nslm7x.c revision 1.14 1 1.14 tron /* $NetBSD: nslm7x.c,v 1.14 2002/03/30 13:37:41 tron Exp $ */
2 1.1 groo
3 1.1 groo /*-
4 1.1 groo * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.1 groo * All rights reserved.
6 1.1 groo *
7 1.1 groo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 groo * by Bill Squier.
9 1.1 groo *
10 1.1 groo * Redistribution and use in source and binary forms, with or without
11 1.1 groo * modification, are permitted provided that the following conditions
12 1.1 groo * are met:
13 1.1 groo * 1. Redistributions of source code must retain the above copyright
14 1.1 groo * notice, this list of conditions and the following disclaimer.
15 1.1 groo * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 groo * notice, this list of conditions and the following disclaimer in the
17 1.1 groo * documentation and/or other materials provided with the distribution.
18 1.1 groo * 3. All advertising materials mentioning features or use of this software
19 1.1 groo * must display the following acknowledgement:
20 1.1 groo * This product includes software developed by the NetBSD
21 1.1 groo * Foundation, Inc. and its contributors.
22 1.1 groo * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 groo * contributors may be used to endorse or promote products derived
24 1.1 groo * from this software without specific prior written permission.
25 1.1 groo *
26 1.1 groo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 groo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 groo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 groo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 groo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 groo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 groo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 groo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 groo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 groo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 groo * POSSIBILITY OF SUCH DAMAGE.
37 1.1 groo */
38 1.13 lukem
39 1.13 lukem #include <sys/cdefs.h>
40 1.14 tron __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.14 2002/03/30 13:37:41 tron Exp $");
41 1.1 groo
42 1.1 groo #include <sys/param.h>
43 1.1 groo #include <sys/systm.h>
44 1.1 groo #include <sys/kernel.h>
45 1.1 groo #include <sys/proc.h>
46 1.1 groo #include <sys/device.h>
47 1.1 groo #include <sys/malloc.h>
48 1.1 groo #include <sys/errno.h>
49 1.1 groo #include <sys/queue.h>
50 1.1 groo #include <sys/lock.h>
51 1.1 groo #include <sys/ioctl.h>
52 1.1 groo #include <sys/conf.h>
53 1.1 groo #include <sys/time.h>
54 1.1 groo
55 1.1 groo #include <machine/bus.h>
56 1.1 groo
57 1.1 groo #include <dev/isa/isareg.h>
58 1.1 groo #include <dev/isa/isavar.h>
59 1.1 groo
60 1.4 thorpej #include <dev/sysmon/sysmonvar.h>
61 1.4 thorpej
62 1.1 groo #include <dev/ic/nslm7xvar.h>
63 1.1 groo
64 1.1 groo #include <machine/intr.h>
65 1.1 groo #include <machine/bus.h>
66 1.1 groo
67 1.1 groo #if defined(LMDEBUG)
68 1.1 groo #define DPRINTF(x) do { printf x; } while (0)
69 1.1 groo #else
70 1.1 groo #define DPRINTF(x)
71 1.1 groo #endif
72 1.1 groo
73 1.4 thorpej const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
74 1.5 bouyer /* for each unit type */
75 1.1 groo { 7, 7, ENVSYS_STEMP },
76 1.1 groo { 8, 10, ENVSYS_SFANRPM },
77 1.1 groo { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
78 1.1 groo { 0, 6, ENVSYS_SVOLTS_DC },
79 1.1 groo { 1, 0, ENVSYS_SOHMS }, /* None */
80 1.1 groo { 1, 0, ENVSYS_SWATTS }, /* None */
81 1.1 groo { 1, 0, ENVSYS_SAMPS } /* None */
82 1.1 groo };
83 1.1 groo
84 1.5 bouyer
85 1.1 groo u_int8_t lm_readreg __P((struct lm_softc *, int));
86 1.1 groo void lm_writereg __P((struct lm_softc *, int, int));
87 1.5 bouyer
88 1.8 bouyer static void setup_fan __P((struct lm_softc *, int, int));
89 1.8 bouyer static void setup_temp __P((struct lm_softc *, int, int));
90 1.8 bouyer static void wb_setup_volt __P((struct lm_softc *));
91 1.8 bouyer
92 1.5 bouyer int lm_match __P((struct lm_softc *));
93 1.5 bouyer int wb_match __P((struct lm_softc *));
94 1.5 bouyer int def_match __P((struct lm_softc *));
95 1.5 bouyer void lm_common_match __P((struct lm_softc *));
96 1.5 bouyer
97 1.8 bouyer static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
