc_dev, "unable to load request DMA map, error = %d\n",
    265 		    error);
    266 		goto fail_7;
    267 	}
    268 	mpt->request_phys = mpt->request_dmap->dm_segs[0].ds_addr;
    269 
    270 	pptr = mpt->request_phys;
    271 	vptr = (void *) mpt->request;
    272 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
    273 
    274 	for (i = 0; pptr < end; i++) {
    275 		request_t *req = &mpt->request_pool[i];
    276 		req->index = i;
    277 
    278 		/* Store location of Request Data */
    279 		req->req_pbuf = pptr;
    280 		req->req_vbuf = vptr;
    281 
    282 		pptr += MPT_REQUEST_AREA;
    283 		vptr += MPT_REQUEST_AREA;
    284 
    285 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
    286 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
    287 
    288 		error = bus_dmamap_create(mpt->sc_dmat,
    289 		    MPT_SGL_MAX * PAGE_SIZE ,
    290 		    MPT_SGL_MAX,
    291 		    MPT_SGL_MAX * PAGE_SIZE,
    292 		    0, 0, &req->dmap);
    293 		if (error) {
    294 			aprint_error_dev(mpt->sc_dev, "unable to create req %d DMA map, "
    295 			    "error = %d\n", i, error);
    296 			goto fail_8;
    297 		}
    298 	}
    299 
    300 	return (0);
    301 
    302  fail_8:
    303 	for (--i; i >= 0; i--) {
    304 		request_t *req = &mpt->request_pool[i];
    305 		if (req->dmap != NULL)
    306 			bus_dmamap_destroy(mpt->sc_dmat, req->dmap);
    307 	}
    308 	bus_dmamap_unload(mpt->sc_dmat, mpt->request_dmap);
    309  fail_7:
    310 	bus_dmamap_destroy(mpt->sc_dmat, mpt->request_dmap);
    311  fail_6:
    312 	bus_dmamem_unmap(mpt->sc_dmat, (void *)mpt->request, PAGE_SIZE);
    313  fail_5:
    314 	bus_dmamem_free(mpt->sc_dmat, &request_seg, request_rseg);
    315  fail_4:
    316 	bus_dmamap_unload(mpt->sc_dmat, mpt->reply_dmap);
    317  fail_3:
    318 	bus_dmamap_destroy(mpt->sc_dmat, mpt->reply_dmap);
    319  fail_2:
    320 	bus_dmamem_unmap(mpt->sc_dmat, (void *)mpt->reply, PAGE_SIZE);
    321  fail_1:
    322 	bus_dmamem_free(mpt->sc_dmat, &reply_seg, reply_rseg);
    323  fail_0:
    324 	free(mpt->request_pool, M_DEVBUF);
    325 
    326 	mpt->reply = NULL;
    327 	mpt->request = NULL;
    328 	mpt->request_pool = NULL;
    329 
    330 	return (error);
    331 }
    332 
    333 int
    334 mpt_intr(void *arg)
    335 {
    336 	mpt_softc_t *mpt = arg;
    337 	int nrepl = 0;
    338 
    339 	if ((mpt_read(mpt, MPT_OFFSET_INTR_STATUS) & MPT_INTR_REPLY_READY) == 0)
    340 		return (0);
    341 
    342 	nrepl = mpt_drain_queue(mpt);
    343 	return (nrepl != 0);
    344 }
    345 
    346 void
    347 mpt_prt(mpt_softc_t *mpt, const char *fmt, ...)
    348 {
    349 	va_list ap;
    350 
    351 	printf("%s: ", device_xname(mpt->sc_dev));
    352 	va_start(ap, fmt);
    353 	vprintf(fmt, ap);
    354 	va_end(ap);
    355 	printf("\n");
    356 }
    357 
    358 static int
    359 mpt_poll(mpt_softc_t *mpt, struct scsipi_xfer *xs, int count)
    360 {
    361 
    362 	/* Timeouts are in msec, so we loop in 1000usec cycles */
    363 	while (count) {
    364 		mpt_intr(mpt);
    365 		if (xs->xs_status & XS_STS_DONE)
    366 			return (0);
    367 		delay(1000);		/* only happens in boot, so ok */
    368 		count--;
    369 	}
    370 	return (1);
    371 }
    372 
    373 static void
    374 mpt_timeout(void *arg)
    375 {
    376 	request_t *req = arg;
    377 	struct scsipi_xfer *xs;
    378 	struct scsipi_periph *periph;
    379 	mpt_softc_t *mpt;
    380  	uint32_t oseq;
    381 	int s, nrepl = 0;
    382 
    383 	if (req->xfer  == NULL) {
    384 		printf("mpt_timeout: NULL xfer for request index 0x%x, sequenc 0x%x\n",
    385 		req->index, req->sequence);
    386 		return;
    387 	}
    388 	xs = req->xfer;
    389 	periph = xs->xs_periph;
    390 	mpt = device_private(periph->periph_channel->chan_adapter->adapt_dev);
    391 	scsipi_printaddr(periph);
    392 	printf("command timeout\n");
    393 
    394 	s = splbio();
    395 
    396 	oseq = req->sequence;
    397 	mpt->timeouts++;
    398 	if (mpt_intr(mpt)) {
    399 		if (req->sequence != oseq) {
    400 			mpt->success++;
    401 			mpt_prt(mpt, "recovered from command timeout");
    402 			splx(s);
    403 			return;
    404 		}
    405 	}
    406 
    407 	/*
    408 	 * Ensure the IOC is really done giving us data since it appears it can
    409 	 * sometimes fail to give us interrupts under heavy load.
    410 	 */
    411 	nrepl = mpt_drain_queue(mpt);
    412 	if (nrepl ) {
    413 		mpt_prt(mpt, "mpt_timeout: recovered %d commands",nrepl);
    414 	}
    415 
    416 	if (req->sequence != oseq) {
    417 		mpt->success++;
    418 		splx(s);
    419 		return;
    420 	}
    421 
    422 	mpt_prt(mpt,
    423 	    "timeout on request index = 0x%x, seq = 0x%08x",
    424 	    req->index, req->sequence);
    425 	mpt_check_doorbell(mpt);
    426 	mpt_prt(mpt, "Status 0x%08x, Mask 0x%08x, Doorbell 0x%08x",
    427 	    mpt_read(mpt, MPT_OFFSET_INTR_STATUS),
    428 	    mpt_read(mpt, MPT_OFFSET_INTR_MASK),
    429 	    mpt_read(mpt, MPT_OFFSET_DOORBELL));
    430 	mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug));
    431 	if (mpt->verbose > 1)
    432 		mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf);
    433 
    434 	xs->error = XS_TIMEOUT;
    435 	splx(s);
    436 	mpt_restart(mpt, req);
    437 }
    438 
    439 static void
    440 mpt_restart(mpt_softc_t *mpt, request_t *req0)
    441 {
    442 	int i, s, nreq;
    443 	request_t *req;
    444 	struct scsipi_xfer *xs;
    445 
    446 	/* first, reset the IOC, leaving stopped so all requests are idle */
    447 	if (mpt_soft_reset(mpt) != MPT_OK) {
    448 		mpt_prt(mpt, "soft reset failed");
    449 		/*
    450 		* Don't try a hard reset since this mangles the PCI
    451 		* configuration registers.
    452 		*/
    453 		return;
    454 	}
    455 
    456 	/* Freeze the channel so scsipi doesn't queue more commands. */
    457 	scsipi_channel_freeze(&mpt->sc_channel, 1);
    458 
    459 	/* Return all pending requests to scsipi and de-allocate them. */
    460 	s = splbio();
    461 	nreq = 0;
    462 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
    463 		req = &mpt->request_pool[i];
    464 		xs = req->xfer;
    465 		if (xs != NULL) {
    466 			if (xs->datalen != 0)
    467 				bus_dmamap_unload(mpt->sc_dmat, req->dmap);
    468 			req->xfer = NULL;
    469 			callout_stop(&xs->xs_callout);
    470 			if (req != req0) {
    471 				nreq++;
    472 				xs->error = XS_REQUEUE;
    473 			}
    474 			scsipi_done(xs);
    475 			/*
    476 			* Don't need to mpt_free_request() since mpt_init()
    477 			* below will free all requests anyway.
