nslm7x.c revision 1.17 1 1.17 ad /* $NetBSD: nslm7x.c,v 1.17 2002/11/15 14:55:41 ad Exp $ */
2 1.1 groo
3 1.1 groo /*-
4 1.1 groo * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.1 groo * All rights reserved.
6 1.1 groo *
7 1.1 groo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 groo * by Bill Squier.
9 1.1 groo *
10 1.1 groo * Redistribution and use in source and binary forms, with or without
11 1.1 groo * modification, are permitted provided that the following conditions
12 1.1 groo * are met:
13 1.1 groo * 1. Redistributions of source code must retain the above copyright
14 1.1 groo * notice, this list of conditions and the following disclaimer.
15 1.1 groo * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 groo * notice, this list of conditions and the following disclaimer in the
17 1.1 groo * documentation and/or other materials provided with the distribution.
18 1.1 groo * 3. All advertising materials mentioning features or use of this software
19 1.1 groo * must display the following acknowledgement:
20 1.1 groo * This product includes software developed by the NetBSD
21 1.1 groo * Foundation, Inc. and its contributors.
22 1.1 groo * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 groo * contributors may be used to endorse or promote products derived
24 1.1 groo * from this software without specific prior written permission.
25 1.1 groo *
26 1.1 groo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 groo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 groo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 groo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 groo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 groo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 groo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 groo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 groo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 groo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 groo * POSSIBILITY OF SUCH DAMAGE.
37 1.1 groo */
38 1.13 lukem
39 1.13 lukem #include <sys/cdefs.h>
40 1.17 ad __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.17 2002/11/15 14:55:41 ad Exp $");
41 1.1 groo
42 1.1 groo #include <sys/param.h>
43 1.1 groo #include <sys/systm.h>
44 1.1 groo #include <sys/kernel.h>
45 1.1 groo #include <sys/proc.h>
46 1.1 groo #include <sys/device.h>
47 1.1 groo #include <sys/malloc.h>
48 1.1 groo #include <sys/errno.h>
49 1.1 groo #include <sys/queue.h>
50 1.1 groo #include <sys/lock.h>
51 1.1 groo #include <sys/ioctl.h>
52 1.1 groo #include <sys/conf.h>
53 1.1 groo #include <sys/time.h>
54 1.1 groo
55 1.1 groo #include <machine/bus.h>
56 1.1 groo
57 1.1 groo #include <dev/isa/isareg.h>
58 1.1 groo #include <dev/isa/isavar.h>
59 1.1 groo
60 1.4 thorpej #include <dev/sysmon/sysmonvar.h>
61 1.4 thorpej
62 1.1 groo #include <dev/ic/nslm7xvar.h>
63 1.1 groo
64 1.1 groo #include <machine/intr.h>
65 1.1 groo #include <machine/bus.h>
66 1.1 groo
67 1.1 groo #if defined(LMDEBUG)
68 1.1 groo #define DPRINTF(x) do { printf x; } while (0)
69 1.1 groo #else
70 1.1 groo #define DPRINTF(x)
71 1.1 groo #endif
72 1.1 groo
73 1.4 thorpej const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
74 1.5 bouyer /* for each unit type */
75 1.1 groo { 7, 7, ENVSYS_STEMP },
76 1.1 groo { 8, 10, ENVSYS_SFANRPM },
77 1.1 groo { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
78 1.1 groo { 0, 6, ENVSYS_SVOLTS_DC },
79 1.1 groo { 1, 0, ENVSYS_SOHMS }, /* None */
80 1.1 groo { 1, 0, ENVSYS_SWATTS }, /* None */
81 1.1 groo { 1, 0, ENVSYS_SAMPS } /* None */
82 1.1 groo };
83 1.1 groo
84 1.5 bouyer
85 1.8 bouyer static void setup_fan __P((struct lm_softc *, int, int));
86 1.8 bouyer static void setup_temp __P((struct lm_softc *, int, int));
87 1.8 bouyer static void wb_setup_volt __P((struct lm_softc *));
88 1.8 bouyer
89 1.5 bouyer int lm_match __P((struct lm_softc *));
90 1.5 bouyer int wb_match __P((struct lm_softc *));
91 1.5 bouyer int def_match __P((struct lm_softc *));
92 1.5 bouyer void lm_common_match __P((struct lm_softc *));
93 1.17 ad static int lm_generic_banksel __P((struct lm_softc *, int));
94 1.5 bouyer
