Home | History | Annotate | Line # | Download | only in ic
nslm7x.c revision 1.11
      1  1.11    veego /*	$NetBSD: nslm7x.c,v 1.11 2000/11/04 18:28:19 veego Exp $ */
      2   1.1     groo 
      3   1.1     groo /*-
      4   1.1     groo  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5   1.1     groo  * All rights reserved.
      6   1.1     groo  *
      7   1.1     groo  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1     groo  * by Bill Squier.
      9   1.1     groo  *
     10   1.1     groo  * Redistribution and use in source and binary forms, with or without
     11   1.1     groo  * modification, are permitted provided that the following conditions
     12   1.1     groo  * are met:
     13   1.1     groo  * 1. Redistributions of source code must retain the above copyright
     14   1.1     groo  *    notice, this list of conditions and the following disclaimer.
     15   1.1     groo  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1     groo  *    notice, this list of conditions and the following disclaimer in the
     17   1.1     groo  *    documentation and/or other materials provided with the distribution.
     18   1.1     groo  * 3. All advertising materials mentioning features or use of this software
     19   1.1     groo  *    must display the following acknowledgement:
     20   1.1     groo  *        This product includes software developed by the NetBSD
     21   1.1     groo  *        Foundation, Inc. and its contributors.
     22   1.1     groo  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1     groo  *    contributors may be used to endorse or promote products derived
     24   1.1     groo  *    from this software without specific prior written permission.
     25   1.1     groo  *
     26   1.1     groo  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1     groo  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1     groo  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1     groo  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1     groo  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1     groo  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1     groo  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1     groo  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1     groo  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1     groo  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1     groo  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1     groo  */
     38   1.1     groo 
     39   1.1     groo #include <sys/param.h>
     40   1.1     groo #include <sys/systm.h>
     41   1.1     groo #include <sys/kernel.h>
     42   1.1     groo #include <sys/proc.h>
     43   1.1     groo #include <sys/device.h>
     44   1.1     groo #include <sys/malloc.h>
     45   1.1     groo #include <sys/errno.h>
     46   1.1     groo #include <sys/queue.h>
     47   1.1     groo #include <sys/lock.h>
     48   1.1     groo #include <sys/ioctl.h>
     49   1.1     groo #include <sys/conf.h>
     50   1.1     groo #include <sys/time.h>
     51   1.1     groo 
     52   1.1     groo #include <machine/bus.h>
     53   1.1     groo 
     54   1.1     groo #include <dev/isa/isareg.h>
     55   1.1     groo #include <dev/isa/isavar.h>
     56   1.1     groo 
     57   1.4  thorpej #include <dev/sysmon/sysmonvar.h>
     58   1.4  thorpej 
     59   1.1     groo #include <dev/ic/nslm7xvar.h>
     60   1.1     groo 
     61   1.1     groo #include <machine/intr.h>
     62   1.1     groo #include <machine/bus.h>
     63   1.1     groo 
     64   1.1     groo #if defined(LMDEBUG)
     65   1.1     groo #define DPRINTF(x)		do { printf x; } while (0)
     66   1.1     groo #else
     67   1.1     groo #define DPRINTF(x)
     68   1.1     groo #endif
     69   1.1     groo 
     70   1.4  thorpej const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
     71   1.5   bouyer 					/* for each unit type */
     72   1.1     groo 	{ 7, 7,    ENVSYS_STEMP   },
     73   1.1     groo 	{ 8, 10,   ENVSYS_SFANRPM },
     74   1.1     groo 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
     75   1.1     groo 	{ 0, 6,    ENVSYS_SVOLTS_DC },
     76   1.1     groo 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
     77   1.1     groo 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
     78   1.1     groo 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
     79   1.1     groo };
     80   1.1     groo 
     81   1.5   bouyer 
     82   1.1     groo u_int8_t lm_readreg __P((struct lm_softc *, int));
     83   1.1     groo void lm_writereg __P((struct lm_softc *, int, int));
     84   1.5   bouyer 
     85   1.8   bouyer static void setup_fan __P((struct lm_softc *, int, int));
     86   1.8   bouyer static void setup_temp __P((struct lm_softc *, int, int));
     87   1.8   bouyer static void wb_setup_volt __P((struct lm_softc *));
     88   1.8   bouyer 
     89   1.5   bouyer int lm_match __P((struct lm_softc *));
     90   1.5   bouyer int wb_match __P((struct lm_softc *));
     91   1.5   bouyer int def_match __P((struct lm_softc *));
     92   1.5   bouyer void lm_common_match __P((struct lm_softc *));
     93   1.5   bouyer 
     94   1.8   bouyer static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
