nslm7x.c revision 1.15 1 1.15 bouyer /* $NetBSD: nslm7x.c,v 1.15 2002/04/05 16:11:47 bouyer Exp $ */
2 1.1 groo
3 1.1 groo /*-
4 1.1 groo * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.1 groo * All rights reserved.
6 1.1 groo *
7 1.1 groo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 groo * by Bill Squier.
9 1.1 groo *
10 1.1 groo * Redistribution and use in source and binary forms, with or without
11 1.1 groo * modification, are permitted provided that the following conditions
12 1.1 groo * are met:
13 1.1 groo * 1. Redistributions of source code must retain the above copyright
14 1.1 groo * notice, this list of conditions and the following disclaimer.
15 1.1 groo * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 groo * notice, this list of conditions and the following disclaimer in the
17 1.1 groo * documentation and/or other materials provided with the distribution.
18 1.1 groo * 3. All advertising materials mentioning features or use of this software
19 1.1 groo * must display the following acknowledgement:
20 1.1 groo * This product includes software developed by the NetBSD
21 1.1 groo * Foundation, Inc. and its contributors.
22 1.1 groo * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 groo * contributors may be used to endorse or promote products derived
24 1.1 groo * from this software without specific prior written permission.
25 1.1 groo *
26 1.1 groo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 groo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 groo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 groo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 groo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 groo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 groo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 groo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 groo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 groo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 groo * POSSIBILITY OF SUCH DAMAGE.
37 1.1 groo */
38 1.13 lukem
39 1.13 lukem #include <sys/cdefs.h>
40 1.15 bouyer __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.15 2002/04/05 16:11:47 bouyer Exp $");
41 1.1 groo
42 1.1 groo #include <sys/param.h>
43 1.1 groo #include <sys/systm.h>
44 1.1 groo #include <sys/kernel.h>
45 1.1 groo #include <sys/proc.h>
46 1.1 groo #include <sys/device.h>
47 1.1 groo #include <sys/malloc.h>
48 1.1 groo #include <sys/errno.h>
49 1.1 groo #include <sys/queue.h>
50 1.1 groo #include <sys/lock.h>
51 1.1 groo #include <sys/ioctl.h>
52 1.1 groo #include <sys/conf.h>
53 1.1 groo #include <sys/time.h>
54 1.1 groo
55 1.1 groo #include <machine/bus.h>
56 1.1 groo
57 1.1 groo #include <dev/isa/isareg.h>
58 1.1 groo #include <dev/isa/isavar.h>
59 1.1 groo
60 1.4 thorpej #include <dev/sysmon/sysmonvar.h>
61 1.4 thorpej
62 1.1 groo #include <dev/ic/nslm7xvar.h>
63 1.1 groo
64 1.1 groo #include <machine/intr.h>
65 1.1 groo #include <machine/bus.h>
66 1.1 groo
67 1.1 groo #if defined(LMDEBUG)
68 1.1 groo #define DPRINTF(x) do { printf x; } while (0)
69 1.1 groo #else
70 1.1 groo #define DPRINTF(x)
71 1.1 groo #endif
72 1.1 groo
73 1.4 thorpej const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
74 1.5 bouyer /* for each unit type */
75 1.1 groo { 7, 7, ENVSYS_STEMP },
76 1.1 groo { 8, 10, ENVSYS_SFANRPM },
77 1.1 groo { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
78 1.1 groo { 0, 6, ENVSYS_SVOLTS_DC },
79 1.1 groo { 1, 0, ENVSYS_SOHMS }, /* None */
80 1.1 groo { 1, 0, ENVSYS_SWATTS }, /* None */
81 1.1 groo { 1, 0, ENVSYS_SAMPS } /* None */
82 1.1 groo };
83 1.1 groo
84 1.5 bouyer
85 1.1 groo u_int8_t lm_readreg __P((struct lm_softc *, int));
86 1.1 groo void lm_writereg __P((struct lm_softc *, int, int));
87 1.5 bouyer
88 1.8 bouyer static void setup_fan __P((struct lm_softc *, int, int));
89 1.8 bouyer static void setup_temp __P((struct lm_softc *, int, int));
90 1.8 bouyer static void wb_setup_volt __P((struct lm_softc *));
91 1.8 bouyer
92 1.5 bouyer int lm_match __P((struct lm_softc *));
93 1.5 bouyer int wb_match __P((struct lm_softc *));
94 1.5 bouyer int def_match __P((struct lm_softc *));
95 1.5 bouyer void lm_common_match __P((struct lm_softc *));
96 1.5 bouyer
97 1.8 bouyer static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
