Home | History | Annotate | Line # | Download | only in ic
mpt_netbsd.c revision 1.31
      1 /*	$NetBSD: mpt_netbsd.c,v 1.31 2014/09/28 11:27:00 jmcneill Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2000, 2001 by Greg Ansley
     40  * Partially derived from Matt Jacob's ISP driver.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice immediately at the beginning of the file, without modification,
     47  *    this list of conditions, and the following disclaimer.
     48  * 2. The name of the author may not be used to endorse or promote products
     49  *    derived from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
     55  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 /*
     64  * Additional Copyright (c) 2002 by Matthew Jacob under same license.
     65  */
     66 
     67 /*
     68  * mpt_netbsd.c:
     69  *
     70  * NetBSD-specific routines for LSI Fusion adapters.  Includes some
     71  * bus_dma glue, and SCSIPI glue.
     72  *
     73  * Adapted from the FreeBSD "mpt" driver by Jason R. Thorpe for
     74  * Wasabi Systems, Inc.
     75  *
     76  * Additional contributions by Garrett D'Amore on behalf of TELES AG.
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: mpt_netbsd.c,v 1.31 2014/09/28 11:27:00 jmcneill Exp $");
     81 
     82 #include "bio.h"
     83 
     84 #include <dev/ic/mpt.h>			/* pulls in all headers */
     85 #include <sys/scsiio.h>
     86 
     87 #if NBIO > 0
     88 #include <dev/biovar.h>
     89 #endif
     90 
     91 static int	mpt_poll(mpt_softc_t *, struct scsipi_xfer *, int);
     92 static void	mpt_timeout(void *);
     93 static void	mpt_restart(mpt_softc_t *, request_t *);
     94 static void	mpt_done(mpt_softc_t *, uint32_t);
     95 static int	mpt_drain_queue(mpt_softc_t *);
     96 static void	mpt_run_xfer(mpt_softc_t *, struct scsipi_xfer *);
     97 static void	mpt_set_xfer_mode(mpt_softc_t *, struct scsipi_xfer_mode *);
     98 static void	mpt_get_xfer_mode(mpt_softc_t *, struct scsipi_periph *);
     99 static void	mpt_ctlop(mpt_softc_t *, void *vmsg, uint32_t);
    100 static void	mpt_event_notify_reply(mpt_softc_t *, MSG_EVENT_NOTIFY_REPLY *);
    101 static void  mpt_bus_reset(mpt_softc_t *);
    102 
    103 static void	mpt_scsipi_request(struct scsipi_channel *,
    104 		    scsipi_adapter_req_t, void *);
    105 static void	mpt_minphys(struct buf *);
    106 static int 	mpt_ioctl(struct scsipi_channel *, u_long, void *, int,
    107 	struct proc *);
    108 
    109 #if NBIO > 0
    110 static bool	mpt_is_raid(mpt_softc_t *);
    111 static int	mpt_bio_ioctl(device_t, u_long, void *);
    112 static int	mpt_bio_ioctl_inq(mpt_softc_t *, struct bioc_inq *);
    113 static int	mpt_bio_ioctl_vol(mpt_softc_t *, struct bioc_vol *);
    114 static int	mpt_bio_ioctl_disk(mpt_softc_t *, struct bioc_disk *);
    115 static int	mpt_bio_ioctl_disk_novol(mpt_softc_t *, struct bioc_disk *);
    116 static int	mpt_bio_ioctl_setstate(mpt_softc_t *, struct bioc_setstate *);
    117 #endif
    118 
    119 void
    120 mpt_scsipi_attach(mpt_softc_t *mpt)
    121 {
    122 	struct scsipi_adapter *adapt = &mpt->sc_adapter;
    123 	struct scsipi_channel *chan = &mpt->sc_channel;
    124 	int maxq;
    125 
    126 	mpt->bus = 0;		/* XXX ?? */
    127 
    128 	maxq = (mpt->mpt_global_credits < MPT_MAX_REQUESTS(mpt)) ?
    129 	    mpt->mpt_global_credits : MPT_MAX_REQUESTS(mpt);
    130 
    131 	/* Fill in the scsipi_adapter. */
    132 	memset(adapt, 0, sizeof(*adapt));
    133 	adapt->adapt_dev = mpt->sc_dev;
    134 	adapt->adapt_nchannels = 1;
    135 	adapt->adapt_openings = maxq - 2;	/* Reserve 2 for driver use*/
    136 	adapt->adapt_max_periph = maxq - 2;
    137 	adapt->adapt_request = mpt_scsipi_request;
    138 	adapt->adapt_minphys = mpt_minphys;
    139 	adapt->adapt_ioctl = mpt_ioctl;
    140 
    141 	/* Fill in the scsipi_channel. */
    142 	memset(chan, 0, sizeof(*chan));
    143 	chan->chan_adapter = adapt;
    144 	if (mpt->is_sas) {
    145 		chan->chan_bustype = &scsi_sas_bustype;
    146 	} else if (mpt->is_fc) {
    147 		chan->chan_bustype = &scsi_fc_bustype;
    148 	} else {
    149 		chan->chan_bustype = &scsi_bustype;
    150 	}
    151 	chan->chan_channel = 0;
    152 	chan->chan_flags = 0;
    153 	chan->chan_nluns = 8;
    154 	chan->chan_ntargets = mpt->mpt_max_devices;
    155 	chan->chan_id = mpt->mpt_ini_id;
    156 
    157 	/*
    158 	* Save the output of the config so we can rescan the bus in case of
    159 	* errors
    160 	*/
    161 	mpt->sc_scsibus_dv = config_found(mpt->sc_dev, &mpt->sc_channel,
    162 	scsiprint);
    163 
    164 #if NBIO > 0
    165 	if (mpt_is_raid(mpt)) {
    166 		if (bio_register(mpt->sc_dev, mpt_bio_ioctl) != 0)
    167 			panic("%s: controller registration failed",
    168 			    device_xname(mpt->sc_dev));
    169 	}
    170 #endif
    171 }
    172 
    173 int
    174 mpt_dma_mem_alloc(mpt_softc_t *mpt)
    175 {
    176 	bus_dma_segment_t reply_seg, request_seg;
    177 	int reply_rseg, request_rseg;
    178 	bus_addr_t pptr, end;
    179 	char *vptr;
    180 	size_t len;
    181 	int error, i;
    182 
    183 	/* Check if we have already allocated the reply memory. */
    184 	if (mpt->reply != NULL)
    185 		return (0);
    186 
    187 	/*
    188 	 * Allocate the request pool.  This isn't really DMA'd memory,
    189 	 * but it's a convenient place to do it.
    190 	 */
    191 	len = sizeof(request_t) * MPT_MAX_REQUESTS(mpt);
    192 	mpt->request_pool = malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
    193 	if (mpt->request_pool == NULL) {
    194 		aprint_error_dev(mpt->sc_dev, "unable to allocate request pool\n");
    195 		return (ENOMEM);
    196 	}
    197 
    198 	/*
    199 	 * Allocate DMA resources for reply buffers.
    200 	 */
    201 	error = bus_dmamem_alloc(mpt->sc_dmat, PAGE_SIZE, PAGE_SIZE, 0,
    202 	    &reply_seg, 1, &reply_rseg, 0);
    203 	if (error) {
    204 		aprint_error_dev(mpt->sc_dev, "unable to allocate reply area, error = %d\n",
    205 		    error);
    206 		goto fail_0;
    207 	}
    208 
    209 	error = bus_dmamem_map(mpt->sc_dmat, &reply_seg, reply_rseg, PAGE_SIZE,
    210 	    (void **) &mpt->reply, BUS_DMA_COHERENT/*XXX*/);
    211 	if (error) {
    212 		aprint_error_dev(mpt->sc_dev, "unable to map reply area, error = %d\n",
    213 		    error);
    214 		goto fail_1;
    215 	}
    216 
    217 	error = bus_dmamap_create(mpt->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    218 	    0, 0, &mpt->reply_dmap);
    219 	if (error) {
    220 		aprint_error_dev(mpt->sc_dev, "unable to create reply DMA map, error = %d\n",
    221 		    error);
    222 		goto fail_2;
    223 	}
    224 
    225 	error = bus_dmamap_load(mpt->sc_dmat, mpt->reply_dmap, mpt->reply,
    226 	    PAGE_SIZE, NULL, 0);
    227 	if (error) {
    228 		aprint_error_dev(mpt->sc_dev, "unable to load reply DMA map, error = %d\n",
    229 		    error);
    230 		goto fail_3;
    231 	}
    232 	mpt->reply_phys = mpt->reply_dmap->dm_segs[0].ds_addr;
    233 
    234 	/*
    235 	 * Allocate DMA resources for request buffers.