    478 			*/
    479 			mpt_free_request(mpt, req);
    480 		}
    481 	}
    482 	splx(s);
    483 	if (nreq > 0)
    484 		mpt_prt(mpt, "re-queued %d requests", nreq);
    485 
    486 	/* Re-initialize the IOC (which restarts it). */
    487 	if (mpt_init(mpt, MPT_DB_INIT_HOST) == 0)
    488 		mpt_prt(mpt, "restart succeeded");
    489 	/* else error message already printed */
    490 
    491 	/* Thaw the channel, causing scsipi to re-queue the commands. */
    492 	scsipi_channel_thaw(&mpt->sc_channel, 1);
    493 }
    494 
    495 static int
    496 mpt_drain_queue(mpt_softc_t *mpt)
    497 {
    498 	int nrepl = 0;
    499 	uint32_t reply;
    500 
    501 	reply = mpt_pop_reply_queue(mpt);
    502 	while (reply != MPT_REPLY_EMPTY) {
    503 		nrepl++;
    504 		if (mpt->verbose > 1) {
    505 			if ((reply & MPT_CONTEXT_REPLY) != 0) {
    506 				/* Address reply; IOC has something to say */
    507 				mpt_print_reply(MPT_REPLY_PTOV(mpt, reply));
    508 			} else {
    509 				/* Context reply; all went well */
    510 				mpt_prt(mpt, "context %u reply OK", reply);
    511 			}
    512 		}
    513 		mpt_done(mpt, reply);
    514 		reply = mpt_pop_reply_queue(mpt);
    515 	}
    516 	return (nrepl);
    517 }
    518 
    519 static void
    520 mpt_done(mpt_softc_t *mpt, uint32_t reply)
    521 {
    522 	struct scsipi_xfer *xs = NULL;
    523 	struct scsipi_periph *periph;
    524 	int index;
    525 	request_t *req;
    526 	MSG_REQUEST_HEADER *mpt_req;
    527 	MSG_SCSI_IO_REPLY *mpt_reply;
    528 	int restart = 0; /* nonzero if we need to restart the IOC*/
    529 
    530 	if (__predict_true((reply & MPT_CONTEXT_REPLY) == 0)) {
    531 		/* context reply (ok) */
    532 		mpt_reply = NULL;
    533 		index = reply & MPT_CONTEXT_MASK;
    534 	} else {
    535 		/* address reply (error) */
    536 
    537 		/* XXX BUS_DMASYNC_POSTREAD XXX */
    538 		mpt_reply = MPT_REPLY_PTOV(mpt, reply);
    539 		if (mpt_reply != NULL) {
    540 			if (mpt->verbose > 1) {
    541 				uint32_t *pReply = (uint32_t *) mpt_reply;
    542 
    543 				mpt_prt(mpt, "Address Reply (index %u):",
    544 				    le32toh(mpt_reply->MsgContext) & 0xffff);
    545 				mpt_prt(mpt, "%08x %08x %08x %08x", pReply[0],
    546 				    pReply[1], pReply[2], pReply[3]);
    547 				mpt_prt(mpt, "%08x %08x %08x %08x", pReply[4],
    548 				    pReply[5], pReply[6], pReply[7]);
    549 				mpt_prt(mpt, "%08x %08x %08x %08x", pReply[8],
    550 				    pReply[9], pReply[10], pReply[11]);
    551 			}
    552 			index = le32toh(mpt_reply->MsgContext);
    553 		} else
    554 			index = reply & MPT_CONTEXT_MASK;
    555 	}
    556 
    557 	/*
    558 	 * Address reply with MessageContext high bit set.
    559 	 * This is most likely a notify message, so we try
    560 	 * to process it, then free it.
    561 	 */
    562 	if (__predict_false((index & 0x80000000) != 0)) {
    563 		if (mpt_reply != NULL)
    564 			mpt_ctlop(mpt, mpt_reply, reply);
    565 		else
    566 			mpt_prt(mpt, "%s: index 0x%x, NULL reply", __func__,
    567 			    index);
    568 		return;
    569 	}
    570 
    571 	/* Did we end up with a valid index into the table? */
    572 	if (__predict_false(index < 0 || index >= MPT_MAX_REQUESTS(mpt))) {
    573 		mpt_prt(mpt, "%s: invalid index (0x%x) in reply", __func__,
    574 		    index);
    575 		return;
    576 	}
    577 
    578 	req = &mpt->request_pool[index];
    579 
    580 	/* Make sure memory hasn't been trashed. */
    581 	if (__predict_false(req->index != index)) {
    582 		mpt_prt(mpt, "%s: corrupted request_t (0x%x)", __func__,
    583 		    index);
    584 		return;
    585 	}
    586 
    587 	MPT_SYNC_REQ(mpt, req, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    588 	mpt_req = req->req_vbuf;
    589 
    590 	/* Short cut for task management replies; nothing more for us to do. */
    591 	if (__predict_false(mpt_req->Function == MPI_FUNCTION_SCSI_TASK_MGMT)) {
    592 		if (mpt->verbose > 1)
    593 			mpt_prt(mpt, "%s: TASK MGMT", __func__);
    594 		KASSERT(req == mpt->mngt_req);
    595 		mpt->mngt_req = NULL;
    596 		goto done;
    597 	}
    598 
    599 	if (__predict_false(mpt_req->Function == MPI_FUNCTION_PORT_ENABLE))
    600 		goto done;
    601 
    602 	/*
    603 	 * At this point, it had better be a SCSI I/O command, but don't
    604 	 * crash if it isn't.
    605 	 */
    606 	if (__predict_false(mpt_req->Function !=
    607 			    MPI_FUNCTION_SCSI_IO_REQUEST)) {
    608 		if (mpt->verbose > 1)
    609 			mpt_prt(mpt, "%s: unknown Function 0x%x (0x%x)",
    610 			    __func__, mpt_req->Function, index);
    611 		goto done;
    612 	}
    613 
    614 	/* Recover scsipi_xfer from the request structure. */
    615 	xs = req->xfer;
    616 
    617 	/* Can't have a SCSI command without a scsipi_xfer. */
    618 	if (__predict_false(xs == NULL)) {
    619 		mpt_prt(mpt,
    620 		    "%s: no scsipi_xfer, index = 0x%x, seq = 0x%08x", __func__,
    621 		    req->index, req->sequence);
    622 		mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug));
    623 		mpt_prt(mpt, "mpt_request:");
    624 		mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf);
    625 
    626 		if (mpt_reply != NULL) {
    627 			mpt_prt(mpt, "mpt_reply:");
    628 			mpt_print_reply(mpt_reply);
    629 		} else {
    630 			mpt_prt(mpt, "context reply: 0x%08x", reply);
    631 		}
    632 		goto done;
    633 	}
    634 
    635 	callout_stop(&xs->xs_callout);
    636 
    637 	periph = xs->xs_periph;
    638 
    639 	/*
    640 	 * If we were a data transfer, unload the map that described
    641 	 * the data buffer.
    642 	 */
    643 	if (__predict_true(xs->datalen != 0)) {
    644 		bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
    645 		    req->dmap->dm_mapsize,
    646 		    (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD
    647 						      : BUS_DMASYNC_POSTWRITE);
    648 		bus_dmamap_unload(mpt->sc_dmat, req->dmap);
    649 	}
    650 
    651 	if (__predict_true(mpt_reply == NULL)) {
    652 		/*
    653 		 * Context reply; report that the command was
    654 		 * successful!
    655 		 *
    656 		 * Also report the xfer mode, if necessary.
    657 		 */
    658 		if (__predict_false(mpt->mpt_report_xfer_mode != 0)) {
    659 			if ((mpt->mpt_report_xfer_mode &
    660 			     (1 << periph->periph_target)) != 0)
    661 				mpt_get_xfer_mode(mpt, periph);
    662 		}
    663 		xs->error = XS_NOERROR;
    664 		xs->status = SCSI_OK;
    665 		xs->resid = 0;
    666 		mpt_free_request(mpt, req);
    667 		scsipi_done(xs);
    668 		return;
    669 	}
    670 
    671 	xs->status = mpt_reply->SCSIStatus;
    672 	switch (le16toh(mpt_reply->IOCStatus) & MPI_IOCSTATUS_MASK) {
    673 	case MPI_IOCSTATUS_SCSI_DATA_OVERRUN:
    674 		xs->error = XS_DRIVER_STUFFUP;
    675 		mpt_prt(mpt, "%s: IOC overrun!", __func__);
    676 		break;
    677 
    678 	case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN:
    679 		/*
    680 		 * Yikes!  Tagged queue full comes through this path!
    681 		 *
    682 		 * So we'll change it to a status error and anything
    683 		 * that returns status should probably be a status
    684 		 * error as well.
    685 		 */
    686 		xs->resid = xs->datalen - le32toh(mpt_reply->TransferCount);
    687 		if (mpt_reply->SCSIState &
    688 		    MPI_SCSI_STATE_NO_SCSI_STATUS) {
    689 			xs->error = XS_DRIVER_STUFFUP;
    690 			break;
    691 		}
    692 		/* FALLTHROUGH */
    693 	case MPI_IOCSTATUS_SUCCESS:
    694 	case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR:
    695 		switch (xs->status) {
    696 		case SCSI_OK:
    697 			/* Report the xfer mode, if necessary. */
    698 			if ((mpt->mpt_report_xfer_mode &
    699 			     (1 << periph->periph_target)) != 0)
    700 				mpt_get_xfer_mode(mpt, periph);
    701 			xs->resid = 0;
    702 			break;
    703 
    704 		case SCSI_CHECK:
    705 			xs->error = XS_SENSE;
    706 			break;
    707 
    708 		case SCSI_BUSY:
    709 		case SCSI_QUEUE_FULL:
    710 			xs->error = XS_BUSY;
    711 			break;
    712 
    713 		default:
    714 			scsipi_printaddr(periph);
    715 			printf("invalid status code %d\n", xs->status);
    716 			xs->error = XS_DRIVER_STUFFUP;
    717 			break;
    718 		}
    719 		break;
    720 
    721 	case MPI_IOCSTATUS_BUSY:
    722 	case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES:
    723 		xs->error = XS_RESOURCE_SHORTAGE;
    724 		break;
    725 
    726 	case MPI_IOCSTATUS_SCSI_INVALID_BUS:
    727 	case MPI_IOCSTATUS_SCSI_INVALID_TARGETID:
    728 	case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
    729 		xs->error = XS_SELTIMEOUT;
    730 		break;
    731 
    732 	case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
    733 		xs->error = XS_DRIVER_STUFFUP;
    734 		mpt_prt(mpt, "%s: IOC SCSI residual mismatch!", __func__);
    735 		restart = 1;
    736 		break;
    737 
    738 	case MPI_IOCSTATUS_SCSI_TASK_TERMINATED:
    739 		/* XXX What should we do here? */
    740 		mpt_prt(mpt, "%s: IOC SCSI task terminated!", __func__);
    741 		restart = 1;
    742 		break;
    743 
    744 	case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
    745 		/* XXX */
    746 		xs->error = XS_DRIVER_STUFFUP;
    747 		mpt_prt(mpt, "%s: IOC SCSI task failed!", __func__);
    748 		restart = 1;
    749 		break;
    750 
    751 	case MPI_IOCSTATUS_SCSI_IOC_TERMINATED:
    752 		/* XXX */
    753 		xs->error = XS_DRIVER_STUFFUP;
    754 		mpt_prt(mpt, "%s: IOC task terminated!", __func__);
    755 		restart = 1;
    756 		break;
    757 
    758 	case MPI_IOCSTATUS_SCSI_EXT_TERMINATED:
    759 		/* XXX This is a bus-reset */
    760 		xs->error = XS_DRIVER_STUFFUP;
    761 		mpt_prt(mpt, "%s: IOC SCSI bus reset!", __func__);
    762 		restart = 1;
    763 		break;
    764 
    765 	case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR:
    766 		/*
    767 		 * FreeBSD and Linux indicate this is a phase error between
    768 		 * the IOC and the drive itself. When this happens, the IOC
    769 		 * becomes unhappy and stops processing all transactions.