95 1.8 bouyer static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
96 1.8 bouyer static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
97 1.7 bouyer struct envsys_basic_info *));
98 1.8 bouyer static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
99 1.8 bouyer
100 1.7 bouyer void lm_refresh_sensor_data __P((struct lm_softc *));
101 1.8 bouyer
102 1.8 bouyer static void wb_svolt __P((struct lm_softc *));
103 1.8 bouyer static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
104 1.14 tron static void wb781_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
105 1.8 bouyer static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
106 1.8 bouyer
107 1.7 bouyer void wb781_refresh_sensor_data __P((struct lm_softc *));
108 1.7 bouyer void wb782_refresh_sensor_data __P((struct lm_softc *));
109 1.8 bouyer void wb697_refresh_sensor_data __P((struct lm_softc *));
110 1.7 bouyer
111 1.4 thorpej int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
112 1.7 bouyer
113 1.7 bouyer int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
114 1.7 bouyer int, struct envsys_basic_info *));
115 1.4 thorpej int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
116 1.7 bouyer int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
117 1.7 bouyer int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
118 1.5 bouyer
119 1.5 bouyer struct lm_chip {
120 1.5 bouyer int (*chip_match) __P((struct lm_softc *));
121 1.5 bouyer };
122 1.5 bouyer
123 1.5 bouyer struct lm_chip lm_chips[] = {
124 1.8 bouyer { wb_match },
125 1.8 bouyer { lm_match },
126 1.8 bouyer { def_match } /* Must be last */
127 1.5 bouyer };
128 1.5 bouyer
129 1.1 groo
130 1.17 ad int
131 1.17 ad lm_generic_banksel(lmsc, bank)
132 1.17 ad struct lm_softc *lmsc;
133 1.17 ad int bank;
134 1.1 groo {
135 1.1 groo
136 1.17 ad (*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
137 1.17 ad return (0);
138 1.1 groo }
139 1.1 groo
140 1.1 groo
141 1.1 groo /*
142 1.2 groo * bus independent probe
143 1.2 groo */
144 1.2 groo int
145 1.2 groo lm_probe(iot, ioh)
146 1.2 groo bus_space_tag_t iot;
147 1.2 groo bus_space_handle_t ioh;
148 1.2 groo {
149 1.2 groo u_int8_t cr;
150 1.2 groo int rv;
151 1.2 groo
152 1.2 groo /* Check for some power-on defaults */
153 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
154 1.2 groo
155 1.2 groo /* Perform LM78 reset */
156 1.2 groo bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
157 1.2 groo
158 1.2 groo /* XXX - Why do I have to reselect the register? */
159 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
160 1.2 groo cr = bus_space_read_1(iot, ioh, LMC_DATA);
161 1.2 groo
162 1.2 groo /* XXX - spec says *only* 0x08! */
163 1.2 groo if ((cr == 0x08) || (cr == 0x01))
164 1.2 groo rv = 1;
165 1.2 groo else
166 1.2 groo rv = 0;
167 1.2 groo
168 1.2 groo DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
169 1.2 groo
170 1.2 groo return (rv);
171 1.2 groo }
172 1.2 groo
173 1.2 groo
174 1.2 groo /*
175 1.1 groo * pre: lmsc contains valid busspace tag and handle
176 1.1 groo */
177 1.1 groo void
178 1.1 groo lm_attach(lmsc)
179 1.1 groo struct lm_softc *lmsc;
180 1.1 groo {
181 1.16 thorpej u_int i;
182 1.1 groo
183 1.17 ad /* Install default bank selection routine, if none given. */
184 1.17 ad if (lmsc->lm_banksel == NULL)
185 1.17 ad lmsc->lm_banksel = lm_generic_banksel;
186 1.17 ad
187 1.5 bouyer for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
188 1.5 bouyer if (lm_chips[i].chip_match(lmsc))
189 1.5 bouyer break;
190 1.1 groo
191 1.1 groo /* Start the monitoring loop */
192 1.17 ad (*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
193 1.1 groo
194 1.1 groo /* Indicate we have never read the registers */
195 1.1 groo timerclear(&lmsc->lastread);
196 1.1 groo
197 1.1 groo /* Initialize sensors */
198 1.5 bouyer for (i = 0; i < lmsc->numsensors; ++i) {
199 1.1 groo lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
200 1.1 groo lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
201 1.1 groo lmsc->info[i].validflags = ENVSYS_FVALID;
202 1.1 groo lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
203 1.1 groo }
204 1.4 thorpej /*
205 1.4 thorpej * Hook into the System Monitor.