98 1.8 bouyer static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
99 1.7 bouyer struct envsys_basic_info *));
100 1.8 bouyer static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
101 1.8 bouyer
102 1.7 bouyer void lm_refresh_sensor_data __P((struct lm_softc *));
103 1.8 bouyer
104 1.8 bouyer static void wb_svolt __P((struct lm_softc *));
105 1.8 bouyer static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
106 1.14 tron static void wb781_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
107 1.8 bouyer static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
108 1.8 bouyer
109 1.7 bouyer void wb781_refresh_sensor_data __P((struct lm_softc *));
110 1.7 bouyer void wb782_refresh_sensor_data __P((struct lm_softc *));
111 1.8 bouyer void wb697_refresh_sensor_data __P((struct lm_softc *));
112 1.7 bouyer
113 1.4 thorpej int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
114 1.7 bouyer
115 1.7 bouyer int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
116 1.7 bouyer int, struct envsys_basic_info *));
117 1.4 thorpej int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
118 1.7 bouyer int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
119 1.7 bouyer int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
120 1.5 bouyer
121 1.5 bouyer struct lm_chip {
122 1.5 bouyer int (*chip_match) __P((struct lm_softc *));
123 1.5 bouyer };
124 1.5 bouyer
125 1.5 bouyer struct lm_chip lm_chips[] = {
126 1.8 bouyer { wb_match },
127 1.8 bouyer { lm_match },
128 1.8 bouyer { def_match } /* Must be last */
129 1.5 bouyer };
130 1.5 bouyer
131 1.1 groo
132 1.1 groo u_int8_t
133 1.1 groo lm_readreg(sc, reg)
134 1.1 groo struct lm_softc *sc;
135 1.1 groo int reg;
136 1.1 groo {
137 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
138 1.1 groo return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
139 1.1 groo }
140 1.1 groo
141 1.1 groo void
142 1.1 groo lm_writereg(sc, reg, val)
143 1.1 groo struct lm_softc *sc;
144 1.1 groo int reg;
145 1.1 groo int val;
146 1.1 groo {
147 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
148 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
149 1.1 groo }
150 1.1 groo
151 1.1 groo
152 1.1 groo /*
153 1.2 groo * bus independent probe
154 1.2 groo */
155 1.2 groo int
156 1.2 groo lm_probe(iot, ioh)
157 1.2 groo bus_space_tag_t iot;
158 1.2 groo bus_space_handle_t ioh;
159 1.2 groo {
160 1.2 groo u_int8_t cr;
161 1.2 groo int rv;
162 1.2 groo
163 1.2 groo /* Check for some power-on defaults */
164 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
165 1.2 groo
166 1.2 groo /* Perform LM78 reset */
167 1.2 groo bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
168 1.2 groo
169 1.2 groo /* XXX - Why do I have to reselect the register? */
170 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
171 1.2 groo cr = bus_space_read_1(iot, ioh, LMC_DATA);
172 1.2 groo
173 1.2 groo /* XXX - spec says *only* 0x08! */
174 1.2 groo if ((cr == 0x08) || (cr == 0x01))
175 1.2 groo rv = 1;
176 1.2 groo else
177 1.2 groo rv = 0;
178 1.2 groo
179 1.2 groo DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
180 1.2 groo
181 1.2 groo return (rv);
182 1.2 groo }
183 1.2 groo
184 1.2 groo
185 1.2 groo /*
186 1.1 groo * pre: lmsc contains valid busspace tag and handle
187 1.1 groo */
188 1.1 groo void
189 1.1 groo lm_attach(lmsc)
190 1.1 groo struct lm_softc *lmsc;
191 1.1 groo {
192 1.1 groo int i;
193 1.1 groo
194 1.5 bouyer for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
195 1.5 bouyer if (lm_chips[i].chip_match(lmsc))
196 1.5 bouyer break;
197 1.1 groo
198 1.1 groo /* Start the monitoring loop */
199 1.1 groo lm_writereg(lmsc, LMD_CONFIG, 0x01);
200 1.1 groo
201 1.1 groo /* Indicate we have never read the registers */
202 1.1 groo timerclear(&lmsc->lastread);
203 1.1 groo
204 1.1 groo /* Initialize sensors */
205 1.5 bouyer for (i = 0; i < lmsc->numsensors; ++i) {
206 1.1 groo lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
207 1.1 groo lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
208 1.1 groo lmsc->info[i].validflags = ENVSYS_FVALID;
209 1.1 groo lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
210 1.1 groo }
211 1.4 thorpej /*
212 1.4 thorpej * Hook into the System Monitor.