    770 		 * Call mpt_timeout which knows how to get the IOC back
    771 		 * on its feet.
    772 		 */
    773 		 mpt_prt(mpt, "%s: IOC indicates protocol error -- "
    774 		     "recovering...", __func__);
    775 		xs->error = XS_TIMEOUT;
    776 		restart = 1;
    777 
    778 		break;
    779 
    780 	default:
    781 		/* XXX unrecognized HBA error */
    782 		xs->error = XS_DRIVER_STUFFUP;
    783 		mpt_prt(mpt, "%s: IOC returned unknown code: 0x%x", __func__,
    784 		    le16toh(mpt_reply->IOCStatus));
    785 		restart = 1;
    786 		break;
    787 	}
    788 
    789 	if (mpt_reply != NULL) {
    790 		if (mpt_reply->SCSIState & MPI_SCSI_STATE_AUTOSENSE_VALID) {
    791 			memcpy(&xs->sense.scsi_sense, req->sense_vbuf,
    792 			    sizeof(xs->sense.scsi_sense));
    793 		} else if (mpt_reply->SCSIState &
    794 		    MPI_SCSI_STATE_AUTOSENSE_FAILED) {
    795 			/*
    796 			 * This will cause the scsipi layer to issue
    797 			 * a REQUEST SENSE.
    798 			 */
    799 			if (xs->status == SCSI_CHECK)
    800 				xs->error = XS_BUSY;
    801 		}
    802 	}
    803 
    804  done:
    805 	if (mpt_reply != NULL && le16toh(mpt_reply->IOCStatus) &
    806 	MPI_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
    807 		mpt_prt(mpt, "%s: IOC has error - logging...\n", __func__);
    808 		mpt_ctlop(mpt, mpt_reply, reply);
    809 	}
    810 
    811 	/* If IOC done with this request, free it up. */
    812 	if (mpt_reply == NULL || (mpt_reply->MsgFlags & 0x80) == 0)
    813 		mpt_free_request(mpt, req);
    814 
    815 	/* If address reply, give the buffer back to the IOC. */
    816 	if (mpt_reply != NULL)
    817 		mpt_free_reply(mpt, (reply << 1));
    818 
    819 	if (xs != NULL)
    820 		scsipi_done(xs);
    821 
    822 	if (restart) {
    823 		mpt_prt(mpt, "%s: IOC fatal error: restarting...", __func__);
    824 		mpt_restart(mpt, NULL);
    825 	}
    826 }
    827 
    828 static void
    829 mpt_run_xfer(mpt_softc_t *mpt, struct scsipi_xfer *xs)
    830 {
    831 	struct scsipi_periph *periph = xs->xs_periph;
    832 	request_t *req;
    833 	MSG_SCSI_IO_REQUEST *mpt_req;
    834 	int error, s;
    835 
    836 	s = splbio();
    837 	req = mpt_get_request(mpt);
    838 	if (__predict_false(req == NULL)) {
    839 		/* This should happen very infrequently. */
    840 		xs->error = XS_RESOURCE_SHORTAGE;
    841 		scsipi_done(xs);
    842 		splx(s);
    843 		return;
    844 	}
    845 	splx(s);
    846 
    847 	/* Link the req and the scsipi_xfer. */
    848 	req->xfer = xs;
    849 
    850 	/* Now we build the command for the IOC */
    851 	mpt_req = req->req_vbuf;
    852 	memset(mpt_req, 0, sizeof(*mpt_req));
    853 
    854 	mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST;
    855 	mpt_req->Bus = mpt->bus;
    856 
    857 	mpt_req->SenseBufferLength =
    858 	    (sizeof(xs->sense.scsi_sense) < MPT_SENSE_SIZE) ?
    859 	    sizeof(xs->sense.scsi_sense) : MPT_SENSE_SIZE;
    860 
    861 	/*
    862 	 * We use the message context to find the request structure when
    863 	 * we get the command completion interrupt from the IOC.
    864 	 */
    865 	mpt_req->MsgContext = htole32(req->index);
    866 
    867 	/* Which physical device to do the I/O on. */
    868 	mpt_req->TargetID = periph->periph_target;
    869 	mpt_req->LUN[1] = periph->periph_lun;
    870 
    871 	/* Set the direction of the transfer. */
    872 	if (xs->xs_control & XS_CTL_DATA_IN)
    873 		mpt_req->Control = MPI_SCSIIO_CONTROL_READ;
    874 	else if (xs->xs_control & XS_CTL_DATA_OUT)
    875 		mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE;
    876 	else
    877 		mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER;
    878 
    879 	/* Set the queue behavior. */
    880 	if (__predict_true((!mpt->is_scsi) ||
    881 			   (mpt->mpt_tag_enable &
    882 			    (1 << periph->periph_target)))) {
    883 		switch (XS_CTL_TAGTYPE(xs)) {
    884 		case XS_CTL_HEAD_TAG:
    885 			mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ;
    886 			break;
    887 
    888 #if 0	/* XXX */
    889 		case XS_CTL_ACA_TAG:
    890 			mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ;
    891 			break;
    892 #endif
    893 
    894 		case XS_CTL_ORDERED_TAG:
    895 			mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ;
    896 			break;
    897 
    898 		case XS_CTL_SIMPLE_TAG:
    899 			mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
    900 			break;
    901 
    902 		default:
    903 			if (mpt->is_scsi)
    904 				mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
    905 			else
    906 				mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
    907 			break;
    908 		}
    909 	} else
    910 		mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
    911 
    912 	if (__predict_false(mpt->is_scsi &&
    913 			    (mpt->mpt_disc_enable &
    914 			     (1 << periph->periph_target)) == 0))
    915 		mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT;
    916 
    917 	mpt_req->Control = htole32(mpt_req->Control);
    918 
    919 	/* Copy the SCSI command block into place. */
    920 	memcpy(mpt_req->CDB, xs->cmd, xs->cmdlen);
    921 
    922 	mpt_req->CDBLength = xs->cmdlen;
    923 	mpt_req->DataLength = htole32(xs->datalen);
    924 	mpt_req->SenseBufferLowAddr = htole32(req->sense_pbuf);
    925 
    926 	/*
    927 	 * Map the DMA transfer.
    928 	 */
    929 	if (xs->datalen) {
    930 		SGE_SIMPLE32 *se;
    931 
    932 		error = bus_dmamap_load(mpt->sc_dmat, req->dmap, xs->data,
    933 		    xs->datalen, NULL,
    934 		    ((xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT
    935 						       : BUS_DMA_WAITOK) |
    936 		    BUS_DMA_STREAMING |
    937 		    ((xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMA_READ
    938 						       : BUS_DMA_WRITE));
    939 		switch (error) {
    940 		case 0:
    941 			break;
    942 
    943 		case ENOMEM:
    944 		case EAGAIN:
    945 			xs->error = XS_RESOURCE_SHORTAGE;
    946 			goto out_bad;
    947 
    948 		default:
    949 			xs->error = XS_DRIVER_STUFFUP;
    950 			mpt_prt(mpt, "error %d loading DMA map", error);
    951  out_bad:
    952 			s = splbio();
    953 			mpt_free_request(mpt, req);
    954 			scsipi_done(xs);
    955 			splx(s);
    956 			return;
    957 		}
    958 
    959 		if (req->dmap->dm_nsegs > MPT_NSGL_FIRST(mpt)) {
    960 			int seg, i, nleft = req->dmap->dm_nsegs;
    961 			uint32_t flags;
    962 			SGE_CHAIN32 *ce;
    963 
    964 			seg = 0;
    965 			flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
    966 			if (xs->xs_control & XS_CTL_DATA_OUT)
    967 				flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
    968 
    969 			se = (SGE_SIMPLE32 *) &mpt_req->SGL;
    970 			for (i = 0; i < MPT_NSGL_FIRST(mpt) - 1;
    971 			     i++, se++, seg++) {
    972 				uint32_t tf;
    973 
    974 				memset(se, 0, sizeof(*se));
    975 				se->Address =
    976 				    htole32(req->dmap->dm_segs[seg].ds_addr);
    977 				MPI_pSGE_SET_LENGTH(se,
    978 				    req->dmap->dm_segs[seg].ds_len);
    979 				tf = flags;
    980 				if (i == MPT_NSGL_FIRST(mpt) - 2)
    981 					tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
    982 				MPI_pSGE_SET_FLAGS(se, tf);
    983 				se->FlagsLength = htole32(se->FlagsLength);
    984 				nleft--;
    985 			}
    986 
    987 			/*
    988 			 * Tell the IOC where to find the first chain element.
