nslm7x.c revision 1.18 1 1.18 itojun /* $NetBSD: nslm7x.c,v 1.18 2004/04/22 00:17:11 itojun Exp $ */
2 1.1 groo
3 1.1 groo /*-
4 1.1 groo * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.1 groo * All rights reserved.
6 1.1 groo *
7 1.1 groo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 groo * by Bill Squier.
9 1.1 groo *
10 1.1 groo * Redistribution and use in source and binary forms, with or without
11 1.1 groo * modification, are permitted provided that the following conditions
12 1.1 groo * are met:
13 1.1 groo * 1. Redistributions of source code must retain the above copyright
14 1.1 groo * notice, this list of conditions and the following disclaimer.
15 1.1 groo * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 groo * notice, this list of conditions and the following disclaimer in the
17 1.1 groo * documentation and/or other materials provided with the distribution.
18 1.1 groo * 3. All advertising materials mentioning features or use of this software
19 1.1 groo * must display the following acknowledgement:
20 1.1 groo * This product includes software developed by the NetBSD
21 1.1 groo * Foundation, Inc. and its contributors.
22 1.1 groo * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 groo * contributors may be used to endorse or promote products derived
24 1.1 groo * from this software without specific prior written permission.
25 1.1 groo *
26 1.1 groo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 groo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 groo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 groo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 groo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 groo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 groo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 groo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 groo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 groo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 groo * POSSIBILITY OF SUCH DAMAGE.
37 1.1 groo */
38 1.13 lukem
39 1.13 lukem #include <sys/cdefs.h>
40 1.18 itojun __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.18 2004/04/22 00:17:11 itojun Exp $");
41 1.1 groo
42 1.1 groo #include <sys/param.h>
43 1.1 groo #include <sys/systm.h>
44 1.1 groo #include <sys/kernel.h>
45 1.1 groo #include <sys/proc.h>
46 1.1 groo #include <sys/device.h>
47 1.1 groo #include <sys/malloc.h>
48 1.1 groo #include <sys/errno.h>
49 1.1 groo #include <sys/queue.h>
50 1.1 groo #include <sys/lock.h>
51 1.1 groo #include <sys/ioctl.h>
52 1.1 groo #include <sys/conf.h>
53 1.1 groo #include <sys/time.h>
54 1.1 groo
55 1.1 groo #include <machine/bus.h>
56 1.1 groo
57 1.1 groo #include <dev/isa/isareg.h>
58 1.1 groo #include <dev/isa/isavar.h>
59 1.1 groo
60 1.4 thorpej #include <dev/sysmon/sysmonvar.h>
61 1.4 thorpej
62 1.1 groo #include <dev/ic/nslm7xvar.h>
63 1.1 groo
64 1.1 groo #include <machine/intr.h>
65 1.1 groo #include <machine/bus.h>
66 1.1 groo
67 1.1 groo #if defined(LMDEBUG)
68 1.1 groo #define DPRINTF(x) do { printf x; } while (0)
69 1.1 groo #else
70 1.1 groo #define DPRINTF(x)
71 1.1 groo #endif
72 1.1 groo
73 1.4 thorpej const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
74 1.5 bouyer /* for each unit type */
75 1.1 groo { 7, 7, ENVSYS_STEMP },
76 1.1 groo { 8, 10, ENVSYS_SFANRPM },
77 1.1 groo { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
78 1.1 groo { 0, 6, ENVSYS_SVOLTS_DC },
79 1.1 groo { 1, 0, ENVSYS_SOHMS }, /* None */
80 1.1 groo { 1, 0, ENVSYS_SWATTS }, /* None */
81 1.1 groo { 1, 0, ENVSYS_SAMPS } /* None */
82 1.1 groo };
83 1.1 groo
84 1.5 bouyer
85 1.8 bouyer static void setup_fan __P((struct lm_softc *, int, int));
86 1.8 bouyer static void setup_temp __P((struct lm_softc *, int, int));
87 1.8 bouyer static void wb_setup_volt __P((struct lm_softc *));
88 1.8 bouyer
89 1.5 bouyer int lm_match __P((struct lm_softc *));
90 1.5 bouyer int wb_match __P((struct lm_softc *));
91 1.5 bouyer int def_match __P((struct lm_softc *));
92 1.5 bouyer void lm_common_match __P((struct lm_softc *));
93 1.17 ad static int lm_generic_banksel __P((struct lm_softc *, int));
94 1.5 bouyer