213 1.4 thorpej */
214 1.4 thorpej lmsc->sc_sysmon.sme_ranges = lm_ranges;
215 1.4 thorpej lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
216 1.4 thorpej lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
217 1.4 thorpej lmsc->sc_sysmon.sme_cookie = lmsc;
218 1.4 thorpej
219 1.4 thorpej lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
220 1.5 bouyer /* sme_streinfo set in chip-specific attach */
221 1.4 thorpej
222 1.5 bouyer lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
223 1.4 thorpej lmsc->sc_sysmon.sme_envsys_version = 1000;
224 1.4 thorpej
225 1.4 thorpej if (sysmon_envsys_register(&lmsc->sc_sysmon))
226 1.4 thorpej printf("%s: unable to register with sysmon\n",
227 1.4 thorpej lmsc->sc_dev.dv_xname);
228 1.1 groo }
229 1.1 groo
230 1.5 bouyer int
231 1.5 bouyer lm_match(sc)
232 1.5 bouyer struct lm_softc *sc;
233 1.5 bouyer {
234 1.5 bouyer int i;
235 1.5 bouyer
236 1.5 bouyer /* See if we have an LM78 or LM79 */
237 1.5 bouyer i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
238 1.5 bouyer switch(i) {
239 1.5 bouyer case LM_ID_LM78:
240 1.5 bouyer printf(": LM78\n");
241 1.5 bouyer break;
242 1.5 bouyer case LM_ID_LM78J:
243 1.5 bouyer printf(": LM78J\n");
244 1.5 bouyer break;
245 1.5 bouyer case LM_ID_LM79:
246 1.5 bouyer printf(": LM79\n");
247 1.5 bouyer break;
248 1.5 bouyer default:
249 1.5 bouyer return 0;
250 1.5 bouyer }
251 1.5 bouyer lm_common_match(sc);
252 1.5 bouyer return 1;
253 1.5 bouyer }
254 1.1 groo
255 1.1 groo int
256 1.5 bouyer def_match(sc)
257 1.5 bouyer struct lm_softc *sc;
258 1.5 bouyer {
259 1.5 bouyer int i;
260 1.5 bouyer
261 1.5 bouyer i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
262 1.5 bouyer printf(": Unknow chip (ID %d)\n", i);
263 1.5 bouyer lm_common_match(sc);
264 1.5 bouyer return 1;
265 1.5 bouyer }
266 1.5 bouyer
267 1.5 bouyer void
268 1.5 bouyer lm_common_match(sc)
269 1.5 bouyer struct lm_softc *sc;
270 1.1 groo {
271 1.5 bouyer int i;
272 1.5 bouyer sc->numsensors = LM_NUM_SENSORS;
273 1.5 bouyer sc->refresh_sensor_data = lm_refresh_sensor_data;
274 1.5 bouyer
275 1.5 bouyer for (i = 0; i < 7; ++i) {
276 1.5 bouyer sc->sensors[i].units = sc->info[i].units =
277 1.5 bouyer ENVSYS_SVOLTS_DC;
278 1.5 bouyer sprintf(sc->info[i].desc, "IN %d", i);
279 1.5 bouyer }
280 1.5 bouyer
281 1.5 bouyer /* default correction factors for resistors on higher voltage inputs */
282 1.5 bouyer sc->info[0].rfact = sc->info[1].rfact =
283 1.5 bouyer sc->info[2].rfact = 10000;
284 1.5 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
285 1.5 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
286 1.5 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
287 1.5 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
288 1.5 bouyer
289 1.5 bouyer sc->sensors[7].units = ENVSYS_STEMP;
290 1.5 bouyer strcpy(sc->info[7].desc, "Temp");
291 1.5 bouyer
292 1.8 bouyer setup_fan(sc, 8, 3);
293 1.5 bouyer sc->sc_sysmon.sme_streinfo = lm_streinfo;
294 1.5 bouyer }
295 1.1 groo
296 1.5 bouyer int
297 1.5 bouyer wb_match(sc)
298 1.5 bouyer struct lm_softc *sc;
299 1.5 bouyer {
300 1.5 bouyer int i, j;
301 1.1 groo
302 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
303 1.5 bouyer j = lm_readreg(sc, WB_VENDID) << 8;
304 1.5 bouyer lm_writereg(sc, WB_BANKSEL, 0);
305 1.5 bouyer j |= lm_readreg(sc, WB_VENDID);
306 1.11 veego DPRINTF(("winbond vend id 0x%x\n", j));
307 1.5 bouyer if (j != WB_VENDID_WINBOND)
308 1.5 bouyer return 0;
309 1.7 bouyer /* read device ID */
310 1.7 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
311 1.7 bouyer j = lm_readreg(sc, WB_BANK0_CHIPID);
312 1.11 veego DPRINTF(("winbond chip id 0x%x\n", j));
313 1.7 bouyer switch(j) {
314 1.7 bouyer case WB_CHIPID_83781:
315 1.10 bouyer case WB_CHIPID_83781_2:
316 1.7 bouyer printf(": W83781D\n");
317 1.7 bouyer
318 1.7 bouyer for (i = 0; i < 7; ++i) {
319 1.7 bouyer sc->sensors[i].units = sc->info[i].units =
320 1.7 bouyer ENVSYS_SVOLTS_DC;
321 1.7 bouyer sprintf(sc->info[i].desc, "IN %d", i);
322 1.7 bouyer }
323 1.7 bouyer
324 1.7 bouyer /* default correction factors for higher voltage inputs */
