Home | History | Annotate | Line # | Download | only in ic
nslm7x.c revision 1.14
      1  1.14     tron /*	$NetBSD: nslm7x.c,v 1.14 2002/03/30 13:37:41 tron Exp $ */
      2   1.1     groo 
      3   1.1     groo /*-
      4   1.1     groo  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5   1.1     groo  * All rights reserved.
      6   1.1     groo  *
      7   1.1     groo  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1     groo  * by Bill Squier.
      9   1.1     groo  *
     10   1.1     groo  * Redistribution and use in source and binary forms, with or without
     11   1.1     groo  * modification, are permitted provided that the following conditions
     12   1.1     groo  * are met:
     13   1.1     groo  * 1. Redistributions of source code must retain the above copyright
     14   1.1     groo  *    notice, this list of conditions and the following disclaimer.
     15   1.1     groo  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1     groo  *    notice, this list of conditions and the following disclaimer in the
     17   1.1     groo  *    documentation and/or other materials provided with the distribution.
     18   1.1     groo  * 3. All advertising materials mentioning features or use of this software
     19   1.1     groo  *    must display the following acknowledgement:
     20   1.1     groo  *        This product includes software developed by the NetBSD
     21   1.1     groo  *        Foundation, Inc. and its contributors.
     22   1.1     groo  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1     groo  *    contributors may be used to endorse or promote products derived
     24   1.1     groo  *    from this software without specific prior written permission.
     25   1.1     groo  *
     26   1.1     groo  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1     groo  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1     groo  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1     groo  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1     groo  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1     groo  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1     groo  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1     groo  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1     groo  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1     groo  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1     groo  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1     groo  */
     38  1.13    lukem 
     39  1.13    lukem #include <sys/cdefs.h>
     40  1.14     tron __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.14 2002/03/30 13:37:41 tron Exp $");
     41   1.1     groo 
     42   1.1     groo #include <sys/param.h>
     43   1.1     groo #include <sys/systm.h>
     44   1.1     groo #include <sys/kernel.h>
     45   1.1     groo #include <sys/proc.h>
     46   1.1     groo #include <sys/device.h>
     47   1.1     groo #include <sys/malloc.h>
     48   1.1     groo #include <sys/errno.h>
     49   1.1     groo #include <sys/queue.h>
     50   1.1     groo #include <sys/lock.h>
     51   1.1     groo #include <sys/ioctl.h>
     52   1.1     groo #include <sys/conf.h>
     53   1.1     groo #include <sys/time.h>
     54   1.1     groo 
     55   1.1     groo #include <machine/bus.h>
     56   1.1     groo 
     57   1.1     groo #include <dev/isa/isareg.h>
     58   1.1     groo #include <dev/isa/isavar.h>
     59   1.1     groo 
     60   1.4  thorpej #include <dev/sysmon/sysmonvar.h>
     61   1.4  thorpej 
     62   1.1     groo #include <dev/ic/nslm7xvar.h>
     63   1.1     groo 
     64   1.1     groo #include <machine/intr.h>
     65   1.1     groo #include <machine/bus.h>
     66   1.1     groo 
     67   1.1     groo #if defined(LMDEBUG)
     68   1.1     groo #define DPRINTF(x)		do { printf x; } while (0)
     69   1.1     groo #else
     70   1.1     groo #define DPRINTF(x)
     71   1.1     groo #endif
     72   1.1     groo 
     73   1.4  thorpej const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
     74   1.5   bouyer 					/* for each unit type */
     75   1.1     groo 	{ 7, 7,    ENVSYS_STEMP   },
     76   1.1     groo 	{ 8, 10,   ENVSYS_SFANRPM },
     77   1.1     groo 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
     78   1.1     groo 	{ 0, 6,    ENVSYS_SVOLTS_DC },
     79   1.1     groo 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
     80   1.1     groo 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
     81   1.1     groo 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
     82   1.1     groo };
     83   1.1     groo 
     84   1.5   bouyer 
     85   1.1     groo u_int8_t lm_readreg __P((struct lm_softc *, int));
     86   1.1     groo void lm_writereg __P((struct lm_softc *, int, int));
     87   1.5   bouyer 
     88   1.8   bouyer static void setup_fan __P((struct lm_softc *, int, int));
     89   1.8   bouyer static void setup_temp __P((struct lm_softc *, int, int));
     90   1.8   bouyer static void wb_setup_volt __P((struct lm_softc *));
     91   1.8   bouyer 
     92   1.5   bouyer int lm_match __P((struct lm_softc *));
     93   1.5   bouyer int wb_match __P((struct lm_softc *));
     94   1.5   bouyer int def_match __P((struct lm_softc *));
     95   1.5   bouyer void lm_common_match __P((struct lm_softc *));
     96   1.5   bouyer 
     97   1.8   bouyer static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