95 1.8 bouyer static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
96 1.8 bouyer static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
97 1.7 bouyer struct envsys_basic_info *));
98 1.8 bouyer static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
99 1.8 bouyer
100 1.7 bouyer void lm_refresh_sensor_data __P((struct lm_softc *));
101 1.8 bouyer
102 1.8 bouyer static void wb_svolt __P((struct lm_softc *));
103 1.8 bouyer static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
104 1.14 tron static void wb781_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
105 1.8 bouyer static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
106 1.8 bouyer
107 1.7 bouyer void wb781_refresh_sensor_data __P((struct lm_softc *));
108 1.7 bouyer void wb782_refresh_sensor_data __P((struct lm_softc *));
109 1.8 bouyer void wb697_refresh_sensor_data __P((struct lm_softc *));
110 1.7 bouyer
111 1.4 thorpej int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
112 1.7 bouyer
113 1.7 bouyer int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
114 1.7 bouyer int, struct envsys_basic_info *));
115 1.4 thorpej int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
116 1.7 bouyer int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
117 1.7 bouyer int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
118 1.5 bouyer
119 1.5 bouyer struct lm_chip {
120 1.5 bouyer int (*chip_match) __P((struct lm_softc *));
121 1.5 bouyer };
122 1.5 bouyer
123 1.5 bouyer struct lm_chip lm_chips[] = {
124 1.8 bouyer { wb_match },
125 1.8 bouyer { lm_match },
126 1.8 bouyer { def_match } /* Must be last */
127 1.5 bouyer };
128 1.5 bouyer
129 1.1 groo
130 1.17 ad int
131 1.17 ad lm_generic_banksel(lmsc, bank)
132 1.17 ad struct lm_softc *lmsc;
133 1.17 ad int bank;
134 1.1 groo {
135 1.1 groo
136 1.17 ad (*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
137 1.17 ad return (0);
138 1.1 groo }
139 1.1 groo
140 1.1 groo
141 1.1 groo /*
142 1.2 groo * bus independent probe
143 1.2 groo */
144 1.2 groo int
145 1.2 groo lm_probe(iot, ioh)
146 1.2 groo bus_space_tag_t iot;
147 1.2 groo bus_space_handle_t ioh;
148 1.2 groo {
149 1.2 groo u_int8_t cr;
150 1.2 groo int rv;
151 1.2 groo
152 1.2 groo /* Check for some power-on defaults */
153 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
154 1.2 groo
155 1.2 groo /* Perform LM78 reset */
156 1.2 groo bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
157 1.2 groo
158 1.2 groo /* XXX - Why do I have to reselect the register? */
159 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
160 1.2 groo cr = bus_space_read_1(iot, ioh, LMC_DATA);
161 1.2 groo
162 1.2 groo /* XXX - spec says *only* 0x08! */
163 1.2 groo if ((cr == 0x08) || (cr == 0x01))
164 1.2 groo rv = 1;
165 1.2 groo else
166 1.2 groo rv = 0;
167 1.2 groo
168 1.2 groo DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
169 1.2 groo
170 1.2 groo return (rv);
171 1.2 groo }
172 1.2 groo
173 1.2 groo
174 1.2 groo /*
175 1.1 groo * pre: lmsc contains valid busspace tag and handle
176 1.1 groo */
177 1.1 groo void
178 1.1 groo lm_attach(lmsc)
179 1.1 groo struct lm_softc *lmsc;
180 1.1 groo {
181 1.16 thorpej u_int i;
182 1.1 groo
183 1.17 ad /* Install default bank selection routine, if none given. */
184 1.17 ad if (lmsc->lm_banksel == NULL)
185 1.17 ad lmsc->lm_banksel = lm_generic_banksel;
186 1.17 ad
187 1.5 bouyer for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
188 1.5 bouyer if (lm_chips[i].chip_match(lmsc))
189 1.5 bouyer break;
190 1.1 groo
191 1.1 groo /* Start the monitoring loop */
192 1.17 ad (*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
193 1.1 groo
194 1.1 groo /* Indicate we have never read the registers */
195 1.1 groo timerclear(&lmsc->lastread);
196 1.1 groo
197 1.1 groo /* Initialize sensors */
198 1.5 bouyer for (i = 0; i < lmsc->numsensors; ++i) {
199 1.1 groo lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
200 1.1 groo lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
201 1.1 groo lmsc->info[i].validflags = ENVSYS_FVALID;
202 1.1 groo lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
203 1.1 groo }
204 1.4 thorpej /*
205 1.4 thorpej * Hook into the System Monitor.