98 1.8 bouyer static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
99 1.7 bouyer struct envsys_basic_info *));
100 1.8 bouyer static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
101 1.8 bouyer
102 1.7 bouyer void lm_refresh_sensor_data __P((struct lm_softc *));
103 1.8 bouyer
104 1.8 bouyer static void wb_svolt __P((struct lm_softc *));
105 1.8 bouyer static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
106 1.14 tron static void wb781_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
107 1.8 bouyer static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
108 1.8 bouyer
109 1.7 bouyer void wb781_refresh_sensor_data __P((struct lm_softc *));
110 1.7 bouyer void wb782_refresh_sensor_data __P((struct lm_softc *));
111 1.8 bouyer void wb697_refresh_sensor_data __P((struct lm_softc *));
112 1.7 bouyer
113 1.4 thorpej int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
114 1.7 bouyer
115 1.7 bouyer int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
116 1.7 bouyer int, struct envsys_basic_info *));
117 1.4 thorpej int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
118 1.7 bouyer int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
119 1.7 bouyer int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
120 1.5 bouyer
121 1.5 bouyer struct lm_chip {
122 1.5 bouyer int (*chip_match) __P((struct lm_softc *));
123 1.5 bouyer };
124 1.5 bouyer
125 1.5 bouyer struct lm_chip lm_chips[] = {
126 1.8 bouyer { wb_match },
127 1.8 bouyer { lm_match },
128 1.8 bouyer { def_match } /* Must be last */
129 1.5 bouyer };
130 1.5 bouyer
131 1.1 groo
132 1.1 groo u_int8_t
133 1.1 groo lm_readreg(sc, reg)
134 1.1 groo struct lm_softc *sc;
135 1.1 groo int reg;
136 1.1 groo {
137 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
138 1.1 groo return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
139 1.1 groo }
140 1.1 groo
141 1.1 groo void
142 1.1 groo lm_writereg(sc, reg, val)
143 1.1 groo struct lm_softc *sc;
144 1.1 groo int reg;
145 1.1 groo int val;
146 1.1 groo {
147 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
148 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
149 1.1 groo }
150 1.1 groo
151 1.1 groo
152 1.1 groo /*
153 1.2 groo * bus independent probe
154 1.2 groo */
155 1.2 groo int
156 1.2 groo lm_probe(iot, ioh)
157 1.2 groo bus_space_tag_t iot;
158 1.2 groo bus_space_handle_t ioh;
159 1.2 groo {
160 1.2 groo u_int8_t cr;
161 1.2 groo int rv;
162 1.2 groo
163 1.2 groo /* Check for some power-on defaults */
164 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
165 1.2 groo
166 1.2 groo /* Perform LM78 reset */
167 1.2 groo bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
168 1.2 groo
169 1.2 groo /* XXX - Why do I have to reselect the register? */
170 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
171 1.2 groo cr = bus_space_read_1(iot, ioh, LMC_DATA);
172 1.2 groo
173 1.2 groo /* XXX - spec says *only* 0x08! */
174 1.2 groo if ((cr == 0x08) || (cr == 0x01))
175 1.2 groo rv = 1;
176 1.2 groo else
177 1.2 groo rv = 0;
178 1.2 groo
179 1.2 groo DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
180 1.2 groo
181 1.2 groo return (rv);
182 1.2 groo }
183 1.2 groo
184 1.2 groo
185 1.2 groo /*
186 1.1 groo * pre: lmsc contains valid busspace tag and handle
187 1.1 groo */
188 1.1 groo void
189 1.1 groo lm_attach(lmsc)
190 1.1 groo struct lm_softc *lmsc;
191 1.1 groo {
192 1.1 groo int i;
193 1.1 groo
194 1.5 bouyer for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
195 1.5 bouyer if (lm_chips[i].chip_match(lmsc))
196 1.5 bouyer break;
197 1.1 groo
198 1.1 groo /* Start the monitoring loop */
199 1.1 groo lm_writereg(lmsc, LMD_CONFIG, 0x01);
200 1.1 groo
201 1.1 groo /* Indicate we have never read the registers */
202 1.1 groo timerclear(&lmsc->lastread);
203 1.1 groo
204 1.1 groo /* Initialize sensors */
205 1.5 bouyer for (i = 0; i < lmsc->numsensors; ++i) {
206 1.1 groo lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
207 1.1 groo lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
208 1.1 groo lmsc->info[i].validflags = ENVSYS_FVALID;
209 1.1 groo lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
210 1.1 groo }
211 1.4 thorpej /*
212 1.4 thorpej * Hook into the System Monitor.