206 1.4 thorpej */
207 1.4 thorpej lmsc->sc_sysmon.sme_ranges = lm_ranges;
208 1.4 thorpej lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
209 1.4 thorpej lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
210 1.4 thorpej lmsc->sc_sysmon.sme_cookie = lmsc;
211 1.4 thorpej
212 1.4 thorpej lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
213 1.5 bouyer /* sme_streinfo set in chip-specific attach */
214 1.4 thorpej
215 1.5 bouyer lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
216 1.4 thorpej lmsc->sc_sysmon.sme_envsys_version = 1000;
217 1.4 thorpej
218 1.4 thorpej if (sysmon_envsys_register(&lmsc->sc_sysmon))
219 1.4 thorpej printf("%s: unable to register with sysmon\n",
220 1.4 thorpej lmsc->sc_dev.dv_xname);
221 1.1 groo }
222 1.1 groo
223 1.5 bouyer int
224 1.5 bouyer lm_match(sc)
225 1.5 bouyer struct lm_softc *sc;
226 1.5 bouyer {
227 1.5 bouyer int i;
228 1.5 bouyer
229 1.5 bouyer /* See if we have an LM78 or LM79 */
230 1.17 ad i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
231 1.5 bouyer switch(i) {
232 1.5 bouyer case LM_ID_LM78:
233 1.5 bouyer printf(": LM78\n");
234 1.5 bouyer break;
235 1.5 bouyer case LM_ID_LM78J:
236 1.5 bouyer printf(": LM78J\n");
237 1.5 bouyer break;
238 1.5 bouyer case LM_ID_LM79:
239 1.5 bouyer printf(": LM79\n");
240 1.15 bouyer break;
241 1.15 bouyer case LM_ID_LM81:
242 1.15 bouyer printf(": LM81\n");
243 1.5 bouyer break;
244 1.5 bouyer default:
245 1.5 bouyer return 0;
246 1.5 bouyer }
247 1.5 bouyer lm_common_match(sc);
248 1.5 bouyer return 1;
249 1.5 bouyer }
250 1.1 groo
251 1.1 groo int
252 1.5 bouyer def_match(sc)
253 1.5 bouyer struct lm_softc *sc;
254 1.5 bouyer {
255 1.5 bouyer int i;
256 1.5 bouyer
257 1.17 ad i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
258 1.17 ad printf(": Unknown chip (ID %d)\n", i);
259 1.5 bouyer lm_common_match(sc);
260 1.5 bouyer return 1;
261 1.5 bouyer }
262 1.5 bouyer
263 1.5 bouyer void
264 1.5 bouyer lm_common_match(sc)
265 1.5 bouyer struct lm_softc *sc;
266 1.1 groo {
267 1.5 bouyer int i;
268 1.5 bouyer sc->numsensors = LM_NUM_SENSORS;
269 1.5 bouyer sc->refresh_sensor_data = lm_refresh_sensor_data;
270 1.5 bouyer
271 1.5 bouyer for (i = 0; i < 7; ++i) {
272 1.5 bouyer sc->sensors[i].units = sc->info[i].units =
273 1.5 bouyer ENVSYS_SVOLTS_DC;
274 1.5 bouyer sprintf(sc->info[i].desc, "IN %d", i);
275 1.5 bouyer }
276 1.5 bouyer
277 1.5 bouyer /* default correction factors for resistors on higher voltage inputs */
278 1.5 bouyer sc->info[0].rfact = sc->info[1].rfact =
279 1.5 bouyer sc->info[2].rfact = 10000;
280 1.5 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
281 1.5 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
282 1.5 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
283 1.5 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
284 1.5 bouyer
285 1.5 bouyer sc->sensors[7].units = ENVSYS_STEMP;
286 1.5 bouyer strcpy(sc->info[7].desc, "Temp");
287 1.5 bouyer
288 1.8 bouyer setup_fan(sc, 8, 3);
289 1.5 bouyer sc->sc_sysmon.sme_streinfo = lm_streinfo;
290 1.5 bouyer }
291 1.1 groo
292 1.5 bouyer int
293 1.5 bouyer wb_match(sc)
294 1.5 bouyer struct lm_softc *sc;
295 1.5 bouyer {
296 1.5 bouyer int i, j;
297 1.1 groo
298 1.17 ad (*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
299 1.17 ad j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
300 1.17 ad (*sc->lm_writereg)(sc, WB_BANKSEL, 0);
301 1.17 ad j |= (*sc->lm_readreg)(sc, WB_VENDID);
302 1.11 veego DPRINTF(("winbond vend id 0x%x\n", j));
303 1.5 bouyer if (j != WB_VENDID_WINBOND)
304 1.5 bouyer return 0;
305 1.7 bouyer /* read device ID */
306 1.17 ad (*sc->lm_banksel)(sc, 0);
307 1.17 ad j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
308 1.11 veego DPRINTF(("winbond chip id 0x%x\n", j));
309 1.7 bouyer switch(j) {
310 1.7 bouyer case WB_CHIPID_83781:
311 1.10 bouyer case WB_CHIPID_83781_2:
312 1.7 bouyer printf(": W83781D\n");
313 1.7 bouyer
314 1.7 bouyer for (i = 0; i < 7; ++i) {
315 1.7 bouyer sc->sensors[i].units = sc->info[i].units =
316 1.7 bouyer ENVSYS_SVOLTS_DC;
317 1.7 bouyer sprintf(sc->info[i].desc, "IN %d", i);
318 1.7 bouyer }
319 1.7 bouyer
320 1.7 bouyer /* default correction factors for higher voltage inputs */
321 1.7 bouyer sc->info[0].rfact = sc->info[1].rfact =
322 1.7 bouyer sc->info[2].rfact = 10000;
323 1.7 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