206 1.4 thorpej */
207 1.4 thorpej lmsc->sc_sysmon.sme_ranges = lm_ranges;
208 1.4 thorpej lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
209 1.4 thorpej lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
210 1.4 thorpej lmsc->sc_sysmon.sme_cookie = lmsc;
211 1.4 thorpej
212 1.4 thorpej lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
213 1.5 bouyer /* sme_streinfo set in chip-specific attach */
214 1.4 thorpej
215 1.5 bouyer lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
216 1.4 thorpej lmsc->sc_sysmon.sme_envsys_version = 1000;
217 1.4 thorpej
218 1.4 thorpej if (sysmon_envsys_register(&lmsc->sc_sysmon))
219 1.4 thorpej printf("%s: unable to register with sysmon\n",
220 1.4 thorpej lmsc->sc_dev.dv_xname);
221 1.1 groo }
222 1.1 groo
223 1.5 bouyer int
224 1.5 bouyer lm_match(sc)
225 1.5 bouyer struct lm_softc *sc;
226 1.5 bouyer {
227 1.5 bouyer int i;
228 1.5 bouyer
229 1.5 bouyer /* See if we have an LM78 or LM79 */
230 1.17 ad i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
231 1.5 bouyer switch(i) {
232 1.5 bouyer case LM_ID_LM78:
233 1.5 bouyer printf(": LM78\n");
234 1.5 bouyer break;
235 1.5 bouyer case LM_ID_LM78J:
236 1.5 bouyer printf(": LM78J\n");
237 1.5 bouyer break;
238 1.5 bouyer case LM_ID_LM79:
239 1.5 bouyer printf(": LM79\n");
240 1.15 bouyer break;
241 1.15 bouyer case LM_ID_LM81:
242 1.15 bouyer printf(": LM81\n");
243 1.5 bouyer break;
244 1.5 bouyer default:
245 1.5 bouyer return 0;
246 1.5 bouyer }
247 1.5 bouyer lm_common_match(sc);
248 1.5 bouyer return 1;
249 1.5 bouyer }
250 1.1 groo
251 1.1 groo int
252 1.5 bouyer def_match(sc)
253 1.5 bouyer struct lm_softc *sc;
254 1.5 bouyer {
255 1.5 bouyer int i;
256 1.5 bouyer
257 1.17 ad i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
258 1.17 ad printf(": Unknown chip (ID %d)\n", i);
259 1.5 bouyer lm_common_match(sc);
260 1.5 bouyer return 1;
261 1.5 bouyer }
262 1.5 bouyer
263 1.5 bouyer void
264 1.5 bouyer lm_common_match(sc)
265 1.5 bouyer struct lm_softc *sc;
266 1.1 groo {
267 1.5 bouyer int i;
268 1.5 bouyer sc->numsensors = LM_NUM_SENSORS;
269 1.5 bouyer sc->refresh_sensor_data = lm_refresh_sensor_data;
270 1.5 bouyer
271 1.5 bouyer for (i = 0; i < 7; ++i) {
272 1.5 bouyer sc->sensors[i].units = sc->info[i].units =
273 1.5 bouyer ENVSYS_SVOLTS_DC;
274 1.18 itojun snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
275 1.18 itojun "IN %d", i);
276 1.5 bouyer }
277 1.5 bouyer
278 1.5 bouyer /* default correction factors for resistors on higher voltage inputs */
279 1.5 bouyer sc->info[0].rfact = sc->info[1].rfact =
280 1.5 bouyer sc->info[2].rfact = 10000;
281 1.5 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
282 1.5 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
283 1.5 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
284 1.5 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
285 1.5 bouyer
286 1.5 bouyer sc->sensors[7].units = ENVSYS_STEMP;
287 1.5 bouyer strcpy(sc->info[7].desc, "Temp");
288 1.5 bouyer
289 1.8 bouyer setup_fan(sc, 8, 3);
290 1.5 bouyer sc->sc_sysmon.sme_streinfo = lm_streinfo;
291 1.5 bouyer }
292 1.1 groo
293 1.5 bouyer int
294 1.5 bouyer wb_match(sc)
295 1.5 bouyer struct lm_softc *sc;
296 1.5 bouyer {
297 1.5 bouyer int i, j;
298 1.1 groo
299 1.17 ad (*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
300 1.17 ad j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