     95   1.8   bouyer static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
     96   1.7   bouyer     struct envsys_basic_info *));
     97   1.8   bouyer static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
     98   1.8   bouyer 
     99   1.7   bouyer void lm_refresh_sensor_data __P((struct lm_softc *));
    100   1.8   bouyer 
    101   1.8   bouyer static void wb_svolt __P((struct lm_softc *));
    102   1.8   bouyer static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
    103   1.8   bouyer static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    104   1.8   bouyer 
    105   1.7   bouyer void wb781_refresh_sensor_data __P((struct lm_softc *));
    106   1.7   bouyer void wb782_refresh_sensor_data __P((struct lm_softc *));
    107   1.8   bouyer void wb697_refresh_sensor_data __P((struct lm_softc *));
    108   1.7   bouyer 
    109   1.4  thorpej int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
    110   1.7   bouyer 
    111   1.7   bouyer int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
    112   1.7   bouyer            int, struct envsys_basic_info *));
    113   1.4  thorpej int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    114   1.7   bouyer int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    115   1.7   bouyer int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    116   1.5   bouyer 
    117   1.5   bouyer struct lm_chip {
    118   1.5   bouyer 	int (*chip_match) __P((struct lm_softc *));
    119   1.5   bouyer };
    120   1.5   bouyer 
    121   1.5   bouyer struct lm_chip lm_chips[] = {
    122   1.8   bouyer 	{ wb_match },
    123   1.8   bouyer 	{ lm_match },
    124   1.8   bouyer 	{ def_match } /* Must be last */
    125   1.5   bouyer };
    126   1.5   bouyer 
    127   1.1     groo 
    128   1.1     groo u_int8_t
    129   1.1     groo lm_readreg(sc, reg)
    130   1.1     groo 	struct lm_softc *sc;
    131   1.1     groo 	int reg;
    132   1.1     groo {
    133   1.1     groo 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    134   1.1     groo 	return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
    135   1.1     groo }
    136   1.1     groo 
    137   1.1     groo void
    138   1.1     groo lm_writereg(sc, reg, val)
    139   1.1     groo 	struct lm_softc *sc;
    140   1.1     groo 	int reg;
    141   1.1     groo 	int val;
    142   1.1     groo {
    143   1.1     groo 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    144   1.1     groo 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
    145   1.1     groo }
    146   1.1     groo 
    147   1.1     groo 
    148   1.1     groo /*
    149   1.2     groo  * bus independent probe
    150   1.2     groo  */
    151   1.2     groo int
    152   1.2     groo lm_probe(iot, ioh)
    153   1.2     groo 	bus_space_tag_t iot;
    154   1.2     groo 	bus_space_handle_t ioh;
    155   1.2     groo {
    156   1.2     groo 	u_int8_t cr;
    157   1.2     groo 	int rv;
    158   1.2     groo 
    159   1.2     groo 	/* Check for some power-on defaults */
    160   1.2     groo 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    161   1.2     groo 
    162   1.2     groo 	/* Perform LM78 reset */
    163   1.2     groo 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
    164   1.2     groo 
    165   1.2     groo 	/* XXX - Why do I have to reselect the register? */
    166   1.2     groo 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    167   1.2     groo 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    168   1.2     groo 
    169   1.2     groo 	/* XXX - spec says *only* 0x08! */
    170   1.2     groo 	if ((cr == 0x08) || (cr == 0x01))
    171   1.2     groo 		rv = 1;
    172   1.2     groo 	else
    173   1.2     groo 		rv = 0;
    174   1.2     groo 
    175   1.2     groo 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
    176   1.2     groo 
    177   1.2     groo 	return (rv);
    178   1.2     groo }
    179   1.2     groo 
    180   1.2     groo 
    181   1.2     groo /*
    182   1.1     groo  * pre:  lmsc contains valid busspace tag and handle
    183   1.1     groo  */
    184   1.1     groo void
    185   1.1     groo lm_attach(lmsc)
    186   1.1     groo 	struct lm_softc *lmsc;
    187   1.1     groo {
    188   1.1     groo 	int i;
    189   1.1     groo 
    190   1.5   bouyer 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
    191   1.5   bouyer 		if (lm_chips[i].chip_match(lmsc))
    192   1.5   bouyer 			break;
    193   1.1     groo 
    194   1.1     groo 	/* Start the monitoring loop */
    195   1.1     groo 	lm_writereg(lmsc, LMD_CONFIG, 0x01);
    196   1.1     groo 
    197   1.1     groo 	/* Indicate we have never read the registers */
    198   1.1     groo 	timerclear(&lmsc->lastread);
    199   1.1     groo 
    200   1.1     groo 	/* Initialize sensors */
    201   1.5   bouyer 	for (i = 0; i < lmsc->numsensors; ++i) {
    202   1.1     groo 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
    203   1.1     groo 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
    204   1.1     groo 		lmsc->info[i].validflags = ENVSYS_FVALID;
    205   1.1     groo 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
    206   1.1     groo 	}
    207   1.4  thorpej 	/*
    208   1.4  thorpej 	 * Hook into the System Monitor.