324 1.7 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
325 1.7 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
326 1.7 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
327 1.7 bouyer
328 1.9 bouyer setup_temp(sc, 7, 3);
329 1.9 bouyer setup_fan(sc, 10, 3);
330 1.7 bouyer
331 1.9 bouyer sc->numsensors = WB83781_NUM_SENSORS;
332 1.9 bouyer sc->refresh_sensor_data = wb781_refresh_sensor_data;
333 1.7 bouyer sc->sc_sysmon.sme_streinfo = wb781_streinfo;
334 1.7 bouyer return 1;
335 1.8 bouyer case WB_CHIPID_83697:
336 1.8 bouyer printf(": W83697HF\n");
337 1.8 bouyer wb_setup_volt(sc);
338 1.8 bouyer setup_temp(sc, 9, 2);
339 1.8 bouyer setup_fan(sc, 11, 3);
340 1.8 bouyer sc->numsensors = WB83697_NUM_SENSORS;
341 1.8 bouyer sc->refresh_sensor_data = wb697_refresh_sensor_data;
342 1.8 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
343 1.17 ad return 1;
344 1.7 bouyer case WB_CHIPID_83782:
345 1.7 bouyer printf(": W83782D\n");
346 1.7 bouyer break;
347 1.7 bouyer case WB_CHIPID_83627:
348 1.7 bouyer printf(": W83627HF\n");
349 1.7 bouyer break;
350 1.7 bouyer default:
351 1.7 bouyer printf(": unknow winbond chip ID 0x%x\n", j);
352 1.7 bouyer /* handle as a standart lm7x */
353 1.7 bouyer lm_common_match(sc);
354 1.7 bouyer return 1;
355 1.7 bouyer }
356 1.8 bouyer /* common code for the W83782D and W83627HF */
357 1.8 bouyer wb_setup_volt(sc);
358 1.8 bouyer setup_temp(sc, 9, 3);
359 1.8 bouyer setup_fan(sc, 12, 3);
360 1.5 bouyer sc->numsensors = WB_NUM_SENSORS;
361 1.7 bouyer sc->refresh_sensor_data = wb782_refresh_sensor_data;
362 1.8 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
363 1.8 bouyer return 1;
364 1.8 bouyer }
365 1.5 bouyer
366 1.8 bouyer static void
367 1.8 bouyer wb_setup_volt(sc)
368 1.8 bouyer struct lm_softc *sc;
369 1.8 bouyer {
370 1.5 bouyer sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
371 1.5 bouyer sprintf(sc->info[0].desc, "VCORE A");
372 1.5 bouyer sc->info[0].rfact = 10000;
373 1.5 bouyer sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
374 1.5 bouyer sprintf(sc->info[1].desc, "VCORE B");
375 1.5 bouyer sc->info[1].rfact = 10000;
376 1.5 bouyer sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
377 1.5 bouyer sprintf(sc->info[2].desc, "+3.3V");
378 1.5 bouyer sc->info[2].rfact = 10000;
379 1.5 bouyer sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
380 1.5 bouyer sprintf(sc->info[3].desc, "+5V");
381 1.5 bouyer sc->info[3].rfact = 16778;
382 1.5 bouyer sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
383 1.5 bouyer sprintf(sc->info[4].desc, "+12V");
384 1.5 bouyer sc->info[4].rfact = 38000;
385 1.5 bouyer sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
386 1.5 bouyer sprintf(sc->info[5].desc, "-12V");
387 1.5 bouyer sc->info[5].rfact = 10000;
388 1.5 bouyer sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
389 1.5 bouyer sprintf(sc->info[6].desc, "-5V");
390 1.5 bouyer sc->info[6].rfact = 10000;
391 1.5 bouyer sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
392 1.5 bouyer sprintf(sc->info[7].desc, "+5VSB");
393 1.5 bouyer sc->info[7].rfact = 15151;
394 1.5 bouyer sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
395 1.5 bouyer sprintf(sc->info[8].desc, "VBAT");
396 1.5 bouyer sc->info[8].rfact = 10000;
397 1.8 bouyer }
398 1.8 bouyer
399 1.8 bouyer static void
400 1.8 bouyer setup_temp(sc, start, n)
401 1.8 bouyer struct lm_softc *sc;
402 1.8 bouyer int start, n;
403 1.8 bouyer {
404 1.8 bouyer int i;
405 1.5 bouyer
406 1.8 bouyer for (i = 0; i < n; i++) {
407 1.8 bouyer sc->sensors[start + i].units = ENVSYS_STEMP;
408 1.8 bouyer sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
409 1.8 bouyer }
410 1.8 bouyer }
411 1.8 bouyer
412 1.8 bouyer
413 1.8 bouyer static void
414 1.8 bouyer setup_fan(sc, start, n)
415 1.8 bouyer struct lm_softc *sc;
416 1.8 bouyer int start, n;
417 1.8 bouyer {
418 1.8 bouyer int i;
419 1.8 bouyer for (i = 0; i < n; ++i) {
420 1.8 bouyer sc->sensors[start + i].units = ENVSYS_SFANRPM;
421 1.8 bouyer sc->info[start + i].units = ENVSYS_SFANRPM;
422 1.8 bouyer sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
423 1.5 bouyer }
424 1.1 groo }
425 1.1 groo
426 1.5 bouyer int
427 1.5 bouyer lm_gtredata(sme, tred)
428 1.5 bouyer struct sysmon_envsys *sme;
429 1.5 bouyer struct envsys_tre_data *tred;
430 1.5 bouyer {
431 1.5 bouyer static const struct timeval onepointfive = { 1, 500000 };