301 1.17 ad (*sc->lm_writereg)(sc, WB_BANKSEL, 0);
302 1.17 ad j |= (*sc->lm_readreg)(sc, WB_VENDID);
303 1.11 veego DPRINTF(("winbond vend id 0x%x\n", j));
304 1.5 bouyer if (j != WB_VENDID_WINBOND)
305 1.5 bouyer return 0;
306 1.7 bouyer /* read device ID */
307 1.17 ad (*sc->lm_banksel)(sc, 0);
308 1.17 ad j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
309 1.11 veego DPRINTF(("winbond chip id 0x%x\n", j));
310 1.7 bouyer switch(j) {
311 1.7 bouyer case WB_CHIPID_83781:
312 1.10 bouyer case WB_CHIPID_83781_2:
313 1.7 bouyer printf(": W83781D\n");
314 1.7 bouyer
315 1.7 bouyer for (i = 0; i < 7; ++i) {
316 1.7 bouyer sc->sensors[i].units = sc->info[i].units =
317 1.7 bouyer ENVSYS_SVOLTS_DC;
318 1.18 itojun snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
319 1.18 itojun "IN %d", i);
320 1.7 bouyer }
321 1.7 bouyer
322 1.7 bouyer /* default correction factors for higher voltage inputs */
323 1.7 bouyer sc->info[0].rfact = sc->info[1].rfact =
324 1.7 bouyer sc->info[2].rfact = 10000;
325 1.7 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
326 1.7 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
327 1.7 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
328 1.7 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
329 1.7 bouyer
330 1.9 bouyer setup_temp(sc, 7, 3);
331 1.9 bouyer setup_fan(sc, 10, 3);
332 1.7 bouyer
333 1.9 bouyer sc->numsensors = WB83781_NUM_SENSORS;
334 1.9 bouyer sc->refresh_sensor_data = wb781_refresh_sensor_data;
335 1.7 bouyer sc->sc_sysmon.sme_streinfo = wb781_streinfo;
336 1.7 bouyer return 1;
337 1.8 bouyer case WB_CHIPID_83697:
338 1.8 bouyer printf(": W83697HF\n");
339 1.8 bouyer wb_setup_volt(sc);
340 1.8 bouyer setup_temp(sc, 9, 2);
341 1.8 bouyer setup_fan(sc, 11, 3);
342 1.8 bouyer sc->numsensors = WB83697_NUM_SENSORS;
343 1.8 bouyer sc->refresh_sensor_data = wb697_refresh_sensor_data;
344 1.8 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
345 1.17 ad return 1;
346 1.7 bouyer case WB_CHIPID_83782:
347 1.7 bouyer printf(": W83782D\n");
348 1.7 bouyer break;
349 1.7 bouyer case WB_CHIPID_83627:
350 1.7 bouyer printf(": W83627HF\n");
351 1.7 bouyer break;
352 1.7 bouyer default:
353 1.7 bouyer printf(": unknow winbond chip ID 0x%x\n", j);
354 1.7 bouyer /* handle as a standart lm7x */
355 1.7 bouyer lm_common_match(sc);
356 1.7 bouyer return 1;
357 1.7 bouyer }
358 1.8 bouyer /* common code for the W83782D and W83627HF */
359 1.8 bouyer wb_setup_volt(sc);
360 1.8 bouyer setup_temp(sc, 9, 3);
361 1.8 bouyer setup_fan(sc, 12, 3);
362 1.5 bouyer sc->numsensors = WB_NUM_SENSORS;
363 1.7 bouyer sc->refresh_sensor_data = wb782_refresh_sensor_data;
364 1.8 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
365 1.8 bouyer return 1;
366 1.8 bouyer }
367 1.5 bouyer
368 1.8 bouyer static void
369 1.8 bouyer wb_setup_volt(sc)
370 1.8 bouyer struct lm_softc *sc;
371 1.8 bouyer {
372 1.5 bouyer sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
373 1.18 itojun snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
374 1.5 bouyer sc->info[0].rfact = 10000;
375 1.5 bouyer sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
376 1.18 itojun snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
377 1.5 bouyer sc->info[1].rfact = 10000;
378 1.5 bouyer sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