     98   1.8   bouyer static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
     99   1.7   bouyer     struct envsys_basic_info *));
    100   1.8   bouyer static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    101   1.8   bouyer 
    102   1.7   bouyer void lm_refresh_sensor_data __P((struct lm_softc *));
    103   1.8   bouyer 
    104   1.8   bouyer static void wb_svolt __P((struct lm_softc *));
    105   1.8   bouyer static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
    106  1.14     tron static void wb781_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    107   1.8   bouyer static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    108   1.8   bouyer 
    109   1.7   bouyer void wb781_refresh_sensor_data __P((struct lm_softc *));
    110   1.7   bouyer void wb782_refresh_sensor_data __P((struct lm_softc *));
    111   1.8   bouyer void wb697_refresh_sensor_data __P((struct lm_softc *));
    112   1.7   bouyer 
    113   1.4  thorpej int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
    114   1.7   bouyer 
    115   1.7   bouyer int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
    116   1.7   bouyer            int, struct envsys_basic_info *));
    117   1.4  thorpej int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    118   1.7   bouyer int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    119   1.7   bouyer int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    120   1.5   bouyer 
    121   1.5   bouyer struct lm_chip {
    122   1.5   bouyer 	int (*chip_match) __P((struct lm_softc *));
    123   1.5   bouyer };
    124   1.5   bouyer 
    125   1.5   bouyer struct lm_chip lm_chips[] = {
    126   1.8   bouyer 	{ wb_match },
    127   1.8   bouyer 	{ lm_match },
    128   1.8   bouyer 	{ def_match } /* Must be last */
    129   1.5   bouyer };
    130   1.5   bouyer 
    131   1.1     groo 
    132   1.1     groo u_int8_t
    133   1.1     groo lm_readreg(sc, reg)
    134   1.1     groo 	struct lm_softc *sc;
    135   1.1     groo 	int reg;
    136   1.1     groo {
    137   1.1     groo 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    138   1.1     groo 	return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
    139   1.1     groo }
    140   1.1     groo 
    141   1.1     groo void
    142   1.1     groo lm_writereg(sc, reg, val)
    143   1.1     groo 	struct lm_softc *sc;
    144   1.1     groo 	int reg;
    145   1.1     groo 	int val;
    146   1.1     groo {
    147   1.1     groo 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    148   1.1     groo 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
    149   1.1     groo }
    150   1.1     groo 
    151   1.1     groo 
    152   1.1     groo /*
    153   1.2     groo  * bus independent probe
    154   1.2     groo  */
    155   1.2     groo int
    156   1.2     groo lm_probe(iot, ioh)
    157   1.2     groo 	bus_space_tag_t iot;
    158   1.2     groo 	bus_space_handle_t ioh;
    159   1.2     groo {
    160   1.2     groo 	u_int8_t cr;
    161   1.2     groo 	int rv;
    162   1.2     groo 
    163   1.2     groo 	/* Check for some power-on defaults */
    164   1.2     groo 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    165   1.2     groo 
    166   1.2     groo 	/* Perform LM78 reset */
    167   1.2     groo 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
    168   1.2     groo 
    169   1.2     groo 	/* XXX - Why do I have to reselect the register? */
    170   1.2     groo 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    171   1.2     groo 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    172   1.2     groo 
    173   1.2     groo 	/* XXX - spec says *only* 0x08! */
    174   1.2     groo 	if ((cr == 0x08) || (cr == 0x01))
    175   1.2     groo 		rv = 1;
    176   1.2     groo 	else
    177   1.2     groo 		rv = 0;
    178   1.2     groo 
    179   1.2     groo 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
    180   1.2     groo 
    181   1.2     groo 	return (rv);
    182   1.2     groo }
    183   1.2     groo 
    184   1.2     groo 
    185   1.2     groo /*
    186   1.1     groo  * pre:  lmsc contains valid busspace tag and handle
    187   1.1     groo  */
    188   1.1     groo void
    189   1.1     groo lm_attach(lmsc)
    190   1.1     groo 	struct lm_softc *lmsc;
    191   1.1     groo {
    192   1.1     groo 	int i;
    193   1.1     groo 
    194   1.5   bouyer 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
    195   1.5   bouyer 		if (lm_chips[i].chip_match(lmsc))
    196   1.5   bouyer 			break;
    197   1.1     groo 
    198   1.1     groo 	/* Start the monitoring loop */
    199   1.1     groo 	lm_writereg(lmsc, LMD_CONFIG, 0x01);
    200   1.1     groo 
    201   1.1     groo 	/* Indicate we have never read the registers */
    202   1.1     groo 	timerclear(&lmsc->lastread);
    203   1.1     groo 
    204   1.1     groo 	/* Initialize sensors */
    205   1.5   bouyer 	for (i = 0; i < lmsc->numsensors; ++i) {
    206   1.1     groo 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
    207   1.1     groo 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
    208   1.1     groo 		lmsc->info[i].validflags = ENVSYS_FVALID;
    209   1.1     groo 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
    210   1.1     groo 	}
    211   1.4  thorpej 	/*
    212   1.4  thorpej 	 * Hook into the System Monitor.