    989 			 */
    990 			mpt_req->ChainOffset =
    991 			    ((char *)se - (char *)mpt_req) >> 2;
    992 
    993 			/*
    994 			 * Until we're finished with all segments...
    995 			 */
    996 			while (nleft) {
    997 				int ntodo;
    998 
    999 				/*
   1000 				 * Construct the chain element that points to
   1001 				 * the next segment.
   1002 				 */
   1003 				ce = (SGE_CHAIN32 *) se++;
   1004 				if (nleft > MPT_NSGL(mpt)) {
   1005 					ntodo = MPT_NSGL(mpt) - 1;
   1006 					ce->NextChainOffset = (MPT_RQSL(mpt) -
   1007 					    sizeof(SGE_SIMPLE32)) >> 2;
   1008 					ce->Length = htole16(MPT_NSGL(mpt)
   1009 						* sizeof(SGE_SIMPLE32));
   1010 				} else {
   1011 					ntodo = nleft;
   1012 					ce->NextChainOffset = 0;
   1013 					ce->Length = htole16(ntodo
   1014 						* sizeof(SGE_SIMPLE32));
   1015 				}
   1016 				ce->Address = htole32(req->req_pbuf +
   1017 				    ((char *)se - (char *)mpt_req));
   1018 				ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT;
   1019 				for (i = 0; i < ntodo; i++, se++, seg++) {
   1020 					uint32_t tf;
   1021 
   1022 					memset(se, 0, sizeof(*se));
   1023 					se->Address = htole32(
   1024 					    req->dmap->dm_segs[seg].ds_addr);
   1025 					MPI_pSGE_SET_LENGTH(se,
   1026 					    req->dmap->dm_segs[seg].ds_len);
   1027 					tf = flags;
   1028 					if (i == ntodo - 1) {
   1029 						tf |=
   1030 						    MPI_SGE_FLAGS_LAST_ELEMENT;
   1031 						if (ce->NextChainOffset == 0) {
   1032 							tf |=
   1033 						    MPI_SGE_FLAGS_END_OF_LIST |
   1034 						    MPI_SGE_FLAGS_END_OF_BUFFER;
   1035 						}
   1036 					}
   1037 					MPI_pSGE_SET_FLAGS(se, tf);
   1038 					se->FlagsLength =
   1039 					    htole32(se->FlagsLength);
   1040 					nleft--;
   1041 				}
   1042 			}
   1043 			bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
   1044 			    req->dmap->dm_mapsize,
   1045 			    (xs->xs_control & XS_CTL_DATA_IN) ?
   1046 			    				BUS_DMASYNC_PREREAD
   1047 						      : BUS_DMASYNC_PREWRITE);
   1048 		} else {
   1049 			int i;
   1050 			uint32_t flags;
   1051 
   1052 			flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
   1053 			if (xs->xs_control & XS_CTL_DATA_OUT)
   1054 				flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
   1055 
   1056 			/* Copy the segments into our SG list. */
   1057 			se = (SGE_SIMPLE32 *) &mpt_req->SGL;
   1058 			for (i = 0; i < req->dmap->dm_nsegs;
   1059 			     i++, se++) {
   1060 				uint32_t tf;
   1061 
   1062 				memset(se, 0, sizeof(*se));
   1063 				se->Address =
   1064 				    htole32(req->dmap->dm_segs[i].ds_addr);
   1065 				MPI_pSGE_SET_LENGTH(se,
   1066 				    req->dmap->dm_segs[i].ds_len);
   1067 				tf = flags;
   1068 				if (i == req->dmap->dm_nsegs - 1) {
   1069 					tf |=
   1070 					    MPI_SGE_FLAGS_LAST_ELEMENT |
   1071 					    MPI_SGE_FLAGS_END_OF_BUFFER |
   1072 					    MPI_SGE_FLAGS_END_OF_LIST;
   1073 				}
   1074 				MPI_pSGE_SET_FLAGS(se, tf);
   1075 				se->FlagsLength = htole32(se->FlagsLength);
   1076 			}
   1077 			bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
   1078 			    req->dmap->dm_mapsize,
   1079 			    (xs->xs_control & XS_CTL_DATA_IN) ?
   1080 			    				BUS_DMASYNC_PREREAD
   1081 						      : BUS_DMASYNC_PREWRITE);
   1082 		}
   1083 	} else {
   1084 		/*
   1085 		 * No data to transfer; just make a single simple SGL
   1086 		 * with zero length.
   1087 		 */
   1088 		SGE_SIMPLE32 *se = (SGE_SIMPLE32 *) &mpt_req->SGL;
   1089 		memset(se, 0, sizeof(*se));
   1090 		MPI_pSGE_SET_FLAGS(se,
   1091 		    (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
   1092 		     MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
   1093 		se->FlagsLength = htole32(se->FlagsLength);
   1094 	}
   1095 
   1096 	if (mpt->verbose > 1)
   1097 		mpt_print_scsi_io_request(mpt_req);
   1098 
   1099 		if (xs->timeout == 0) {
   1100 			mpt_prt(mpt, "mpt_run_xfer: no timeout specified for request: 0x%x\n",
   1101 			req->index);
   1102 			xs->timeout = 500;
   1103 		}
   1104 
   1105 	s = splbio();
   1106 	if (__predict_true((xs->xs_control & XS_CTL_POLL) == 0))
   1107 		callout_reset(&xs->xs_callout,
   1108 		    mstohz(xs->timeout), mpt_timeout, req);
   1109 	mpt_send_cmd(mpt, req);
   1110 	splx(s);
   1111 
   1112 	if (__predict_true((xs->xs_control & XS_CTL_POLL) == 0))
   1113 		return;
   1114 
   1115 	/*
   1116 	 * If we can't use interrupts, poll on completion.
   1117 	 */
   1118 	if (mpt_poll(mpt, xs, xs->timeout))
   1119 		mpt_timeout(req);
   1120 }
   1121 
   1122 static void
   1123 mpt_set_xfer_mode(mpt_softc_t *mpt, struct scsipi_xfer_mode *xm)
   1124 {
   1125 	fCONFIG_PAGE_SCSI_DEVICE_1 tmp;
   1126 
   1127 	/*
   1128 	 * Always allow disconnect; we don't have a way to disable
   1129 	 * it right now, in any case.
   1130 	 */
   1131 	mpt->mpt_disc_enable |= (1 << xm->xm_target);
   1132 
   1133 	if (xm->xm_mode & PERIPH_CAP_TQING)
   1134 		mpt->mpt_tag_enable |= (1 << xm->xm_target);
   1135 	else
   1136 		mpt->mpt_tag_enable &= ~(1 << xm->xm_target);
   1137 
   1138 	if (mpt->is_scsi) {
   1139 		/*
   1140 		 * SCSI transport settings only make any sense for
   1141 		 * SCSI
   1142 		 */
   1143 
   1144 		tmp = mpt->mpt_dev_page1[xm->xm_target];
   1145 
   1146 		/*
   1147 		 * Set the wide/narrow parameter for the target.
   1148 		 */
   1149 		if (xm->xm_mode & PERIPH_CAP_WIDE16)
   1150 			tmp.RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE;
   1151 		else
   1152 			tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE;
   1153 
   1154 		/*
   1155 		 * Set the synchronous parameters for the target.
   1156 		 *
   1157 		 * XXX If we request sync transfers, we just go ahead and
   1158 		 * XXX request the maximum available.  We need finer control
   1159 		 * XXX in order to implement Domain Validation.