213 1.4 thorpej */
214 1.4 thorpej lmsc->sc_sysmon.sme_ranges = lm_ranges;
215 1.4 thorpej lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
216 1.4 thorpej lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
217 1.4 thorpej lmsc->sc_sysmon.sme_cookie = lmsc;
218 1.4 thorpej
219 1.4 thorpej lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
220 1.5 bouyer /* sme_streinfo set in chip-specific attach */
221 1.4 thorpej
222 1.5 bouyer lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
223 1.4 thorpej lmsc->sc_sysmon.sme_envsys_version = 1000;
224 1.4 thorpej
225 1.4 thorpej if (sysmon_envsys_register(&lmsc->sc_sysmon))
226 1.4 thorpej printf("%s: unable to register with sysmon\n",
227 1.4 thorpej lmsc->sc_dev.dv_xname);
228 1.1 groo }
229 1.1 groo
230 1.5 bouyer int
231 1.5 bouyer lm_match(sc)
232 1.5 bouyer struct lm_softc *sc;
233 1.5 bouyer {
234 1.5 bouyer int i;
235 1.5 bouyer
236 1.5 bouyer /* See if we have an LM78 or LM79 */
237 1.5 bouyer i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
238 1.5 bouyer switch(i) {
239 1.5 bouyer case LM_ID_LM78:
240 1.5 bouyer printf(": LM78\n");
241 1.5 bouyer break;
242 1.5 bouyer case LM_ID_LM78J:
243 1.5 bouyer printf(": LM78J\n");
244 1.5 bouyer break;
245 1.5 bouyer case LM_ID_LM79:
246 1.5 bouyer printf(": LM79\n");
247 1.15 bouyer break;
248 1.15 bouyer case LM_ID_LM81:
249 1.15 bouyer printf(": LM81\n");
250 1.5 bouyer break;
251 1.5 bouyer default:
252 1.5 bouyer return 0;
253 1.5 bouyer }
254 1.5 bouyer lm_common_match(sc);
255 1.5 bouyer return 1;
256 1.5 bouyer }
257 1.1 groo
258 1.1 groo int
259 1.5 bouyer def_match(sc)
260 1.5 bouyer struct lm_softc *sc;
261 1.5 bouyer {
262 1.5 bouyer int i;
263 1.5 bouyer
264 1.5 bouyer i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
265 1.5 bouyer printf(": Unknow chip (ID %d)\n", i);
266 1.5 bouyer lm_common_match(sc);
267 1.5 bouyer return 1;
268 1.5 bouyer }
269 1.5 bouyer
270 1.5 bouyer void
271 1.5 bouyer lm_common_match(sc)
272 1.5 bouyer struct lm_softc *sc;
273 1.1 groo {
274 1.5 bouyer int i;
275 1.5 bouyer sc->numsensors = LM_NUM_SENSORS;
276 1.5 bouyer sc->refresh_sensor_data = lm_refresh_sensor_data;
277 1.5 bouyer
278 1.5 bouyer for (i = 0; i < 7; ++i) {
279 1.5 bouyer sc->sensors[i].units = sc->info[i].units =
280 1.5 bouyer ENVSYS_SVOLTS_DC;
281 1.5 bouyer sprintf(sc->info[i].desc, "IN %d", i);
282 1.5 bouyer }
283 1.5 bouyer
284 1.5 bouyer /* default correction factors for resistors on higher voltage inputs */
285 1.5 bouyer sc->info[0].rfact = sc->info[1].rfact =
286 1.5 bouyer sc->info[2].rfact = 10000;
287 1.5 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
288 1.5 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
289 1.5 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
290 1.5 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
291 1.5 bouyer
292 1.5 bouyer sc->sensors[7].units = ENVSYS_STEMP;
293 1.5 bouyer strcpy(sc->info[7].desc, "Temp");
294 1.5 bouyer
295 1.8 bouyer setup_fan(sc, 8, 3);
296 1.5 bouyer sc->sc_sysmon.sme_streinfo = lm_streinfo;
297 1.5 bouyer }
298 1.1 groo
299 1.5 bouyer int
300 1.5 bouyer wb_match(sc)
301 1.5 bouyer struct lm_softc *sc;
302 1.5 bouyer {
303 1.5 bouyer int i, j;
304 1.1 groo
305 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
306 1.5 bouyer j = lm_readreg(sc, WB_VENDID) << 8;
307 1.5 bouyer lm_writereg(sc, WB_BANKSEL, 0);
308 1.5 bouyer j |= lm_readreg(sc, WB_VENDID);
309 1.11 veego DPRINTF(("winbond vend id 0x%x\n", j));
310 1.5 bouyer if (j != WB_VENDID_WINBOND)
311 1.5 bouyer return 0;
312 1.7 bouyer /* read device ID */
313 1.7 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
314 1.7 bouyer j = lm_readreg(sc, WB_BANK0_CHIPID);
315 1.11 veego DPRINTF(("winbond chip id 0x%x\n", j));
316 1.7 bouyer switch(j) {
317 1.7 bouyer case WB_CHIPID_83781:
318 1.10 bouyer case WB_CHIPID_83781_2:
319 1.7 bouyer printf(": W83781D\n");
320 1.7 bouyer
321 1.7 bouyer for (i = 0; i < 7; ++i) {
322 1.7 bouyer sc->sensors[i].units = sc->info[i].units =
323 1.7 bouyer ENVSYS_SVOLTS_DC;
324 1.7 bouyer sprintf(sc->info[i].desc, "IN %d", i);