432 1.5 bouyer struct timeval t;
433 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
434 1.5 bouyer int i, s;
435 1.5 bouyer
436 1.5 bouyer /* read new values at most once every 1.5 seconds */
437 1.5 bouyer timeradd(&sc->lastread, &onepointfive, &t);
438 1.5 bouyer s = splclock();
439 1.5 bouyer i = timercmp(&mono_time, &t, >);
440 1.5 bouyer if (i) {
441 1.5 bouyer sc->lastread.tv_sec = mono_time.tv_sec;
442 1.5 bouyer sc->lastread.tv_usec = mono_time.tv_usec;
443 1.5 bouyer }
444 1.5 bouyer splx(s);
445 1.5 bouyer
446 1.5 bouyer if (i)
447 1.5 bouyer sc->refresh_sensor_data(sc);
448 1.5 bouyer
449 1.5 bouyer *tred = sc->sensors[tred->sensor];
450 1.5 bouyer
451 1.5 bouyer return (0);
452 1.5 bouyer }
453 1.1 groo
454 1.1 groo int
455 1.7 bouyer generic_streinfo_fan(sc, info, n, binfo)
456 1.7 bouyer struct lm_softc *sc;
457 1.7 bouyer struct envsys_basic_info *info;
458 1.7 bouyer int n;
459 1.7 bouyer struct envsys_basic_info *binfo;
460 1.7 bouyer {
461 1.7 bouyer u_int8_t sdata;
462 1.7 bouyer int divisor;
463 1.7 bouyer
464 1.7 bouyer /* FAN1 and FAN2 can have divisors set, but not FAN3 */
465 1.7 bouyer if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
466 1.14 tron && (n < 2)) {
467 1.7 bouyer if (binfo->rpms == 0) {
468 1.7 bouyer binfo->validflags = 0;
469 1.7 bouyer return (0);
470 1.7 bouyer }
471 1.7 bouyer
472 1.14 tron /* write back the nominal FAN speed */
473 1.14 tron info->rpms = binfo->rpms;
474 1.14 tron
475 1.7 bouyer /* 153 is the nominal FAN speed value */
476 1.7 bouyer divisor = 1350000 / (binfo->rpms * 153);
477 1.7 bouyer
478 1.7 bouyer /* ...but we need lg(divisor) */
479 1.7 bouyer if (divisor <= 1)
480 1.7 bouyer divisor = 0;
481 1.7 bouyer else if (divisor <= 2)
482 1.7 bouyer divisor = 1;
483 1.7 bouyer else if (divisor <= 4)
484 1.7 bouyer divisor = 2;
485 1.7 bouyer else
486 1.7 bouyer divisor = 3;
487 1.7 bouyer
488 1.7 bouyer /*
489 1.7 bouyer * FAN1 div is in bits <5:4>, FAN2 div is
490 1.7 bouyer * in <7:6>
491 1.7 bouyer */
492 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
493 1.14 tron if ( n == 0 ) { /* FAN1 */
494 1.7 bouyer divisor <<= 4;
495 1.7 bouyer sdata = (sdata & 0xCF) | divisor;
496 1.7 bouyer } else { /* FAN2 */
497 1.7 bouyer divisor <<= 6;
498 1.7 bouyer sdata = (sdata & 0x3F) | divisor;
499 1.7 bouyer }
500 1.7 bouyer
501 1.17 ad (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
502 1.7 bouyer }
503 1.7 bouyer return (0);
504 1.7 bouyer
505 1.7 bouyer }
506 1.7 bouyer
507 1.7 bouyer int
508 1.4 thorpej lm_streinfo(sme, binfo)
509 1.5 bouyer struct sysmon_envsys *sme;
510 1.5 bouyer struct envsys_basic_info *binfo;
511 1.1 groo {
512 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
513 1.5 bouyer
514 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
515 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
516 1.5 bouyer else {
517 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
518 1.7 bouyer generic_streinfo_fan(sc, &sc->info[binfo->sensor],
519 1.7 bouyer binfo->sensor - 8, binfo);
520 1.7 bouyer }
521 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
522 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
523 1.7 bouyer sc->info[binfo->sensor].desc[
524 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
525 1.5 bouyer
526 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
527 1.7 bouyer }
528 1.7 bouyer return (0);
529 1.7 bouyer }
530 1.5 bouyer
531 1.7 bouyer int
532 1.7 bouyer wb781_streinfo(sme, binfo)
533 1.7 bouyer struct sysmon_envsys *sme;
534 1.7 bouyer struct envsys_basic_info *binfo;
535 1.7 bouyer {
536 1.7 bouyer struct lm_softc *sc = sme->sme_cookie;
537 1.14 tron int divisor;
538 1.14 tron u_int8_t sdata;
539 1.14 tron int i;
540 1.5 bouyer
541 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
542 1.7 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
543 1.7 bouyer else {
544 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
545 1.14 tron if (binfo->rpms == 0) {
546 1.14 tron binfo->validflags = 0;
547 1.14 tron return (0);
548 1.14 tron }
549 1.14 tron
550 1.14 tron /* write back the nominal FAN speed */
551 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
552 1.14 tron
553 1.14 tron /* 153 is the nominal FAN speed value */
554 1.14 tron divisor = 1350000 / (binfo->rpms * 153);
555 1.14 tron
556 1.14 tron /* ...but we need lg(divisor) */