   1160 		 */
   1161 		tmp.RequestedParameters &= ~(MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK |
   1162 		    MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK |
   1163 		    MPI_SCSIDEVPAGE1_RP_DT | MPI_SCSIDEVPAGE1_RP_QAS |
   1164 		    MPI_SCSIDEVPAGE1_RP_IU);
   1165 		if (xm->xm_mode & PERIPH_CAP_SYNC) {
   1166 			int factor, offset, np;
   1167 
   1168 			factor = (mpt->mpt_port_page0.Capabilities >> 8) & 0xff;
   1169 			offset = (mpt->mpt_port_page0.Capabilities >> 16) & 0xff;
   1170 			np = 0;
   1171 			if (factor < 0x9) {
   1172 				/* Ultra320 */
   1173 				np |= MPI_SCSIDEVPAGE1_RP_QAS | MPI_SCSIDEVPAGE1_RP_IU;
   1174 			}
   1175 			if (factor < 0xa) {
   1176 				/* at least Ultra160 */
   1177 				np |= MPI_SCSIDEVPAGE1_RP_DT;
   1178 			}
   1179 			np |= (factor << 8) | (offset << 16);
   1180 			tmp.RequestedParameters |= np;
   1181 		}
   1182 
   1183 		host2mpt_config_page_scsi_device_1(&tmp);
   1184 		if (mpt_write_cfg_page(mpt, xm->xm_target, &tmp.Header)) {
   1185 			mpt_prt(mpt, "unable to write Device Page 1");
   1186 			return;
   1187 		}
   1188 
   1189 		if (mpt_read_cfg_page(mpt, xm->xm_target, &tmp.Header)) {
   1190 			mpt_prt(mpt, "unable to read back Device Page 1");
   1191 			return;
   1192 		}
   1193 
   1194 		mpt2host_config_page_scsi_device_1(&tmp);
   1195 		mpt->mpt_dev_page1[xm->xm_target] = tmp;
   1196 		if (mpt->verbose > 1) {
   1197 			mpt_prt(mpt,
   1198 			    "SPI Target %d Page 1: RequestedParameters %x Config %x",
   1199 			    xm->xm_target,
   1200 			    mpt->mpt_dev_page1[xm->xm_target].RequestedParameters,
   1201 			    mpt->mpt_dev_page1[xm->xm_target].Configuration);
   1202 		}
   1203 	}
   1204 
   1205 	/*
   1206 	 * Make a note that we should perform an async callback at the
   1207 	 * end of the next successful command completion to report the
   1208 	 * negotiated transfer mode.
   1209 	 */
   1210 	mpt->mpt_report_xfer_mode |= (1 << xm->xm_target);
   1211 }
   1212 
   1213 static void
   1214 mpt_get_xfer_mode(mpt_softc_t *mpt, struct scsipi_periph *periph)
   1215 {
   1216 	fCONFIG_PAGE_SCSI_DEVICE_0 tmp;
   1217 	struct scsipi_xfer_mode xm;
   1218 	int period, offset;
   1219 
   1220 	tmp = mpt->mpt_dev_page0[periph->periph_target];
   1221 	host2mpt_config_page_scsi_device_0(&tmp);
   1222 	if (mpt_read_cfg_page(mpt, periph->periph_target, &tmp.Header)) {
   1223 		mpt_prt(mpt, "unable to read Device Page 0");
   1224 		return;
   1225 	}
   1226 	mpt2host_config_page_scsi_device_0(&tmp);
   1227 
   1228 	if (mpt->verbose > 1) {
   1229 		mpt_prt(mpt,
   1230 		    "SPI Tgt %d Page 0: NParms %x Information %x",
   1231 		    periph->periph_target,
   1232 		    tmp.NegotiatedParameters, tmp.Information);
   1233 	}
   1234 
   1235 	xm.xm_target = periph->periph_target;
   1236 	xm.xm_mode = 0;
   1237 
   1238 	if (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE)
   1239 		xm.xm_mode |= PERIPH_CAP_WIDE16;
   1240 
   1241 	period = (tmp.NegotiatedParameters >> 8) & 0xff;
   1242 	offset = (tmp.NegotiatedParameters >> 16) & 0xff;
   1243 	if (offset) {
   1244 		xm.xm_period = period;
   1245 		xm.xm_offset = offset;
   1246 		xm.xm_mode |= PERIPH_CAP_SYNC;
   1247 	}
   1248 
   1249 	/*
   1250 	 * Tagged queueing is all controlled by us; there is no
   1251 	 * other setting to query.
   1252 	 */
   1253 	if (mpt->mpt_tag_enable & (1 << periph->periph_target))
   1254 		xm.xm_mode |= PERIPH_CAP_TQING;
   1255 
   1256 	/*
   1257 	 * We're going to deliver the async event, so clear the marker.
   1258 	 */
   1259 	mpt->mpt_report_xfer_mode &= ~(1 << periph->periph_target);
   1260 
   1261 	scsipi_async_event(&mpt->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
   1262 }
   1263 
   1264 static void
   1265 mpt_ctlop(mpt_softc_t *mpt, void *vmsg, uint32_t reply)
   1266 {
   1267 	MSG_DEFAULT_REPLY *dmsg = vmsg;
   1268 
   1269 	switch (dmsg->Function) {
   1270 	case MPI_FUNCTION_EVENT_NOTIFICATION:
   1271 		mpt_event_notify_reply(mpt, vmsg);
   1272 		mpt_free_reply(mpt, (reply << 1));
   1273 		break;
   1274 
   1275 	case MPI_FUNCTION_EVENT_ACK:
   1276 	    {
   1277 		MSG_EVENT_ACK_REPLY *msg = vmsg;
   1278 		int index = le32toh(msg->MsgContext) & ~0x80000000;
   1279 		mpt_free_reply(mpt, (reply << 1));
   1280 		if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
   1281 			request_t *req = &mpt->request_pool[index];
   1282 			mpt_free_request(mpt, req);
   1283 		}
   1284 		break;
   1285 	    }
   1286 
   1287 	case MPI_FUNCTION_PORT_ENABLE:
   1288 	    {
   1289 		MSG_PORT_ENABLE_REPLY *msg = vmsg;
   1290 		int index = le32toh(msg->MsgContext) & ~0x80000000;
   1291 		if (mpt->verbose > 1)
   1292 			mpt_prt(mpt, "enable port reply index %d", index);
   1293 		if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
   1294 			request_t *req = &mpt->request_pool[index];
   1295 			req->debug = REQ_DONE;
   1296 		}
   1297 		mpt_free_reply(mpt, (reply << 1));
   1298 		break;
   1299 	    }
   1300 
   1301 	case MPI_FUNCTION_CONFIG:
   1302 	    {
   1303 		MSG_CONFIG_REPLY *msg = vmsg;
   1304 		int index = le32toh(msg->MsgContext) & ~0x80000000;
   1305 		if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
   1306 			request_t *req = &mpt->request_pool[index];
   1307 			req->debug = REQ_DONE;
   1308 			req->sequence = reply;
   1309 		} else
   1310 			mpt_free_reply(mpt, (reply << 1));
   1311 		break;
   1312 	    }
   1313 
   1314 	default:
   1315 		mpt_prt(mpt, "unknown ctlop: 0x%x", dmsg->Function);
   1316 	}
   1317 }
   1318 
   1319 static void
   1320 mpt_event_notify_reply(mpt_softc_t *mpt, MSG_EVENT_NOTIFY_REPLY *msg)
   1321 {
   1322 
   1323 	switch (le32toh(msg->Event)) {
   1324 	case MPI_EVENT_LOG_DATA:
   1325 	    {
   1326 		int i;
   1327 
   1328 		/* Some error occurrerd that the Fusion wants logged. */
   1329 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x", msg->IOCLogInfo);
   1330 		mpt_prt(mpt, "EvtLogData: Event Data:");
   1331 		for (i = 0; i < msg->EventDataLength; i++) {
   1332 			if ((i % 4) == 0)
   1333 				printf("%s:\t", device_xname(mpt->sc_dev));
   1334 			printf("0x%08x%c", msg->Data[i],
   1335 			    ((i % 4) == 3) ? '\n' : ' ');
   1336 		}
   1337 		if ((i % 4) != 0)
   1338 			printf("\n");
   1339 		break;
   1340 	    }
   1341 
   1342 	case MPI_EVENT_UNIT_ATTENTION:
   1343 		mpt_prt(mpt, "Unit Attn: Bus 0x%02x Target 0x%02x",
   1344 		    (msg->Data[0] >> 8) & 0xff, msg->Data[0] & 0xff);
   1345 		break;
   1346 
   1347 	case MPI_EVENT_IOC_BUS_RESET:
   1348 		/* We generated a bus reset. */
   1349 		mpt_prt(mpt, "IOC Bus Reset Port %d",
   1350 		    (msg->Data[0] >> 8) & 0xff);
   1351 		break;
   1352 
   1353 	case MPI_EVENT_EXT_BUS_RESET:
   1354 		/* Someone else generated a bus reset. */
   1355 		mpt_prt(mpt, "External Bus Reset");
   1356 		/*
   1357 		 * These replies don't return EventData like the MPI
   1358 		 * spec says they do.
   1359 		 */
   1360 		/* XXX Send an async event? */
   1361 		break;
   1362 
   1363 	case MPI_EVENT_RESCAN:
   1364 		/*
   1365 		 * In general, thise means a device has been added
   1366 		 * to the loop.