    209   1.4  thorpej 	 */
    210   1.4  thorpej 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
    211   1.4  thorpej 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
    212   1.4  thorpej 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
    213   1.4  thorpej 	lmsc->sc_sysmon.sme_cookie = lmsc;
    214   1.4  thorpej 
    215   1.4  thorpej 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
    216   1.5   bouyer 	/* sme_streinfo set in chip-specific attach */
    217   1.4  thorpej 
    218   1.5   bouyer 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
    219   1.4  thorpej 	lmsc->sc_sysmon.sme_envsys_version = 1000;
    220   1.4  thorpej 
    221   1.4  thorpej 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
    222   1.4  thorpej 		printf("%s: unable to register with sysmon\n",
    223   1.4  thorpej 		    lmsc->sc_dev.dv_xname);
    224   1.1     groo }
    225   1.1     groo 
    226   1.5   bouyer int
    227   1.5   bouyer lm_match(sc)
    228   1.5   bouyer 	struct lm_softc *sc;
    229   1.5   bouyer {
    230   1.5   bouyer 	int i;
    231   1.5   bouyer 
    232   1.5   bouyer 	/* See if we have an LM78 or LM79 */
    233   1.5   bouyer 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    234   1.5   bouyer 	switch(i) {
    235   1.5   bouyer 	case LM_ID_LM78:
    236   1.5   bouyer 		printf(": LM78\n");
    237   1.5   bouyer 		break;
    238   1.5   bouyer 	case LM_ID_LM78J:
    239   1.5   bouyer 		printf(": LM78J\n");
    240   1.5   bouyer 		break;
    241   1.5   bouyer 	case LM_ID_LM79:
    242   1.5   bouyer 		printf(": LM79\n");
    243   1.5   bouyer 		break;
    244   1.5   bouyer 	default:
    245   1.5   bouyer 		return 0;
    246   1.5   bouyer 	}
    247   1.5   bouyer 	lm_common_match(sc);
    248   1.5   bouyer 	return 1;
    249   1.5   bouyer }
    250   1.1     groo 
    251   1.1     groo int
    252   1.5   bouyer def_match(sc)
    253   1.5   bouyer 	struct lm_softc *sc;
    254   1.5   bouyer {
    255   1.5   bouyer 	int i;
    256   1.5   bouyer 
    257   1.5   bouyer 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    258   1.5   bouyer 	printf(": Unknow chip (ID %d)\n", i);
    259   1.5   bouyer 	lm_common_match(sc);
    260   1.5   bouyer 	return 1;
    261   1.5   bouyer }
    262   1.5   bouyer 
    263   1.5   bouyer void
    264   1.5   bouyer lm_common_match(sc)
    265   1.5   bouyer 	struct lm_softc *sc;
    266   1.1     groo {
    267   1.5   bouyer 	int i;
    268   1.5   bouyer 	sc->numsensors = LM_NUM_SENSORS;
    269   1.5   bouyer 	sc->refresh_sensor_data = lm_refresh_sensor_data;
    270   1.5   bouyer 
    271   1.5   bouyer 	for (i = 0; i < 7; ++i) {
    272   1.5   bouyer 		sc->sensors[i].units = sc->info[i].units =
    273   1.5   bouyer 		    ENVSYS_SVOLTS_DC;
    274   1.5   bouyer 		sprintf(sc->info[i].desc, "IN %d", i);
    275   1.5   bouyer 	}
    276   1.5   bouyer 
    277   1.5   bouyer 	/* default correction factors for resistors on higher voltage inputs */
    278   1.5   bouyer 	sc->info[0].rfact = sc->info[1].rfact =
    279   1.5   bouyer 	    sc->info[2].rfact = 10000;
    280   1.5   bouyer 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    281   1.5   bouyer 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    282   1.5   bouyer 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    283   1.5   bouyer 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    284   1.5   bouyer 
    285   1.5   bouyer 	sc->sensors[7].units = ENVSYS_STEMP;
    286   1.5   bouyer 	strcpy(sc->info[7].desc, "Temp");
    287   1.5   bouyer 
    288   1.8   bouyer 	setup_fan(sc, 8, 3);
    289   1.5   bouyer 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
    290   1.5   bouyer }
    291   1.1     groo 
    292   1.5   bouyer int
    293   1.5   bouyer wb_match(sc)
    294   1.5   bouyer 	struct lm_softc *sc;
    295   1.5   bouyer {
    296   1.5   bouyer 	int i, j;
    297   1.1     groo 
    298   1.5   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
    299   1.5   bouyer 	j = lm_readreg(sc, WB_VENDID) << 8;
    300   1.5   bouyer 	lm_writereg(sc, WB_BANKSEL, 0);
    301   1.5   bouyer 	j |= lm_readreg(sc, WB_VENDID);
    302  1.11    veego 	DPRINTF(("winbond vend id 0x%x\n", j));
    303   1.5   bouyer 	if (j != WB_VENDID_WINBOND)
    304   1.5   bouyer 		return 0;
    305   1.7   bouyer 	/* read device ID */
    306   1.7   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    307   1.7   bouyer 	j = lm_readreg(sc, WB_BANK0_CHIPID);
    308  1.11    veego 	DPRINTF(("winbond chip id 0x%x\n", j));
    309   1.7   bouyer 	switch(j) {
    310   1.7   bouyer 	case WB_CHIPID_83781:
    311  1.10   bouyer 	case WB_CHIPID_83781_2:
    312   1.7   bouyer 		printf(": W83781D\n");
    313   1.7   bouyer 
    314   1.7   bouyer 		for (i = 0; i < 7; ++i) {
    315   1.7   bouyer 			sc->sensors[i].units = sc->info[i].units =
    316   1.7   bouyer 			    ENVSYS_SVOLTS_DC;
    317   1.7   bouyer 			sprintf(sc->info[i].desc, "IN %d", i);
    318   1.7   bouyer 		}
    319   1.7   bouyer 
    320   1.7   bouyer 		/* default correction factors for higher voltage inputs */
    321   1.7   bouyer 		sc->info[0].rfact = sc->info[1].rfact =
    322   1.7   bouyer 		    sc->info[2].rfact = 10000;
    323   1.7   bouyer 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    324   1.7   bouyer 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    325   1.7   bouyer 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    326   1.7   bouyer 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    327   1.7   bouyer 
    328   1.9   bouyer 		setup_temp(sc, 7, 3);
    329   1.9   bouyer 		setup_fan(sc, 10, 3);
    330   1.7   bouyer 
    331   1.9   bouyer 		sc->numsensors = WB83781_NUM_SENSORS;
    332   1.9   bouyer 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
    333   1.7   bouyer 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
    334   1.7   bouyer 		return 1;
    335   1.8   bouyer 	case WB_CHIPID_83697:
    336   1.8   bouyer 		printf(": W83697HF\n");
    337   1.8   bouyer 		wb_setup_volt(sc);
    338   1.8   bouyer 		setup_temp(sc, 9, 2);
    339   1.8   bouyer 		setup_fan(sc, 11, 3);
    340   1.8   bouyer 		sc->numsensors = WB83697_NUM_SENSORS;
    341   1.8   bouyer 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
    342   1.8   bouyer 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    343   1.8   bouyer 	return 1;
    344   1.8   bouyer 		break;
    345   1.7   bouyer 	case WB_CHIPID_83782:
    346   1.7   bouyer 		printf(": W83782D\n");
    347   1.7   bouyer 		break;
    348   1.7   bouyer 	case WB_CHIPID_83627:
    349   1.7   bouyer 		printf(": W83627HF\n");
    350   1.7   bouyer 		break;
    351   1.7   bouyer 	default:
    352   1.7   bouyer 		printf(": unknow winbond chip ID 0x%x\n", j);
    353   1.7   bouyer 		/* handle as a standart lm7x */
    354   1.7   bouyer 		lm_common_match(sc);
    355   1.7   bouyer 		return 1;
    356   1.7   bouyer 	}
    357   1.8   bouyer 	/* common code for the W83782D and W83627HF */
    358   1.8   bouyer 	wb_setup_volt(sc);
    359   1.8   bouyer 	setup_temp(sc, 9, 3);
    360   1.8   bouyer 	setup_fan(sc, 12, 3);
    361   1.5   bouyer 	sc->numsensors = WB_NUM_SENSORS;
    362   1.7   bouyer 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
    363   1.8   bouyer 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    364   1.8   bouyer 	return 1;
    365   1.8   bouyer }
    366   1.5   bouyer 
    367   1.8   bouyer static void
    368   1.8   bouyer wb_setup_volt(sc)
    369   1.8   bouyer 	struct lm_softc *sc;
    370   1.8   bouyer {
    371   1.5   bouyer 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
    372   1.5   bouyer 	sprintf(sc->info[0].desc, "VCORE A");
    373   1.5   bouyer 	sc->info[0].rfact = 10000;
    374   1.5   bouyer 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
    375   1.5   bouyer 	sprintf(sc->info[1].desc, "VCORE B");
    376   1.5   bouyer 	sc->info[1].rfact = 10000;
    377   1.5   bouyer 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
    378   1.5   bouyer 	sprintf(sc->info[2].desc, "+3.3V");
    379   1.5   bouyer 	sc->info[2].rfact = 10000;
    380   1.5   bouyer 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
    381   1.5   bouyer 	sprintf(sc->info[3].desc, "+5V");
    382   1.5   bouyer 	sc->info[3].rfact = 16778;
    383   1.5   bouyer 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
    384   1.5   bouyer 	sprintf(sc->info[4].desc, "+12V");
    385   1.5   bouyer 	sc->info[4].rfact = 38000;
    386   1.5   bouyer 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
    387   1.5   bouyer 	sprintf(sc->info[5].desc, "-12V");
    388   1.5   bouyer 	sc->info[5].rfact = 10000;
    389   1.5   bouyer 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
    390   1.5   bouyer 	sprintf(sc->info[6].desc, "-5V");
    391   1.5   bouyer 	sc->info[6].rfact = 10000;
    392   1.5   bouyer 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
    393   1.5   bouyer 	sprintf(sc->info[7].desc, "+5VSB");
    394   1.5   bouyer 	sc->info[7].rfact = 15151;
    395   1.5   bouyer 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
    396   1.5   bouyer 	sprintf(sc->info[8].desc, "VBAT");
    397   1.5   bouyer 	sc->info[8].rfact = 10000;
    398   1.8   bouyer }
    399   1.8   bouyer 
    400   1.8   bouyer static void
    401   1.8   bouyer setup_temp(sc, start, n)