325 1.7 bouyer sc->info[0].rfact = sc->info[1].rfact =
326 1.7 bouyer sc->info[2].rfact = 10000;
327 1.7 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
328 1.7 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
329 1.7 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
330 1.7 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
331 1.7 bouyer
332 1.9 bouyer setup_temp(sc, 7, 3);
333 1.9 bouyer setup_fan(sc, 10, 3);
334 1.7 bouyer
335 1.9 bouyer sc->numsensors = WB83781_NUM_SENSORS;
336 1.9 bouyer sc->refresh_sensor_data = wb781_refresh_sensor_data;
337 1.7 bouyer sc->sc_sysmon.sme_streinfo = wb781_streinfo;
338 1.7 bouyer return 1;
339 1.8 bouyer case WB_CHIPID_83697:
340 1.8 bouyer printf(": W83697HF\n");
341 1.8 bouyer wb_setup_volt(sc);
342 1.8 bouyer setup_temp(sc, 9, 2);
343 1.8 bouyer setup_fan(sc, 11, 3);
344 1.8 bouyer sc->numsensors = WB83697_NUM_SENSORS;
345 1.8 bouyer sc->refresh_sensor_data = wb697_refresh_sensor_data;
346 1.8 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
347 1.8 bouyer return 1;
348 1.8 bouyer break;
349 1.7 bouyer case WB_CHIPID_83782:
350 1.7 bouyer printf(": W83782D\n");
351 1.7 bouyer break;
352 1.7 bouyer case WB_CHIPID_83627:
353 1.7 bouyer printf(": W83627HF\n");
354 1.7 bouyer break;
355 1.7 bouyer default:
356 1.7 bouyer printf(": unknow winbond chip ID 0x%x\n", j);
357 1.7 bouyer /* handle as a standart lm7x */
358 1.7 bouyer lm_common_match(sc);
359 1.7 bouyer return 1;
360 1.7 bouyer }
361 1.8 bouyer /* common code for the W83782D and W83627HF */
362 1.8 bouyer wb_setup_volt(sc);
363 1.8 bouyer setup_temp(sc, 9, 3);
364 1.8 bouyer setup_fan(sc, 12, 3);
365 1.5 bouyer sc->numsensors = WB_NUM_SENSORS;
366 1.7 bouyer sc->refresh_sensor_data = wb782_refresh_sensor_data;
367 1.8 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
368 1.8 bouyer return 1;
369 1.8 bouyer }
370 1.5 bouyer
371 1.8 bouyer static void
372 1.8 bouyer wb_setup_volt(sc)
373 1.8 bouyer struct lm_softc *sc;
374 1.8 bouyer {
375 1.5 bouyer sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
376 1.5 bouyer sprintf(sc->info[0].desc, "VCORE A");
377 1.5 bouyer sc->info[0].rfact = 10000;
378 1.5 bouyer sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
379 1.5 bouyer sprintf(sc->info[1].desc, "VCORE B");
380 1.5 bouyer sc->info[1].rfact = 10000;
381 1.5 bouyer sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
382 1.5 bouyer sprintf(sc->info[2].desc, "+3.3V");
383 1.5 bouyer sc->info[2].rfact = 10000;
384 1.5 bouyer sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
385 1.5 bouyer sprintf(sc->info[3].desc, "+5V");
386 1.5 bouyer sc->info[3].rfact = 16778;
387 1.5 bouyer sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
388 1.5 bouyer sprintf(sc->info[4].desc, "+12V");
389 1.5 bouyer sc->info[4].rfact = 38000;
390 1.5 bouyer sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
391 1.5 bouyer sprintf(sc->info[5].desc, "-12V");
392 1.5 bouyer sc->info[5].rfact = 10000;
393 1.5 bouyer sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
394 1.5 bouyer sprintf(sc->info[6].desc, "-5V");
395 1.5 bouyer sc->info[6].rfact = 10000;
396 1.5 bouyer sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
397 1.5 bouyer sprintf(sc->info[7].desc, "+5VSB");
398 1.5 bouyer sc->info[7].rfact = 15151;
399 1.5 bouyer sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
400 1.5 bouyer sprintf(sc->info[8].desc, "VBAT");
401 1.5 bouyer sc->info[8].rfact = 10000;
402 1.8 bouyer }
403 1.8 bouyer
404 1.8 bouyer static void
405 1.8 bouyer setup_temp(sc, start, n)
406 1.8 bouyer struct lm_softc *sc;
407 1.8 bouyer int start, n;
408 1.8 bouyer {
409 1.8 bouyer int i;
410 1.5 bouyer
411 1.8 bouyer for (i = 0; i < n; i++) {
412 1.8 bouyer sc->sensors[start + i].units = ENVSYS_STEMP;
413 1.8 bouyer sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
414 1.8 bouyer }
415 1.8 bouyer }
416 1.8 bouyer
417 1.8 bouyer
418 1.8 bouyer static void
419 1.8 bouyer setup_fan(sc, start, n)
420 1.8 bouyer struct lm_softc *sc;
421 1.8 bouyer int start, n;
422 1.8 bouyer {