   1367 		 */
   1368 		mpt_prt(mpt, "Rescan Port %d", (msg->Data[0] >> 8) & 0xff);
   1369 		/* XXX Send an async event? */
   1370 		break;
   1371 
   1372 	case MPI_EVENT_LINK_STATUS_CHANGE:
   1373 		mpt_prt(mpt, "Port %d: Link state %s",
   1374 		    (msg->Data[1] >> 8) & 0xff,
   1375 		    (msg->Data[0] & 0xff) == 0 ? "Failed" : "Active");
   1376 		break;
   1377 
   1378 	case MPI_EVENT_LOOP_STATE_CHANGE:
   1379 		switch ((msg->Data[0] >> 16) & 0xff) {
   1380 		case 0x01:
   1381 			mpt_prt(mpt,
   1382 			    "Port %d: FC Link Event: LIP(%02x,%02x) "
   1383 			    "(Loop Initialization)",
   1384 			    (msg->Data[1] >> 8) & 0xff,
   1385 			    (msg->Data[0] >> 8) & 0xff,
   1386 			    (msg->Data[0]     ) & 0xff);
   1387 			switch ((msg->Data[0] >> 8) & 0xff) {
   1388 			case 0xf7:
   1389 				if ((msg->Data[0] & 0xff) == 0xf7)
   1390 					mpt_prt(mpt, "\tDevice needs AL_PA");
   1391 				else
   1392 					mpt_prt(mpt, "\tDevice %02x doesn't "
   1393 					    "like FC performance",
   1394 					    msg->Data[0] & 0xff);
   1395 				break;
   1396 
   1397 			case 0xf8:
   1398 				if ((msg->Data[0] & 0xff) == 0xf7)
   1399 					mpt_prt(mpt, "\tDevice detected loop "
   1400 					    "failure before acquiring AL_PA");
   1401 				else
   1402 					mpt_prt(mpt, "\tDevice %02x detected "
   1403 					    "loop failure",
   1404 					    msg->Data[0] & 0xff);
   1405 				break;
   1406 
   1407 			default:
   1408 				mpt_prt(mpt, "\tDevice %02x requests that "
   1409 				    "device %02x reset itself",
   1410 				    msg->Data[0] & 0xff,
   1411 				    (msg->Data[0] >> 8) & 0xff);
   1412 				break;
   1413 			}
   1414 			break;
   1415 
   1416 		case 0x02:
   1417 			mpt_prt(mpt, "Port %d: FC Link Event: LPE(%02x,%02x) "
   1418 			    "(Loop Port Enable)",
   1419 			    (msg->Data[1] >> 8) & 0xff,
   1420 			    (msg->Data[0] >> 8) & 0xff,
   1421 			    (msg->Data[0]     ) & 0xff);
   1422 			break;
   1423 
   1424 		case 0x03:
   1425 			mpt_prt(mpt, "Port %d: FC Link Event: LPB(%02x,%02x) "
   1426 			    "(Loop Port Bypass)",
   1427 			    (msg->Data[1] >> 8) & 0xff,
   1428 			    (msg->Data[0] >> 8) & 0xff,
   1429 			    (msg->Data[0]     ) & 0xff);
   1430 			break;
   1431 
   1432 		default:
   1433 			mpt_prt(mpt, "Port %d: FC Link Event: "
   1434 			    "Unknown event (%02x %02x %02x)",
   1435 			    (msg->Data[1] >>  8) & 0xff,
   1436 			    (msg->Data[0] >> 16) & 0xff,
   1437 			    (msg->Data[0] >>  8) & 0xff,
   1438 			    (msg->Data[0]      ) & 0xff);
   1439 			break;
   1440 		}
   1441 		break;
   1442 
   1443 	case MPI_EVENT_LOGOUT:
   1444 		mpt_prt(mpt, "Port %d: FC Logout: N_PortID: %02x",
   1445 		    (msg->Data[1] >> 8) & 0xff, msg->Data[0]);
   1446 		break;
   1447 
   1448 	case MPI_EVENT_EVENT_CHANGE:
   1449 		/*
   1450 		 * This is just an acknowledgement of our
   1451 		 * mpt_send_event_request().
   1452 		 */
   1453 		break;
   1454 
   1455 	case MPI_EVENT_SAS_PHY_LINK_STATUS:
   1456 		switch ((msg->Data[0] >> 12) & 0x0f) {
   1457 		case 0x00:
   1458 			mpt_prt(mpt, "Phy %d: Link Status Unknown",
   1459 			    msg->Data[0] & 0xff);
   1460 			break;
   1461 		case 0x01:
   1462 			mpt_prt(mpt, "Phy %d: Link Disabled",
   1463 			    msg->Data[0] & 0xff);
   1464 			break;
   1465 		case 0x02:
   1466 			mpt_prt(mpt, "Phy %d: Failed Speed Negotiation",
   1467 			    msg->Data[0] & 0xff);
   1468 			break;
   1469 		case 0x03:
   1470 			mpt_prt(mpt, "Phy %d: SATA OOB Complete",
   1471 			    msg->Data[0] & 0xff);
   1472 			break;
   1473 		case 0x08:
   1474 			mpt_prt(mpt, "Phy %d: Link Rate 1.5 Gbps",
   1475 			    msg->Data[0] & 0xff);
   1476 			break;
   1477 		case 0x09:
   1478 			mpt_prt(mpt, "Phy %d: Link Rate 3.0 Gbps",
   1479 			    msg->Data[0] & 0xff);
   1480 			break;
   1481 		default:
   1482 			mpt_prt(mpt, "Phy %d: SAS Phy Link Status Event: "
   1483 			    "Unknown event (%0x)",
   1484 			    msg->Data[0] & 0xff, (msg->Data[0] >> 8) & 0xff);
   1485 		}
   1486 		break;
   1487 
   1488 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
   1489 	case MPI_EVENT_SAS_DISCOVERY:
   1490 		/* ignore these events for now */
   1491 		break;
   1492 
   1493 	case MPI_EVENT_QUEUE_FULL:
   1494 		/* This can get a little chatty */
   1495 		if (mpt->verbose > 0)
   1496 			mpt_prt(mpt, "Queue Full Event");
   1497 		break;
   1498 
   1499 	default:
   1500 		mpt_prt(mpt, "Unknown async event: 0x%x", msg->Event);
   1501 		break;
   1502 	}
   1503 
   1504 	if (msg->AckRequired) {
   1505 		MSG_EVENT_ACK *ackp;
   1506 		request_t *req;
   1507 
   1508 		if ((req = mpt_get_request(mpt)) == NULL) {
   1509 			/* XXX XXX XXX XXXJRT */
   1510 			panic("mpt_event_notify_reply: unable to allocate "
   1511 			    "request structure");
   1512 		}
   1513 
   1514 		ackp = (MSG_EVENT_ACK *) req->req_vbuf;
   1515 		memset(ackp, 0, sizeof(*ackp));
   1516 		ackp->Function = MPI_FUNCTION_EVENT_ACK;
   1517 		ackp->Event = msg->Event;
   1518 		ackp->EventContext = msg->EventContext;
   1519 		ackp->MsgContext = htole32(req->index | 0x80000000);
   1520 		mpt_check_doorbell(mpt);
   1521 		mpt_send_cmd(mpt, req);
   1522 	}
   1523 }
   1524 
   1525 static void
   1526 mpt_bus_reset(mpt_softc_t *mpt)
   1527 {
   1528 	request_t *req;
   1529 	MSG_SCSI_TASK_MGMT *mngt_req;
   1530 	int s;
   1531 
   1532 	s = splbio();
   1533 	if (mpt->mngt_req) {
   1534 		/* request already queued; can't do more */
   1535 		splx(s);
   1536 		return;
   1537 	}
   1538 	req = mpt_get_request(mpt);
   1539 	if (__predict_false(req == NULL)) {
   1540 		mpt_prt(mpt, "no mngt request\n");
   1541 		splx(s);
   1542 		return;
   1543 	}
   1544 	mpt->mngt_req = req;
   1545 	splx(s);
   1546 	mngt_req = req->req_vbuf;
   1547 	memset(mngt_req, 0, sizeof(*mngt_req));
   1548 	mngt_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT;
   1549 	mngt_req->Bus = mpt->bus;
   1550 	mngt_req->TargetID = 0;
   1551 	mngt_req->ChainOffset = 0;
   1552 	mngt_req->TaskType = MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS;
   1553 	mngt_req->Reserved1 = 0;
   1554 	mngt_req->MsgFlags =
   1555 	    mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0;
   1556 	mngt_req->MsgContext = req->index;
   1557 	mngt_req->TaskMsgContext = 0;
   1558 	s = splbio();
   1559 	mpt_send_handshake_cmd(mpt, sizeof(*mngt_req), mngt_req);
   1560 	splx(s);
   1561 }
   1562 
   1563 /*****************************************************************************
   1564  * SCSI interface routines
   1565  *****************************************************************************/
   1566 
   1567 static void
   1568 mpt_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
   1569     void *arg)
   1570 {
   1571 	struct scsipi_adapter *adapt = chan->chan_adapter;
   1572 	mpt_softc_t *mpt = device_private(adapt->adapt_dev);
   1573 
   1574 	switch (req) {
   1575 	case ADAPTER_REQ_RUN_XFER:
   1576 		mpt_run_xfer(mpt, (struct scsipi_xfer *) arg);
   1577 		return;
   1578 
   1579 	case ADAPTER_REQ_GROW_RESOURCES:
   1580 		/* Not supported. */
   1581 		return;
   1582 
   1583 	case ADAPTER_REQ_SET_XFER_MODE:
   1584 		mpt_set_xfer_mode(mpt, (struct scsipi_xfer_mode *) arg);
   1585 		return;
   1586 	}
   1587 }
   1588 
   1589 static void
   1590 mpt_minphys(struct buf *bp)
   1591 {
   1592 	if (bp->b_bcount > MPT_MAX_XFER)