    402   1.8   bouyer 	struct lm_softc *sc;
    403   1.8   bouyer 	int start, n;
    404   1.8   bouyer {
    405   1.8   bouyer 	int i;
    406   1.5   bouyer 
    407   1.8   bouyer 	for (i = 0; i < n; i++) {
    408   1.8   bouyer 		sc->sensors[start + i].units = ENVSYS_STEMP;
    409   1.8   bouyer 		sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
    410   1.8   bouyer 	}
    411   1.8   bouyer }
    412   1.8   bouyer 
    413   1.8   bouyer 
    414   1.8   bouyer static void
    415   1.8   bouyer setup_fan(sc, start, n)
    416   1.8   bouyer 	struct lm_softc *sc;
    417   1.8   bouyer 	int start, n;
    418   1.8   bouyer {
    419   1.8   bouyer 	int i;
    420   1.8   bouyer 	for (i = 0; i < n; ++i) {
    421   1.8   bouyer 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
    422   1.8   bouyer 		sc->info[start + i].units = ENVSYS_SFANRPM;
    423   1.8   bouyer 		sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
    424   1.5   bouyer 	}
    425   1.1     groo }
    426   1.1     groo 
    427   1.5   bouyer int
    428   1.5   bouyer lm_gtredata(sme, tred)
    429   1.5   bouyer 	 struct sysmon_envsys *sme;
    430   1.5   bouyer 	 struct envsys_tre_data *tred;
    431   1.5   bouyer {
    432   1.5   bouyer 	 static const struct timeval onepointfive = { 1, 500000 };
    433   1.5   bouyer 	 struct timeval t;
    434   1.5   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    435   1.5   bouyer 	 int i, s;
    436   1.5   bouyer 
    437   1.5   bouyer 	 /* read new values at most once every 1.5 seconds */
    438   1.5   bouyer 	 timeradd(&sc->lastread, &onepointfive, &t);
    439   1.5   bouyer 	 s = splclock();
    440   1.5   bouyer 	 i = timercmp(&mono_time, &t, >);
    441   1.5   bouyer 	 if (i) {
    442   1.5   bouyer 		  sc->lastread.tv_sec  = mono_time.tv_sec;
    443   1.5   bouyer 		  sc->lastread.tv_usec = mono_time.tv_usec;
    444   1.5   bouyer 	 }
    445   1.5   bouyer 	 splx(s);
    446   1.5   bouyer 
    447   1.5   bouyer 	 if (i)
    448   1.5   bouyer 		  sc->refresh_sensor_data(sc);
    449   1.5   bouyer 
    450   1.5   bouyer 	 *tred = sc->sensors[tred->sensor];
    451   1.5   bouyer 
    452   1.5   bouyer 	 return (0);
    453   1.5   bouyer }
    454   1.1     groo 
    455   1.1     groo int
    456   1.7   bouyer generic_streinfo_fan(sc, info, n, binfo)
    457   1.7   bouyer 	struct lm_softc *sc;
    458   1.7   bouyer 	struct envsys_basic_info *info;
    459   1.7   bouyer 	int n;
    460   1.7   bouyer 	struct envsys_basic_info *binfo;
    461   1.7   bouyer {
    462   1.7   bouyer 	u_int8_t sdata;
    463   1.7   bouyer 	int divisor;
    464   1.7   bouyer 
    465   1.7   bouyer 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
    466   1.7   bouyer 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
    467   1.7   bouyer 	    && (binfo->sensor != 2)) {
    468   1.7   bouyer 		if (binfo->rpms == 0) {
    469   1.7   bouyer 			binfo->validflags = 0;
    470   1.7   bouyer 			return (0);
    471   1.7   bouyer 		}
    472   1.7   bouyer 
    473   1.7   bouyer 		/* 153 is the nominal FAN speed value */
    474   1.7   bouyer 		divisor = 1350000 / (binfo->rpms * 153);
    475   1.7   bouyer 
    476   1.7   bouyer 		/* ...but we need lg(divisor) */
    477   1.7   bouyer 		if (divisor <= 1)
    478   1.7   bouyer 		    divisor = 0;
    479   1.7   bouyer 		else if (divisor <= 2)
    480   1.7   bouyer 		    divisor = 1;
    481   1.7   bouyer 		else if (divisor <= 4)
    482   1.7   bouyer 		    divisor = 2;
    483   1.7   bouyer 		else
    484   1.7   bouyer 		    divisor = 3;
    485   1.7   bouyer 
    486   1.7   bouyer 		/*
    487   1.7   bouyer 		 * FAN1 div is in bits <5:4>, FAN2 div is
    488   1.7   bouyer 		 * in <7:6>
    489   1.7   bouyer 		 */
    490   1.7   bouyer 		sdata = lm_readreg(sc, LMD_VIDFAN);
    491   1.7   bouyer 		if ( binfo->sensor == 0 ) {  /* FAN1 */
    492   1.7   bouyer 		    divisor <<= 4;
    493   1.7   bouyer 		    sdata = (sdata & 0xCF) | divisor;
    494   1.7   bouyer 		} else { /* FAN2 */
    495   1.7   bouyer 		    divisor <<= 6;
    496   1.7   bouyer 		    sdata = (sdata & 0x3F) | divisor;
    497   1.7   bouyer 		}
    498   1.7   bouyer 
    499   1.7   bouyer 		lm_writereg(sc, LMD_VIDFAN, sdata);
    500   1.7   bouyer 	}
    501   1.7   bouyer 	return (0);
    502   1.7   bouyer 
    503   1.7   bouyer }
    504   1.7   bouyer 
    505   1.7   bouyer int
    506   1.4  thorpej lm_streinfo(sme, binfo)
    507   1.5   bouyer 	 struct sysmon_envsys *sme;
    508   1.5   bouyer 	 struct envsys_basic_info *binfo;
    509   1.1     groo {
    510   1.5   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    511   1.5   bouyer 