379 1.18 itojun snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
380 1.5 bouyer sc->info[2].rfact = 10000;
381 1.5 bouyer sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
382 1.18 itojun snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
383 1.5 bouyer sc->info[3].rfact = 16778;
384 1.5 bouyer sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
385 1.18 itojun snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
386 1.5 bouyer sc->info[4].rfact = 38000;
387 1.5 bouyer sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
388 1.18 itojun snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
389 1.5 bouyer sc->info[5].rfact = 10000;
390 1.5 bouyer sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
391 1.18 itojun snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
392 1.5 bouyer sc->info[6].rfact = 10000;
393 1.5 bouyer sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
394 1.18 itojun snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
395 1.5 bouyer sc->info[7].rfact = 15151;
396 1.5 bouyer sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
397 1.18 itojun snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
398 1.5 bouyer sc->info[8].rfact = 10000;
399 1.8 bouyer }
400 1.8 bouyer
401 1.8 bouyer static void
402 1.8 bouyer setup_temp(sc, start, n)
403 1.8 bouyer struct lm_softc *sc;
404 1.8 bouyer int start, n;
405 1.8 bouyer {
406 1.8 bouyer int i;
407 1.5 bouyer
408 1.8 bouyer for (i = 0; i < n; i++) {
409 1.8 bouyer sc->sensors[start + i].units = ENVSYS_STEMP;
410 1.18 itojun snprintf(sc->info[start + i].desc,
411 1.18 itojun sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
412 1.8 bouyer }
413 1.8 bouyer }
414 1.8 bouyer
415 1.8 bouyer
416 1.8 bouyer static void
417 1.8 bouyer setup_fan(sc, start, n)
418 1.8 bouyer struct lm_softc *sc;
419 1.8 bouyer int start, n;
420 1.8 bouyer {
421 1.8 bouyer int i;
422 1.8 bouyer for (i = 0; i < n; ++i) {
423 1.8 bouyer sc->sensors[start + i].units = ENVSYS_SFANRPM;
424 1.8 bouyer sc->info[start + i].units = ENVSYS_SFANRPM;
425 1.18 itojun snprintf(sc->info[start + i].desc,
426 1.18 itojun sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
427 1.5 bouyer }
428 1.1 groo }
429 1.1 groo
430 1.5 bouyer int
431 1.5 bouyer lm_gtredata(sme, tred)
432 1.5 bouyer struct sysmon_envsys *sme;
433 1.5 bouyer struct envsys_tre_data *tred;
434 1.5 bouyer {
435 1.5 bouyer static const struct timeval onepointfive = { 1, 500000 };
436 1.5 bouyer struct timeval t;
437 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
438 1.5 bouyer int i, s;
439 1.5 bouyer
440 1.5 bouyer /* read new values at most once every 1.5 seconds */
441 1.5 bouyer timeradd(&sc->lastread, &onepointfive, &t);
442 1.5 bouyer s = splclock();
443 1.5 bouyer i = timercmp(&mono_time, &t, >);
444 1.5 bouyer if (i) {
445 1.5 bouyer sc->lastread.tv_sec = mono_time.tv_sec;
446 1.5 bouyer sc->lastread.tv_usec = mono_time.tv_usec;
447 1.5 bouyer }
448 1.5 bouyer splx(s);
449 1.5 bouyer
450 1.5 bouyer if (i)
451 1.5 bouyer sc->refresh_sensor_data(sc);
452 1.5 bouyer
453 1.5 bouyer *tred = sc->sensors[tred->sensor];
454 1.5 bouyer
455 1.5 bouyer return (0);
456 1.5 bouyer }
457 1.1 groo
458 1.1 groo int
459 1.7 bouyer generic_streinfo_fan(sc, info, n, binfo)
460 1.7 bouyer struct lm_softc *sc;
461 1.7 bouyer struct envsys_basic_info *info;
462 1.7 bouyer int n;
463 1.7 bouyer struct envsys_basic_info *binfo;