325 1.7 bouyer }
326 1.7 bouyer
327 1.7 bouyer /* default correction factors for higher voltage inputs */
328 1.7 bouyer sc->info[0].rfact = sc->info[1].rfact =
329 1.7 bouyer sc->info[2].rfact = 10000;
330 1.7 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
331 1.7 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
332 1.7 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
333 1.7 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
334 1.7 bouyer
335 1.9 bouyer setup_temp(sc, 7, 3);
336 1.9 bouyer setup_fan(sc, 10, 3);
337 1.7 bouyer
338 1.9 bouyer sc->numsensors = WB83781_NUM_SENSORS;
339 1.9 bouyer sc->refresh_sensor_data = wb781_refresh_sensor_data;
340 1.7 bouyer sc->sc_sysmon.sme_streinfo = wb781_streinfo;
341 1.7 bouyer return 1;
342 1.8 bouyer case WB_CHIPID_83697:
343 1.8 bouyer printf(": W83697HF\n");
344 1.8 bouyer wb_setup_volt(sc);
345 1.8 bouyer setup_temp(sc, 9, 2);
346 1.8 bouyer setup_fan(sc, 11, 3);
347 1.8 bouyer sc->numsensors = WB83697_NUM_SENSORS;
348 1.8 bouyer sc->refresh_sensor_data = wb697_refresh_sensor_data;
349 1.8 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
350 1.8 bouyer return 1;
351 1.8 bouyer break;
352 1.7 bouyer case WB_CHIPID_83782:
353 1.7 bouyer printf(": W83782D\n");
354 1.7 bouyer break;
355 1.7 bouyer case WB_CHIPID_83627:
356 1.7 bouyer printf(": W83627HF\n");
357 1.7 bouyer break;
358 1.7 bouyer default:
359 1.7 bouyer printf(": unknow winbond chip ID 0x%x\n", j);
360 1.7 bouyer /* handle as a standart lm7x */
361 1.7 bouyer lm_common_match(sc);
362 1.7 bouyer return 1;
363 1.7 bouyer }
364 1.8 bouyer /* common code for the W83782D and W83627HF */
365 1.8 bouyer wb_setup_volt(sc);
366 1.8 bouyer setup_temp(sc, 9, 3);
367 1.8 bouyer setup_fan(sc, 12, 3);
368 1.5 bouyer sc->numsensors = WB_NUM_SENSORS;
369 1.7 bouyer sc->refresh_sensor_data = wb782_refresh_sensor_data;
370 1.8 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
371 1.8 bouyer return 1;
372 1.8 bouyer }
373 1.5 bouyer
374 1.8 bouyer static void
375 1.8 bouyer wb_setup_volt(sc)
376 1.8 bouyer struct lm_softc *sc;
377 1.8 bouyer {
378 1.5 bouyer sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
379 1.5 bouyer sprintf(sc->info[0].desc, "VCORE A");
380 1.5 bouyer sc->info[0].rfact = 10000;
381 1.5 bouyer sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
382 1.5 bouyer sprintf(sc->info[1].desc, "VCORE B");
383 1.5 bouyer sc->info[1].rfact = 10000;
384 1.5 bouyer sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
385 1.5 bouyer sprintf(sc->info[2].desc, "+3.3V");
386 1.5 bouyer sc->info[2].rfact = 10000;
387 1.5 bouyer sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
388 1.5 bouyer sprintf(sc->info[3].desc, "+5V");
389 1.5 bouyer sc->info[3].rfact = 16778;
390 1.5 bouyer sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
391 1.5 bouyer sprintf(sc->info[4].desc, "+12V");
392 1.5 bouyer sc->info[4].rfact = 38000;
393 1.5 bouyer sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
394 1.5 bouyer sprintf(sc->info[5].desc, "-12V");
395 1.5 bouyer sc->info[5].rfact = 10000;
396 1.5 bouyer sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
397 1.5 bouyer sprintf(sc->info[6].desc, "-5V");
398 1.5 bouyer sc->info[6].rfact = 10000;
399 1.5 bouyer sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
400 1.5 bouyer sprintf(sc->info[7].desc, "+5VSB");
401 1.5 bouyer sc->info[7].rfact = 15151;
402 1.5 bouyer sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
403 1.5 bouyer sprintf(sc->info[8].desc, "VBAT");
404 1.5 bouyer sc->info[8].rfact = 10000;
405 1.8 bouyer }
406 1.8 bouyer
407 1.8 bouyer static void
408 1.8 bouyer setup_temp(sc, start, n)
409 1.8 bouyer struct lm_softc *sc;
410 1.8 bouyer int start, n;
411 1.8 bouyer {
412 1.8 bouyer int i;
413 1.5 bouyer
414 1.8 bouyer for (i = 0; i < n; i++) {
415 1.8 bouyer sc->sensors[start + i].units = ENVSYS_STEMP;
416 1.8 bouyer sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
417 1.8 bouyer }
418 1.8 bouyer }
419 1.8 bouyer
420 1.8 bouyer
421 1.8 bouyer static void
422 1.8 bouyer setup_fan(sc, start, n)
423 1.8 bouyer struct lm_softc *sc;