    236 	 */
    237 	error = bus_dmamem_alloc(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt),
    238 	    PAGE_SIZE, 0, &request_seg, 1, &request_rseg, 0);
    239 	if (error) {
    240 		aprint_error_dev(mpt->sc_dev, "unable to allocate request area, "
    241 		    "error = %d\n", error);
    242 		goto fail_4;
    243 	}
    244 
    245 	error = bus_dmamem_map(mpt->sc_dmat, &request_seg, request_rseg,
    246 	    MPT_REQ_MEM_SIZE(mpt), (void **) &mpt->request, 0);
    247 	if (error) {
    248 		aprint_error_dev(mpt->sc_dev, "unable to map request area, error = %d\n",
    249 		    error);
    250 		goto fail_5;
    251 	}
    252 
    253 	error = bus_dmamap_create(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt), 1,
    254 	    MPT_REQ_MEM_SIZE(mpt), 0, 0, &mpt->request_dmap);
    255 	if (error) {
    256 		aprint_error_dev(mpt->sc_dev, "unable to create request DMA map, "
    257 		    "error = %d\n", error);
    258 		goto fail_6;
    259 	}
    260 
    261 	error = bus_dmamap_load(mpt->sc_dmat, mpt->request_dmap, mpt->request,
    262 	    MPT_REQ_MEM_SIZE(mpt), NULL, 0);
    263 	if (error) {
    264 		aprint_error_dev(mpt->sc_dev, "unable to load request DMA map, error = %d\n",
    265 		    error);
    266 		goto fail_7;
    267 	}
    268 	mpt->request_phys = mpt->request_dmap->dm_segs[0].ds_addr;
    269 
    270 	pptr = mpt->request_phys;
    271 	vptr = (void *) mpt->request;
    272 	end = pptr + MPT_REQ_MEM_SIZE(mpt);
    273 
    274 	for (i = 0; pptr < end; i++) {
    275 		request_t *req = &mpt->request_pool[i];
    276 		req->index = i;
    277 
    278 		/* Store location of Request Data */
    279 		req->req_pbuf = pptr;
    280 		req->req_vbuf = vptr;
    281 
    282 		pptr += MPT_REQUEST_AREA;
    283 		vptr += MPT_REQUEST_AREA;
    284 
    285 		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
    286 		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
    287 
    288 		error = bus_dmamap_create(mpt->sc_dmat, MAXPHYS,
    289 		    MPT_SGL_MAX, MAXPHYS, 0, 0, &req->dmap);
    290 		if (error) {
    291 			aprint_error_dev(mpt->sc_dev, "unable to create req %d DMA map, "
    292 			    "error = %d\n", i, error);
    293 			goto fail_8;
    294 		}
    295 	}
    296 
    297 	return (0);
    298 
    299  fail_8:
    300 	for (--i; i >= 0; i--) {
    301 		request_t *req = &mpt->request_pool[i];
    302 		if (req->dmap != NULL)
    303 			bus_dmamap_destroy(mpt->sc_dmat, req->dmap);
    304 	}
    305 	bus_dmamap_unload(mpt->sc_dmat, mpt->request_dmap);
    306  fail_7:
    307 	bus_dmamap_destroy(mpt->sc_dmat, mpt->request_dmap);
    308  fail_6:
    309 	bus_dmamem_unmap(mpt->sc_dmat, (void *)mpt->request, PAGE_SIZE);
    310  fail_5:
    311 	bus_dmamem_free(mpt->sc_dmat, &request_seg, request_rseg);
    312  fail_4:
    313 	bus_dmamap_unload(mpt->sc_dmat, mpt->reply_dmap);
    314  fail_3:
    315 	bus_dmamap_destroy(mpt->sc_dmat, mpt->reply_dmap);
    316  fail_2:
    317 	bus_dmamem_unmap(mpt->sc_dmat, (void *)mpt->reply, PAGE_SIZE);
    318  fail_1:
    319 	bus_dmamem_free(mpt->sc_dmat, &reply_seg, reply_rseg);
    320  fail_0:
    321 	free(mpt->request_pool, M_DEVBUF);
    322 
    323 	mpt->reply = NULL;
    324 	mpt->request = NULL;
    325 	mpt->request_pool = NULL;
    326 
    327 	return (error);
    328 }
    329 
    330 int
    331 mpt_intr(void *arg)
    332 {
    333 	mpt_softc_t *mpt = arg;
    334 	int nrepl = 0;
    335 
    336 	if ((mpt_read(mpt, MPT_OFFSET_INTR_STATUS) & MPT_INTR_REPLY_READY) == 0)
    337 		return (0);
    338 
    339 	nrepl = mpt_drain_queue(mpt);
    340 	return (nrepl != 0);
    341 }
    342 
    343 void
    344 mpt_prt(mpt_softc_t *mpt, const char *fmt, ...)
    345 {
    346 	va_list ap;
    347 
    348 	printf("%s: ", device_xname(mpt->sc_dev));
    349 	va_start(ap, fmt);
    350 	vprintf(fmt, ap);
    351 	va_end(ap);
    352 	printf("\n");
    353 }
    354 
    355 static int
    356 mpt_poll(mpt_softc_t *mpt, struct scsipi_xfer *xs, int count)
    357 {
    358 
    359 	/* Timeouts are in msec, so we loop in 1000usec cycles */
    360 	while (count) {
    361 		mpt_intr(mpt);
    362 		if (xs->xs_status & XS_STS_DONE)
    363 			return (0);
    364 		delay(1000);		/* only happens in boot, so ok */
    365 		count--;
    366 	}
    367 	return (1);
    368 }
    369 
    370 static void
    371 mpt_timeout(void *arg)
    372 {
    373 	request_t *req = arg;
    374 	struct scsipi_xfer *xs;
    375 	struct scsipi_periph *periph;
    376 	mpt_softc_t *mpt;
    377  	uint32_t oseq;
    378 	int s, nrepl = 0;
    379 
    380 	if (req->xfer  == NULL) {
    381 		printf("mpt_timeout: NULL xfer for request index 0x%x, sequenc 0x%x\n",
    382 		req->index, req->sequence);
    383 		return;
    384 	}
    385 	xs = req->xfer;
    386 	periph = xs->xs_periph;
    387 	mpt = device_private(periph->periph_channel->chan_adapter->adapt_dev);
    388 	scsipi_printaddr(periph);
    389 	printf("command timeout\n");
    390 
    391 	s = splbio();
    392 
    393 	oseq = req->sequence;
    394 	mpt->timeouts++;
    395 	if (mpt_intr(mpt)) {
    396 		if (req->sequence != oseq) {
    397 			mpt->success++;
    398 			mpt_prt(mpt, "recovered from command timeout");
    399 			splx(s);
    400 			return;
    401 		}
    402 	}
    403 
    404 	/*
    405 	 * Ensure the IOC is really done giving us data since it appears it can
    406 	 * sometimes fail to give us interrupts under heavy load.
    407 	 */
    408 	nrepl = mpt_drain_queue(mpt);
    409 	if (nrepl ) {
    410 		mpt_prt(mpt, "mpt_timeout: recovered %d commands",nrepl);
    411 	}
    412 
    413 	if (req->sequence != oseq) {
    414 		mpt->success++;
    415 		splx(s);
    416 		return;
    417 	}
    418 
    419 	mpt_prt(mpt,
    420 	    "timeout on request index = 0x%x, seq = 0x%08x",
    421 	    req->index, req->sequence);
    422 	mpt_check_doorbell(mpt);
    423 	mpt_prt(mpt, "Status 0x%08x, Mask 0x%08x, Doorbell 0x%08x",
    424 	    mpt_read(mpt, MPT_OFFSET_INTR_STATUS),
    425 	    mpt_read(mpt, MPT_OFFSET_INTR_MASK),
    426 	    mpt_read(mpt, MPT_OFFSET_DOORBELL));
    427 	mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug));
    428 	if (mpt->verbose > 1)
    429 		mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf);
    430 
    431 	xs->error = XS_TIMEOUT;
    432 	splx(s);
    433 	mpt_restart(mpt, req);
    434 }
    435 
    436 static void
    437 mpt_restart(mpt_softc_t *mpt, request_t *req0)
    438 {
    439 	int i, s, nreq;
    440 	request_t *req;
    441 	struct scsipi_xfer *xs;
    442 
    443 	/* first, reset the IOC, leaving stopped so all requests are idle */
    444 	if (mpt_soft_reset(mpt) != MPT_OK) {
    445 		mpt_prt(mpt, "soft reset failed");
    446 		/*
    447 		* Don't try a hard reset since this mangles the PCI
    448 		* configuration registers.
    449 		*/
    450 		return;
    451 	}
    452 
    453 	/* Freeze the channel so scsipi doesn't queue more commands. */
    454 	scsipi_channel_freeze(&mpt->sc_channel, 1);
    455 
    456 	/* Return all pending requests to scsipi and de-allocate them. */
    457 	s = splbio();
    458 	nreq = 0;
    459 	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
    460 		req = &mpt->request_pool[i];
    461 		xs = req->xfer;
    462 		if (xs != NULL) {
    463 			if (xs->datalen != 0)
    464 				bus_dmamap_unload(mpt->sc_dmat, req->dmap);
    465 			req->xfer = NULL;
    466 			callout_stop(&xs->xs_callout);
    467 			if (req != req0) {
    468 				nreq++;
    469 				xs->error = XS_REQUEUE;
    470 			}
    471 			scsipi_done(xs);
    472 			/*
    473 			* Don't need to mpt_free_request() since mpt_init()
    474 			* below will free all requests anyway.
    475 			*/
    476 			mpt_free_request(mpt, req);
    477 		}
    478 	}
    479 	splx(s);
    480 	if (nreq > 0)
    481 		mpt_prt(mpt, "re-queued %d requests", nreq);
    482 
    483 	/* Re-initialize the IOC (which restarts it). */
    484 	if (mpt_init(mpt, MPT_DB_INIT_HOST) == 0)
    485 		mpt_prt(mpt, "restart succeeded");
    486 	/* else error message already printed */
    487 
    488 	/* Thaw the channel, causing scsipi to re-queue the commands. */
    489 	scsipi_channel_thaw(&mpt->sc_channel, 1);
    490 }
    491 
    492 static int
    493 mpt_drain_queue(mpt_softc_t *mpt)
    494 {
    495 	int nrepl = 0;
    496 	uint32_t reply;
    497 
    498 	reply = mpt_pop_reply_queue(mpt);
    499 	while (reply != MPT_REPLY_EMPTY) {
    500 		nrepl++;
    501 		if (mpt->verbose > 1) {
    502 			if ((reply & MPT_CONTEXT_REPLY) != 0) {
    503 				/* Address reply; IOC has something to say */
    504 				mpt_print_reply(MPT_REPLY_PTOV(mpt, reply));
    505 			} else {
    506 				/* Context reply; all went well */
    507 				mpt_prt(mpt, "context %u reply OK", reply);
    508 			}
    509 		}
    510 		mpt_done(mpt, reply);
    511 		reply = mpt_pop_reply_queue(mpt);
    512 	}
    513 	return (nrepl);
    514 }
    515 
    516 static void
    517 mpt_done(mpt_softc_t *mpt, uint32_t reply)
    518 {
    519 	struct scsipi_xfer *xs = NULL;
    520 	struct scsipi_periph *periph;
    521 	int index;
    522 	request_t *req;
    523 	MSG_REQUEST_HEADER *mpt_req;
    524 	MSG_SCSI_IO_REPLY *mpt_reply;
    525 	int restart = 0; /* nonzero if we need to restart the IOC*/
    526 
    527 	if (__predict_true((reply & MPT_CONTEXT_REPLY) == 0)) {
    528 		/* context reply (ok) */
    529 		mpt_reply = NULL;
    530 		index = reply & MPT_CONTEXT_MASK;
    531 	} else {
    532 		/* address reply (error) */
    533 
    534 		/* XXX BUS_DMASYNC_POSTREAD XXX */
    535 		mpt_reply = MPT_REPLY_PTOV(mpt, reply);
    536 		if (mpt_reply != NULL) {
    537 			if (mpt->verbose > 1) {
    538 				uint32_t *pReply = (uint32_t *) mpt_reply;
    539 
    540 				mpt_prt(mpt, "Address Reply (index %u):",
    541 				    le32toh(mpt_reply->MsgContext) & 0xffff);
    542 				mpt_prt(mpt, "%08x %08x %08x %08x", pReply[0],
    543 				    pReply[1], pReply[2], pReply[3]);
    544 				mpt_prt(mpt, "%08x %08x %08x %08x", pReply[4],
    545 				    pReply[5], pReply[6], pReply[7]);
    546 				mpt_prt(mpt, "%08x %08x %08x %08x", pReply[8],
    547 				    pReply[9], pReply[10], pReply[11]);
    548 			}
    549 			index = le32toh(mpt_reply->MsgContext);
    550 		} else
    551 			index = reply & MPT_CONTEXT_MASK;
    552 	}
    553 
    554 	/*
    555 	 * Address reply with MessageContext high bit set.