557 1.14 tron for (i = 0; i < 7; i++) {
558 1.14 tron if (divisor <= (1 << i))
559 1.14 tron break;
560 1.14 tron }
561 1.14 tron divisor = i;
562 1.14 tron
563 1.14 tron if (binfo->sensor == 10 || binfo->sensor == 11) {
564 1.14 tron /*
565 1.14 tron * FAN1 div is in bits <5:4>, FAN2 div
566 1.14 tron * is in <7:6>
567 1.14 tron */
568 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
569 1.14 tron if ( binfo->sensor == 10 ) { /* FAN1 */
570 1.14 tron sdata = (sdata & 0xCF) |
571 1.14 tron ((divisor & 0x3) << 4);
572 1.14 tron } else { /* FAN2 */
573 1.14 tron sdata = (sdata & 0x3F) |
574 1.14 tron ((divisor & 0x3) << 6);
575 1.14 tron }
576 1.17 ad (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
577 1.14 tron } else {
578 1.14 tron /* FAN3 is in WB_PIN <7:6> */
579 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_PIN);
580 1.14 tron sdata = (sdata & 0x3F) |
581 1.14 tron ((divisor & 0x3) << 6);
582 1.17 ad (*sc->lm_writereg)(sc, WB_PIN, sdata);
583 1.14 tron }
584 1.7 bouyer }
585 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
586 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
587 1.7 bouyer sc->info[binfo->sensor].desc[
588 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
589 1.5 bouyer
590 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
591 1.5 bouyer }
592 1.5 bouyer return (0);
593 1.5 bouyer }
594 1.5 bouyer
595 1.5 bouyer int
596 1.7 bouyer wb782_streinfo(sme, binfo)
597 1.5 bouyer struct sysmon_envsys *sme;
598 1.5 bouyer struct envsys_basic_info *binfo;
599 1.5 bouyer {
600 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
601 1.5 bouyer int divisor;
602 1.5 bouyer u_int8_t sdata;
603 1.5 bouyer int i;
604 1.5 bouyer
605 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
606 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
607 1.5 bouyer else {
608 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
609 1.4 thorpej if (binfo->rpms == 0) {
610 1.4 thorpej binfo->validflags = 0;
611 1.4 thorpej return (0);
612 1.1 groo }
613 1.1 groo
614 1.14 tron /* write back the nominal FAN speed */
615 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
616 1.14 tron
617 1.4 thorpej /* 153 is the nominal FAN speed value */
618 1.4 thorpej divisor = 1350000 / (binfo->rpms * 153);
619 1.1 groo
620 1.4 thorpej /* ...but we need lg(divisor) */
621 1.5 bouyer for (i = 0; i < 7; i++) {
622 1.5 bouyer if (divisor <= (1 << i))
623 1.5 bouyer break;
624 1.5 bouyer }
625 1.5 bouyer divisor = i;
626 1.4 thorpej
627 1.5 bouyer if (binfo->sensor == 12 || binfo->sensor == 13) {
628 1.5 bouyer /*
629 1.5 bouyer * FAN1 div is in bits <5:4>, FAN2 div
630 1.5 bouyer * is in <7:6>
631 1.5 bouyer */
632 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
633 1.5 bouyer if ( binfo->sensor == 12 ) { /* FAN1 */
634 1.5 bouyer sdata = (sdata & 0xCF) |
635 1.5 bouyer ((divisor & 0x3) << 4);
636 1.5 bouyer } else { /* FAN2 */
637 1.5 bouyer sdata = (sdata & 0x3F) |
638 1.5 bouyer ((divisor & 0x3) << 6);
639 1.5 bouyer }
640 1.17 ad (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
641 1.5 bouyer } else {
642 1.5 bouyer /* FAN3 is in WB_PIN <7:6> */
643 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_PIN);
644 1.5 bouyer sdata = (sdata & 0x3F) |
645 1.5 bouyer ((divisor & 0x3) << 6);
646 1.17 ad (*sc->lm_writereg)(sc, WB_PIN, sdata);
647 1.1 groo }
648 1.5 bouyer /* Bit 2 of divisor is in WB_BANK0_FANBAT */
649 1.17 ad (*sc->lm_banksel)(sc, 0);
650 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
651 1.5 bouyer sdata &= ~(0x20 << (binfo->sensor - 12));
652 1.5 bouyer sdata |= (divisor & 0x4) << (binfo->sensor - 9);
653 1.17 ad (*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
654 1.1 groo }
655 1.1 groo
656 1.4 thorpej memcpy(sc->info[binfo->sensor].desc, binfo->desc,
657 1.4 thorpej sizeof(sc->info[binfo->sensor].desc));
658 1.4 thorpej sc->info[binfo->sensor].desc[
659 1.4 thorpej sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
660 1.1 groo
661 1.4 thorpej binfo->validflags = ENVSYS_FVALID;
662 1.1 groo }
663 1.4 thorpej return (0);
664 1.1 groo }
665 1.1 groo
666 1.8 bouyer static void
667 1.7 bouyer generic_stemp(sc, sensor)
668 1.7 bouyer struct lm_softc *sc;
669 1.7 bouyer struct envsys_tre_data *sensor;
670 1.7 bouyer {
671 1.17 ad int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
672 1.10 bouyer DPRINTF(("sdata[temp] 0x%x\n", sdata));