423 1.8 bouyer int i;
424 1.8 bouyer for (i = 0; i < n; ++i) {
425 1.8 bouyer sc->sensors[start + i].units = ENVSYS_SFANRPM;
426 1.8 bouyer sc->info[start + i].units = ENVSYS_SFANRPM;
427 1.8 bouyer sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
428 1.5 bouyer }
429 1.1 groo }
430 1.1 groo
431 1.5 bouyer int
432 1.5 bouyer lm_gtredata(sme, tred)
433 1.5 bouyer struct sysmon_envsys *sme;
434 1.5 bouyer struct envsys_tre_data *tred;
435 1.5 bouyer {
436 1.5 bouyer static const struct timeval onepointfive = { 1, 500000 };
437 1.5 bouyer struct timeval t;
438 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
439 1.5 bouyer int i, s;
440 1.5 bouyer
441 1.5 bouyer /* read new values at most once every 1.5 seconds */
442 1.5 bouyer timeradd(&sc->lastread, &onepointfive, &t);
443 1.5 bouyer s = splclock();
444 1.5 bouyer i = timercmp(&mono_time, &t, >);
445 1.5 bouyer if (i) {
446 1.5 bouyer sc->lastread.tv_sec = mono_time.tv_sec;
447 1.5 bouyer sc->lastread.tv_usec = mono_time.tv_usec;
448 1.5 bouyer }
449 1.5 bouyer splx(s);
450 1.5 bouyer
451 1.5 bouyer if (i)
452 1.5 bouyer sc->refresh_sensor_data(sc);
453 1.5 bouyer
454 1.5 bouyer *tred = sc->sensors[tred->sensor];
455 1.5 bouyer
456 1.5 bouyer return (0);
457 1.5 bouyer }
458 1.1 groo
459 1.1 groo int
460 1.7 bouyer generic_streinfo_fan(sc, info, n, binfo)
461 1.7 bouyer struct lm_softc *sc;
462 1.7 bouyer struct envsys_basic_info *info;
463 1.7 bouyer int n;
464 1.7 bouyer struct envsys_basic_info *binfo;
465 1.7 bouyer {
466 1.7 bouyer u_int8_t sdata;
467 1.7 bouyer int divisor;
468 1.7 bouyer
469 1.7 bouyer /* FAN1 and FAN2 can have divisors set, but not FAN3 */
470 1.7 bouyer if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
471 1.14 tron && (n < 2)) {
472 1.7 bouyer if (binfo->rpms == 0) {
473 1.7 bouyer binfo->validflags = 0;
474 1.7 bouyer return (0);
475 1.7 bouyer }
476 1.7 bouyer
477 1.14 tron /* write back the nominal FAN speed */
478 1.14 tron info->rpms = binfo->rpms;
479 1.14 tron
480 1.7 bouyer /* 153 is the nominal FAN speed value */
481 1.7 bouyer divisor = 1350000 / (binfo->rpms * 153);
482 1.7 bouyer
483 1.7 bouyer /* ...but we need lg(divisor) */
484 1.7 bouyer if (divisor <= 1)
485 1.7 bouyer divisor = 0;
486 1.7 bouyer else if (divisor <= 2)
487 1.7 bouyer divisor = 1;
488 1.7 bouyer else if (divisor <= 4)
489 1.7 bouyer divisor = 2;
490 1.7 bouyer else
491 1.7 bouyer divisor = 3;
492 1.7 bouyer
493 1.7 bouyer /*
494 1.7 bouyer * FAN1 div is in bits <5:4>, FAN2 div is
495 1.7 bouyer * in <7:6>
496 1.7 bouyer */
497 1.7 bouyer sdata = lm_readreg(sc, LMD_VIDFAN);
498 1.14 tron if ( n == 0 ) { /* FAN1 */
499 1.7 bouyer divisor <<= 4;
500 1.7 bouyer sdata = (sdata & 0xCF) | divisor;
501 1.7 bouyer } else { /* FAN2 */
502 1.7 bouyer divisor <<= 6;
503 1.7 bouyer sdata = (sdata & 0x3F) | divisor;
504 1.7 bouyer }
505 1.7 bouyer
506 1.7 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
507 1.7 bouyer }
508 1.7 bouyer return (0);
509 1.7 bouyer
510 1.7 bouyer }
511 1.7 bouyer
512 1.7 bouyer int
513 1.4 thorpej lm_streinfo(sme, binfo)
514 1.5 bouyer struct sysmon_envsys *sme;
515 1.5 bouyer struct envsys_basic_info *binfo;
516 1.1 groo {
517 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
518 1.5 bouyer
519 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
520 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
521 1.5 bouyer else {
522 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
523 1.7 bouyer generic_streinfo_fan(sc, &sc->info[binfo->sensor],
524 1.7 bouyer binfo->sensor - 8, binfo);
525 1.7 bouyer }
526 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
527 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
528 1.7 bouyer sc->info[binfo->sensor].desc[
529 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
530 1.5 bouyer
531 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
532 1.7 bouyer }
533 1.7 bouyer return (0);
534 1.7 bouyer }
535 1.5 bouyer
536 1.7 bouyer int
537 1.7 bouyer wb781_streinfo(sme, binfo)
538 1.7 bouyer struct sysmon_envsys *sme;
539 1.7 bouyer struct envsys_basic_info *binfo;