    556 	 * This is most likely a notify message, so we try
    557 	 * to process it, then free it.
    558 	 */
    559 	if (__predict_false((index & 0x80000000) != 0)) {
    560 		if (mpt_reply != NULL)
    561 			mpt_ctlop(mpt, mpt_reply, reply);
    562 		else
    563 			mpt_prt(mpt, "%s: index 0x%x, NULL reply", __func__,
    564 			    index);
    565 		return;
    566 	}
    567 
    568 	/* Did we end up with a valid index into the table? */
    569 	if (__predict_false(index < 0 || index >= MPT_MAX_REQUESTS(mpt))) {
    570 		mpt_prt(mpt, "%s: invalid index (0x%x) in reply", __func__,
    571 		    index);
    572 		return;
    573 	}
    574 
    575 	req = &mpt->request_pool[index];
    576 
    577 	/* Make sure memory hasn't been trashed. */
    578 	if (__predict_false(req->index != index)) {
    579 		mpt_prt(mpt, "%s: corrupted request_t (0x%x)", __func__,
    580 		    index);
    581 		return;
    582 	}
    583 
    584 	MPT_SYNC_REQ(mpt, req, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    585 	mpt_req = req->req_vbuf;
    586 
    587 	/* Short cut for task management replies; nothing more for us to do. */
    588 	if (__predict_false(mpt_req->Function == MPI_FUNCTION_SCSI_TASK_MGMT)) {
    589 		if (mpt->verbose > 1)
    590 			mpt_prt(mpt, "%s: TASK MGMT", __func__);
    591 		KASSERT(req == mpt->mngt_req);
    592 		mpt->mngt_req = NULL;
    593 		goto done;
    594 	}
    595 
    596 	if (__predict_false(mpt_req->Function == MPI_FUNCTION_PORT_ENABLE))
    597 		goto done;
    598 
    599 	/*
    600 	 * At this point, it had better be a SCSI I/O command, but don't
    601 	 * crash if it isn't.
    602 	 */
    603 	if (__predict_false(mpt_req->Function !=
    604 			    MPI_FUNCTION_SCSI_IO_REQUEST)) {
    605 		if (mpt->verbose > 1)
    606 			mpt_prt(mpt, "%s: unknown Function 0x%x (0x%x)",
    607 			    __func__, mpt_req->Function, index);
    608 		goto done;
    609 	}
    610 
    611 	/* Recover scsipi_xfer from the request structure. */
    612 	xs = req->xfer;
    613 
    614 	/* Can't have a SCSI command without a scsipi_xfer. */
    615 	if (__predict_false(xs == NULL)) {
    616 		mpt_prt(mpt,
    617 		    "%s: no scsipi_xfer, index = 0x%x, seq = 0x%08x", __func__,
    618 		    req->index, req->sequence);
    619 		mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug));
    620 		mpt_prt(mpt, "mpt_request:");
    621 		mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf);
    622 
    623 		if (mpt_reply != NULL) {
    624 			mpt_prt(mpt, "mpt_reply:");
    625 			mpt_print_reply(mpt_reply);
    626 		} else {
    627 			mpt_prt(mpt, "context reply: 0x%08x", reply);
    628 		}
    629 		goto done;
    630 	}
    631 
    632 	callout_stop(&xs->xs_callout);
    633 
    634 	periph = xs->xs_periph;
    635 
    636 	/*
    637 	 * If we were a data transfer, unload the map that described
    638 	 * the data buffer.
    639 	 */
    640 	if (__predict_true(xs->datalen != 0)) {
    641 		bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
    642 		    req->dmap->dm_mapsize,
    643 		    (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_POSTREAD
    644 						      : BUS_DMASYNC_POSTWRITE);
    645 		bus_dmamap_unload(mpt->sc_dmat, req->dmap);
    646 	}
    647 
    648 	if (__predict_true(mpt_reply == NULL)) {
    649 		/*
    650 		 * Context reply; report that the command was
    651 		 * successful!
    652 		 *
    653 		 * Also report the xfer mode, if necessary.
    654 		 */
    655 		if (__predict_false(mpt->mpt_report_xfer_mode != 0)) {
    656 			if ((mpt->mpt_report_xfer_mode &
    657 			     (1 << periph->periph_target)) != 0)
    658 				mpt_get_xfer_mode(mpt, periph);
    659 		}
    660 		xs->error = XS_NOERROR;
    661 		xs->status = SCSI_OK;
    662 		xs->resid = 0;
    663 		mpt_free_request(mpt, req);
    664 		scsipi_done(xs);
    665 		return;
    666 	}
    667 
    668 	xs->status = mpt_reply->SCSIStatus;
    669 	switch (le16toh(mpt_reply->IOCStatus) & MPI_IOCSTATUS_MASK) {
    670 	case MPI_IOCSTATUS_SCSI_DATA_OVERRUN:
    671 		xs->error = XS_DRIVER_STUFFUP;
    672 		mpt_prt(mpt, "%s: IOC overrun!", __func__);
    673 		break;
    674 
    675 	case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN:
    676 		/*
    677 		 * Yikes!  Tagged queue full comes through this path!
    678 		 *
    679 		 * So we'll change it to a status error and anything
    680 		 * that returns status should probably be a status
    681 		 * error as well.
    682 		 */
    683 		xs->resid = xs->datalen - le32toh(mpt_reply->TransferCount);
    684 		if (mpt_reply->SCSIState &
    685 		    MPI_SCSI_STATE_NO_SCSI_STATUS) {
    686 			xs->error = XS_DRIVER_STUFFUP;
    687 			break;
    688 		}
    689 		/* FALLTHROUGH */
    690 	case MPI_IOCSTATUS_SUCCESS:
    691 	case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR:
    692 		switch (xs->status) {
    693 		case SCSI_OK:
    694 			/* Report the xfer mode, if necessary. */
    695 			if ((mpt->mpt_report_xfer_mode &
    696 			     (1 << periph->periph_target)) != 0)
    697 				mpt_get_xfer_mode(mpt, periph);
    698 			xs->resid = 0;
    699 			break;
    700 
    701 		case SCSI_CHECK:
    702 			xs->error = XS_SENSE;
    703 			break;
    704 
    705 		case SCSI_BUSY:
    706 		case SCSI_QUEUE_FULL:
    707 			xs->error = XS_BUSY;
    708 			break;
    709 
    710 		default:
    711 			scsipi_printaddr(periph);
    712 			printf("invalid status code %d\n", xs->status);
    713 			xs->error = XS_DRIVER_STUFFUP;
    714 			break;
    715 		}
    716 		break;
    717 
    718 	case MPI_IOCSTATUS_BUSY:
    719 	case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES:
    720 		xs->error = XS_RESOURCE_SHORTAGE;
    721 		break;
    722 
    723 	case MPI_IOCSTATUS_SCSI_INVALID_BUS:
    724 	case MPI_IOCSTATUS_SCSI_INVALID_TARGETID:
    725 	case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
    726 		xs->error = XS_SELTIMEOUT;
    727 		break;
    728 
    729 	case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
    730 		xs->error = XS_DRIVER_STUFFUP;
    731 		mpt_prt(mpt, "%s: IOC SCSI residual mismatch!", __func__);
    732 		restart = 1;
    733 		break;
    734 
    735 	case MPI_IOCSTATUS_SCSI_TASK_TERMINATED:
    736 		/* XXX What should we do here? */
    737 		mpt_prt(mpt, "%s: IOC SCSI task terminated!", __func__);
    738 		restart = 1;
    739 		break;
    740 
    741 	case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
    742 		/* XXX */
    743 		xs->error = XS_DRIVER_STUFFUP;
    744 		mpt_prt(mpt, "%s: IOC SCSI task failed!", __func__);
    745 		restart = 1;
    746 		break;
    747 
    748 	case MPI_IOCSTATUS_SCSI_IOC_TERMINATED:
    749 		/* XXX */
    750 		xs->error = XS_DRIVER_STUFFUP;
    751 		mpt_prt(mpt, "%s: IOC task terminated!", __func__);
    752 		restart = 1;
    753 		break;
    754 
    755 	case MPI_IOCSTATUS_SCSI_EXT_TERMINATED:
    756 		/* XXX This is a bus-reset */
    757 		xs->error = XS_DRIVER_STUFFUP;
    758 		mpt_prt(mpt, "%s: IOC SCSI bus reset!", __func__);
    759 		restart = 1;
    760 		break;
    761 
    762 	case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR:
    763 		/*
    764 		 * FreeBSD and Linux indicate this is a phase error between
    765 		 * the IOC and the drive itself. When this happens, the IOC
    766 		 * becomes unhappy and stops processing all transactions.
    767 		 * Call mpt_timeout which knows how to get the IOC back
    768 		 * on its feet.
    769 		 */
    770 		 mpt_prt(mpt, "%s: IOC indicates protocol error -- "
    771 		     "recovering...", __func__);
    772 		xs->error = XS_TIMEOUT;
    773 		restart = 1;
    774 
    775 		break;
    776 
    777 	default:
    778 		/* XXX unrecognized HBA error */
    779 		xs->error = XS_DRIVER_STUFFUP;
    780 		mpt_prt(mpt, "%s: IOC returned unknown code: 0x%x", __func__,
    781 		    le16toh(mpt_reply->IOCStatus));
    782 		restart = 1;
    783 		break;
    784 	}
    785 
    786 	if (mpt_reply != NULL) {
    787 		if (mpt_reply->SCSIState & MPI_SCSI_STATE_AUTOSENSE_VALID) {
    788 			memcpy(&xs->sense.scsi_sense, req->sense_vbuf,
    789 			    sizeof(xs->sense.scsi_sense));
    790 		} else if (mpt_reply->SCSIState &
    791 		    MPI_SCSI_STATE_AUTOSENSE_FAILED) {
    792 			/*
    793 			 * This will cause the scsipi layer to issue
    794 			 * a REQUEST SENSE.