464 1.7 bouyer {
465 1.7 bouyer u_int8_t sdata;
466 1.7 bouyer int divisor;
467 1.7 bouyer
468 1.7 bouyer /* FAN1 and FAN2 can have divisors set, but not FAN3 */
469 1.7 bouyer if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
470 1.14 tron && (n < 2)) {
471 1.7 bouyer if (binfo->rpms == 0) {
472 1.7 bouyer binfo->validflags = 0;
473 1.7 bouyer return (0);
474 1.7 bouyer }
475 1.7 bouyer
476 1.14 tron /* write back the nominal FAN speed */
477 1.14 tron info->rpms = binfo->rpms;
478 1.14 tron
479 1.7 bouyer /* 153 is the nominal FAN speed value */
480 1.7 bouyer divisor = 1350000 / (binfo->rpms * 153);
481 1.7 bouyer
482 1.7 bouyer /* ...but we need lg(divisor) */
483 1.7 bouyer if (divisor <= 1)
484 1.7 bouyer divisor = 0;
485 1.7 bouyer else if (divisor <= 2)
486 1.7 bouyer divisor = 1;
487 1.7 bouyer else if (divisor <= 4)
488 1.7 bouyer divisor = 2;
489 1.7 bouyer else
490 1.7 bouyer divisor = 3;
491 1.7 bouyer
492 1.7 bouyer /*
493 1.7 bouyer * FAN1 div is in bits <5:4>, FAN2 div is
494 1.7 bouyer * in <7:6>
495 1.7 bouyer */
496 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
497 1.14 tron if ( n == 0 ) { /* FAN1 */
498 1.7 bouyer divisor <<= 4;
499 1.7 bouyer sdata = (sdata & 0xCF) | divisor;
500 1.7 bouyer } else { /* FAN2 */
501 1.7 bouyer divisor <<= 6;
502 1.7 bouyer sdata = (sdata & 0x3F) | divisor;
503 1.7 bouyer }
504 1.7 bouyer
505 1.17 ad (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
506 1.7 bouyer }
507 1.7 bouyer return (0);
508 1.7 bouyer
509 1.7 bouyer }
510 1.7 bouyer
511 1.7 bouyer int
512 1.4 thorpej lm_streinfo(sme, binfo)
513 1.5 bouyer struct sysmon_envsys *sme;
514 1.5 bouyer struct envsys_basic_info *binfo;
515 1.1 groo {
516 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
517 1.5 bouyer
518 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
519 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
520 1.5 bouyer else {
521 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
522 1.7 bouyer generic_streinfo_fan(sc, &sc->info[binfo->sensor],
523 1.7 bouyer binfo->sensor - 8, binfo);
524 1.7 bouyer }
525 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
526 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
527 1.7 bouyer sc->info[binfo->sensor].desc[
528 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
529 1.5 bouyer
530 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
531 1.7 bouyer }
532 1.7 bouyer return (0);
533 1.7 bouyer }
534 1.5 bouyer
535 1.7 bouyer int
536 1.7 bouyer wb781_streinfo(sme, binfo)
537 1.7 bouyer struct sysmon_envsys *sme;
538 1.7 bouyer struct envsys_basic_info *binfo;
539 1.7 bouyer {
540 1.7 bouyer struct lm_softc *sc = sme->sme_cookie;
541 1.14 tron int divisor;
542 1.14 tron u_int8_t sdata;
543 1.14 tron int i;
544 1.5 bouyer
545 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
546 1.7 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
547 1.7 bouyer else {
548 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
549 1.14 tron if (binfo->rpms == 0) {
550 1.14 tron binfo->validflags = 0;
551 1.14 tron return (0);
552 1.14 tron }
553 1.14 tron
554 1.14 tron /* write back the nominal FAN speed */
555 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
556 1.14 tron
557 1.14 tron /* 153 is the nominal FAN speed value */
558 1.14 tron divisor = 1350000 / (binfo->rpms * 153);
559 1.14 tron