    512   1.5   bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    513   1.5   bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    514   1.5   bouyer 	 else {
    515   1.7   bouyer 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    516   1.7   bouyer 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    517   1.7   bouyer 			    binfo->sensor - 8, binfo);
    518   1.7   bouyer 		}
    519   1.7   bouyer 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    520   1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc));
    521   1.7   bouyer 		sc->info[binfo->sensor].desc[
    522   1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    523   1.5   bouyer 
    524   1.7   bouyer 		binfo->validflags = ENVSYS_FVALID;
    525   1.7   bouyer 	 }
    526   1.7   bouyer 	 return (0);
    527   1.7   bouyer }
    528   1.5   bouyer 
    529   1.7   bouyer int
    530   1.7   bouyer wb781_streinfo(sme, binfo)
    531   1.7   bouyer 	 struct sysmon_envsys *sme;
    532   1.7   bouyer 	 struct envsys_basic_info *binfo;
    533   1.7   bouyer {
    534   1.7   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    535   1.5   bouyer 
    536   1.7   bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    537   1.7   bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    538   1.7   bouyer 	 else {
    539   1.7   bouyer 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    540   1.7   bouyer 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    541   1.7   bouyer 			    binfo->sensor - 10, binfo);
    542   1.7   bouyer 		}
    543   1.7   bouyer 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    544   1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc));
    545   1.7   bouyer 		sc->info[binfo->sensor].desc[
    546   1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    547   1.5   bouyer 
    548   1.7   bouyer 		binfo->validflags = ENVSYS_FVALID;
    549   1.5   bouyer 	 }
    550   1.5   bouyer 	 return (0);
    551   1.5   bouyer }
    552   1.5   bouyer 
    553   1.5   bouyer int
    554   1.7   bouyer wb782_streinfo(sme, binfo)
    555   1.5   bouyer 	 struct sysmon_envsys *sme;
    556   1.5   bouyer 	 struct envsys_basic_info *binfo;
    557   1.5   bouyer {
    558   1.5   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    559   1.5   bouyer 	 int divisor;
    560   1.5   bouyer 	 u_int8_t sdata;
    561   1.5   bouyer 	 int i;
    562   1.5   bouyer 
    563   1.5   bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    564   1.5   bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    565   1.5   bouyer 	 else {
    566   1.5   bouyer 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    567   1.4  thorpej 			if (binfo->rpms == 0) {
    568   1.4  thorpej 				binfo->validflags = 0;
    569   1.4  thorpej 				return (0);
    570   1.1     groo 			}
    571   1.1     groo 
    572   1.4  thorpej 			/* 153 is the nominal FAN speed value */
    573   1.4  thorpej 			divisor = 1350000 / (binfo->rpms * 153);
    574   1.1     groo 
    575   1.4  thorpej 			/* ...but we need lg(divisor) */
    576   1.5   bouyer 			for (i = 0; i < 7; i++) {
    577   1.5   bouyer 				if (divisor <= (1 << i))
    578   1.5   bouyer 				 	break;
    579   1.5   bouyer 			}
    580   1.5   bouyer 			divisor = i;
    581   1.4  thorpej 
    582   1.5   bouyer 			if (binfo->sensor == 12 || binfo->sensor == 13) {
    583   1.5   bouyer 				/*
    584   1.5   bouyer 				 * FAN1 div is in bits <5:4>, FAN2 div
    585   1.5   bouyer 				 * is in <7:6>
    586   1.5   bouyer 				 */
    587   1.5   bouyer 				sdata = lm_readreg(sc, LMD_VIDFAN);
    588   1.5   bouyer 				if ( binfo->sensor == 12 ) {  /* FAN1 */
    589   1.5   bouyer 					 sdata = (sdata & 0xCF) |
    590   1.5   bouyer 					     ((divisor & 0x3) << 4);
    591   1.5   bouyer 				} else { /* FAN2 */
    592   1.5   bouyer 					 sdata = (sdata & 0x3F) |
    593   1.5   bouyer 					     ((divisor & 0x3) << 6);
    594   1.5   bouyer 				}
    595   1.5   bouyer 				lm_writereg(sc, LMD_VIDFAN, sdata);
    596   1.5   bouyer 			} else {
    597   1.5   bouyer 				/* FAN3 is in WB_PIN <7:6> */
    598   1.5   bouyer 				sdata = lm_readreg(sc, WB_PIN);
    599   1.5   bouyer 				sdata = (sdata & 0x3F) |
    600   1.5   bouyer 				     ((divisor & 0x3) << 6);
    601   1.5   bouyer 				lm_writereg(sc, LMD_VIDFAN, sdata);
    602   1.1     groo 			}
    603   1.5   bouyer 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
    604   1.5   bouyer 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    605   1.5   bouyer 			sdata = lm_readreg(sc, WB_BANK0_FANBAT);
    606   1.5   bouyer 			sdata &= ~(0x20 << (binfo->sensor - 12));
    607   1.5   bouyer 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