    795 			 */
    796 			if (xs->status == SCSI_CHECK)
    797 				xs->error = XS_BUSY;
    798 		}
    799 	}
    800 
    801  done:
    802 	if (mpt_reply != NULL && le16toh(mpt_reply->IOCStatus) &
    803 	MPI_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
    804 		mpt_prt(mpt, "%s: IOC has error - logging...\n", __func__);
    805 		mpt_ctlop(mpt, mpt_reply, reply);
    806 	}
    807 
    808 	/* If IOC done with this request, free it up. */
    809 	if (mpt_reply == NULL || (mpt_reply->MsgFlags & 0x80) == 0)
    810 		mpt_free_request(mpt, req);
    811 
    812 	/* If address reply, give the buffer back to the IOC. */
    813 	if (mpt_reply != NULL)
    814 		mpt_free_reply(mpt, (reply << 1));
    815 
    816 	if (xs != NULL)
    817 		scsipi_done(xs);
    818 
    819 	if (restart) {
    820 		mpt_prt(mpt, "%s: IOC fatal error: restarting...", __func__);
    821 		mpt_restart(mpt, NULL);
    822 	}
    823 }
    824 
    825 static void
    826 mpt_run_xfer(mpt_softc_t *mpt, struct scsipi_xfer *xs)
    827 {
    828 	struct scsipi_periph *periph = xs->xs_periph;
    829 	request_t *req;
    830 	MSG_SCSI_IO_REQUEST *mpt_req;
    831 	int error, s;
    832 
    833 	s = splbio();
    834 	req = mpt_get_request(mpt);
    835 	if (__predict_false(req == NULL)) {
    836 		/* This should happen very infrequently. */
    837 		xs->error = XS_RESOURCE_SHORTAGE;
    838 		scsipi_done(xs);
    839 		splx(s);
    840 		return;
    841 	}
    842 	splx(s);
    843 
    844 	/* Link the req and the scsipi_xfer. */
    845 	req->xfer = xs;
    846 
    847 	/* Now we build the command for the IOC */
    848 	mpt_req = req->req_vbuf;
    849 	memset(mpt_req, 0, sizeof(*mpt_req));
    850 
    851 	mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST;
    852 	mpt_req->Bus = mpt->bus;
    853 
    854 	mpt_req->SenseBufferLength =
    855 	    (sizeof(xs->sense.scsi_sense) < MPT_SENSE_SIZE) ?
    856 	    sizeof(xs->sense.scsi_sense) : MPT_SENSE_SIZE;
    857 
    858 	/*
    859 	 * We use the message context to find the request structure when
    860 	 * we get the command completion interrupt from the IOC.
    861 	 */
    862 	mpt_req->MsgContext = htole32(req->index);
    863 
    864 	/* Which physical device to do the I/O on. */
    865 	mpt_req->TargetID = periph->periph_target;
    866 	mpt_req->LUN[1] = periph->periph_lun;
    867 
    868 	/* Set the direction of the transfer. */
    869 	if (xs->xs_control & XS_CTL_DATA_IN)
    870 		mpt_req->Control = MPI_SCSIIO_CONTROL_READ;
    871 	else if (xs->xs_control & XS_CTL_DATA_OUT)
    872 		mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE;
    873 	else
    874 		mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER;
    875 
    876 	/* Set the queue behavior. */
    877 	if (__predict_true((!mpt->is_scsi) ||
    878 			   (mpt->mpt_tag_enable &
    879 			    (1 << periph->periph_target)))) {
    880 		switch (XS_CTL_TAGTYPE(xs)) {
    881 		case XS_CTL_HEAD_TAG:
    882 			mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ;
    883 			break;
    884 
    885 #if 0	/* XXX */
    886 		case XS_CTL_ACA_TAG:
    887 			mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ;
    888 			break;
    889 #endif
    890 
    891 		case XS_CTL_ORDERED_TAG:
    892 			mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ;
    893 			break;
    894 
    895 		case XS_CTL_SIMPLE_TAG:
    896 			mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
    897 			break;
    898 
    899 		default:
    900 			if (mpt->is_scsi)
    901 				mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
    902 			else
    903 				mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
    904 			break;
    905 		}
    906 	} else
    907 		mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
    908 
    909 	if (__predict_false(mpt->is_scsi &&
    910 			    (mpt->mpt_disc_enable &
    911 			     (1 << periph->periph_target)) == 0))
    912 		mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT;
    913 
    914 	mpt_req->Control = htole32(mpt_req->Control);
    915 
    916 	/* Copy the SCSI command block into place. */
    917 	memcpy(mpt_req->CDB, xs->cmd, xs->cmdlen);
    918 
    919 	mpt_req->CDBLength = xs->cmdlen;
    920 	mpt_req->DataLength = htole32(xs->datalen);
    921 	mpt_req->SenseBufferLowAddr = htole32(req->sense_pbuf);
    922 
    923 	/*
    924 	 * Map the DMA transfer.
    925 	 */
    926 	if (xs->datalen) {
    927 		SGE_SIMPLE32 *se;
    928 
    929 		error = bus_dmamap_load(mpt->sc_dmat, req->dmap, xs->data,
    930 		    xs->datalen, NULL,
    931 		    ((xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT
    932 						       : BUS_DMA_WAITOK) |
    933 		    BUS_DMA_STREAMING |
    934 		    ((xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMA_READ
    935 						       : BUS_DMA_WRITE));
    936 		switch (error) {
    937 		case 0:
    938 			break;
    939 
    940 		case ENOMEM:
    941 		case EAGAIN:
    942 			xs->error = XS_RESOURCE_SHORTAGE;
    943 			goto out_bad;
    944 
    945 		default:
    946 			xs->error = XS_DRIVER_STUFFUP;
    947 			mpt_prt(mpt, "error %d loading DMA map", error);
    948  out_bad:
    949 			s = splbio();
    950 			mpt_free_request(mpt, req);
    951 			scsipi_done(xs);
    952 			splx(s);
    953 			return;
    954 		}
    955 
    956 		if (req->dmap->dm_nsegs > MPT_NSGL_FIRST(mpt)) {
    957 			int seg, i, nleft = req->dmap->dm_nsegs;
    958 			uint32_t flags;
    959 			SGE_CHAIN32 *ce;
    960 
    961 			seg = 0;
    962 			flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
    963 			if (xs->xs_control & XS_CTL_DATA_OUT)
    964 				flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
    965 
    966 			se = (SGE_SIMPLE32 *) &mpt_req->SGL;
    967 			for (i = 0; i < MPT_NSGL_FIRST(mpt) - 1;
    968 			     i++, se++, seg++) {
    969 				uint32_t tf;
    970 
    971 				memset(se, 0, sizeof(*se));
    972 				se->Address =
    973 				    htole32(req->dmap->dm_segs[seg].ds_addr);
    974 				MPI_pSGE_SET_LENGTH(se,
    975 				    req->dmap->dm_segs[seg].ds_len);
    976 				tf = flags;
    977 				if (i == MPT_NSGL_FIRST(mpt) - 2)
    978 					tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
    979 				MPI_pSGE_SET_FLAGS(se, tf);
    980 				se->FlagsLength = htole32(se->FlagsLength);
    981 				nleft--;
    982 			}
    983 
    984 			/*
    985 			 * Tell the IOC where to find the first chain element.
    986 			 */
    987 			mpt_req->ChainOffset =
    988 			    ((char *)se - (char *)mpt_req) >> 2;
    989 
    990 			/*
    991 			 * Until we're finished with all segments...
    992 			 */
    993 			while (nleft) {
    994 				int ntodo;
    995 
    996 				/*
    997 				 * Construct the chain element that points to
    998 				 * the next segment.
    999 				 */
   1000 				ce = (SGE_CHAIN32 *) se++;
   1001 				if (nleft > MPT_NSGL(mpt)) {
   1002 					ntodo = MPT_NSGL(mpt) - 1;
   1003 					ce->NextChainOffset = (MPT_RQSL(mpt) -
   1004 					    sizeof(SGE_SIMPLE32)) >> 2;
   1005 					ce->Length = htole16(MPT_NSGL(mpt)
   1006 						* sizeof(SGE_SIMPLE32));
   1007 				} else {
   1008 					ntodo = nleft;
   1009 					ce->NextChainOffset = 0;
   1010 					ce->Length = htole16(ntodo
   1011 						* sizeof(SGE_SIMPLE32));
   1012 				}
   1013 				ce->Address = htole32(req->req_pbuf +
   1014 				    ((char *)se - (char *)mpt_req));
   1015 				ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT;
   1016 				for (i = 0; i < ntodo; i++, se++, seg++) {
   1017 					uint32_t tf;
   1018 
   1019 					memset(se, 0, sizeof(*se));
   1020 					se->Address = htole32(
   1021 					    req->dmap->dm_segs[seg].ds_addr);
   1022 					MPI_pSGE_SET_LENGTH(se,
   1023 					    req->dmap->dm_segs[seg].ds_len);
   1024 					tf = flags;
   1025 					if (i == ntodo - 1) {
   1026 						tf |=
   1027 						    MPI_SGE_FLAGS_LAST_ELEMENT;
   1028 						if (ce->NextChainOffset == 0) {
   1029 							tf |=
   1030 						    MPI_SGE_FLAGS_END_OF_LIST |
   1031 						    MPI_SGE_FLAGS_END_OF_BUFFER;
   1032 						}
   1033 					}
   1034 					MPI_pSGE_SET_FLAGS(se, tf);
   1035 					se->FlagsLength =
   1036 					    htole32(se->FlagsLength);
   1037 					nleft--;
   1038 				}
   1039 			}
   1040 			bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
   1041 			    req->dmap->dm_mapsize,
   1042 			    (xs->xs_control & XS_CTL_DATA_IN) ?
   1043 			    				BUS_DMASYNC_PREREAD
   1044 						      : BUS_DMASYNC_PREWRITE);
   1045 		} else {
   1046 			int i;
   1047 			uint32_t flags;
   1048 
   1049 			flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
   1050 			if (xs->xs_control & XS_CTL_DATA_OUT)
   1051 				flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
   1052 
   1053 			/* Copy the segments into our SG list. */
   1054 			se = (SGE_SIMPLE32 *) &mpt_req->SGL;
   1055 			for (i = 0; i < req->dmap->dm_nsegs;
   1056 			     i++, se++) {
   1057 				uint32_t tf;
   1058 
   1059 				memset(se, 0, sizeof(*se));
   1060 				se->Address =
   1061 				    htole32(req->dmap->dm_segs[i].ds_addr);
   1062 				MPI_pSGE_SET_LENGTH(se,
   1063 				    req->dmap->dm_segs[i].ds_len);
   1064 				tf = flags;
   1065 				if (i == req->dmap->dm_nsegs - 1) {
   1066 					tf |=
   1067 					    MPI_SGE_FLAGS_LAST_ELEMENT |
   1068 					    MPI_SGE_FLAGS_END_OF_BUFFER |
   1069 					    MPI_SGE_FLAGS_END_OF_LIST;
   1070 				}
   1071 				MPI_pSGE_SET_FLAGS(se, tf);
   1072 				se->FlagsLength = htole32(se->FlagsLength);
   1073 			}
   1074 			bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0,
   1075 			    req->dmap->dm_mapsize,
   1076 			    (xs->xs_control & XS_CTL_DATA_IN) ?