424 1.8 bouyer int start, n;
425 1.8 bouyer {
426 1.8 bouyer int i;
427 1.8 bouyer for (i = 0; i < n; ++i) {
428 1.8 bouyer sc->sensors[start + i].units = ENVSYS_SFANRPM;
429 1.8 bouyer sc->info[start + i].units = ENVSYS_SFANRPM;
430 1.8 bouyer sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
431 1.5 bouyer }
432 1.1 groo }
433 1.1 groo
434 1.5 bouyer int
435 1.5 bouyer lm_gtredata(sme, tred)
436 1.5 bouyer struct sysmon_envsys *sme;
437 1.5 bouyer struct envsys_tre_data *tred;
438 1.5 bouyer {
439 1.5 bouyer static const struct timeval onepointfive = { 1, 500000 };
440 1.5 bouyer struct timeval t;
441 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
442 1.5 bouyer int i, s;
443 1.5 bouyer
444 1.5 bouyer /* read new values at most once every 1.5 seconds */
445 1.5 bouyer timeradd(&sc->lastread, &onepointfive, &t);
446 1.5 bouyer s = splclock();
447 1.5 bouyer i = timercmp(&mono_time, &t, >);
448 1.5 bouyer if (i) {
449 1.5 bouyer sc->lastread.tv_sec = mono_time.tv_sec;
450 1.5 bouyer sc->lastread.tv_usec = mono_time.tv_usec;
451 1.5 bouyer }
452 1.5 bouyer splx(s);
453 1.5 bouyer
454 1.5 bouyer if (i)
455 1.5 bouyer sc->refresh_sensor_data(sc);
456 1.5 bouyer
457 1.5 bouyer *tred = sc->sensors[tred->sensor];
458 1.5 bouyer
459 1.5 bouyer return (0);
460 1.5 bouyer }
461 1.1 groo
462 1.1 groo int
463 1.7 bouyer generic_streinfo_fan(sc, info, n, binfo)
464 1.7 bouyer struct lm_softc *sc;
465 1.7 bouyer struct envsys_basic_info *info;
466 1.7 bouyer int n;
467 1.7 bouyer struct envsys_basic_info *binfo;
468 1.7 bouyer {
469 1.7 bouyer u_int8_t sdata;
470 1.7 bouyer int divisor;
471 1.7 bouyer
472 1.7 bouyer /* FAN1 and FAN2 can have divisors set, but not FAN3 */
473 1.7 bouyer if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
474 1.14 tron && (n < 2)) {
475 1.7 bouyer if (binfo->rpms == 0) {
476 1.7 bouyer binfo->validflags = 0;
477 1.7 bouyer return (0);
478 1.7 bouyer }
479 1.7 bouyer
480 1.14 tron /* write back the nominal FAN speed */
481 1.14 tron info->rpms = binfo->rpms;
482 1.14 tron
483 1.7 bouyer /* 153 is the nominal FAN speed value */
484 1.7 bouyer divisor = 1350000 / (binfo->rpms * 153);
485 1.7 bouyer
486 1.7 bouyer /* ...but we need lg(divisor) */
487 1.7 bouyer if (divisor <= 1)
488 1.7 bouyer divisor = 0;
489 1.7 bouyer else if (divisor <= 2)
490 1.7 bouyer divisor = 1;
491 1.7 bouyer else if (divisor <= 4)
492 1.7 bouyer divisor = 2;
493 1.7 bouyer else
494 1.7 bouyer divisor = 3;
495 1.7 bouyer
496 1.7 bouyer /*
497 1.7 bouyer * FAN1 div is in bits <5:4>, FAN2 div is
498 1.7 bouyer * in <7:6>
499 1.7 bouyer */
500 1.7 bouyer sdata = lm_readreg(sc, LMD_VIDFAN);
501 1.14 tron if ( n == 0 ) { /* FAN1 */
502 1.7 bouyer divisor <<= 4;
503 1.7 bouyer sdata = (sdata & 0xCF) | divisor;
504 1.7 bouyer } else { /* FAN2 */
505 1.7 bouyer divisor <<= 6;
506 1.7 bouyer sdata = (sdata & 0x3F) | divisor;
507 1.7 bouyer }
508 1.7 bouyer
509 1.7 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
510 1.7 bouyer }
511 1.7 bouyer return (0);
512 1.7 bouyer
513 1.7 bouyer }
514 1.7 bouyer
515 1.7 bouyer int
516 1.4 thorpej lm_streinfo(sme, binfo)
517 1.5 bouyer struct sysmon_envsys *sme;
518 1.5 bouyer struct envsys_basic_info *binfo;
519 1.1 groo {
520 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
521 1.5 bouyer
522 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
523 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
524 1.5 bouyer else {
525 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
526 1.7 bouyer generic_streinfo_fan(sc, &sc->info[binfo->sensor],
527 1.7 bouyer binfo->sensor - 8, binfo);
528 1.7 bouyer }
529 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
530 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
531 1.7 bouyer sc->info[binfo->sensor].desc[
532 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
533 1.5 bouyer
534 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
535 1.7 bouyer }
536 1.7 bouyer return (0);
537 1.7 bouyer }
538 1.5 bouyer
539 1.7 bouyer int
540 1.7 bouyer wb781_streinfo(sme, binfo)
541 1.7 bouyer struct sysmon_envsys *sme;