560 1.14 tron /* ...but we need lg(divisor) */
561 1.14 tron for (i = 0; i < 7; i++) {
562 1.14 tron if (divisor <= (1 << i))
563 1.14 tron break;
564 1.14 tron }
565 1.14 tron divisor = i;
566 1.14 tron
567 1.14 tron if (binfo->sensor == 10 || binfo->sensor == 11) {
568 1.14 tron /*
569 1.14 tron * FAN1 div is in bits <5:4>, FAN2 div
570 1.14 tron * is in <7:6>
571 1.14 tron */
572 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
573 1.14 tron if ( binfo->sensor == 10 ) { /* FAN1 */
574 1.14 tron sdata = (sdata & 0xCF) |
575 1.14 tron ((divisor & 0x3) << 4);
576 1.14 tron } else { /* FAN2 */
577 1.14 tron sdata = (sdata & 0x3F) |
578 1.14 tron ((divisor & 0x3) << 6);
579 1.14 tron }
580 1.17 ad (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
581 1.14 tron } else {
582 1.14 tron /* FAN3 is in WB_PIN <7:6> */
583 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_PIN);
584 1.14 tron sdata = (sdata & 0x3F) |
585 1.14 tron ((divisor & 0x3) << 6);
586 1.17 ad (*sc->lm_writereg)(sc, WB_PIN, sdata);
587 1.14 tron }
588 1.7 bouyer }
589 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
590 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
591 1.7 bouyer sc->info[binfo->sensor].desc[
592 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
593 1.5 bouyer
594 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
595 1.5 bouyer }
596 1.5 bouyer return (0);
597 1.5 bouyer }
598 1.5 bouyer
599 1.5 bouyer int
600 1.7 bouyer wb782_streinfo(sme, binfo)
601 1.5 bouyer struct sysmon_envsys *sme;
602 1.5 bouyer struct envsys_basic_info *binfo;
603 1.5 bouyer {
604 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
605 1.5 bouyer int divisor;
606 1.5 bouyer u_int8_t sdata;
607 1.5 bouyer int i;
608 1.5 bouyer
609 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
610 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
611 1.5 bouyer else {
612 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
613 1.4 thorpej if (binfo->rpms == 0) {
614 1.4 thorpej binfo->validflags = 0;
615 1.4 thorpej return (0);
616 1.1 groo }
617 1.1 groo
618 1.14 tron /* write back the nominal FAN speed */
619 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
620 1.14 tron
621 1.4 thorpej /* 153 is the nominal FAN speed value */
622 1.4 thorpej divisor = 1350000 / (binfo->rpms * 153);
623 1.1 groo
624 1.4 thorpej /* ...but we need lg(divisor) */
625 1.5 bouyer for (i = 0; i < 7; i++) {
626 1.5 bouyer if (divisor <= (1 << i))
627 1.5 bouyer break;
628 1.5 bouyer }
629 1.5 bouyer divisor = i;
630 1.4 thorpej
631 1.5 bouyer if (binfo->sensor == 12 || binfo->sensor == 13) {
632 1.5 bouyer /*
633 1.5 bouyer * FAN1 div is in bits <5:4>, FAN2 div
634 1.5 bouyer * is in <7:6>
635 1.5 bouyer */
636 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
637 1.5 bouyer if ( binfo->sensor == 12 ) { /* FAN1 */
638 1.5 bouyer sdata = (sdata & 0xCF) |
639 1.5 bouyer ((divisor & 0x3) << 4);
640 1.5 bouyer } else { /* FAN2 */
641 1.5 bouyer sdata = (sdata & 0x3F) |
642 1.5 bouyer ((divisor & 0x3) << 6);
643 1.5 bouyer }
644 1.17 ad (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
645 1.5 bouyer } else {
646 1.5 bouyer /* FAN3 is in WB_PIN <7:6> */
647 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_PIN);
648 1.5 bouyer sdata = (sdata & 0x3F) |
649 1.5 bouyer ((divisor & 0x3) << 6);
650 1.17 ad (*sc->lm_writereg)(sc, WB_PIN, sdata);