   1077 			    				BUS_DMASYNC_PREREAD
   1078 						      : BUS_DMASYNC_PREWRITE);
   1079 		}
   1080 	} else {
   1081 		/*
   1082 		 * No data to transfer; just make a single simple SGL
   1083 		 * with zero length.
   1084 		 */
   1085 		SGE_SIMPLE32 *se = (SGE_SIMPLE32 *) &mpt_req->SGL;
   1086 		memset(se, 0, sizeof(*se));
   1087 		MPI_pSGE_SET_FLAGS(se,
   1088 		    (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
   1089 		     MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
   1090 		se->FlagsLength = htole32(se->FlagsLength);
   1091 	}
   1092 
   1093 	if (mpt->verbose > 1)
   1094 		mpt_print_scsi_io_request(mpt_req);
   1095 
   1096 		if (xs->timeout == 0) {
   1097 			mpt_prt(mpt, "mpt_run_xfer: no timeout specified for request: 0x%x\n",
   1098 			req->index);
   1099 			xs->timeout = 500;
   1100 		}
   1101 
   1102 	s = splbio();
   1103 	if (__predict_true((xs->xs_control & XS_CTL_POLL) == 0))
   1104 		callout_reset(&xs->xs_callout,
   1105 		    mstohz(xs->timeout), mpt_timeout, req);
   1106 	mpt_send_cmd(mpt, req);
   1107 	splx(s);
   1108 
   1109 	if (__predict_true((xs->xs_control & XS_CTL_POLL) == 0))
   1110 		return;
   1111 
   1112 	/*
   1113 	 * If we can't use interrupts, poll on completion.
   1114 	 */
   1115 	if (mpt_poll(mpt, xs, xs->timeout))
   1116 		mpt_timeout(req);
   1117 }
   1118 
   1119 static void
   1120 mpt_set_xfer_mode(mpt_softc_t *mpt, struct scsipi_xfer_mode *xm)
   1121 {
   1122 	fCONFIG_PAGE_SCSI_DEVICE_1 tmp;
   1123 
   1124 	/*
   1125 	 * Always allow disconnect; we don't have a way to disable
   1126 	 * it right now, in any case.
   1127 	 */
   1128 	mpt->mpt_disc_enable |= (1 << xm->xm_target);
   1129 
   1130 	if (xm->xm_mode & PERIPH_CAP_TQING)
   1131 		mpt->mpt_tag_enable |= (1 << xm->xm_target);
   1132 	else
   1133 		mpt->mpt_tag_enable &= ~(1 << xm->xm_target);
   1134 
   1135 	if (mpt->is_scsi) {
   1136 		/*
   1137 		 * SCSI transport settings only make any sense for
   1138 		 * SCSI
   1139 		 */
   1140 
   1141 		tmp = mpt->mpt_dev_page1[xm->xm_target];
   1142 
   1143 		/*
   1144 		 * Set the wide/narrow parameter for the target.
   1145 		 */
   1146 		if (xm->xm_mode & PERIPH_CAP_WIDE16)
   1147 			tmp.RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE;
   1148 		else
   1149 			tmp.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE;
   1150 
   1151 		/*
   1152 		 * Set the synchronous parameters for the target.
   1153 		 *
   1154 		 * XXX If we request sync transfers, we just go ahead and
   1155 		 * XXX request the maximum available.  We need finer control
   1156 		 * XXX in order to implement Domain Validation.
   1157 		 */
   1158 		tmp.RequestedParameters &= ~(MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK |
   1159 		    MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK |
   1160 		    MPI_SCSIDEVPAGE1_RP_DT | MPI_SCSIDEVPAGE1_RP_QAS |
   1161 		    MPI_SCSIDEVPAGE1_RP_IU);
   1162 		if (xm->xm_mode & PERIPH_CAP_SYNC) {
   1163 			int factor, offset, np;
   1164 
   1165 			factor = (mpt->mpt_port_page0.Capabilities >> 8) & 0xff;
   1166 			offset = (mpt->mpt_port_page0.Capabilities >> 16) & 0xff;
   1167 			np = 0;
   1168 			if (factor < 0x9) {
   1169 				/* Ultra320 */
   1170 				np |= MPI_SCSIDEVPAGE1_RP_QAS | MPI_SCSIDEVPAGE1_RP_IU;
   1171 			}
   1172 			if (factor < 0xa) {
   1173 				/* at least Ultra160 */
   1174 				np |= MPI_SCSIDEVPAGE1_RP_DT;
   1175 			}
   1176 			np |= (factor << 8) | (offset << 16);
   1177 			tmp.RequestedParameters |= np;
   1178 		}
   1179 
   1180 		host2mpt_config_page_scsi_device_1(&tmp);
   1181 		if (mpt_write_cfg_page(mpt, xm->xm_target, &tmp.Header)) {
   1182 			mpt_prt(mpt, "unable to write Device Page 1");
   1183 			return;
   1184 		}
   1185 
   1186 		if (mpt_read_cfg_page(mpt, xm->xm_target, &tmp.Header)) {
   1187 			mpt_prt(mpt, "unable to read back Device Page 1");
   1188 			return;
   1189 		}
   1190 
   1191 		mpt2host_config_page_scsi_device_1(&tmp);
   1192 		mpt->mpt_dev_page1[xm->xm_target] = tmp;
   1193 		if (mpt->verbose > 1) {
   1194 			mpt_prt(mpt,
   1195 			    "SPI Target %d Page 1: RequestedParameters %x Config %x",
   1196 			    xm->xm_target,
   1197 			    mpt->mpt_dev_page1[xm->xm_target].RequestedParameters,
   1198 			    mpt->mpt_dev_page1[xm->xm_target].Configuration);
   1199 		}
   1200 	}
   1201 
   1202 	/*
   1203 	 * Make a note that we should perform an async callback at the
   1204 	 * end of the next successful command completion to report the
   1205 	 * negotiated transfer mode.
   1206 	 */
   1207 	mpt->mpt_report_xfer_mode |= (1 << xm->xm_target);
   1208 }
   1209 
   1210 static void
   1211 mpt_get_xfer_mode(mpt_softc_t *mpt, struct scsipi_periph *periph)
   1212 {
   1213 	fCONFIG_PAGE_SCSI_DEVICE_0 tmp;
   1214 	struct scsipi_xfer_mode xm;
   1215 	int period, offset;
   1216 
   1217 	tmp = mpt->mpt_dev_page0[periph->periph_target];
   1218 	host2mpt_config_page_scsi_device_0(&tmp);
   1219 	if (mpt_read_cfg_page(mpt, periph->periph_target, &tmp.Header)) {
   1220 		mpt_prt(mpt, "unable to read Device Page 0");
   1221 		return;
   1222 	}
   1223 	mpt2host_config_page_scsi_device_0(&tmp);
   1224 
   1225 	if (mpt->verbose > 1) {
   1226 		mpt_prt(mpt,
   1227 		    "SPI Tgt %d Page 0: NParms %x Information %x",
   1228 		    periph->periph_target,
   1229 		    tmp.NegotiatedParameters, tmp.Information);
   1230 	}
   1231 
   1232 	xm.xm_target = periph->periph_target;
   1233 	xm.xm_mode = 0;
   1234 
   1235 	if (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE)
   1236 		xm.xm_mode |= PERIPH_CAP_WIDE16;
   1237 
   1238 	period = (tmp.NegotiatedParameters >> 8) & 0xff;
   1239 	offset = (tmp.NegotiatedParameters >> 16) & 0xff;
   1240 	if (offset) {
   1241 		xm.xm_period = period;
   1242 		xm.xm_offset = offset;
   1243 		xm.xm_mode |= PERIPH_CAP_SYNC;
   1244 	}
   1245 
   1246 	/*
   1247 	 * Tagged queueing is all controlled by us; there is no
   1248 	 * other setting to query.
   1249 	 */
   1250 	if (mpt->mpt_tag_enable & (1 << periph->periph_target))
   1251 		xm.xm_mode |= PERIPH_CAP_TQING;
   1252 
   1253 	/*
   1254 	 * We're going to deliver the async event, so clear the marker.
   1255 	 */
   1256 	mpt->mpt_report_xfer_mode &= ~(1 << periph->periph_target);
   1257 
   1258 	scsipi_async_event(&mpt->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
   1259 }
   1260 
   1261 static void
   1262 mpt_ctlop(mpt_softc_t *mpt, void *vmsg, uint32_t reply)
   1263 {
   1264 	MSG_DEFAULT_REPLY *dmsg = vmsg;
   1265 
   1266 	switch (dmsg->Function) {
   1267 	case MPI_FUNCTION_EVENT_NOTIFICATION:
   1268 		mpt_event_notify_reply(mpt, vmsg);
   1269 		mpt_free_reply(mpt, (reply << 1));
   1270 		break;
   1271 
   1272 	case MPI_FUNCTION_EVENT_ACK:
   1273 		mpt_free_reply(mpt, (reply << 1));
   1274 		break;
   1275 
   1276 	case MPI_FUNCTION_PORT_ENABLE:
   1277 	    {
   1278 		MSG_PORT_ENABLE_REPLY *msg = vmsg;
   1279 		int index = le32toh(msg->MsgContext) & ~0x80000000;
   1280 		if (mpt->verbose > 1)
   1281 			mpt_prt(mpt, "enable port reply index %d", index);
   1282 		if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
   1283 			request_t *req = &mpt->request_pool[index];
   1284 			req->debug = REQ_DONE;
   1285 		}
   1286 		mpt_free_reply(mpt, (reply << 1));
   1287 		break;
   1288 	    }
   1289 
   1290 	case MPI_FUNCTION_CONFIG:
   1291 	    {
   1292 		MSG_CONFIG_REPLY *msg = vmsg;
   1293 		int index = le32toh(msg->MsgContext) & ~0x80000000;
   1294 		if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) {
   1295 			request_t *req = &mpt->request_pool[index];
   1296 			req->debug = REQ_DONE;
   1297 			req->sequence = reply;
   1298 		} else
   1299 			mpt_free_reply(mpt, (reply << 1));
   1300 		break;
   1301 	    }
   1302 
   1303 	default:
   1304 		mpt_prt(mpt, "unknown ctlop: 0x%x", dmsg->Function);
   1305 	}
   1306 }
   1307 
   1308 static void
   1309 mpt_event_notify_reply(mpt_softc_t *mpt, MSG_EVENT_NOTIFY_REPLY *msg)
   1310 {
   1311 
   1312 	switch (le32toh(msg->Event)) {
   1313 	case MPI_EVENT_LOG_DATA:
   1314 	    {
   1315 		int i;
   1316 
   1317 		/* Some error occurrerd that the Fusion wants logged. */
   1318 		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x", msg->IOCLogInfo);
   1319 		mpt_prt(mpt, "EvtLogData: Event Data:");
   1320 		for (i = 0; i < msg->EventDataLength; i++) {
   1321 			if ((i % 4) == 0)
   1322 				printf("%s:\t", device_xname(mpt->sc_dev));
   1323 			printf("0x%08x%c", msg->Data[i],
   1324 			    ((i % 4) == 3) ? '\n' : ' ');
   1325 		}
   1326 		if ((i % 4) != 0)
   1327 			printf("\n");
   1328 		break;
   1329 	    }
   1330 
   1331 	case MPI_EVENT_UNIT_ATTENTION:
   1332 		mpt_prt(mpt, "Unit Attn: Bus 0x%02x Target 0x%02x",
   1333 		    (msg->Data[0] >> 8) & 0xff, msg->Data[0] & 0xff);
   1334 		break;
   1335 
   1336 	case MPI_EVENT_IOC_BUS_RESET:
   1337 		/* We generated a bus reset. */
   1338 		mpt_prt(mpt, "IOC Bus Reset Port %d",
   1339 		    (msg->Data[0] >> 8) & 0xff);
   1340 		break;
   1341 
   1342 	case MPI_EVENT_EXT_BUS_RESET:
   1343 		/* Someone else generated a bus reset. */
   1344 		mpt_prt(mpt, "External Bus Reset");
   1345 		/*
   1346 		 * These replies don't return EventData like the MPI
   1347 		 * spec says they do.