    608   1.5   bouyer 			lm_writereg(sc, WB_BANK0_FANBAT, sdata);
    609   1.1     groo 		}
    610   1.1     groo 
    611   1.4  thorpej 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    612   1.4  thorpej 		    sizeof(sc->info[binfo->sensor].desc));
    613   1.4  thorpej 		sc->info[binfo->sensor].desc[
    614   1.4  thorpej 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    615   1.1     groo 
    616   1.4  thorpej 		binfo->validflags = ENVSYS_FVALID;
    617   1.1     groo 	}
    618   1.4  thorpej 	return (0);
    619   1.1     groo }
    620   1.1     groo 
    621   1.8   bouyer static void
    622   1.7   bouyer generic_stemp(sc, sensor)
    623   1.7   bouyer 	struct lm_softc *sc;
    624   1.7   bouyer 	struct envsys_tre_data *sensor;
    625   1.7   bouyer {
    626   1.7   bouyer 	int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
    627  1.10   bouyer 	DPRINTF(("sdata[temp] 0x%x\n", sdata));
    628   1.7   bouyer 	/* temp is given in deg. C, we convert to uK */
    629   1.7   bouyer 	sensor->cur.data_us = sdata * 1000000 + 273150000;
    630   1.7   bouyer }
    631   1.7   bouyer 
    632   1.8   bouyer static void
    633   1.7   bouyer generic_svolt(sc, sensors, infos)
    634   1.7   bouyer 	struct lm_softc *sc;
    635   1.7   bouyer 	struct envsys_tre_data *sensors;
    636   1.7   bouyer 	struct envsys_basic_info *infos;
    637   1.7   bouyer {
    638   1.7   bouyer 	int i, sdata;
    639   1.7   bouyer 
    640   1.7   bouyer 	for (i = 0; i < 7; i++) {
    641   1.7   bouyer 		sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    642  1.10   bouyer 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    643   1.7   bouyer 		/* voltage returned as (mV >> 4), we convert to uVDC */
    644   1.7   bouyer 		sensors[i].cur.data_s = (sdata << 4);
    645   1.7   bouyer 		/* rfact is (factor * 10^4) */
    646   1.7   bouyer 		sensors[i].cur.data_s *= infos[i].rfact;
    647   1.7   bouyer 		/* division by 10 gets us back to uVDC */
    648   1.7   bouyer 		sensors[i].cur.data_s /= 10;
    649   1.7   bouyer 
    650   1.7   bouyer 		/* these two are negative voltages */
    651   1.7   bouyer 		if ( (i == 5) || (i == 6) )
    652   1.7   bouyer 			sensors[i].cur.data_s *= -1;
    653   1.7   bouyer 	}
    654   1.7   bouyer }
    655   1.7   bouyer 
    656   1.8   bouyer static void
    657   1.7   bouyer generic_fanrpm(sc, sensors)
    658   1.7   bouyer 	struct lm_softc *sc;
    659   1.7   bouyer 	struct envsys_tre_data *sensors;
    660   1.7   bouyer {
    661   1.7   bouyer 	int i, sdata, divisor;
    662   1.7   bouyer 	for (i = 0; i < 3; i++) {
    663   1.7   bouyer 		sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
    664  1.10   bouyer 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    665   1.7   bouyer 		if (i == 2)
    666   1.7   bouyer 			divisor = 2;	/* Fixed divisor for FAN3 */
    667   1.7   bouyer 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
    668   1.7   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    669   1.7   bouyer 		else
    670   1.7   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    671   1.7   bouyer 
    672   1.7   bouyer 		if (sdata == 0xff || sdata == 0x00) {
    673   1.7   bouyer 			sensors[i].cur.data_us = 0;
    674   1.7   bouyer 		} else {
    675   1.7   bouyer 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
    676   1.7   bouyer 		}
    677   1.7   bouyer 	}
    678   1.7   bouyer }
    679   1.7   bouyer 
    680   1.1     groo /*
    681   1.1     groo  * pre:  last read occured >= 1.5 seconds ago
    682   1.1     groo  * post: sensors[] current data are the latest from the chip
    683   1.1     groo  */
    684   1.1     groo void
    685   1.1     groo lm_refresh_sensor_data(sc)
    686   1.1     groo 	struct lm_softc *sc;
    687   1.1     groo {
    688   1.7   bouyer 	/* Refresh our stored data for every sensor */
    689   1.7   bouyer 	generic_stemp(sc, &sc->sensors[7]);
    690   1.7   bouyer 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    691   1.7   bouyer 	generic_fanrpm(sc, &sc->sensors[8]);
    692   1.7   bouyer }
    693   1.7   bouyer 
    694   1.8   bouyer static void
    695   1.8   bouyer wb_svolt(sc)
    696   1.7   bouyer 	struct lm_softc *sc;
    697   1.7   bouyer {
    698   1.8   bouyer 	int i, sdata;
    699   1.5   bouyer 	for (i = 0; i < 9; ++i) {
    700   1.5   bouyer 		if (i < 7) {
    701   1.5   bouyer 			sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    702   1.5   bouyer 		} else {
    703   1.5   bouyer 			/* from bank5 */
    704   1.5   bouyer 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
    705   1.5   bouyer 			sdata = lm_readreg(sc, (i == 7) ?