673 1.7 bouyer /* temp is given in deg. C, we convert to uK */
674 1.7 bouyer sensor->cur.data_us = sdata * 1000000 + 273150000;
675 1.7 bouyer }
676 1.7 bouyer
677 1.8 bouyer static void
678 1.7 bouyer generic_svolt(sc, sensors, infos)
679 1.7 bouyer struct lm_softc *sc;
680 1.7 bouyer struct envsys_tre_data *sensors;
681 1.7 bouyer struct envsys_basic_info *infos;
682 1.7 bouyer {
683 1.7 bouyer int i, sdata;
684 1.7 bouyer
685 1.7 bouyer for (i = 0; i < 7; i++) {
686 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
687 1.10 bouyer DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
688 1.7 bouyer /* voltage returned as (mV >> 4), we convert to uVDC */
689 1.7 bouyer sensors[i].cur.data_s = (sdata << 4);
690 1.7 bouyer /* rfact is (factor * 10^4) */
691 1.7 bouyer sensors[i].cur.data_s *= infos[i].rfact;
692 1.7 bouyer /* division by 10 gets us back to uVDC */
693 1.7 bouyer sensors[i].cur.data_s /= 10;
694 1.7 bouyer
695 1.7 bouyer /* these two are negative voltages */
696 1.7 bouyer if ( (i == 5) || (i == 6) )
697 1.7 bouyer sensors[i].cur.data_s *= -1;
698 1.7 bouyer }
699 1.7 bouyer }
700 1.7 bouyer
701 1.8 bouyer static void
702 1.7 bouyer generic_fanrpm(sc, sensors)
703 1.7 bouyer struct lm_softc *sc;
704 1.7 bouyer struct envsys_tre_data *sensors;
705 1.7 bouyer {
706 1.7 bouyer int i, sdata, divisor;
707 1.7 bouyer for (i = 0; i < 3; i++) {
708 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
709 1.10 bouyer DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
710 1.7 bouyer if (i == 2)
711 1.7 bouyer divisor = 2; /* Fixed divisor for FAN3 */
712 1.7 bouyer else if (i == 1) /* Bits 7 & 6 of VID/FAN */
713 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
714 1.7 bouyer else
715 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
716 1.7 bouyer
717 1.7 bouyer if (sdata == 0xff || sdata == 0x00) {
718 1.7 bouyer sensors[i].cur.data_us = 0;
719 1.7 bouyer } else {
720 1.7 bouyer sensors[i].cur.data_us = 1350000 / (sdata << divisor);
721 1.7 bouyer }
722 1.7 bouyer }
723 1.7 bouyer }
724 1.7 bouyer
725 1.1 groo /*
726 1.12 wiz * pre: last read occurred >= 1.5 seconds ago
727 1.1 groo * post: sensors[] current data are the latest from the chip
728 1.1 groo */
729 1.1 groo void
730 1.1 groo lm_refresh_sensor_data(sc)
731 1.1 groo struct lm_softc *sc;
732 1.1 groo {
733 1.7 bouyer /* Refresh our stored data for every sensor */
734 1.7 bouyer generic_stemp(sc, &sc->sensors[7]);
735 1.7 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
736 1.7 bouyer generic_fanrpm(sc, &sc->sensors[8]);
737 1.7 bouyer }
738 1.7 bouyer
739 1.8 bouyer static void
740 1.8 bouyer wb_svolt(sc)
741 1.7 bouyer struct lm_softc *sc;
742 1.7 bouyer {
743 1.8 bouyer int i, sdata;
744 1.5 bouyer for (i = 0; i < 9; ++i) {
745 1.5 bouyer if (i < 7) {
746 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
747 1.5 bouyer } else {
748 1.5 bouyer /* from bank5 */
749 1.17 ad (*sc->lm_banksel)(sc, 5);
750 1.17 ad sdata = (*sc->lm_readreg)(sc, (i == 7) ?
751 1.5 bouyer WB_BANK5_5VSB : WB_BANK5_VBAT);
752 1.5 bouyer }
753 1.10 bouyer DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
754 1.5 bouyer /* voltage returned as (mV >> 4), we convert to uV */
755 1.5 bouyer sdata = sdata << 4;
756 1.5 bouyer /* special case for negative voltages */
757 1.5 bouyer if (i == 5) {
758 1.5 bouyer /*
759 1.5 bouyer * -12Vdc, assume Winbond recommended values for
760 1.5 bouyer * resistors
761 1.5 bouyer */
762 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 805)) / 195;
763 1.5 bouyer } else if (i == 6) {
764 1.5 bouyer /*
765 1.5 bouyer * -5Vdc, assume Winbond recommended values for
766 1.5 bouyer * resistors
767 1.5 bouyer */
768 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 682)) / 318;
769 1.5 bouyer }
770 1.5 bouyer /* rfact is (factor * 10^4) */
771 1.5 bouyer sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
772 1.5 bouyer /* division by 10 gets us back to uVDC */
773 1.5 bouyer sc->sensors[i].cur.data_s /= 10;
774 1.5 bouyer }
775 1.8 bouyer }
776 1.5 bouyer
777 1.8 bouyer static void
778 1.8 bouyer wb_stemp(sc, sensors, n)
779 1.8 bouyer struct lm_softc *sc;
780 1.8 bouyer struct envsys_tre_data *sensors;
781 1.8 bouyer int n;
782 1.8 bouyer {
783 1.8 bouyer int sdata;
784 1.8 bouyer /* temperatures. Given in dC, we convert to uK */
785 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