   1348 		 */
   1349 		/* XXX Send an async event? */
   1350 		break;
   1351 
   1352 	case MPI_EVENT_RESCAN:
   1353 		/*
   1354 		 * In general, thise means a device has been added
   1355 		 * to the loop.
   1356 		 */
   1357 		mpt_prt(mpt, "Rescan Port %d", (msg->Data[0] >> 8) & 0xff);
   1358 		/* XXX Send an async event? */
   1359 		break;
   1360 
   1361 	case MPI_EVENT_LINK_STATUS_CHANGE:
   1362 		mpt_prt(mpt, "Port %d: Link state %s",
   1363 		    (msg->Data[1] >> 8) & 0xff,
   1364 		    (msg->Data[0] & 0xff) == 0 ? "Failed" : "Active");
   1365 		break;
   1366 
   1367 	case MPI_EVENT_LOOP_STATE_CHANGE:
   1368 		switch ((msg->Data[0] >> 16) & 0xff) {
   1369 		case 0x01:
   1370 			mpt_prt(mpt,
   1371 			    "Port %d: FC Link Event: LIP(%02x,%02x) "
   1372 			    "(Loop Initialization)",
   1373 			    (msg->Data[1] >> 8) & 0xff,
   1374 			    (msg->Data[0] >> 8) & 0xff,
   1375 			    (msg->Data[0]     ) & 0xff);
   1376 			switch ((msg->Data[0] >> 8) & 0xff) {
   1377 			case 0xf7:
   1378 				if ((msg->Data[0] & 0xff) == 0xf7)
   1379 					mpt_prt(mpt, "\tDevice needs AL_PA");
   1380 				else
   1381 					mpt_prt(mpt, "\tDevice %02x doesn't "
   1382 					    "like FC performance",
   1383 					    msg->Data[0] & 0xff);
   1384 				break;
   1385 
   1386 			case 0xf8:
   1387 				if ((msg->Data[0] & 0xff) == 0xf7)
   1388 					mpt_prt(mpt, "\tDevice detected loop "
   1389 					    "failure before acquiring AL_PA");
   1390 				else
   1391 					mpt_prt(mpt, "\tDevice %02x detected "
   1392 					    "loop failure",
   1393 					    msg->Data[0] & 0xff);
   1394 				break;
   1395 
   1396 			default:
   1397 				mpt_prt(mpt, "\tDevice %02x requests that "
   1398 				    "device %02x reset itself",
   1399 				    msg->Data[0] & 0xff,
   1400 				    (msg->Data[0] >> 8) & 0xff);
   1401 				break;
   1402 			}
   1403 			break;
   1404 
   1405 		case 0x02:
   1406 			mpt_prt(mpt, "Port %d: FC Link Event: LPE(%02x,%02x) "
   1407 			    "(Loop Port Enable)",
   1408 			    (msg->Data[1] >> 8) & 0xff,
   1409 			    (msg->Data[0] >> 8) & 0xff,
   1410 			    (msg->Data[0]     ) & 0xff);
   1411 			break;
   1412 
   1413 		case 0x03:
   1414 			mpt_prt(mpt, "Port %d: FC Link Event: LPB(%02x,%02x) "
   1415 			    "(Loop Port Bypass)",
   1416 			    (msg->Data[1] >> 8) & 0xff,
   1417 			    (msg->Data[0] >> 8) & 0xff,
   1418 			    (msg->Data[0]     ) & 0xff);
   1419 			break;
   1420 
   1421 		default:
   1422 			mpt_prt(mpt, "Port %d: FC Link Event: "
   1423 			    "Unknown event (%02x %02x %02x)",
   1424 			    (msg->Data[1] >>  8) & 0xff,
   1425 			    (msg->Data[0] >> 16) & 0xff,
   1426 			    (msg->Data[0] >>  8) & 0xff,
   1427 			    (msg->Data[0]      ) & 0xff);
   1428 			break;
   1429 		}
   1430 		break;
   1431 
   1432 	case MPI_EVENT_LOGOUT:
   1433 		mpt_prt(mpt, "Port %d: FC Logout: N_PortID: %02x",
   1434 		    (msg->Data[1] >> 8) & 0xff, msg->Data[0]);
   1435 		break;
   1436 
   1437 	case MPI_EVENT_EVENT_CHANGE:
   1438 		/*
   1439 		 * This is just an acknowledgement of our
   1440 		 * mpt_send_event_request().
   1441 		 */
   1442 		break;
   1443 
   1444 	case MPI_EVENT_SAS_PHY_LINK_STATUS:
   1445 		switch ((msg->Data[0] >> 12) & 0x0f) {
   1446 		case 0x00:
   1447 			mpt_prt(mpt, "Phy %d: Link Status Unknown",
   1448 			    msg->Data[0] & 0xff);
   1449 			break;
   1450 		case 0x01:
   1451 			mpt_prt(mpt, "Phy %d: Link Disabled",
   1452 			    msg->Data[0] & 0xff);
   1453 			break;
   1454 		case 0x02:
   1455 			mpt_prt(mpt, "Phy %d: Failed Speed Negotiation",
   1456 			    msg->Data[0] & 0xff);
   1457 			break;
   1458 		case 0x03:
   1459 			mpt_prt(mpt, "Phy %d: SATA OOB Complete",
   1460 			    msg->Data[0] & 0xff);
   1461 			break;
   1462 		case 0x08:
   1463 			mpt_prt(mpt, "Phy %d: Link Rate 1.5 Gbps",
   1464 			    msg->Data[0] & 0xff);
   1465 			break;
   1466 		case 0x09:
   1467 			mpt_prt(mpt, "Phy %d: Link Rate 3.0 Gbps",
   1468 			    msg->Data[0] & 0xff);
   1469 			break;
   1470 		default:
   1471 			mpt_prt(mpt, "Phy %d: SAS Phy Link Status Event: "
   1472 			    "Unknown event (%0x)",
   1473 			    msg->Data[0] & 0xff, (msg->Data[0] >> 8) & 0xff);
   1474 		}
   1475 		break;
   1476 
   1477 	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
   1478 	case MPI_EVENT_SAS_DISCOVERY:
   1479 		/* ignore these events for now */
   1480 		break;
   1481 
   1482 	case MPI_EVENT_QUEUE_FULL:
   1483 		/* This can get a little chatty */
   1484 		if (mpt->verbose > 0)
   1485 			mpt_prt(mpt, "Queue Full Event");
   1486 		break;
   1487 
   1488 	default:
   1489 		mpt_prt(mpt, "Unknown async event: 0x%x", msg->Event);
   1490 		break;
   1491 	}
   1492 
   1493 	if (msg->AckRequired) {
   1494 		MSG_EVENT_ACK *ackp;
   1495 		request_t *req;
   1496 
   1497 		if ((req = mpt_get_request(mpt)) == NULL) {
   1498 			/* XXX XXX XXX XXXJRT */
   1499 			panic("mpt_event_notify_reply: unable to allocate "
   1500 			    "request structure");
   1501 		}
   1502 
   1503 		ackp = (MSG_EVENT_ACK *) req->req_vbuf;
   1504 		memset(ackp, 0, sizeof(*ackp));
   1505 		ackp->Function = MPI_FUNCTION_EVENT_ACK;
   1506 		ackp->Event = msg->Event;
   1507 		ackp->EventContext = msg->EventContext;
   1508 		ackp->MsgContext = htole32(req->index | 0x80000000);
   1509 		mpt_check_doorbell(mpt);
   1510 		mpt_send_cmd(mpt, req);
   1511 	}
   1512 }
   1513 
   1514 static void
   1515 mpt_bus_reset(mpt_softc_t *mpt)
   1516 {
   1517 	request_t *req;
   1518 	MSG_SCSI_TASK_MGMT *mngt_req;
   1519 	int s;
   1520 
   1521 	s = splbio();
   1522 	if (mpt->mngt_req) {
   1523 		/* request already queued; can't do more */
   1524 		splx(s);
   1525 		return;
   1526 	}
   1527 	req = mpt_get_request(mpt);
   1528 	if (__predict_false(req == NULL)) {
   1529 		mpt_prt(mpt, "no mngt request\n");
   1530 		splx(s);
   1531 		return;
   1532 	}
   1533 	mpt->mngt_req = req;
   1534 	splx(s);
   1535 	mngt_req = req->req_vbuf;
   1536 	memset(mngt_req, 0, sizeof(*mngt_req));
   1537 	mngt_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT;
   1538 	mngt_req->Bus = mpt->bus;
   1539 	mngt_req->TargetID = 0;
   1540 	mngt_req->ChainOffset = 0;
   1541 	mngt_req->TaskType = MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS;
   1542 	mngt_req->Reserved1 = 0;
   1543 	mngt_req->MsgFlags =
   1544 	    mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0;
   1545 	mngt_req->MsgContext = req->index;
   1546 	mngt_req->TaskMsgContext = 0;
   1547 	s = splbio();
   1548 	mpt_send_handshake_cmd(mpt, sizeof(*mngt_req), mngt_req);
   1549 	splx(s);
   1550 }
   1551 
   1552 /*****************************************************************************
   1553  * SCSI interface routines
   1554  *****************************************************************************/
   1555 
   1556 static void
   1557 mpt_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
   1558     void *arg)
   1559 {
   1560 	struct scsipi_adapter *adapt = chan->chan_adapter;
   1561 	mpt_softc_t *mpt = device_private(adapt->adapt_dev);
   1562 
   1563 	switch (req) {
   1564 	case ADAPTER_REQ_RUN_XFER:
   1565 		mpt_run_xfer(mpt, (struct scsipi_xfer *) arg);
   1566 		return;
   1567 
   1568 	case ADAPTER_REQ_GROW_RESOURCES:
   1569 		/* Not supported. */
   1570 		return;
   1571 
   1572 	case ADAPTER_REQ_SET_XFER_MODE:
   1573 		mpt_set_xfer_mode(mpt, (struct scsipi_xfer_mode *) arg);
   1574 		return;
   1575 	}
   1576 }
   1577 
   1578 static void
   1579 mpt_minphys(struct buf *bp)
   1580 {
   1581 
   1582 /*
   1583  * Subtract one from the SGL limit, since we need an extra one to handle
   1584  * an non-page-aligned transfer.