540 1.7 bouyer {
541 1.7 bouyer struct lm_softc *sc = sme->sme_cookie;
542 1.14 tron int divisor;
543 1.14 tron u_int8_t sdata;
544 1.14 tron int i;
545 1.5 bouyer
546 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
547 1.7 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
548 1.7 bouyer else {
549 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
550 1.14 tron if (binfo->rpms == 0) {
551 1.14 tron binfo->validflags = 0;
552 1.14 tron return (0);
553 1.14 tron }
554 1.14 tron
555 1.14 tron /* write back the nominal FAN speed */
556 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
557 1.14 tron
558 1.14 tron /* 153 is the nominal FAN speed value */
559 1.14 tron divisor = 1350000 / (binfo->rpms * 153);
560 1.14 tron
561 1.14 tron /* ...but we need lg(divisor) */
562 1.14 tron for (i = 0; i < 7; i++) {
563 1.14 tron if (divisor <= (1 << i))
564 1.14 tron break;
565 1.14 tron }
566 1.14 tron divisor = i;
567 1.14 tron
568 1.14 tron if (binfo->sensor == 10 || binfo->sensor == 11) {
569 1.14 tron /*
570 1.14 tron * FAN1 div is in bits <5:4>, FAN2 div
571 1.14 tron * is in <7:6>
572 1.14 tron */
573 1.14 tron sdata = lm_readreg(sc, LMD_VIDFAN);
574 1.14 tron if ( binfo->sensor == 10 ) { /* FAN1 */
575 1.14 tron sdata = (sdata & 0xCF) |
576 1.14 tron ((divisor & 0x3) << 4);
577 1.14 tron } else { /* FAN2 */
578 1.14 tron sdata = (sdata & 0x3F) |
579 1.14 tron ((divisor & 0x3) << 6);
580 1.14 tron }
581 1.14 tron lm_writereg(sc, LMD_VIDFAN, sdata);
582 1.14 tron } else {
583 1.14 tron /* FAN3 is in WB_PIN <7:6> */
584 1.14 tron sdata = lm_readreg(sc, WB_PIN);
585 1.14 tron sdata = (sdata & 0x3F) |
586 1.14 tron ((divisor & 0x3) << 6);
587 1.14 tron lm_writereg(sc, WB_PIN, sdata);
588 1.14 tron }
589 1.7 bouyer }
590 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
591 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
592 1.7 bouyer sc->info[binfo->sensor].desc[
593 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
594 1.5 bouyer
595 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
596 1.5 bouyer }
597 1.5 bouyer return (0);
598 1.5 bouyer }
599 1.5 bouyer
600 1.5 bouyer int
601 1.7 bouyer wb782_streinfo(sme, binfo)
602 1.5 bouyer struct sysmon_envsys *sme;
603 1.5 bouyer struct envsys_basic_info *binfo;
604 1.5 bouyer {
605 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
606 1.5 bouyer int divisor;
607 1.5 bouyer u_int8_t sdata;
608 1.5 bouyer int i;
609 1.5 bouyer
610 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
611 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
612 1.5 bouyer else {
613 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
614 1.4 thorpej if (binfo->rpms == 0) {
615 1.4 thorpej binfo->validflags = 0;
616 1.4 thorpej return (0);
617 1.1 groo }
618 1.1 groo
619 1.14 tron /* write back the nominal FAN speed */
620 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
621 1.14 tron
622 1.4 thorpej /* 153 is the nominal FAN speed value */
623 1.4 thorpej divisor = 1350000 / (binfo->rpms * 153);
624 1.1 groo
625 1.4 thorpej /* ...but we need lg(divisor) */
626 1.5 bouyer for (i = 0; i < 7; i++) {
627 1.5 bouyer if (divisor <= (1 << i))
628 1.5 bouyer break;
629 1.5 bouyer }
630 1.5 bouyer divisor = i;
631 1.4 thorpej
632 1.5 bouyer if (binfo->sensor == 12 || binfo->sensor == 13) {
633 1.5 bouyer /*
634 1.5 bouyer * FAN1 div is in bits <5:4>, FAN2 div
635 1.5 bouyer * is in <7:6>
636 1.5 bouyer */
637 1.5 bouyer sdata = lm_readreg(sc, LMD_VIDFAN);
638 1.5 bouyer if ( binfo->sensor == 12 ) { /* FAN1 */
639 1.5 bouyer sdata = (sdata & 0xCF) |
640 1.5 bouyer ((divisor & 0x3) << 4);
641 1.5 bouyer } else { /* FAN2 */
642 1.5 bouyer sdata = (sdata & 0x3F) |
643 1.5 bouyer ((divisor & 0x3) << 6);
644 1.5 bouyer }
645 1.5 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
646 1.5 bouyer } else {
647 1.5 bouyer /* FAN3 is in WB_PIN <7:6> */
648 1.5 bouyer sdata = lm_readreg(sc, WB_PIN);
649 1.5 bouyer sdata = (sdata & 0x3F) |
650 1.5 bouyer ((divisor & 0x3) << 6);
651 1.14 tron lm_writereg(sc, WB_PIN, sdata);
652 1.1 groo }