    213   1.4  thorpej 	 */
    214   1.4  thorpej 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
    215   1.4  thorpej 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
    216   1.4  thorpej 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
    217   1.4  thorpej 	lmsc->sc_sysmon.sme_cookie = lmsc;
    218   1.4  thorpej 
    219   1.4  thorpej 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
    220   1.5   bouyer 	/* sme_streinfo set in chip-specific attach */
    221   1.4  thorpej 
    222   1.5   bouyer 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
    223   1.4  thorpej 	lmsc->sc_sysmon.sme_envsys_version = 1000;
    224   1.4  thorpej 
    225   1.4  thorpej 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
    226   1.4  thorpej 		printf("%s: unable to register with sysmon\n",
    227   1.4  thorpej 		    lmsc->sc_dev.dv_xname);
    228   1.1     groo }
    229   1.1     groo 
    230   1.5   bouyer int
    231   1.5   bouyer lm_match(sc)
    232   1.5   bouyer 	struct lm_softc *sc;
    233   1.5   bouyer {
    234   1.5   bouyer 	int i;
    235   1.5   bouyer 
    236   1.5   bouyer 	/* See if we have an LM78 or LM79 */
    237   1.5   bouyer 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    238   1.5   bouyer 	switch(i) {
    239   1.5   bouyer 	case LM_ID_LM78:
    240   1.5   bouyer 		printf(": LM78\n");
    241   1.5   bouyer 		break;
    242   1.5   bouyer 	case LM_ID_LM78J:
    243   1.5   bouyer 		printf(": LM78J\n");
    244   1.5   bouyer 		break;
    245   1.5   bouyer 	case LM_ID_LM79:
    246   1.5   bouyer 		printf(": LM79\n");
    247   1.5   bouyer 		break;
    248   1.5   bouyer 	default:
    249   1.5   bouyer 		return 0;
    250   1.5   bouyer 	}
    251   1.5   bouyer 	lm_common_match(sc);
    252   1.5   bouyer 	return 1;
    253   1.5   bouyer }
    254   1.1     groo 
    255   1.1     groo int
    256   1.5   bouyer def_match(sc)
    257   1.5   bouyer 	struct lm_softc *sc;
    258   1.5   bouyer {
    259   1.5   bouyer 	int i;
    260   1.5   bouyer 
    261   1.5   bouyer 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    262   1.5   bouyer 	printf(": Unknow chip (ID %d)\n", i);
    263   1.5   bouyer 	lm_common_match(sc);
    264   1.5   bouyer 	return 1;
    265   1.5   bouyer }
    266   1.5   bouyer 
    267   1.5   bouyer void
    268   1.5   bouyer lm_common_match(sc)
    269   1.5   bouyer 	struct lm_softc *sc;
    270   1.1     groo {
    271   1.5   bouyer 	int i;
    272   1.5   bouyer 	sc->numsensors = LM_NUM_SENSORS;
    273   1.5   bouyer 	sc->refresh_sensor_data = lm_refresh_sensor_data;
    274   1.5   bouyer 
    275   1.5   bouyer 	for (i = 0; i < 7; ++i) {
    276   1.5   bouyer 		sc->sensors[i].units = sc->info[i].units =
    277   1.5   bouyer 		    ENVSYS_SVOLTS_DC;
    278   1.5   bouyer 		sprintf(sc->info[i].desc, "IN %d", i);
    279   1.5   bouyer 	}
    280   1.5   bouyer 
    281   1.5   bouyer 	/* default correction factors for resistors on higher voltage inputs */
    282   1.5   bouyer 	sc->info[0].rfact = sc->info[1].rfact =
    283   1.5   bouyer 	    sc->info[2].rfact = 10000;
    284   1.5   bouyer 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    285   1.5   bouyer 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    286   1.5   bouyer 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    287   1.5   bouyer 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    288   1.5   bouyer 
    289   1.5   bouyer 	sc->sensors[7].units = ENVSYS_STEMP;
    290   1.5   bouyer 	strcpy(sc->info[7].desc, "Temp");
    291   1.5   bouyer 
    292   1.8   bouyer 	setup_fan(sc, 8, 3);
    293   1.5   bouyer 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
    294   1.5   bouyer }
    295   1.1     groo 
    296   1.5   bouyer int
    297   1.5   bouyer wb_match(sc)
    298   1.5   bouyer 	struct lm_softc *sc;
    299   1.5   bouyer {
    300   1.5   bouyer 	int i, j;
    301   1.1     groo 
    302   1.5   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
    303   1.5   bouyer 	j = lm_readreg(sc, WB_VENDID) << 8;
    304   1.5   bouyer 	lm_writereg(sc, WB_BANKSEL, 0);
    305   1.5   bouyer 	j |= lm_readreg(sc, WB_VENDID);
    306  1.11    veego 	DPRINTF(("winbond vend id 0x%x\n", j));
    307   1.5   bouyer 	if (j != WB_VENDID_WINBOND)
    308   1.5   bouyer 		return 0;
    309   1.7   bouyer 	/* read device ID */
    310   1.7   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    311   1.7   bouyer 	j = lm_readreg(sc, WB_BANK0_CHIPID);
    312  1.11    veego 	DPRINTF(("winbond chip id 0x%x\n", j));
    313   1.7   bouyer 	switch(j) {
    314   1.7   bouyer 	case WB_CHIPID_83781:
    315  1.10   bouyer 	case WB_CHIPID_83781_2:
    316   1.7   bouyer 		printf(": W83781D\n");
    317   1.7   bouyer 
    318   1.7   bouyer 		for (i = 0; i < 7; ++i) {
    319   1.7   bouyer 			sc->sensors[i].units = sc->info[i].units =
    320   1.7   bouyer 			    ENVSYS_SVOLTS_DC;
    321   1.7   bouyer 			sprintf(sc->info[i].desc, "IN %d", i);
    322   1.7   bouyer 		}
    323   1.7   bouyer 
    324   1.7   bouyer 		/* default correction factors for higher voltage inputs */