   1593 		bp->b_bcount = MPT_MAX_XFER;
   1594 	minphys(bp);
   1595 }
   1596 
   1597 static int
   1598 mpt_ioctl(struct scsipi_channel *chan, u_long cmd, void *arg,
   1599     int flag, struct proc *p)
   1600 {
   1601 	mpt_softc_t *mpt;
   1602 	int s;
   1603 
   1604 	mpt = device_private(chan->chan_adapter->adapt_dev);
   1605 	switch (cmd) {
   1606 	case SCBUSIORESET:
   1607 		mpt_bus_reset(mpt);
   1608 		s = splbio();
   1609 		mpt_intr(mpt);
   1610 		splx(s);
   1611 		return(0);
   1612 	default:
   1613 		return (ENOTTY);
   1614 	}
   1615 }
   1616 
   1617 #if NBIO > 0
   1618 static fCONFIG_PAGE_IOC_2 *
   1619 mpt_get_cfg_page_ioc2(mpt_softc_t *mpt)
   1620 {
   1621 	fCONFIG_PAGE_HEADER hdr;
   1622 	fCONFIG_PAGE_IOC_2 *ioc2;
   1623 	int rv;
   1624 
   1625 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2, 0, &hdr);
   1626 	if (rv)
   1627 		return NULL;
   1628 
   1629 	ioc2 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1630 	if (ioc2 == NULL)
   1631 		return NULL;
   1632 
   1633 	memcpy(ioc2, &hdr, sizeof(hdr));
   1634 
   1635 	rv = mpt_read_cfg_page(mpt, 0, &ioc2->Header);
   1636 	if (rv)
   1637 		goto fail;
   1638 	mpt2host_config_page_ioc_2(ioc2);
   1639 
   1640 	return ioc2;
   1641 
   1642 fail:
   1643 	free(ioc2, M_DEVBUF);
   1644 	return NULL;
   1645 }
   1646 
   1647 static fCONFIG_PAGE_IOC_3 *
   1648 mpt_get_cfg_page_ioc3(mpt_softc_t *mpt)
   1649 {
   1650 	fCONFIG_PAGE_HEADER hdr;
   1651 	fCONFIG_PAGE_IOC_3 *ioc3;
   1652 	int rv;
   1653 
   1654 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 3, 0, &hdr);
   1655 	if (rv)
   1656 		return NULL;
   1657 
   1658 	ioc3 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1659 	if (ioc3 == NULL)
   1660 		return NULL;
   1661 
   1662 	memcpy(ioc3, &hdr, sizeof(hdr));
   1663 
   1664 	rv = mpt_read_cfg_page(mpt, 0, &ioc3->Header);
   1665 	if (rv)
   1666 		goto fail;
   1667 
   1668 	return ioc3;
   1669 
   1670 fail:
   1671 	free(ioc3, M_DEVBUF);
   1672 	return NULL;
   1673 }
   1674 
   1675 
   1676 static fCONFIG_PAGE_RAID_VOL_0 *
   1677 mpt_get_cfg_page_raid_vol0(mpt_softc_t *mpt, int address)
   1678 {
   1679 	fCONFIG_PAGE_HEADER hdr;
   1680 	fCONFIG_PAGE_RAID_VOL_0 *rvol0;
   1681 	int rv;
   1682 
   1683 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_RAID_VOLUME, 0,
   1684 	    address, &hdr);
   1685 	if (rv)
   1686 		return NULL;
   1687 
   1688 	rvol0 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1689 	if (rvol0 == NULL)
   1690 		return NULL;
   1691 
   1692 	memcpy(rvol0, &hdr, sizeof(hdr));
   1693 
   1694 	rv = mpt_read_cfg_page(mpt, address, &rvol0->Header);
   1695 	if (rv)
   1696 		goto fail;
   1697 	mpt2host_config_page_raid_vol_0(rvol0);
   1698 
   1699 	return rvol0;
   1700 
   1701 fail:
   1702 	free(rvol0, M_DEVBUF);
   1703 	return NULL;
   1704 }
   1705 
   1706 static fCONFIG_PAGE_RAID_PHYS_DISK_0 *
   1707 mpt_get_cfg_page_raid_phys_disk0(mpt_softc_t *mpt, int address)
   1708 {
   1709 	fCONFIG_PAGE_HEADER hdr;
   1710 	fCONFIG_PAGE_RAID_PHYS_DISK_0 *physdisk0;
   1711 	int rv;
   1712 
   1713 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_RAID_PHYSDISK, 0,
   1714 	    address, &hdr);
   1715 	if (rv)
   1716 		return NULL;
   1717 
   1718 	physdisk0 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1719 	if (physdisk0 == NULL)
   1720 		return NULL;
   1721 
   1722 	memcpy(physdisk0, &hdr, sizeof(hdr));
   1723 
   1724 	rv = mpt_read_cfg_page(mpt, address, &physdisk0->Header);
   1725 	if (rv)
   1726 		goto fail;
   1727 	mpt2host_config_page_raid_phys_disk_0(physdisk0);
   1728 
   1729 	return physdisk0;
   1730 
   1731 fail:
   1732 	free(physdisk0, M_DEVBUF);
   1733 	return NULL;
   1734 }
   1735 
   1736 static bool
   1737 mpt_is_raid(mpt_softc_t *mpt)
   1738 {
   1739 	fCONFIG_PAGE_IOC_2 *ioc2;
   1740 	bool is_raid = false;
   1741 
   1742 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1743 	if (ioc2 == NULL)
   1744 		return false;
   1745 
   1746 	if (ioc2->CapabilitiesFlags != 0xdeadbeef) {
   1747 		is_raid = !!(ioc2->CapabilitiesFlags &
   1748 				(MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT|
   1749 				 MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT|
   1750 				 MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT));
   1751 	}
   1752 
   1753 	free(ioc2, M_DEVBUF);
   1754 
   1755 	return is_raid;
   1756 }
   1757 
   1758 static int
   1759 mpt_bio_ioctl(device_t dev, u_long cmd, void *addr)
   1760 {
   1761 	mpt_softc_t *mpt = device_private(dev);
   1762 	int error, s;
   1763 
   1764 	KERNEL_LOCK(1, curlwp);
   1765 	s = splbio();
   1766 
   1767 	switch (cmd) {
   1768 	case BIOCINQ:
   1769 		error = mpt_bio_ioctl_inq(mpt, addr);
   1770 		break;
   1771 	case BIOCVOL:
   1772 		error = mpt_bio_ioctl_vol(mpt, addr);
   1773 		break;
   1774 	case BIOCDISK_NOVOL:
   1775 		error = mpt_bio_ioctl_disk_novol(mpt, addr);
   1776 		break;
   1777 	case BIOCDISK:
   1778 		error = mpt_bio_ioctl_disk(mpt, addr);
   1779 		break;
   1780 	case BIOCSETSTATE:
   1781 		error = mpt_bio_ioctl_setstate(mpt, addr);
   1782 		break;
   1783 	default:
   1784 		error = EINVAL;
   1785 		break;
   1786 	}
   1787 
   1788 	splx(s);
   1789 	KERNEL_UNLOCK_ONE(curlwp);
   1790 
   1791 	return error;
   1792 }
   1793 
   1794 static int
   1795 mpt_bio_ioctl_inq(mpt_softc_t *mpt, struct bioc_inq *bi)
   1796 {
   1797 	fCONFIG_PAGE_IOC_2 *ioc2;
   1798 	fCONFIG_PAGE_IOC_3 *ioc3;
   1799 
   1800 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1801 	if (ioc2 == NULL)
   1802 		return EIO;
   1803 	ioc3 = mpt_get_cfg_page_ioc3(mpt);
   1804 	if (ioc3 == NULL) {
   1805 		free(ioc2, M_DEVBUF);
   1806 		return EIO;
   1807 	}
   1808 
   1809 	strlcpy(bi->bi_dev, device_xname(mpt->sc_dev), sizeof(bi->bi_dev));
   1810 	bi->bi_novol = ioc2->NumActiveVolumes;
   1811 	bi->bi_nodisk = ioc3->NumPhysDisks;
   1812 
   1813 	free(ioc2, M_DEVBUF);
   1814 	free(ioc3, M_DEVBUF);
   1815 
   1816 	return 0;
   1817 }
   1818 
   1819 static int
   1820 mpt_bio_ioctl_vol(mpt_softc_t *mpt, struct bioc_vol *bv)
   1821 {
   1822 	fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
   1823 	fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
   1824 	fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
   1825 	struct scsipi_periph *periph;
   1826 	struct scsipi_inquiry_data inqbuf;
   1827 	char vendor[9], product[17], revision[5];
   1828 	int address;
   1829 
   1830 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1831 	if (ioc2 == NULL)
   1832 		return EIO;
   1833 
   1834 	if (bv->bv_volid < 0 || bv->bv_volid >= ioc2->NumActiveVolumes)
   1835 		goto fail;
   1836 
   1837 	ioc2rvol = &ioc2->RaidVolume[bv->bv_volid];
   1838 	address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
   1839 
   1840 	rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
   1841 	if (rvol0 == NULL)
   1842 		goto fail;
   1843 
   1844 	bv->bv_dev[0] = '\0';
   1845 	bv->bv_vendor[0] = '\0';
   1846 
   1847 	periph = scsipi_lookup_periph(&mpt->sc_channel, ioc2rvol->VolumeBus, 0);
   1848 	if (periph != NULL) {
   1849 		if (periph->periph_dev != NULL) {
   1850 			snprintf(bv->bv_dev, sizeof(bv->bv_dev), "%s",
   1851 			    device_xname(periph->periph_dev));
   1852 		}
   1853 		memset(&inqbuf, 0, sizeof(inqbuf));
   1854 		if (scsipi_inquire(periph, &inqbuf,