542 1.7 bouyer struct envsys_basic_info *binfo;
543 1.7 bouyer {
544 1.7 bouyer struct lm_softc *sc = sme->sme_cookie;
545 1.14 tron int divisor;
546 1.14 tron u_int8_t sdata;
547 1.14 tron int i;
548 1.5 bouyer
549 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
550 1.7 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
551 1.7 bouyer else {
552 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
553 1.14 tron if (binfo->rpms == 0) {
554 1.14 tron binfo->validflags = 0;
555 1.14 tron return (0);
556 1.14 tron }
557 1.14 tron
558 1.14 tron /* write back the nominal FAN speed */
559 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
560 1.14 tron
561 1.14 tron /* 153 is the nominal FAN speed value */
562 1.14 tron divisor = 1350000 / (binfo->rpms * 153);
563 1.14 tron
564 1.14 tron /* ...but we need lg(divisor) */
565 1.14 tron for (i = 0; i < 7; i++) {
566 1.14 tron if (divisor <= (1 << i))
567 1.14 tron break;
568 1.14 tron }
569 1.14 tron divisor = i;
570 1.14 tron
571 1.14 tron if (binfo->sensor == 10 || binfo->sensor == 11) {
572 1.14 tron /*
573 1.14 tron * FAN1 div is in bits <5:4>, FAN2 div
574 1.14 tron * is in <7:6>
575 1.14 tron */
576 1.14 tron sdata = lm_readreg(sc, LMD_VIDFAN);
577 1.14 tron if ( binfo->sensor == 10 ) { /* FAN1 */
578 1.14 tron sdata = (sdata & 0xCF) |
579 1.14 tron ((divisor & 0x3) << 4);
580 1.14 tron } else { /* FAN2 */
581 1.14 tron sdata = (sdata & 0x3F) |
582 1.14 tron ((divisor & 0x3) << 6);
583 1.14 tron }
584 1.14 tron lm_writereg(sc, LMD_VIDFAN, sdata);
585 1.14 tron } else {
586 1.14 tron /* FAN3 is in WB_PIN <7:6> */
587 1.14 tron sdata = lm_readreg(sc, WB_PIN);
588 1.14 tron sdata = (sdata & 0x3F) |
589 1.14 tron ((divisor & 0x3) << 6);
590 1.14 tron lm_writereg(sc, WB_PIN, sdata);
591 1.14 tron }
592 1.7 bouyer }
593 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
594 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
595 1.7 bouyer sc->info[binfo->sensor].desc[
596 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
597 1.5 bouyer
598 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
599 1.5 bouyer }
600 1.5 bouyer return (0);
601 1.5 bouyer }
602 1.5 bouyer
603 1.5 bouyer int
604 1.7 bouyer wb782_streinfo(sme, binfo)
605 1.5 bouyer struct sysmon_envsys *sme;
606 1.5 bouyer struct envsys_basic_info *binfo;
607 1.5 bouyer {
608 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
609 1.5 bouyer int divisor;
610 1.5 bouyer u_int8_t sdata;
611 1.5 bouyer int i;
612 1.5 bouyer
613 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
614 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
615 1.5 bouyer else {
616 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
617 1.4 thorpej if (binfo->rpms == 0) {
618 1.4 thorpej binfo->validflags = 0;
619 1.4 thorpej return (0);
620 1.1 groo }
621 1.1 groo
622 1.14 tron /* write back the nominal FAN speed */
623 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
624 1.14 tron
625 1.4 thorpej /* 153 is the nominal FAN speed value */
626 1.4 thorpej divisor = 1350000 / (binfo->rpms * 153);
627 1.1 groo
628 1.4 thorpej /* ...but we need lg(divisor) */
629 1.5 bouyer for (i = 0; i < 7; i++) {
630 1.5 bouyer if (divisor <= (1 << i))
631 1.5 bouyer break;
632 1.5 bouyer }
633 1.5 bouyer divisor = i;
634 1.4 thorpej
635 1.5 bouyer if (binfo->sensor == 12 || binfo->sensor == 13) {
636 1.5 bouyer /*
637 1.5 bouyer * FAN1 div is in bits <5:4>, FAN2 div
638 1.5 bouyer * is in <7:6>
639 1.5 bouyer */
640 1.5 bouyer sdata = lm_readreg(sc, LMD_VIDFAN);
641 1.5 bouyer if ( binfo->sensor == 12 ) { /* FAN1 */
642 1.5 bouyer sdata = (sdata & 0xCF) |
643 1.5 bouyer ((divisor & 0x3) << 4);
644 1.5 bouyer } else { /* FAN2 */
645 1.5 bouyer sdata = (sdata & 0x3F) |
646 1.5 bouyer ((divisor & 0x3) << 6);
647 1.5 bouyer }
648 1.5 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
649 1.5 bouyer } else {
650 1.5 bouyer /* FAN3 is in WB_PIN <7:6> */
651 1.5 bouyer sdata = lm_readreg(sc, WB_PIN);
652 1.5 bouyer sdata = (sdata & 0x3F) |
653 1.5 bouyer ((divisor & 0x3) << 6);
654 1.14 tron lm_writereg(sc, WB_PIN, sdata);