   1585  */
   1586 #define	MPT_MAX_XFER	((MPT_SGL_MAX - 1) * PAGE_SIZE)
   1587 
   1588 	if (bp->b_bcount > MPT_MAX_XFER)
   1589 		bp->b_bcount = MPT_MAX_XFER;
   1590 	minphys(bp);
   1591 }
   1592 
   1593 static int
   1594 mpt_ioctl(struct scsipi_channel *chan, u_long cmd, void *arg,
   1595     int flag, struct proc *p)
   1596 {
   1597 	mpt_softc_t *mpt;
   1598 	int s;
   1599 
   1600 	mpt = device_private(chan->chan_adapter->adapt_dev);
   1601 	switch (cmd) {
   1602 	case SCBUSIORESET:
   1603 		mpt_bus_reset(mpt);
   1604 		s = splbio();
   1605 		mpt_intr(mpt);
   1606 		splx(s);
   1607 		return(0);
   1608 	default:
   1609 		return (ENOTTY);
   1610 	}
   1611 }
   1612 
   1613 #if NBIO > 0
   1614 static fCONFIG_PAGE_IOC_2 *
   1615 mpt_get_cfg_page_ioc2(mpt_softc_t *mpt)
   1616 {
   1617 	fCONFIG_PAGE_HEADER hdr;
   1618 	fCONFIG_PAGE_IOC_2 *ioc2;
   1619 	int rv;
   1620 
   1621 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2, 0, &hdr);
   1622 	if (rv)
   1623 		return NULL;
   1624 
   1625 	ioc2 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1626 	if (ioc2 == NULL)
   1627 		return NULL;
   1628 
   1629 	memcpy(ioc2, &hdr, sizeof(hdr));
   1630 
   1631 	rv = mpt_read_cfg_page(mpt, 0, &ioc2->Header);
   1632 	if (rv)
   1633 		goto fail;
   1634 	mpt2host_config_page_ioc_2(ioc2);
   1635 
   1636 	return ioc2;
   1637 
   1638 fail:
   1639 	free(ioc2, M_DEVBUF);
   1640 	return NULL;
   1641 }
   1642 
   1643 static fCONFIG_PAGE_IOC_3 *
   1644 mpt_get_cfg_page_ioc3(mpt_softc_t *mpt)
   1645 {
   1646 	fCONFIG_PAGE_HEADER hdr;
   1647 	fCONFIG_PAGE_IOC_3 *ioc3;
   1648 	int rv;
   1649 
   1650 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 3, 0, &hdr);
   1651 	if (rv)
   1652 		return NULL;
   1653 
   1654 	ioc3 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1655 	if (ioc3 == NULL)
   1656 		return NULL;
   1657 
   1658 	memcpy(ioc3, &hdr, sizeof(hdr));
   1659 
   1660 	rv = mpt_read_cfg_page(mpt, 0, &ioc3->Header);
   1661 	if (rv)
   1662 		goto fail;
   1663 
   1664 	return ioc3;
   1665 
   1666 fail:
   1667 	free(ioc3, M_DEVBUF);
   1668 	return NULL;
   1669 }
   1670 
   1671 
   1672 static fCONFIG_PAGE_RAID_VOL_0 *
   1673 mpt_get_cfg_page_raid_vol0(mpt_softc_t *mpt, int address)
   1674 {
   1675 	fCONFIG_PAGE_HEADER hdr;
   1676 	fCONFIG_PAGE_RAID_VOL_0 *rvol0;
   1677 	int rv;
   1678 
   1679 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_RAID_VOLUME, 0,
   1680 	    address, &hdr);
   1681 	if (rv)
   1682 		return NULL;
   1683 
   1684 	rvol0 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1685 	if (rvol0 == NULL)
   1686 		return NULL;
   1687 
   1688 	memcpy(rvol0, &hdr, sizeof(hdr));
   1689 
   1690 	rv = mpt_read_cfg_page(mpt, address, &rvol0->Header);
   1691 	if (rv)
   1692 		goto fail;
   1693 	mpt2host_config_page_raid_vol_0(rvol0);
   1694 
   1695 	return rvol0;
   1696 
   1697 fail:
   1698 	free(rvol0, M_DEVBUF);
   1699 	return NULL;
   1700 }
   1701 
   1702 static fCONFIG_PAGE_RAID_PHYS_DISK_0 *
   1703 mpt_get_cfg_page_raid_phys_disk0(mpt_softc_t *mpt, int address)
   1704 {
   1705 	fCONFIG_PAGE_HEADER hdr;
   1706 	fCONFIG_PAGE_RAID_PHYS_DISK_0 *physdisk0;
   1707 	int rv;
   1708 
   1709 	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_RAID_PHYSDISK, 0,
   1710 	    address, &hdr);
   1711 	if (rv)
   1712 		return NULL;
   1713 
   1714 	physdisk0 = malloc(hdr.PageLength * 4, M_DEVBUF, M_WAITOK | M_ZERO);
   1715 	if (physdisk0 == NULL)
   1716 		return NULL;
   1717 
   1718 	memcpy(physdisk0, &hdr, sizeof(hdr));
   1719 
   1720 	rv = mpt_read_cfg_page(mpt, address, &physdisk0->Header);
   1721 	if (rv)
   1722 		goto fail;
   1723 	mpt2host_config_page_raid_phys_disk_0(physdisk0);
   1724 
   1725 	return physdisk0;
   1726 
   1727 fail:
   1728 	free(physdisk0, M_DEVBUF);
   1729 	return NULL;
   1730 }
   1731 
   1732 static bool
   1733 mpt_is_raid(mpt_softc_t *mpt)
   1734 {
   1735 	fCONFIG_PAGE_IOC_2 *ioc2;
   1736 	bool is_raid = false;
   1737 
   1738 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1739 	if (ioc2 == NULL)
   1740 		return false;
   1741 
   1742 	if (ioc2->CapabilitiesFlags != 0xdeadbeef) {
   1743 		is_raid = !!(ioc2->CapabilitiesFlags &
   1744 				(MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT|
   1745 				 MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT|
   1746 				 MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT));
   1747 	}
   1748 
   1749 	free(ioc2, M_DEVBUF);
   1750 
   1751 	return is_raid;
   1752 }
   1753 
   1754 static int
   1755 mpt_bio_ioctl(device_t dev, u_long cmd, void *addr)
   1756 {
   1757 	mpt_softc_t *mpt = device_private(dev);
   1758 	int error, s;
   1759 
   1760 	KERNEL_LOCK(1, curlwp);
   1761 	s = splbio();
   1762 
   1763 	switch (cmd) {
   1764 	case BIOCINQ:
   1765 		error = mpt_bio_ioctl_inq(mpt, addr);
   1766 		break;
   1767 	case BIOCVOL:
   1768 		error = mpt_bio_ioctl_vol(mpt, addr);
   1769 		break;
   1770 	case BIOCDISK_NOVOL:
   1771 		error = mpt_bio_ioctl_disk_novol(mpt, addr);
   1772 		break;
   1773 	case BIOCDISK:
   1774 		error = mpt_bio_ioctl_disk(mpt, addr);
   1775 		break;
   1776 	case BIOCSETSTATE:
   1777 		error = mpt_bio_ioctl_setstate(mpt, addr);
   1778 		break;
   1779 	default:
   1780 		error = EINVAL;
   1781 		break;
   1782 	}
   1783 
   1784 	splx(s);
   1785 	KERNEL_UNLOCK_ONE(curlwp);
   1786 
   1787 	return error;
   1788 }
   1789 
   1790 static int
   1791 mpt_bio_ioctl_inq(mpt_softc_t *mpt, struct bioc_inq *bi)
   1792 {
   1793 	fCONFIG_PAGE_IOC_2 *ioc2;
   1794 	fCONFIG_PAGE_IOC_3 *ioc3;
   1795 
   1796 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1797 	if (ioc2 == NULL)
   1798 		return EIO;
   1799 	ioc3 = mpt_get_cfg_page_ioc3(mpt);
   1800 	if (ioc3 == NULL) {
   1801 		free(ioc2, M_DEVBUF);
   1802 		return EIO;
   1803 	}
   1804 
   1805 	strlcpy(bi->bi_dev, device_xname(mpt->sc_dev), sizeof(bi->bi_dev));
   1806 	bi->bi_novol = ioc2->NumActiveVolumes;
   1807 	bi->bi_nodisk = ioc3->NumPhysDisks;
   1808 
   1809 	free(ioc2, M_DEVBUF);
   1810 	free(ioc3, M_DEVBUF);
   1811 
   1812 	return 0;
   1813 }
   1814 
   1815 static int
   1816 mpt_bio_ioctl_vol(mpt_softc_t *mpt, struct bioc_vol *bv)
   1817 {
   1818 	fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
   1819 	fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
   1820 	fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
   1821 	struct scsipi_periph *periph;
   1822 	struct scsipi_inquiry_data inqbuf;
   1823 	char vendor[9], product[17], revision[5];
   1824 	int address;
   1825 
   1826 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1827 	if (ioc2 == NULL)
   1828 		return EIO;
   1829 
   1830 	if (bv->bv_volid < 0 || bv->bv_volid >= ioc2->NumActiveVolumes)
   1831 		goto fail;
   1832 
   1833 	ioc2rvol = &ioc2->RaidVolume[bv->bv_volid];
   1834 	address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
   1835 
   1836 	rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
   1837 	if (rvol0 == NULL)
   1838 		goto fail;
   1839 
   1840 	bv->bv_dev[0] = '\0';
   1841 	bv->bv_vendor[0] = '\0';
   1842 
   1843 	periph = scsipi_lookup_periph(&mpt->sc_channel, ioc2rvol->VolumeBus, 0);