   1855 		    XS_CTL_DISCOVERY | XS_CTL_SILENT) == 0) {
   1856 			strnvisx(vendor, sizeof(vendor),
   1857 			    inqbuf.vendor, sizeof(inqbuf.vendor),
   1858 			    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1859 			strnvisx(product, sizeof(product),
   1860 			    inqbuf.product, sizeof(inqbuf.product),
   1861 			    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1862 			strnvisx(revision, sizeof(revision),
   1863 			    inqbuf.revision, sizeof(inqbuf.revision),
   1864 			    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1865 
   1866 			snprintf(bv->bv_vendor, sizeof(bv->bv_vendor),
   1867 			    "%s %s %s", vendor, product, revision);
   1868 		}
   1869 
   1870 		snprintf(bv->bv_dev, sizeof(bv->bv_dev), "%s",
   1871 		    device_xname(periph->periph_dev));
   1872 	}
   1873 	bv->bv_nodisk = rvol0->NumPhysDisks;
   1874 	bv->bv_size = (uint64_t)rvol0->MaxLBA * 512;
   1875 	bv->bv_stripe_size = rvol0->StripeSize;
   1876 	bv->bv_percent = -1;
   1877 	bv->bv_seconds = 0;
   1878 
   1879 	switch (rvol0->VolumeStatus.State) {
   1880 	case MPI_RAIDVOL0_STATUS_STATE_OPTIMAL:
   1881 		bv->bv_status = BIOC_SVONLINE;
   1882 		break;
   1883 	case MPI_RAIDVOL0_STATUS_STATE_DEGRADED:
   1884 		bv->bv_status = BIOC_SVDEGRADED;
   1885 		break;
   1886 	case MPI_RAIDVOL0_STATUS_STATE_FAILED:
   1887 		bv->bv_status = BIOC_SVOFFLINE;
   1888 		break;
   1889 	default:
   1890 		bv->bv_status = BIOC_SVINVALID;
   1891 		break;
   1892 	}
   1893 
   1894 	switch (ioc2rvol->VolumeType) {
   1895 	case MPI_RAID_VOL_TYPE_IS:
   1896 		bv->bv_level = 0;
   1897 		break;
   1898 	case MPI_RAID_VOL_TYPE_IME:
   1899 	case MPI_RAID_VOL_TYPE_IM:
   1900 		bv->bv_level = 1;
   1901 		break;
   1902 	default:
   1903 		bv->bv_level = -1;
   1904 		break;
   1905 	}
   1906 
   1907 	free(ioc2, M_DEVBUF);
   1908 	free(rvol0, M_DEVBUF);
   1909 
   1910 	return 0;
   1911 
   1912 fail:
   1913 	if (ioc2) free(ioc2, M_DEVBUF);
   1914 	if (rvol0) free(rvol0, M_DEVBUF);
   1915 	return EINVAL;
   1916 }
   1917 
   1918 static void
   1919 mpt_bio_ioctl_disk_common(mpt_softc_t *mpt, struct bioc_disk *bd,
   1920     int address)
   1921 {
   1922 	fCONFIG_PAGE_RAID_PHYS_DISK_0 *phys = NULL;
   1923 	char vendor_id[9], product_id[17], product_rev_level[5];
   1924 
   1925 	phys = mpt_get_cfg_page_raid_phys_disk0(mpt, address);
   1926 	if (phys == NULL)
   1927 		return;
   1928 
   1929 	strnvisx(vendor_id, sizeof(vendor_id),
   1930 	    phys->InquiryData.VendorID, sizeof(phys->InquiryData.VendorID),
   1931 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1932 	strnvisx(product_id, sizeof(product_id),
   1933 	    phys->InquiryData.ProductID, sizeof(phys->InquiryData.ProductID),
   1934 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1935 	strnvisx(product_rev_level, sizeof(product_rev_level),
   1936 	    phys->InquiryData.ProductRevLevel,
   1937 	    sizeof(phys->InquiryData.ProductRevLevel),
   1938 	    VIS_TRIM|VIS_SAFE|VIS_OCTAL);
   1939 
   1940 	snprintf(bd->bd_vendor, sizeof(bd->bd_vendor), "%s %s %s",
   1941 	    vendor_id, product_id, product_rev_level);
   1942 	strlcpy(bd->bd_serial, phys->InquiryData.Info, sizeof(bd->bd_serial));
   1943 	bd->bd_procdev[0] = '\0';
   1944 	bd->bd_channel = phys->PhysDiskBus;
   1945 	bd->bd_target = phys->PhysDiskID;
   1946 	bd->bd_lun = 0;
   1947 	bd->bd_size = (uint64_t)phys->MaxLBA * 512;
   1948 
   1949 	switch (phys->PhysDiskStatus.State) {
   1950 	case MPI_PHYSDISK0_STATUS_ONLINE:
   1951 		bd->bd_status = BIOC_SDONLINE;
   1952 		break;
   1953 	case MPI_PHYSDISK0_STATUS_MISSING:
   1954 	case MPI_PHYSDISK0_STATUS_FAILED:
   1955 		bd->bd_status = BIOC_SDFAILED;
   1956 		break;
   1957 	case MPI_PHYSDISK0_STATUS_OFFLINE_REQUESTED:
   1958 	case MPI_PHYSDISK0_STATUS_FAILED_REQUESTED:
   1959 	case MPI_PHYSDISK0_STATUS_OTHER_OFFLINE:
   1960 		bd->bd_status = BIOC_SDOFFLINE;
   1961 		break;
   1962 	case MPI_PHYSDISK0_STATUS_INITIALIZING:
   1963 		bd->bd_status = BIOC_SDSCRUB;
   1964 		break;
   1965 	case MPI_PHYSDISK0_STATUS_NOT_COMPATIBLE:
   1966 	default:
   1967 		bd->bd_status = BIOC_SDINVALID;
   1968 		break;
   1969 	}
   1970 
   1971 	free(phys, M_DEVBUF);
   1972 }
   1973 
   1974 static int
   1975 mpt_bio_ioctl_disk_novol(mpt_softc_t *mpt, struct bioc_disk *bd)
   1976 {
   1977 	fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
   1978 	fCONFIG_PAGE_IOC_3 *ioc3 = NULL;
   1979 	fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
   1980 	fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
   1981 	int address, v, d;
   1982 
   1983 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1984 	if (ioc2 == NULL)
   1985 		return EIO;
   1986 	ioc3 = mpt_get_cfg_page_ioc3(mpt);
   1987 	if (ioc3 == NULL) {
   1988 		free(ioc2, M_DEVBUF);
   1989 		return EIO;
   1990 	}
   1991 
   1992 	if (bd->bd_diskid < 0 || bd->bd_diskid >= ioc3->NumPhysDisks)
   1993 		goto fail;
   1994 
   1995 	address = ioc3->PhysDisk[bd->bd_diskid].PhysDiskNum;
   1996 
   1997 	mpt_bio_ioctl_disk_common(mpt, bd, address);
   1998 
   1999 	bd->bd_disknovol = true;
   2000 	for (v = 0; bd->bd_disknovol && v < ioc2->NumActiveVolumes; v++) {
   2001 		ioc2rvol = &ioc2->RaidVolume[v];
   2002 		address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
   2003 
   2004 		rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
   2005 		if (rvol0 == NULL)
   2006 			continue;
   2007 
   2008 		for (d = 0; d < rvol0->NumPhysDisks; d++) {
   2009 			if (rvol0->PhysDisk[d].PhysDiskNum ==
   2010 			    ioc3->PhysDisk[bd->bd_diskid].PhysDiskNum) {
   2011 				bd->bd_disknovol = false;
   2012 				bd->bd_volid = v;
   2013 				break;
   2014 			}
   2015 		}
   2016 		free(rvol0, M_DEVBUF);
   2017 	}
   2018 
   2019 	free(ioc3, M_DEVBUF);
   2020 	free(ioc2, M_DEVBUF);
   2021 
   2022 	return 0;
   2023 
   2024 fail:
   2025 	if (ioc3) free(ioc3, M_DEVBUF);
   2026 	if (ioc2) free(ioc2, M_DEVBUF);
   2027 	return EINVAL;
   2028 }
   2029 
   2030 
   2031 static int
   2032 mpt_bio_ioctl_disk(mpt_softc_t *mpt, struct bioc_disk *bd)
   2033 {
   2034 	fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
   2035 	fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
   2036 	fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
   2037 	int address;
   2038 
   2039 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   2040 	if (ioc2 == NULL)
   2041 		return EIO;
   2042 
   2043 	if (bd->bd_volid < 0 || bd->bd_volid >= ioc2->NumActiveVolumes)
   2044 		goto fail;
   2045 
   2046 	ioc2rvol = &ioc2->RaidVolume[bd->bd_volid];
   2047 	address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
   2048 
   2049 	rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
   2050 	if (rvol0 == NULL)
   2051 		goto fail;
   2052 
   2053 	if (bd->bd_diskid < 0 || bd->bd_diskid >= rvol0->NumPhysDisks)
   2054 		goto fail;
   2055 
   2056 	address = rvol0->PhysDisk[bd->bd_diskid].PhysDiskNum;
   2057 
   2058 	mpt_bio_ioctl_disk_common(mpt, bd, address);
   2059 
   2060 	free(ioc2, M_DEVBUF);
   2061 
   2062 	return 0;
   2063 
   2064 fail:
   2065 	if (ioc2) free(ioc2, M_DEVBUF);
   2066 	return EINVAL;
   2067 }
   2068 
   2069 static int
   2070 mpt_bio_ioctl_setstate(mpt_softc_t *mpt, struct bioc_setstate *bs)
   2071 {
   2072 	return ENOTTY;
   2073 }
   2074 #endif
   2075 
   2076