    325   1.7   bouyer 		sc->info[0].rfact = sc->info[1].rfact =
    326   1.7   bouyer 		    sc->info[2].rfact = 10000;
    327   1.7   bouyer 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    328   1.7   bouyer 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    329   1.7   bouyer 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    330   1.7   bouyer 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    331   1.7   bouyer 
    332   1.9   bouyer 		setup_temp(sc, 7, 3);
    333   1.9   bouyer 		setup_fan(sc, 10, 3);
    334   1.7   bouyer 
    335   1.9   bouyer 		sc->numsensors = WB83781_NUM_SENSORS;
    336   1.9   bouyer 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
    337   1.7   bouyer 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
    338   1.7   bouyer 		return 1;
    339   1.8   bouyer 	case WB_CHIPID_83697:
    340   1.8   bouyer 		printf(": W83697HF\n");
    341   1.8   bouyer 		wb_setup_volt(sc);
    342   1.8   bouyer 		setup_temp(sc, 9, 2);
    343   1.8   bouyer 		setup_fan(sc, 11, 3);
    344   1.8   bouyer 		sc->numsensors = WB83697_NUM_SENSORS;
    345   1.8   bouyer 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
    346   1.8   bouyer 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    347   1.8   bouyer 	return 1;
    348   1.8   bouyer 		break;
    349   1.7   bouyer 	case WB_CHIPID_83782:
    350   1.7   bouyer 		printf(": W83782D\n");
    351   1.7   bouyer 		break;
    352   1.7   bouyer 	case WB_CHIPID_83627:
    353   1.7   bouyer 		printf(": W83627HF\n");
    354   1.7   bouyer 		break;
    355   1.7   bouyer 	default:
    356   1.7   bouyer 		printf(": unknow winbond chip ID 0x%x\n", j);
    357   1.7   bouyer 		/* handle as a standart lm7x */
    358   1.7   bouyer 		lm_common_match(sc);
    359   1.7   bouyer 		return 1;
    360   1.7   bouyer 	}
    361   1.8   bouyer 	/* common code for the W83782D and W83627HF */
    362   1.8   bouyer 	wb_setup_volt(sc);
    363   1.8   bouyer 	setup_temp(sc, 9, 3);
    364   1.8   bouyer 	setup_fan(sc, 12, 3);
    365   1.5   bouyer 	sc->numsensors = WB_NUM_SENSORS;
    366   1.7   bouyer 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
    367   1.8   bouyer 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    368   1.8   bouyer 	return 1;
    369   1.8   bouyer }
    370   1.5   bouyer 
    371   1.8   bouyer static void
    372   1.8   bouyer wb_setup_volt(sc)
    373   1.8   bouyer 	struct lm_softc *sc;
    374   1.8   bouyer {
    375   1.5   bouyer 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
    376   1.5   bouyer 	sprintf(sc->info[0].desc, "VCORE A");
    377   1.5   bouyer 	sc->info[0].rfact = 10000;
    378   1.5   bouyer 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
    379   1.5   bouyer 	sprintf(sc->info[1].desc, "VCORE B");
    380   1.5   bouyer 	sc->info[1].rfact = 10000;
    381   1.5   bouyer 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
    382   1.5   bouyer 	sprintf(sc->info[2].desc, "+3.3V");
    383   1.5   bouyer 	sc->info[2].rfact = 10000;
    384   1.5   bouyer 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
    385   1.5   bouyer 	sprintf(sc->info[3].desc, "+5V");
    386   1.5   bouyer 	sc->info[3].rfact = 16778;
    387   1.5   bouyer 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
    388   1.5   bouyer 	sprintf(sc->info[4].desc, "+12V");
    389   1.5   bouyer 	sc->info[4].rfact = 38000;
    390   1.5   bouyer 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
    391   1.5   bouyer 	sprintf(sc->info[5].desc, "-12V");
    392   1.5   bouyer 	sc->info[5].rfact = 10000;
    393   1.5   bouyer 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
    394   1.5   bouyer 	sprintf(sc->info[6].desc, "-5V");
    395   1.5   bouyer 	sc->info[6].rfact = 10000;
    396   1.5   bouyer 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
    397   1.5   bouyer 	sprintf(sc->info[7].desc, "+5VSB");
    398   1.5   bouyer 	sc->info[7].rfact = 15151;
    399   1.5   bouyer 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
    400   1.5   bouyer 	sprintf(sc->info[8].desc, "VBAT");
    401   1.5   bouyer 	sc->info[8].rfact = 10000;
    402   1.8   bouyer }
    403   1.8   bouyer 
    404   1.8   bouyer static void
    405   1.8   bouyer setup_temp(sc, start, n)
    406   1.8   bouyer 	struct lm_softc *sc;
    407   1.8   bouyer 	int start, n;
    408   1.8   bouyer {
    409   1.8   bouyer 	int i;
    410   1.5   bouyer 
    411   1.8   bouyer 	for (i = 0; i < n; i++) {
    412   1.8   bouyer 		sc->sensors[start + i].units = ENVSYS_STEMP;
    413   1.8   bouyer 		sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
    414   1.8   bouyer 	}
    415   1.8   bouyer }
    416   1.8   bouyer 
    417   1.8   bouyer 
    418   1.8   bouyer static void
    419   1.8   bouyer setup_fan(sc, start, n)
    420   1.8   bouyer 	struct lm_softc *sc;
    421   1.8   bouyer 	int start, n;
    422   1.8   bouyer {
    423   1.8   bouyer 	int i;
    424   1.8   bouyer 	for (i = 0; i < n; ++i) {
    425   1.8   bouyer 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
    426   1.8   bouyer 		sc->info[start + i].units = ENVSYS_SFANRPM;