   1844 	if (periph != NULL) {
   1845 		if (periph->periph_dev != NULL) {
   1846 			snprintf(bv->bv_dev, sizeof(bv->bv_dev), "%s",
   1847 			    device_xname(periph->periph_dev));
   1848 		}
   1849 		memset(&inqbuf, 0, sizeof(inqbuf));
   1850 		if (scsipi_inquire(periph, &inqbuf,
   1851 		    XS_CTL_DISCOVERY | XS_CTL_SILENT) == 0) {
   1852 			scsipi_strvis(vendor, sizeof(vendor),
   1853 			    inqbuf.vendor, sizeof(inqbuf.vendor));
   1854 			scsipi_strvis(product, sizeof(product),
   1855 			    inqbuf.product, sizeof(inqbuf.product));
   1856 			scsipi_strvis(revision, sizeof(revision),
   1857 			    inqbuf.revision, sizeof(inqbuf.revision));
   1858 
   1859 			snprintf(bv->bv_vendor, sizeof(bv->bv_vendor),
   1860 			    "%s %s %s", vendor, product, revision);
   1861 		}
   1862 
   1863 		snprintf(bv->bv_dev, sizeof(bv->bv_dev), "%s",
   1864 		    device_xname(periph->periph_dev));
   1865 	}
   1866 	bv->bv_nodisk = rvol0->NumPhysDisks;
   1867 	bv->bv_size = (uint64_t)rvol0->MaxLBA * 512;
   1868 	bv->bv_stripe_size = rvol0->StripeSize;
   1869 	bv->bv_percent = -1;
   1870 	bv->bv_seconds = 0;
   1871 
   1872 	switch (rvol0->VolumeStatus.State) {
   1873 	case MPI_RAIDVOL0_STATUS_STATE_OPTIMAL:
   1874 		bv->bv_status = BIOC_SVONLINE;
   1875 		break;
   1876 	case MPI_RAIDVOL0_STATUS_STATE_DEGRADED:
   1877 		bv->bv_status = BIOC_SVDEGRADED;
   1878 		break;
   1879 	case MPI_RAIDVOL0_STATUS_STATE_FAILED:
   1880 		bv->bv_status = BIOC_SVOFFLINE;
   1881 		break;
   1882 	default:
   1883 		bv->bv_status = BIOC_SVINVALID;
   1884 		break;
   1885 	}
   1886 
   1887 	switch (ioc2rvol->VolumeType) {
   1888 	case MPI_RAID_VOL_TYPE_IS:
   1889 		bv->bv_level = 0;
   1890 		break;
   1891 	case MPI_RAID_VOL_TYPE_IME:
   1892 	case MPI_RAID_VOL_TYPE_IM:
   1893 		bv->bv_level = 1;
   1894 		break;
   1895 	default:
   1896 		bv->bv_level = -1;
   1897 		break;
   1898 	}
   1899 
   1900 	free(ioc2, M_DEVBUF);
   1901 	free(rvol0, M_DEVBUF);
   1902 
   1903 	return 0;
   1904 
   1905 fail:
   1906 	if (ioc2) free(ioc2, M_DEVBUF);
   1907 	if (rvol0) free(rvol0, M_DEVBUF);
   1908 	return EINVAL;
   1909 }
   1910 
   1911 static void
   1912 mpt_bio_ioctl_disk_common(mpt_softc_t *mpt, struct bioc_disk *bd,
   1913     int address)
   1914 {
   1915 	fCONFIG_PAGE_RAID_PHYS_DISK_0 *phys = NULL;
   1916 	char vendor_id[9], product_id[17], product_rev_level[5];
   1917 
   1918 	phys = mpt_get_cfg_page_raid_phys_disk0(mpt, address);
   1919 	if (phys == NULL)
   1920 		return;
   1921 
   1922 	scsipi_strvis(vendor_id, sizeof(vendor_id),
   1923 	    phys->InquiryData.VendorID, sizeof(phys->InquiryData.VendorID));
   1924 	scsipi_strvis(product_id, sizeof(product_id),
   1925 	    phys->InquiryData.ProductID, sizeof(phys->InquiryData.ProductID));
   1926 	scsipi_strvis(product_rev_level, sizeof(product_rev_level),
   1927 	    phys->InquiryData.ProductRevLevel,
   1928 	    sizeof(phys->InquiryData.ProductRevLevel));
   1929 
   1930 	snprintf(bd->bd_vendor, sizeof(bd->bd_vendor), "%s %s %s",
   1931 	    vendor_id, product_id, product_rev_level);
   1932 	strlcpy(bd->bd_serial, phys->InquiryData.Info, sizeof(bd->bd_serial));
   1933 	bd->bd_procdev[0] = '\0';
   1934 	bd->bd_channel = phys->PhysDiskBus;
   1935 	bd->bd_target = phys->PhysDiskID;
   1936 	bd->bd_lun = 0;
   1937 	bd->bd_size = (uint64_t)phys->MaxLBA * 512;
   1938 
   1939 	switch (phys->PhysDiskStatus.State) {
   1940 	case MPI_PHYSDISK0_STATUS_ONLINE:
   1941 		bd->bd_status = BIOC_SDONLINE;
   1942 		break;
   1943 	case MPI_PHYSDISK0_STATUS_MISSING:
   1944 	case MPI_PHYSDISK0_STATUS_FAILED:
   1945 		bd->bd_status = BIOC_SDFAILED;
   1946 		break;
   1947 	case MPI_PHYSDISK0_STATUS_OFFLINE_REQUESTED:
   1948 	case MPI_PHYSDISK0_STATUS_FAILED_REQUESTED:
   1949 	case MPI_PHYSDISK0_STATUS_OTHER_OFFLINE:
   1950 		bd->bd_status = BIOC_SDOFFLINE;
   1951 		break;
   1952 	case MPI_PHYSDISK0_STATUS_INITIALIZING:
   1953 		bd->bd_status = BIOC_SDSCRUB;
   1954 		break;
   1955 	case MPI_PHYSDISK0_STATUS_NOT_COMPATIBLE:
   1956 	default:
   1957 		bd->bd_status = BIOC_SDINVALID;
   1958 		break;
   1959 	}
   1960 
   1961 	free(phys, M_DEVBUF);
   1962 }
   1963 
   1964 static int
   1965 mpt_bio_ioctl_disk_novol(mpt_softc_t *mpt, struct bioc_disk *bd)
   1966 {
   1967 	fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
   1968 	fCONFIG_PAGE_IOC_3 *ioc3 = NULL;
   1969 	fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
   1970 	fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
   1971 	int address, v, d;
   1972 
   1973 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   1974 	if (ioc2 == NULL)
   1975 		return EIO;
   1976 	ioc3 = mpt_get_cfg_page_ioc3(mpt);
   1977 	if (ioc3 == NULL) {
   1978 		free(ioc2, M_DEVBUF);
   1979 		return EIO;
   1980 	}
   1981 
   1982 	if (bd->bd_diskid < 0 || bd->bd_diskid >= ioc3->NumPhysDisks)
   1983 		goto fail;
   1984 
   1985 	address = ioc3->PhysDisk[bd->bd_diskid].PhysDiskNum;
   1986 
   1987 	mpt_bio_ioctl_disk_common(mpt, bd, address);
   1988 
   1989 	bd->bd_disknovol = true;
   1990 	for (v = 0; bd->bd_disknovol && v < ioc2->NumActiveVolumes; v++) {
   1991 		ioc2rvol = &ioc2->RaidVolume[v];
   1992 		address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
   1993 
   1994 		rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
   1995 		if (rvol0 == NULL)
   1996 			continue;
   1997 
   1998 		for (d = 0; d < rvol0->NumPhysDisks; d++) {
   1999 			if (rvol0->PhysDisk[d].PhysDiskNum ==
   2000 			    ioc3->PhysDisk[bd->bd_diskid].PhysDiskNum) {
   2001 				bd->bd_disknovol = false;
   2002 				bd->bd_volid = v;
   2003 				break;
   2004 			}
   2005 		}
   2006 		free(rvol0, M_DEVBUF);
   2007 	}
   2008 
   2009 	free(ioc3, M_DEVBUF);
   2010 	free(ioc2, M_DEVBUF);
   2011 
   2012 	return 0;
   2013 
   2014 fail:
   2015 	if (ioc3) free(ioc3, M_DEVBUF);
   2016 	if (ioc2) free(ioc2, M_DEVBUF);
   2017 	return EINVAL;
   2018 }
   2019 
   2020 
   2021 static int
   2022 mpt_bio_ioctl_disk(mpt_softc_t *mpt, struct bioc_disk *bd)
   2023 {
   2024 	fCONFIG_PAGE_IOC_2 *ioc2 = NULL;
   2025 	fCONFIG_PAGE_RAID_VOL_0 *rvol0 = NULL;
   2026 	fCONFIG_PAGE_IOC_2_RAID_VOL *ioc2rvol;
   2027 	int address;
   2028 
   2029 	ioc2 = mpt_get_cfg_page_ioc2(mpt);
   2030 	if (ioc2 == NULL)
   2031 		return EIO;
   2032 
   2033 	if (bd->bd_volid < 0 || bd->bd_volid >= ioc2->NumActiveVolumes)
   2034 		goto fail;
   2035 
   2036 	ioc2rvol = &ioc2->RaidVolume[bd->bd_volid];
   2037 	address = ioc2rvol->VolumeID | (ioc2rvol->VolumeBus << 8);
   2038 
   2039 	rvol0 = mpt_get_cfg_page_raid_vol0(mpt, address);
   2040 	if (rvol0 == NULL)
   2041 		goto fail;
   2042 
   2043 	if (bd->bd_diskid < 0 || bd->bd_diskid >= rvol0->NumPhysDisks)
   2044 		goto fail;
   2045 
   2046 	address = rvol0->PhysDisk[bd->bd_diskid].PhysDiskNum;
   2047 
   2048 	mpt_bio_ioctl_disk_common(mpt, bd, address);
   2049 
   2050 	free(ioc2, M_DEVBUF);
   2051 
   2052 	return 0;
   2053 
   2054 fail:
   2055 	if (ioc2) free(ioc2, M_DEVBUF);
   2056 	return EINVAL;
   2057 }
   2058 
   2059 static int
   2060 mpt_bio_ioctl_setstate(mpt_softc_t *mpt, struct bioc_setstate *bs)
   2061 {
   2062 	return ENOTTY;
   2063 }
   2064 #endif
   2065 
   2066