655 1.1 groo }
656 1.5 bouyer /* Bit 2 of divisor is in WB_BANK0_FANBAT */
657 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
658 1.5 bouyer sdata = lm_readreg(sc, WB_BANK0_FANBAT);
659 1.5 bouyer sdata &= ~(0x20 << (binfo->sensor - 12));
660 1.5 bouyer sdata |= (divisor & 0x4) << (binfo->sensor - 9);
661 1.5 bouyer lm_writereg(sc, WB_BANK0_FANBAT, sdata);
662 1.1 groo }
663 1.1 groo
664 1.4 thorpej memcpy(sc->info[binfo->sensor].desc, binfo->desc,
665 1.4 thorpej sizeof(sc->info[binfo->sensor].desc));
666 1.4 thorpej sc->info[binfo->sensor].desc[
667 1.4 thorpej sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
668 1.1 groo
669 1.4 thorpej binfo->validflags = ENVSYS_FVALID;
670 1.1 groo }
671 1.4 thorpej return (0);
672 1.1 groo }
673 1.1 groo
674 1.8 bouyer static void
675 1.7 bouyer generic_stemp(sc, sensor)
676 1.7 bouyer struct lm_softc *sc;
677 1.7 bouyer struct envsys_tre_data *sensor;
678 1.7 bouyer {
679 1.7 bouyer int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
680 1.10 bouyer DPRINTF(("sdata[temp] 0x%x\n", sdata));
681 1.7 bouyer /* temp is given in deg. C, we convert to uK */
682 1.7 bouyer sensor->cur.data_us = sdata * 1000000 + 273150000;
683 1.7 bouyer }
684 1.7 bouyer
685 1.8 bouyer static void
686 1.7 bouyer generic_svolt(sc, sensors, infos)
687 1.7 bouyer struct lm_softc *sc;
688 1.7 bouyer struct envsys_tre_data *sensors;
689 1.7 bouyer struct envsys_basic_info *infos;
690 1.7 bouyer {
691 1.7 bouyer int i, sdata;
692 1.7 bouyer
693 1.7 bouyer for (i = 0; i < 7; i++) {
694 1.7 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i);
695 1.10 bouyer DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
696 1.7 bouyer /* voltage returned as (mV >> 4), we convert to uVDC */
697 1.7 bouyer sensors[i].cur.data_s = (sdata << 4);
698 1.7 bouyer /* rfact is (factor * 10^4) */
699 1.7 bouyer sensors[i].cur.data_s *= infos[i].rfact;
700 1.7 bouyer /* division by 10 gets us back to uVDC */
701 1.7 bouyer sensors[i].cur.data_s /= 10;
702 1.7 bouyer
703 1.7 bouyer /* these two are negative voltages */
704 1.7 bouyer if ( (i == 5) || (i == 6) )
705 1.7 bouyer sensors[i].cur.data_s *= -1;
706 1.7 bouyer }
707 1.7 bouyer }
708 1.7 bouyer
709 1.8 bouyer static void
710 1.7 bouyer generic_fanrpm(sc, sensors)
711 1.7 bouyer struct lm_softc *sc;
712 1.7 bouyer struct envsys_tre_data *sensors;
713 1.7 bouyer {
714 1.7 bouyer int i, sdata, divisor;
715 1.7 bouyer for (i = 0; i < 3; i++) {
716 1.7 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
717 1.10 bouyer DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
718 1.7 bouyer if (i == 2)
719 1.7 bouyer divisor = 2; /* Fixed divisor for FAN3 */
720 1.7 bouyer else if (i == 1) /* Bits 7 & 6 of VID/FAN */
721 1.7 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
722 1.7 bouyer else
723 1.7 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
724 1.7 bouyer
725 1.7 bouyer if (sdata == 0xff || sdata == 0x00) {
726 1.7 bouyer sensors[i].cur.data_us = 0;
727 1.7 bouyer } else {
728 1.7 bouyer sensors[i].cur.data_us = 1350000 / (sdata << divisor);
729 1.7 bouyer }
730 1.7 bouyer }
731 1.7 bouyer }
732 1.7 bouyer
733 1.1 groo /*
734 1.12 wiz * pre: last read occurred >= 1.5 seconds ago
735 1.1 groo * post: sensors[] current data are the latest from the chip
736 1.1 groo */
737 1.1 groo void
738 1.1 groo lm_refresh_sensor_data(sc)
739 1.1 groo struct lm_softc *sc;
740 1.1 groo {
741 1.7 bouyer /* Refresh our stored data for every sensor */
742 1.7 bouyer generic_stemp(sc, &sc->sensors[7]);
743 1.7 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
744 1.7 bouyer generic_fanrpm(sc, &sc->sensors[8]);
745 1.7 bouyer }
746 1.7 bouyer
747 1.8 bouyer static void
748 1.8 bouyer wb_svolt(sc)
749 1.7 bouyer struct lm_softc *sc;
750 1.7 bouyer {
751 1.8 bouyer int i, sdata;
752 1.5 bouyer for (i = 0; i < 9; ++i) {
753 1.5 bouyer if (i < 7) {
754 1.5 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i);
755 1.5 bouyer } else {
756 1.5 bouyer /* from bank5 */
757 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
758 1.5 bouyer sdata = lm_readreg(sc, (i == 7) ?