653 1.5 bouyer /* Bit 2 of divisor is in WB_BANK0_FANBAT */
654 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
655 1.5 bouyer sdata = lm_readreg(sc, WB_BANK0_FANBAT);
656 1.5 bouyer sdata &= ~(0x20 << (binfo->sensor - 12));
657 1.5 bouyer sdata |= (divisor & 0x4) << (binfo->sensor - 9);
658 1.5 bouyer lm_writereg(sc, WB_BANK0_FANBAT, sdata);
659 1.1 groo }
660 1.1 groo
661 1.4 thorpej memcpy(sc->info[binfo->sensor].desc, binfo->desc,
662 1.4 thorpej sizeof(sc->info[binfo->sensor].desc));
663 1.4 thorpej sc->info[binfo->sensor].desc[
664 1.4 thorpej sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
665 1.1 groo
666 1.4 thorpej binfo->validflags = ENVSYS_FVALID;
667 1.1 groo }
668 1.4 thorpej return (0);
669 1.1 groo }
670 1.1 groo
671 1.8 bouyer static void
672 1.7 bouyer generic_stemp(sc, sensor)
673 1.7 bouyer struct lm_softc *sc;
674 1.7 bouyer struct envsys_tre_data *sensor;
675 1.7 bouyer {
676 1.7 bouyer int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
677 1.10 bouyer DPRINTF(("sdata[temp] 0x%x\n", sdata));
678 1.7 bouyer /* temp is given in deg. C, we convert to uK */
679 1.7 bouyer sensor->cur.data_us = sdata * 1000000 + 273150000;
680 1.7 bouyer }
681 1.7 bouyer
682 1.8 bouyer static void
683 1.7 bouyer generic_svolt(sc, sensors, infos)
684 1.7 bouyer struct lm_softc *sc;
685 1.7 bouyer struct envsys_tre_data *sensors;
686 1.7 bouyer struct envsys_basic_info *infos;
687 1.7 bouyer {
688 1.7 bouyer int i, sdata;
689 1.7 bouyer
690 1.7 bouyer for (i = 0; i < 7; i++) {
691 1.7 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i);
692 1.10 bouyer DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
693 1.7 bouyer /* voltage returned as (mV >> 4), we convert to uVDC */
694 1.7 bouyer sensors[i].cur.data_s = (sdata << 4);
695 1.7 bouyer /* rfact is (factor * 10^4) */
696 1.7 bouyer sensors[i].cur.data_s *= infos[i].rfact;
697 1.7 bouyer /* division by 10 gets us back to uVDC */
698 1.7 bouyer sensors[i].cur.data_s /= 10;
699 1.7 bouyer
700 1.7 bouyer /* these two are negative voltages */
701 1.7 bouyer if ( (i == 5) || (i == 6) )
702 1.7 bouyer sensors[i].cur.data_s *= -1;
703 1.7 bouyer }
704 1.7 bouyer }
705 1.7 bouyer
706 1.8 bouyer static void
707 1.7 bouyer generic_fanrpm(sc, sensors)
708 1.7 bouyer struct lm_softc *sc;
709 1.7 bouyer struct envsys_tre_data *sensors;
710 1.7 bouyer {
711 1.7 bouyer int i, sdata, divisor;
712 1.7 bouyer for (i = 0; i < 3; i++) {
713 1.7 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
714 1.10 bouyer DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
715 1.7 bouyer if (i == 2)
716 1.7 bouyer divisor = 2; /* Fixed divisor for FAN3 */
717 1.7 bouyer else if (i == 1) /* Bits 7 & 6 of VID/FAN */
718 1.7 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
719 1.7 bouyer else
720 1.7 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
721 1.7 bouyer
722 1.7 bouyer if (sdata == 0xff || sdata == 0x00) {
723 1.7 bouyer sensors[i].cur.data_us = 0;
724 1.7 bouyer } else {
725 1.7 bouyer sensors[i].cur.data_us = 1350000 / (sdata << divisor);
726 1.7 bouyer }
727 1.7 bouyer }
728 1.7 bouyer }
729 1.7 bouyer
730 1.1 groo /*
731 1.12 wiz * pre: last read occurred >= 1.5 seconds ago
732 1.1 groo * post: sensors[] current data are the latest from the chip
733 1.1 groo */
734 1.1 groo void
735 1.1 groo lm_refresh_sensor_data(sc)
736 1.1 groo struct lm_softc *sc;
737 1.1 groo {
738 1.7 bouyer /* Refresh our stored data for every sensor */
739 1.7 bouyer generic_stemp(sc, &sc->sensors[7]);
740 1.7 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
741 1.7 bouyer generic_fanrpm(sc, &sc->sensors[8]);
742 1.7 bouyer }
743 1.7 bouyer
744 1.8 bouyer static void
745 1.8 bouyer wb_svolt(sc)
746 1.7 bouyer struct lm_softc *sc;
747 1.7 bouyer {
748 1.8 bouyer int i, sdata;
749 1.5 bouyer for (i = 0; i < 9; ++i) {
750 1.5 bouyer if (i < 7) {
751 1.5 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i);
752 1.5 bouyer } else {
753 1.5 bouyer /* from bank5 */
754 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
755 1.5 bouyer sdata = lm_readreg(sc, (i == 7) ?