    427   1.8   bouyer 		sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
    428   1.5   bouyer 	}
    429   1.1     groo }
    430   1.1     groo 
    431   1.5   bouyer int
    432   1.5   bouyer lm_gtredata(sme, tred)
    433   1.5   bouyer 	 struct sysmon_envsys *sme;
    434   1.5   bouyer 	 struct envsys_tre_data *tred;
    435   1.5   bouyer {
    436   1.5   bouyer 	 static const struct timeval onepointfive = { 1, 500000 };
    437   1.5   bouyer 	 struct timeval t;
    438   1.5   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    439   1.5   bouyer 	 int i, s;
    440   1.5   bouyer 
    441   1.5   bouyer 	 /* read new values at most once every 1.5 seconds */
    442   1.5   bouyer 	 timeradd(&sc->lastread, &onepointfive, &t);
    443   1.5   bouyer 	 s = splclock();
    444   1.5   bouyer 	 i = timercmp(&mono_time, &t, >);
    445   1.5   bouyer 	 if (i) {
    446   1.5   bouyer 		  sc->lastread.tv_sec  = mono_time.tv_sec;
    447   1.5   bouyer 		  sc->lastread.tv_usec = mono_time.tv_usec;
    448   1.5   bouyer 	 }
    449   1.5   bouyer 	 splx(s);
    450   1.5   bouyer 
    451   1.5   bouyer 	 if (i)
    452   1.5   bouyer 		  sc->refresh_sensor_data(sc);
    453   1.5   bouyer 
    454   1.5   bouyer 	 *tred = sc->sensors[tred->sensor];
    455   1.5   bouyer 
    456   1.5   bouyer 	 return (0);
    457   1.5   bouyer }
    458   1.1     groo 
    459   1.1     groo int
    460   1.7   bouyer generic_streinfo_fan(sc, info, n, binfo)
    461   1.7   bouyer 	struct lm_softc *sc;
    462   1.7   bouyer 	struct envsys_basic_info *info;
    463   1.7   bouyer 	int n;
    464   1.7   bouyer 	struct envsys_basic_info *binfo;
    465   1.7   bouyer {
    466   1.7   bouyer 	u_int8_t sdata;
    467   1.7   bouyer 	int divisor;
    468   1.7   bouyer 
    469   1.7   bouyer 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
    470   1.7   bouyer 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
    471  1.14     tron 	    && (n < 2)) {
    472   1.7   bouyer 		if (binfo->rpms == 0) {
    473   1.7   bouyer 			binfo->validflags = 0;
    474   1.7   bouyer 			return (0);
    475   1.7   bouyer 		}
    476   1.7   bouyer 
    477  1.14     tron 		/* write back the nominal FAN speed  */
    478  1.14     tron 		info->rpms = binfo->rpms;
    479  1.14     tron 
    480   1.7   bouyer 		/* 153 is the nominal FAN speed value */
    481   1.7   bouyer 		divisor = 1350000 / (binfo->rpms * 153);
    482   1.7   bouyer 
    483   1.7   bouyer 		/* ...but we need lg(divisor) */
    484   1.7   bouyer 		if (divisor <= 1)
    485   1.7   bouyer 		    divisor = 0;
    486   1.7   bouyer 		else if (divisor <= 2)
    487   1.7   bouyer 		    divisor = 1;
    488   1.7   bouyer 		else if (divisor <= 4)
    489   1.7   bouyer 		    divisor = 2;
    490   1.7   bouyer 		else
    491   1.7   bouyer 		    divisor = 3;
    492   1.7   bouyer 
    493   1.7   bouyer 		/*
    494   1.7   bouyer 		 * FAN1 div is in bits <5:4>, FAN2 div is
    495   1.7   bouyer 		 * in <7:6>
    496   1.7   bouyer 		 */
    497   1.7   bouyer 		sdata = lm_readreg(sc, LMD_VIDFAN);
    498  1.14     tron 		if ( n == 0 ) {  /* FAN1 */
    499   1.7   bouyer 		    divisor <<= 4;
    500   1.7   bouyer 		    sdata = (sdata & 0xCF) | divisor;
    501   1.7   bouyer 		} else { /* FAN2 */
    502   1.7   bouyer 		    divisor <<= 6;
    503   1.7   bouyer 		    sdata = (sdata & 0x3F) | divisor;
    504   1.7   bouyer 		}
    505   1.7   bouyer 
    506   1.7   bouyer 		lm_writereg(sc, LMD_VIDFAN, sdata);
    507   1.7   bouyer 	}
    508   1.7   bouyer 	return (0);
    509   1.7   bouyer 
    510   1.7   bouyer }
    511   1.7   bouyer 
    512   1.7   bouyer int
    513   1.4  thorpej lm_streinfo(sme, binfo)
    514   1.5   bouyer 	 struct sysmon_envsys *sme;
    515   1.5   bouyer 	 struct envsys_basic_info *binfo;
    516   1.1     groo {
    517   1.5   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    518   1.5   bouyer 
    519   1.5   bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    520   1.5   bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    521   1.5   bouyer 	 else {
    522   1.7   bouyer 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    523   1.7   bouyer 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    524   1.7   bouyer 			    binfo->sensor - 8, binfo);
    525   1.7   bouyer 		}
    526   1.7   bouyer 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    527   1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc));
    528   1.7   bouyer 		sc->info[binfo->sensor].desc[
    529   1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    530   1.5   bouyer 
    531   1.7   bouyer 		binfo->validflags = ENVSYS_FVALID;
    532   1.7   bouyer 	 }
    533   1.7   bouyer 	 return (0);
    534   1.7   bouyer }
    535   1.5   bouyer 
    536   1.7   bouyer int
    537   1.7   bouyer wb781_streinfo(sme, binfo)
    538   1.7   bouyer 	 struct sysmon_envsys *sme;
    539   1.7   bouyer 	 struct envsys_basic_info *binfo;
    540   1.7   bouyer {
    541   1.7   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    542  1.14     tron 	 int divisor;