786 1.10 bouyer DPRINTF(("sdata[temp0] 0x%x\n", sdata));
787 1.8 bouyer sensors[0].cur.data_us = sdata * 1000000 + 273150000;
788 1.8 bouyer /* from bank1 */
789 1.17 ad if ((*sc->lm_banksel)(sc, 1))
790 1.17 ad sensors[1].validflags &= ~ENVSYS_FCURVALID;
791 1.17 ad else {
792 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
793 1.17 ad sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
794 1.17 ad DPRINTF(("sdata[temp1] 0x%x\n", sdata));
795 1.17 ad sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
796 1.17 ad }
797 1.8 bouyer if (n < 3)
798 1.8 bouyer return;
799 1.8 bouyer /* from bank2 */
800 1.17 ad if ((*sc->lm_banksel)(sc, 2))
801 1.17 ad sensors[2].validflags &= ~ENVSYS_FCURVALID;
802 1.17 ad else {
803 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
804 1.17 ad sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
805 1.17 ad DPRINTF(("sdata[temp2] 0x%x\n", sdata));
806 1.17 ad sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
807 1.17 ad }
808 1.8 bouyer }
809 1.8 bouyer
810 1.8 bouyer static void
811 1.14 tron wb781_fanrpm(sc, sensors)
812 1.14 tron struct lm_softc *sc;
813 1.14 tron struct envsys_tre_data *sensors;
814 1.14 tron {
815 1.14 tron int i, divisor, sdata;
816 1.17 ad (*sc->lm_banksel)(sc, 0);
817 1.14 tron for (i = 0; i < 3; i++) {
818 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
819 1.14 tron DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
820 1.14 tron if (i == 0)
821 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
822 1.14 tron else if (i == 1)
823 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
824 1.14 tron else
825 1.17 ad divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
826 1.14 tron
827 1.14 tron DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
828 1.14 tron if (sdata == 0xff || sdata == 0x00) {
829 1.14 tron sensors[i].cur.data_us = 0;
830 1.14 tron } else {
831 1.14 tron sensors[i].cur.data_us = 1350000 /
832 1.14 tron (sdata << divisor);
833 1.14 tron }
834 1.14 tron }
835 1.14 tron }
836 1.14 tron
837 1.14 tron static void
838 1.8 bouyer wb_fanrpm(sc, sensors)
839 1.8 bouyer struct lm_softc *sc;
840 1.8 bouyer struct envsys_tre_data *sensors;
841 1.8 bouyer {
842 1.8 bouyer int i, divisor, sdata;
843 1.17 ad (*sc->lm_banksel)(sc, 0);
844 1.8 bouyer for (i = 0; i < 3; i++) {
845 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
846 1.10 bouyer DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
847 1.8 bouyer if (i == 0)
848 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
849 1.8 bouyer else if (i == 1)
850 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
851 1.5 bouyer else
852 1.17 ad divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
853 1.17 ad divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
854 1.5 bouyer
855 1.5 bouyer DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
856 1.5 bouyer if (sdata == 0xff || sdata == 0x00) {
857 1.8 bouyer sensors[i].cur.data_us = 0;
858 1.5 bouyer } else {
859 1.8 bouyer sensors[i].cur.data_us = 1350000 /
860 1.5 bouyer (sdata << divisor);
861 1.1 groo }
862 1.1 groo }
863 1.8 bouyer }
864 1.8 bouyer
865 1.8 bouyer void
866 1.8 bouyer wb781_refresh_sensor_data(sc)
867 1.8 bouyer struct lm_softc *sc;
868 1.8 bouyer {
869 1.8 bouyer /* Refresh our stored data for every sensor */
870 1.9 bouyer /* we need to reselect bank0 to access common registers */
871 1.17 ad (*sc->lm_banksel)(sc, 0);
872 1.8 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
873 1.17 ad (*sc->lm_banksel)(sc, 0);
874 1.8 bouyer wb_stemp(sc, &sc->sensors[7], 3);
875 1.17 ad (*sc->lm_banksel)(sc, 0);
876 1.14 tron wb781_fanrpm(sc, &sc->sensors[10]);
877 1.8 bouyer }
878 1.8 bouyer
879 1.8 bouyer void
880 1.8 bouyer wb782_refresh_sensor_data(sc)
881 1.8 bouyer struct lm_softc *sc;
882 1.8 bouyer {
883 1.8 bouyer /* Refresh our stored data for every sensor */
884 1.8 bouyer wb_svolt(sc);
885 1.8 bouyer wb_stemp(sc, &sc->sensors[9], 3);
886 1.8 bouyer wb_fanrpm(sc, &sc->sensors[12]);
887 1.8 bouyer }
888 1.8 bouyer
889 1.8 bouyer void
890 1.8 bouyer wb697_refresh_sensor_data(sc)
891 1.8 bouyer struct lm_softc *sc;
892 1.8 bouyer {
893 1.8 bouyer /* Refresh our stored data for every sensor */
894 1.8 bouyer wb_svolt(sc);
895 1.8 bouyer wb_stemp(sc, &sc->sensors[9], 2);
896 1.8 bouyer wb_fanrpm(sc, &sc->sensors[11]);
897 1.1 groo }
898