    706   1.5   bouyer 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
    707   1.5   bouyer 		}
    708  1.10   bouyer 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    709   1.5   bouyer 		/* voltage returned as (mV >> 4), we convert to uV */
    710   1.5   bouyer 		sdata =  sdata << 4;
    711   1.5   bouyer 		/* special case for negative voltages */
    712   1.5   bouyer 		if (i == 5) {
    713   1.5   bouyer 			/*
    714   1.5   bouyer 			 * -12Vdc, assume Winbond recommended values for
    715   1.5   bouyer 			 * resistors
    716   1.5   bouyer 			 */
    717   1.5   bouyer 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
    718   1.5   bouyer 		} else if (i == 6) {
    719   1.5   bouyer 			/*
    720   1.5   bouyer 			 * -5Vdc, assume Winbond recommended values for
    721   1.5   bouyer 			 * resistors
    722   1.5   bouyer 			 */
    723   1.5   bouyer 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
    724   1.5   bouyer 		}
    725   1.5   bouyer 		/* rfact is (factor * 10^4) */
    726   1.5   bouyer 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
    727   1.5   bouyer 		/* division by 10 gets us back to uVDC */
    728   1.5   bouyer 		sc->sensors[i].cur.data_s /= 10;
    729   1.5   bouyer 	}
    730   1.8   bouyer }
    731   1.5   bouyer 
    732   1.8   bouyer static void
    733   1.8   bouyer wb_stemp(sc, sensors, n)
    734   1.8   bouyer 	struct lm_softc *sc;
    735   1.8   bouyer 	struct  envsys_tre_data *sensors;
    736   1.8   bouyer 	int n;
    737   1.8   bouyer {
    738   1.8   bouyer 	int sdata;
    739   1.8   bouyer 	/* temperatures. Given in dC, we convert to uK */
    740   1.8   bouyer 	sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
    741  1.10   bouyer 	DPRINTF(("sdata[temp0] 0x%x\n", sdata));
    742   1.8   bouyer 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
    743   1.8   bouyer 	/* from bank1 */
    744   1.8   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
    745   1.8   bouyer 	sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
    746   1.8   bouyer 	sdata |=  (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
    747  1.10   bouyer 	DPRINTF(("sdata[temp1] 0x%x\n", sdata));
    748   1.8   bouyer 	sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    749   1.8   bouyer 	if (n < 3)
    750   1.8   bouyer 		return;
    751   1.8   bouyer 	/* from bank2 */
    752   1.8   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
    753   1.8   bouyer 	sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
    754   1.8   bouyer 	sdata |=  (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
    755  1.10   bouyer 	DPRINTF(("sdata[temp2] 0x%x\n", sdata));
    756   1.8   bouyer 	sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    757   1.8   bouyer }
    758   1.8   bouyer 
    759   1.8   bouyer static void
    760   1.8   bouyer wb_fanrpm(sc, sensors)
    761   1.8   bouyer 	struct lm_softc *sc;
    762   1.8   bouyer 	struct envsys_tre_data *sensors;
    763   1.8   bouyer {
    764   1.8   bouyer 	int i, divisor, sdata;
    765   1.5   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    766   1.8   bouyer 	for (i = 0; i < 3; i++) {
    767   1.8   bouyer 		sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
    768  1.10   bouyer 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    769   1.8   bouyer 		if (i == 0)
    770   1.5   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    771   1.8   bouyer 		else if (i == 1)
    772   1.5   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    773   1.5   bouyer 		else
    774   1.5   bouyer 			divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
    775   1.8   bouyer 		divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
    776   1.5   bouyer 
    777   1.5   bouyer 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    778   1.5   bouyer 		if (sdata == 0xff || sdata == 0x00) {
    779   1.8   bouyer 			sensors[i].cur.data_us = 0;
    780   1.5   bouyer 		} else {
    781   1.8   bouyer 			sensors[i].cur.data_us = 1350000 /
    782   1.5   bouyer 			    (sdata << divisor);
    783   1.1     groo 		}
    784   1.1     groo 	}
    785   1.8   bouyer }
    786   1.8   bouyer 
    787   1.8   bouyer void
    788   1.8   bouyer wb781_refresh_sensor_data(sc)
    789   1.8   bouyer 	struct lm_softc *sc;
    790   1.8   bouyer {
    791   1.8   bouyer 	/* Refresh our stored data for every sensor */
    792   1.9   bouyer 	/* we need to reselect bank0 to access common registers */
    793   1.9   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    794   1.8   bouyer 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    795   1.9   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    796   1.8   bouyer 	wb_stemp(sc, &sc->sensors[7], 3);
    797   1.9   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    798   1.8   bouyer 	generic_fanrpm(sc, &sc->sensors[10]);
    799   1.8   bouyer }
    800   1.8   bouyer 
    801   1.8   bouyer void
    802   1.8   bouyer wb782_refresh_sensor_data(sc)
    803   1.8   bouyer 	struct lm_softc *sc;
    804   1.8   bouyer {
    805   1.8   bouyer 	/* Refresh our stored data for every sensor */
    806   1.8   bouyer 	wb_svolt(sc);
    807   1.8   bouyer 	wb_stemp(sc, &sc->sensors[9], 3);
    808   1.8   bouyer 	wb_fanrpm(sc, &sc->sensors[12]);
    809   1.8   bouyer }
    810   1.8   bouyer 
    811   1.8   bouyer void
    812   1.8   bouyer wb697_refresh_sensor_data(sc)
    813   1.8   bouyer 	struct lm_softc *sc;
    814   1.8   bouyer {
    815   1.8   bouyer 	/* Refresh our stored data for every sensor */
    816   1.8   bouyer 	wb_svolt(sc);
    817   1.8   bouyer 	wb_stemp(sc, &sc->sensors[9], 2);
    818   1.8   bouyer 	wb_fanrpm(sc, &sc->sensors[11]);
    819   1.1     groo }
    820