    543  1.14     tron 	 u_int8_t sdata;
    544  1.14     tron 	 int i;
    545   1.5   bouyer 
    546   1.7   bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    547   1.7   bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    548   1.7   bouyer 	 else {
    549   1.7   bouyer 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    550  1.14     tron 			if (binfo->rpms == 0) {
    551  1.14     tron 				binfo->validflags = 0;
    552  1.14     tron 				return (0);
    553  1.14     tron 			}
    554  1.14     tron 
    555  1.14     tron 			/* write back the nominal FAN speed  */
    556  1.14     tron 			sc->info[binfo->sensor].rpms = binfo->rpms;
    557  1.14     tron 
    558  1.14     tron 			/* 153 is the nominal FAN speed value */
    559  1.14     tron 			divisor = 1350000 / (binfo->rpms * 153);
    560  1.14     tron 
    561  1.14     tron 			/* ...but we need lg(divisor) */
    562  1.14     tron 			for (i = 0; i < 7; i++) {
    563  1.14     tron 				if (divisor <= (1 << i))
    564  1.14     tron 				 	break;
    565  1.14     tron 			}
    566  1.14     tron 			divisor = i;
    567  1.14     tron 
    568  1.14     tron 			if (binfo->sensor == 10 || binfo->sensor == 11) {
    569  1.14     tron 				/*
    570  1.14     tron 				 * FAN1 div is in bits <5:4>, FAN2 div
    571  1.14     tron 				 * is in <7:6>
    572  1.14     tron 				 */
    573  1.14     tron 				sdata = lm_readreg(sc, LMD_VIDFAN);
    574  1.14     tron 				if ( binfo->sensor == 10 ) {  /* FAN1 */
    575  1.14     tron 					 sdata = (sdata & 0xCF) |
    576  1.14     tron 					     ((divisor & 0x3) << 4);
    577  1.14     tron 				} else { /* FAN2 */
    578  1.14     tron 					 sdata = (sdata & 0x3F) |
    579  1.14     tron 					     ((divisor & 0x3) << 6);
    580  1.14     tron 				}
    581  1.14     tron 				lm_writereg(sc, LMD_VIDFAN, sdata);
    582  1.14     tron 			} else {
    583  1.14     tron 				/* FAN3 is in WB_PIN <7:6> */
    584  1.14     tron 				sdata = lm_readreg(sc, WB_PIN);
    585  1.14     tron 				sdata = (sdata & 0x3F) |
    586  1.14     tron 				     ((divisor & 0x3) << 6);
    587  1.14     tron 				lm_writereg(sc, WB_PIN, sdata);
    588  1.14     tron 			}
    589   1.7   bouyer 		}
    590   1.7   bouyer 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    591   1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc));
    592   1.7   bouyer 		sc->info[binfo->sensor].desc[
    593   1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    594   1.5   bouyer 
    595   1.7   bouyer 		binfo->validflags = ENVSYS_FVALID;
    596   1.5   bouyer 	 }
    597   1.5   bouyer 	 return (0);
    598   1.5   bouyer }
    599   1.5   bouyer 
    600   1.5   bouyer int
    601   1.7   bouyer wb782_streinfo(sme, binfo)
    602   1.5   bouyer 	 struct sysmon_envsys *sme;
    603   1.5   bouyer 	 struct envsys_basic_info *binfo;
    604   1.5   bouyer {
    605   1.5   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    606   1.5   bouyer 	 int divisor;
    607   1.5   bouyer 	 u_int8_t sdata;
    608   1.5   bouyer 	 int i;
    609   1.5   bouyer 
    610   1.5   bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    611   1.5   bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    612   1.5   bouyer 	 else {
    613   1.5   bouyer 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    614   1.4  thorpej 			if (binfo->rpms == 0) {
    615   1.4  thorpej 				binfo->validflags = 0;
    616   1.4  thorpej 				return (0);
    617   1.1     groo 			}
    618   1.1     groo 
    619  1.14     tron 			/* write back the nominal FAN speed  */
    620  1.14     tron 			sc->info[binfo->sensor].rpms = binfo->rpms;
    621  1.14     tron 
    622   1.4  thorpej 			/* 153 is the nominal FAN speed value */
    623   1.4  thorpej 			divisor = 1350000 / (binfo->rpms * 153);
    624   1.1     groo 
    625   1.4  thorpej 			/* ...but we need lg(divisor) */
    626   1.5   bouyer 			for (i = 0; i < 7; i++) {
    627   1.5   bouyer 				if (divisor <= (1 << i))
    628   1.5   bouyer 				 	break;
    629   1.5   bouyer 			}
    630   1.5   bouyer 			divisor = i;
    631   1.4  thorpej 
    632   1.5   bouyer 			if (binfo->sensor == 12 || binfo->sensor == 13) {
    633   1.5   bouyer 				/*
    634   1.5   bouyer 				 * FAN1 div is in bits <5:4>, FAN2 div
    635   1.5   bouyer 				 * is in <7:6>
    636   1.5   bouyer 				 */
    637   1.5   bouyer 				sdata = lm_readreg(sc, LMD_VIDFAN);
    638   1.5   bouyer 				if ( binfo->sensor == 12 ) {  /* FAN1 */
    639   1.5   bouyer 					 sdata = (sdata & 0xCF) |
    640   1.5   bouyer 					     ((divisor & 0x3) << 4);
    641   1.5   bouyer 				} else { /* FAN2 */
    642   1.5   bouyer 					 sdata = (sdata & 0x3F) |
    643   1.5   bouyer 					     ((divisor & 0x3) << 6);
    644   1.5   bouyer 				}
    645   1.5   bouyer 				lm_writereg(sc, LMD_VIDFAN, sdata);
    646   1.5   bouyer 			} else {
    647   1.5   bouyer 				/* FAN3 is in WB_PIN <7:6> */
    648   1.5   bouyer 				sdata = lm_readreg(sc, WB_PIN);
    649   1.5   bouyer 				sdata = (sdata & 0x3F) |
    650   1.5   bouyer 				     ((divisor & 0x3) << 6);