756 1.5 bouyer WB_BANK5_5VSB : WB_BANK5_VBAT);
757 1.5 bouyer }
758 1.10 bouyer DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
759 1.5 bouyer /* voltage returned as (mV >> 4), we convert to uV */
760 1.5 bouyer sdata = sdata << 4;
761 1.5 bouyer /* special case for negative voltages */
762 1.5 bouyer if (i == 5) {
763 1.5 bouyer /*
764 1.5 bouyer * -12Vdc, assume Winbond recommended values for
765 1.5 bouyer * resistors
766 1.5 bouyer */
767 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 805)) / 195;
768 1.5 bouyer } else if (i == 6) {
769 1.5 bouyer /*
770 1.5 bouyer * -5Vdc, assume Winbond recommended values for
771 1.5 bouyer * resistors
772 1.5 bouyer */
773 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 682)) / 318;
774 1.5 bouyer }
775 1.5 bouyer /* rfact is (factor * 10^4) */
776 1.5 bouyer sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
777 1.5 bouyer /* division by 10 gets us back to uVDC */
778 1.5 bouyer sc->sensors[i].cur.data_s /= 10;
779 1.5 bouyer }
780 1.8 bouyer }
781 1.5 bouyer
782 1.8 bouyer static void
783 1.8 bouyer wb_stemp(sc, sensors, n)
784 1.8 bouyer struct lm_softc *sc;
785 1.8 bouyer struct envsys_tre_data *sensors;
786 1.8 bouyer int n;
787 1.8 bouyer {
788 1.8 bouyer int sdata;
789 1.8 bouyer /* temperatures. Given in dC, we convert to uK */
790 1.8 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
791 1.10 bouyer DPRINTF(("sdata[temp0] 0x%x\n", sdata));
792 1.8 bouyer sensors[0].cur.data_us = sdata * 1000000 + 273150000;
793 1.8 bouyer /* from bank1 */
794 1.8 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
795 1.8 bouyer sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
796 1.8 bouyer sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
797 1.10 bouyer DPRINTF(("sdata[temp1] 0x%x\n", sdata));
798 1.8 bouyer sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
799 1.8 bouyer if (n < 3)
800 1.8 bouyer return;
801 1.8 bouyer /* from bank2 */
802 1.8 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
803 1.8 bouyer sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
804 1.8 bouyer sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
805 1.10 bouyer DPRINTF(("sdata[temp2] 0x%x\n", sdata));
806 1.8 bouyer sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
807 1.8 bouyer }
808 1.8 bouyer
809 1.8 bouyer static void
810 1.14 tron wb781_fanrpm(sc, sensors)
811 1.14 tron struct lm_softc *sc;
812 1.14 tron struct envsys_tre_data *sensors;
813 1.14 tron {
814 1.14 tron int i, divisor, sdata;
815 1.14 tron lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
816 1.14 tron for (i = 0; i < 3; i++) {
817 1.14 tron sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
818 1.14 tron DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
819 1.14 tron if (i == 0)
820 1.14 tron divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
821 1.14 tron else if (i == 1)
822 1.14 tron divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
823 1.14 tron else
824 1.14 tron divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
825 1.14 tron
826 1.14 tron DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
827 1.14 tron if (sdata == 0xff || sdata == 0x00) {
828 1.14 tron sensors[i].cur.data_us = 0;
829 1.14 tron } else {
830 1.14 tron sensors[i].cur.data_us = 1350000 /
831 1.14 tron (sdata << divisor);
832 1.14 tron }
833 1.14 tron }
834 1.14 tron }
835 1.14 tron
836 1.14 tron static void
837 1.8 bouyer wb_fanrpm(sc, sensors)
838 1.8 bouyer struct lm_softc *sc;
839 1.8 bouyer struct envsys_tre_data *sensors;
840 1.8 bouyer {
841 1.8 bouyer int i, divisor, sdata;
842 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
843 1.8 bouyer for (i = 0; i < 3; i++) {
844 1.8 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
845 1.10 bouyer DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
846 1.8 bouyer if (i == 0)
847 1.5 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
848 1.8 bouyer else if (i == 1)
849 1.5 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
850 1.5 bouyer else
851 1.5 bouyer divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
852 1.8 bouyer divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
853 1.5 bouyer
854 1.5 bouyer DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
855 1.5 bouyer if (sdata == 0xff || sdata == 0x00) {
856 1.8 bouyer sensors[i].cur.data_us = 0;
857 1.5 bouyer } else {
858 1.8 bouyer sensors[i].cur.data_us = 1350000 /
859 1.5 bouyer (sdata << divisor);
860 1.1 groo }
861 1.1 groo }
862 1.8 bouyer }
863 1.8 bouyer
864 1.8 bouyer void
865 1.8 bouyer wb781_refresh_sensor_data(sc)
866 1.8 bouyer struct lm_softc *sc;
867 1.8 bouyer {
868 1.8 bouyer /* Refresh our stored data for every sensor */
869 1.9 bouyer /* we need to reselect bank0 to access common registers */
870 1.9 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
871 1.8 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
872 1.9 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
873 1.8 bouyer wb_stemp(sc, &sc->sensors[7], 3);
874 1.9 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
875 1.14 tron wb781_fanrpm(sc, &sc->sensors[10]);
876 1.8 bouyer }
877 1.8 bouyer
878 1.8 bouyer void
879 1.8 bouyer wb782_refresh_sensor_data(sc)
880 1.8 bouyer struct lm_softc *sc;
881 1.8 bouyer {
882 1.8 bouyer /* Refresh our stored data for every sensor */
883 1.8 bouyer wb_svolt(sc);
884 1.8 bouyer wb_stemp(sc, &sc->sensors[9], 3);
885 1.8 bouyer wb_fanrpm(sc, &sc->sensors[12]);
886 1.8 bouyer }
887 1.8 bouyer
888 1.8 bouyer void
889 1.8 bouyer wb697_refresh_sensor_data(sc)
890 1.8 bouyer struct lm_softc *sc;
891 1.8 bouyer {
892 1.8 bouyer /* Refresh our stored data for every sensor */
893 1.8 bouyer wb_svolt(sc);
894 1.8 bouyer wb_stemp(sc, &sc->sensors[9], 2);
895 1.8 bouyer wb_fanrpm(sc, &sc->sensors[11]);
896 1.1 groo }
897