759 1.5 bouyer WB_BANK5_5VSB : WB_BANK5_VBAT);
760 1.5 bouyer }
761 1.10 bouyer DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
762 1.5 bouyer /* voltage returned as (mV >> 4), we convert to uV */
763 1.5 bouyer sdata = sdata << 4;
764 1.5 bouyer /* special case for negative voltages */
765 1.5 bouyer if (i == 5) {
766 1.5 bouyer /*
767 1.5 bouyer * -12Vdc, assume Winbond recommended values for
768 1.5 bouyer * resistors
769 1.5 bouyer */
770 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 805)) / 195;
771 1.5 bouyer } else if (i == 6) {
772 1.5 bouyer /*
773 1.5 bouyer * -5Vdc, assume Winbond recommended values for
774 1.5 bouyer * resistors
775 1.5 bouyer */
776 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 682)) / 318;
777 1.5 bouyer }
778 1.5 bouyer /* rfact is (factor * 10^4) */
779 1.5 bouyer sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
780 1.5 bouyer /* division by 10 gets us back to uVDC */
781 1.5 bouyer sc->sensors[i].cur.data_s /= 10;
782 1.5 bouyer }
783 1.8 bouyer }
784 1.5 bouyer
785 1.8 bouyer static void
786 1.8 bouyer wb_stemp(sc, sensors, n)
787 1.8 bouyer struct lm_softc *sc;
788 1.8 bouyer struct envsys_tre_data *sensors;
789 1.8 bouyer int n;
790 1.8 bouyer {
791 1.8 bouyer int sdata;
792 1.8 bouyer /* temperatures. Given in dC, we convert to uK */
793 1.8 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
794 1.10 bouyer DPRINTF(("sdata[temp0] 0x%x\n", sdata));
795 1.8 bouyer sensors[0].cur.data_us = sdata * 1000000 + 273150000;
796 1.8 bouyer /* from bank1 */
797 1.8 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
798 1.8 bouyer sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
799 1.8 bouyer sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
800 1.10 bouyer DPRINTF(("sdata[temp1] 0x%x\n", sdata));
801 1.8 bouyer sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
802 1.8 bouyer if (n < 3)
803 1.8 bouyer return;
804 1.8 bouyer /* from bank2 */
805 1.8 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
806 1.8 bouyer sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
807 1.8 bouyer sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
808 1.10 bouyer DPRINTF(("sdata[temp2] 0x%x\n", sdata));
809 1.8 bouyer sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
810 1.8 bouyer }
811 1.8 bouyer
812 1.8 bouyer static void
813 1.14 tron wb781_fanrpm(sc, sensors)
814 1.14 tron struct lm_softc *sc;
815 1.14 tron struct envsys_tre_data *sensors;
816 1.14 tron {
817 1.14 tron int i, divisor, sdata;
818 1.14 tron lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
819 1.14 tron for (i = 0; i < 3; i++) {
820 1.14 tron sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
821 1.14 tron DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
822 1.14 tron if (i == 0)
823 1.14 tron divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
824 1.14 tron else if (i == 1)
825 1.14 tron divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
826 1.14 tron else
827 1.14 tron divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
828 1.14 tron
829 1.14 tron DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
830 1.14 tron if (sdata == 0xff || sdata == 0x00) {
831 1.14 tron sensors[i].cur.data_us = 0;
832 1.14 tron } else {
833 1.14 tron sensors[i].cur.data_us = 1350000 /
834 1.14 tron (sdata << divisor);
835 1.14 tron }
836 1.14 tron }
837 1.14 tron }
838 1.14 tron
839 1.14 tron static void
840 1.8 bouyer wb_fanrpm(sc, sensors)
841 1.8 bouyer struct lm_softc *sc;
842 1.8 bouyer struct envsys_tre_data *sensors;
843 1.8 bouyer {
844 1.8 bouyer int i, divisor, sdata;
845 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
846 1.8 bouyer for (i = 0; i < 3; i++) {
847 1.8 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
848 1.10 bouyer DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
849 1.8 bouyer if (i == 0)
850 1.5 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
851 1.8 bouyer else if (i == 1)
852 1.5 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
853 1.5 bouyer else
854 1.5 bouyer divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
855 1.8 bouyer divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
856 1.5 bouyer
857 1.5 bouyer DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
858 1.5 bouyer if (sdata == 0xff || sdata == 0x00) {
859 1.8 bouyer sensors[i].cur.data_us = 0;
860 1.5 bouyer } else {
861 1.8 bouyer sensors[i].cur.data_us = 1350000 /
862 1.5 bouyer (sdata << divisor);
863 1.1 groo }
864 1.1 groo }
865 1.8 bouyer }
866 1.8 bouyer
867 1.8 bouyer void
868 1.8 bouyer wb781_refresh_sensor_data(sc)
869 1.8 bouyer struct lm_softc *sc;
870 1.8 bouyer {
871 1.8 bouyer /* Refresh our stored data for every sensor */
872 1.9 bouyer /* we need to reselect bank0 to access common registers */
873 1.9 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
874 1.8 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
875 1.9 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
876 1.8 bouyer wb_stemp(sc, &sc->sensors[7], 3);
877 1.9 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
878 1.14 tron wb781_fanrpm(sc, &sc->sensors[10]);
879 1.8 bouyer }
880 1.8 bouyer
881 1.8 bouyer void
882 1.8 bouyer wb782_refresh_sensor_data(sc)
883 1.8 bouyer struct lm_softc *sc;
884 1.8 bouyer {
885 1.8 bouyer /* Refresh our stored data for every sensor */
886 1.8 bouyer wb_svolt(sc);
887 1.8 bouyer wb_stemp(sc, &sc->sensors[9], 3);
888 1.8 bouyer wb_fanrpm(sc, &sc->sensors[12]);
889 1.8 bouyer }
890 1.8 bouyer
891 1.8 bouyer void
892 1.8 bouyer wb697_refresh_sensor_data(sc)
893 1.8 bouyer struct lm_softc *sc;
894 1.8 bouyer {
895 1.8 bouyer /* Refresh our stored data for every sensor */
896 1.8 bouyer wb_svolt(sc);
897 1.8 bouyer wb_stemp(sc, &sc->sensors[9], 2);
898 1.8 bouyer wb_fanrpm(sc, &sc->sensors[11]);
899 1.1 groo }
900