    651  1.14     tron 				lm_writereg(sc, WB_PIN, sdata);
    652   1.1     groo 			}
    653   1.5   bouyer 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
    654   1.5   bouyer 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    655   1.5   bouyer 			sdata = lm_readreg(sc, WB_BANK0_FANBAT);
    656   1.5   bouyer 			sdata &= ~(0x20 << (binfo->sensor - 12));
    657   1.5   bouyer 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
    658   1.5   bouyer 			lm_writereg(sc, WB_BANK0_FANBAT, sdata);
    659   1.1     groo 		}
    660   1.1     groo 
    661   1.4  thorpej 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    662   1.4  thorpej 		    sizeof(sc->info[binfo->sensor].desc));
    663   1.4  thorpej 		sc->info[binfo->sensor].desc[
    664   1.4  thorpej 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    665   1.1     groo 
    666   1.4  thorpej 		binfo->validflags = ENVSYS_FVALID;
    667   1.1     groo 	}
    668   1.4  thorpej 	return (0);
    669   1.1     groo }
    670   1.1     groo 
    671   1.8   bouyer static void
    672   1.7   bouyer generic_stemp(sc, sensor)
    673   1.7   bouyer 	struct lm_softc *sc;
    674   1.7   bouyer 	struct envsys_tre_data *sensor;
    675   1.7   bouyer {
    676   1.7   bouyer 	int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
    677  1.10   bouyer 	DPRINTF(("sdata[temp] 0x%x\n", sdata));
    678   1.7   bouyer 	/* temp is given in deg. C, we convert to uK */
    679   1.7   bouyer 	sensor->cur.data_us = sdata * 1000000 + 273150000;
    680   1.7   bouyer }
    681   1.7   bouyer 
    682   1.8   bouyer static void
    683   1.7   bouyer generic_svolt(sc, sensors, infos)
    684   1.7   bouyer 	struct lm_softc *sc;
    685   1.7   bouyer 	struct envsys_tre_data *sensors;
    686   1.7   bouyer 	struct envsys_basic_info *infos;
    687   1.7   bouyer {
    688   1.7   bouyer 	int i, sdata;
    689   1.7   bouyer 
    690   1.7   bouyer 	for (i = 0; i < 7; i++) {
    691   1.7   bouyer 		sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    692  1.10   bouyer 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    693   1.7   bouyer 		/* voltage returned as (mV >> 4), we convert to uVDC */
    694   1.7   bouyer 		sensors[i].cur.data_s = (sdata << 4);
    695   1.7   bouyer 		/* rfact is (factor * 10^4) */
    696   1.7   bouyer 		sensors[i].cur.data_s *= infos[i].rfact;
    697   1.7   bouyer 		/* division by 10 gets us back to uVDC */
    698   1.7   bouyer 		sensors[i].cur.data_s /= 10;
    699   1.7   bouyer 
    700   1.7   bouyer 		/* these two are negative voltages */
    701   1.7   bouyer 		if ( (i == 5) || (i == 6) )
    702   1.7   bouyer 			sensors[i].cur.data_s *= -1;
    703   1.7   bouyer 	}
    704   1.7   bouyer }
    705   1.7   bouyer 
    706   1.8   bouyer static void
    707   1.7   bouyer generic_fanrpm(sc, sensors)
    708   1.7   bouyer 	struct lm_softc *sc;
    709   1.7   bouyer 	struct envsys_tre_data *sensors;
    710   1.7   bouyer {
    711   1.7   bouyer 	int i, sdata, divisor;
    712   1.7   bouyer 	for (i = 0; i < 3; i++) {
    713   1.7   bouyer 		sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
    714  1.10   bouyer 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    715   1.7   bouyer 		if (i == 2)
    716   1.7   bouyer 			divisor = 2;	/* Fixed divisor for FAN3 */
    717   1.7   bouyer 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
    718   1.7   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    719   1.7   bouyer 		else
    720   1.7   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    721   1.7   bouyer 
    722   1.7   bouyer 		if (sdata == 0xff || sdata == 0x00) {
    723   1.7   bouyer 			sensors[i].cur.data_us = 0;
    724   1.7   bouyer 		} else {
    725   1.7   bouyer 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
    726   1.7   bouyer 		}
    727   1.7   bouyer 	}
    728   1.7   bouyer }
    729   1.7   bouyer 
    730   1.1     groo /*
    731  1.12      wiz  * pre:  last read occurred >= 1.5 seconds ago
    732   1.1     groo  * post: sensors[] current data are the latest from the chip
    733   1.1     groo  */
    734   1.1     groo void
    735   1.1     groo lm_refresh_sensor_data(sc)
    736   1.1     groo 	struct lm_softc *sc;
    737   1.1     groo {
    738   1.7   bouyer 	/* Refresh our stored data for every sensor */
    739   1.7   bouyer 	generic_stemp(sc, &sc->sensors[7]);
    740   1.7   bouyer 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    741   1.7   bouyer 	generic_fanrpm(sc, &sc->sensors[8]);
    742   1.7   bouyer }
    743   1.7   bouyer 
    744   1.8   bouyer static void
    745   1.8   bouyer wb_svolt(sc)
    746   1.7   bouyer 	struct lm_softc *sc;
    747   1.7   bouyer {
    748   1.8   bouyer 	int i, sdata;
    749   1.5   bouyer 	for (i = 0; i < 9; ++i) {
    750   1.5   bouyer 		if (i < 7) {
    751   1.5   bouyer 			sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    752   1.5   bouyer 		} else {
    753   1.5   bouyer 			/* from bank5 */
    754   1.5   bouyer 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
    755   1.5   bouyer 			sdata = lm_readreg(sc, (i == 7) ?
    756   1.5   bouyer 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
    757   1.5   bouyer 		}
    758  1.10   bouyer 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    759   1.5   bouyer 		/* voltage returned as (mV >> 4), we convert to uV */
    760   1.5   bouyer 		sdata =  sdata << 4;
    761   1.5   bouyer 		/* special case for negative voltages */
    762   1.5   bouyer 		if (i == 5) {
    763   1.5   bouyer 			/*
    764   1.5   bouyer 			 * -12Vdc, assume Winbond recommended values for
    765   1.5   bouyer 			 * resistors
    766   1.5   bouyer 			 */
    767   1.5   bouyer 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
    768   1.5   bouyer 		} else if (i == 6) {
    769   1.5   bouyer 			/*
    770   1.5   bouyer 			 * -5Vdc, assume Winbond recommended values for
    771   1.5   bouyer 			 * resistors
    772   1.5   bouyer 			 */
    773   1.5   bouyer 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
    774   1.5   bouyer 		}
    775   1.5   bouyer 		/* rfact is (factor * 10^4) */
    776   1.5   bouyer 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
    777   1.5   bouyer 		/* division by 10 gets us back to uVDC */
    778   1.5   bouyer 		sc->sensors[i].cur.data_s /= 10;
    779   1.5   bouyer 	}
    780   1.8   bouyer }
    781   1.5   bouyer 
    782   1.8   bouyer static void
    783   1.8   bouyer wb_stemp(sc, sensors, n)
    784   1.8   bouyer 	struct lm_softc *sc;
    785   1.8   bouyer 	struct  envsys_tre_data *sensors;
    786   1.8   bouyer 	int n;
    787   1.8   bouyer {
    788   1.8   bouyer 	int sdata;
    789   1.8   bouyer 	/* temperatures. Given in dC, we convert to uK */
    790   1.8   bouyer 	sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
    791  1.10   bouyer 	DPRINTF(("sdata[temp0] 0x%x\n", sdata));
    792   1.8   bouyer 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
    793   1.8   bouyer 	/* from bank1 */
    794   1.8   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
    795   1.8   bouyer 	sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
    796   1.8   bouyer 	sdata |=  (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
    797  1.10   bouyer 	DPRINTF(("sdata[temp1] 0x%x\n", sdata));
    798   1.8   bouyer 	sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    799   1.8   bouyer 	if (n < 3)
    800   1.8   bouyer 		return;
    801   1.8   bouyer 	/* from bank2 */
    802   1.8   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
    803   1.8   bouyer 	sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
    804   1.8   bouyer 	sdata |=  (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
    805  1.10   bouyer 	DPRINTF(("sdata[temp2] 0x%x\n", sdata));
    806   1.8   bouyer 	sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    807   1.8   bouyer }
    808   1.8   bouyer 
    809   1.8   bouyer static void
    810  1.14     tron wb781_fanrpm(sc, sensors)
    811  1.14     tron 	struct lm_softc *sc;
    812  1.14     tron 	struct envsys_tre_data *sensors;
    813  1.14     tron {
    814  1.14     tron 	int i, divisor, sdata;
    815  1.14     tron 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    816  1.14     tron 	for (i = 0; i < 3; i++) {
    817  1.14     tron 		sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
    818  1.14     tron 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    819  1.14     tron 		if (i == 0)
    820  1.14     tron 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    821  1.14     tron 		else if (i == 1)
    822  1.14     tron 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    823  1.14     tron 		else
    824  1.14     tron 			divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
    825  1.14     tron 
    826  1.14     tron 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    827  1.14     tron 		if (sdata == 0xff || sdata == 0x00) {
    828  1.14     tron 			sensors[i].cur.data_us = 0;
    829  1.14     tron 		} else {
    830  1.14     tron 			sensors[i].cur.data_us = 1350000 /
    831  1.14     tron 			    (sdata << divisor);
    832  1.14     tron 		}
    833  1.14     tron 	}
    834  1.14     tron }
    835  1.14     tron 
    836  1.14     tron static void
    837   1.8   bouyer wb_fanrpm(sc, sensors)
    838   1.8   bouyer 	struct lm_softc *sc;
    839   1.8   bouyer 	struct envsys_tre_data *sensors;
    840   1.8   bouyer {
    841   1.8   bouyer 	int i, divisor, sdata;
    842   1.5   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    843   1.8   bouyer 	for (i = 0; i < 3; i++) {
    844   1.8   bouyer 		sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
    845  1.10   bouyer 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    846   1.8   bouyer 		if (i == 0)
    847   1.5   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    848   1.8   bouyer 		else if (i == 1)
    849   1.5   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    850   1.5   bouyer 		else
    851   1.5   bouyer 			divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
    852   1.8   bouyer 		divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
    853   1.5   bouyer 
    854   1.5   bouyer 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    855   1.5   bouyer 		if (sdata == 0xff || sdata == 0x00) {
    856   1.8   bouyer 			sensors[i].cur.data_us = 0;
    857   1.5   bouyer 		} else {
    858   1.8   bouyer 			sensors[i].cur.data_us = 1350000 /
    859   1.5   bouyer 			    (sdata << divisor);
    860   1.1     groo 		}
    861   1.1     groo 	}
    862   1.8   bouyer }
    863   1.8   bouyer 
    864   1.8   bouyer void
    865   1.8   bouyer wb781_refresh_sensor_data(sc)
    866   1.8   bouyer 	struct lm_softc *sc;
    867   1.8   bouyer {
    868   1.8   bouyer 	/* Refresh our stored data for every sensor */
    869   1.9   bouyer 	/* we need to reselect bank0 to access common registers */
    870   1.9   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    871   1.8   bouyer 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    872   1.9   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    873   1.8   bouyer 	wb_stemp(sc, &sc->sensors[7], 3);
    874   1.9   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    875  1.14     tron 	wb781_fanrpm(sc, &sc->sensors[10]);
    876   1.8   bouyer }
    877   1.8   bouyer 
    878   1.8   bouyer void
    879   1.8   bouyer wb782_refresh_sensor_data(sc)
    880   1.8   bouyer 	struct lm_softc *sc;
    881   1.8   bouyer {
    882   1.8   bouyer 	/* Refresh our stored data for every sensor */
    883   1.8   bouyer 	wb_svolt(sc);
    884   1.8   bouyer 	wb_stemp(sc, &sc->sensors[9], 3);
    885   1.8   bouyer 	wb_fanrpm(sc, &sc->sensors[12]);
    886   1.8   bouyer }
    887   1.8   bouyer 
    888   1.8   bouyer void
    889   1.8   bouyer wb697_refresh_sensor_data(sc)
    890   1.8   bouyer 	struct lm_softc *sc;
    891   1.8   bouyer {
    892   1.8   bouyer 	/* Refresh our stored data for every sensor */
    893   1.8   bouyer 	wb_svolt(sc);
    894   1.8   bouyer 	wb_stemp(sc, &sc->sensors[9], 2);
    895   1.8   bouyer 	wb_fanrpm(sc, &sc->sensors[11]);
    896   1.1     groo }
    897