651 1.1 groo }
652 1.5 bouyer /* Bit 2 of divisor is in WB_BANK0_FANBAT */
653 1.17 ad (*sc->lm_banksel)(sc, 0);
654 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
655 1.5 bouyer sdata &= ~(0x20 << (binfo->sensor - 12));
656 1.5 bouyer sdata |= (divisor & 0x4) << (binfo->sensor - 9);
657 1.17 ad (*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
658 1.1 groo }
659 1.1 groo
660 1.4 thorpej memcpy(sc->info[binfo->sensor].desc, binfo->desc,
661 1.4 thorpej sizeof(sc->info[binfo->sensor].desc));
662 1.4 thorpej sc->info[binfo->sensor].desc[
663 1.4 thorpej sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
664 1.1 groo
665 1.4 thorpej binfo->validflags = ENVSYS_FVALID;
666 1.1 groo }
667 1.4 thorpej return (0);
668 1.1 groo }
669 1.1 groo
670 1.8 bouyer static void
671 1.7 bouyer generic_stemp(sc, sensor)
672 1.7 bouyer struct lm_softc *sc;
673 1.7 bouyer struct envsys_tre_data *sensor;
674 1.7 bouyer {
675 1.17 ad int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
676 1.10 bouyer DPRINTF(("sdata[temp] 0x%x\n", sdata));
677 1.7 bouyer /* temp is given in deg. C, we convert to uK */
678 1.7 bouyer sensor->cur.data_us = sdata * 1000000 + 273150000;
679 1.7 bouyer }
680 1.7 bouyer
681 1.8 bouyer static void
682 1.7 bouyer generic_svolt(sc, sensors, infos)
683 1.7 bouyer struct lm_softc *sc;
684 1.7 bouyer struct envsys_tre_data *sensors;
685 1.7 bouyer struct envsys_basic_info *infos;
686 1.7 bouyer {
687 1.7 bouyer int i, sdata;
688 1.7 bouyer
689 1.7 bouyer for (i = 0; i < 7; i++) {
690 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
691 1.10 bouyer DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
692 1.7 bouyer /* voltage returned as (mV >> 4), we convert to uVDC */
693 1.7 bouyer sensors[i].cur.data_s = (sdata << 4);
694 1.7 bouyer /* rfact is (factor * 10^4) */
695 1.7 bouyer sensors[i].cur.data_s *= infos[i].rfact;
696 1.7 bouyer /* division by 10 gets us back to uVDC */
697 1.7 bouyer sensors[i].cur.data_s /= 10;
698 1.7 bouyer
699 1.7 bouyer /* these two are negative voltages */
700 1.7 bouyer if ( (i == 5) || (i == 6) )
701 1.7 bouyer sensors[i].cur.data_s *= -1;
702 1.7 bouyer }
703 1.7 bouyer }
704 1.7 bouyer
705 1.8 bouyer static void
706 1.7 bouyer generic_fanrpm(sc, sensors)
707 1.7 bouyer struct lm_softc *sc;
708 1.7 bouyer struct envsys_tre_data *sensors;
709 1.7 bouyer {
710 1.7 bouyer int i, sdata, divisor;
711 1.7 bouyer for (i = 0; i < 3; i++) {
712 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
713 1.10 bouyer DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
714 1.7 bouyer if (i == 2)
715 1.7 bouyer divisor = 2; /* Fixed divisor for FAN3 */
716 1.7 bouyer else if (i == 1) /* Bits 7 & 6 of VID/FAN */
717 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
718 1.7 bouyer else
719 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
720 1.7 bouyer
721 1.7 bouyer if (sdata == 0xff || sdata == 0x00) {
722 1.7 bouyer sensors[i].cur.data_us = 0;
723 1.7 bouyer } else {
724 1.7 bouyer sensors[i].cur.data_us = 1350000 / (sdata << divisor);
725 1.7 bouyer }
726 1.7 bouyer }
727 1.7 bouyer }
728 1.7 bouyer
729 1.1 groo /*
730 1.12 wiz * pre: last read occurred >= 1.5 seconds ago
731 1.1 groo * post: sensors[] current data are the latest from the chip
732 1.1 groo */
733 1.1 groo void
734 1.1 groo lm_refresh_sensor_data(sc)
735 1.1 groo struct lm_softc *sc;
736 1.1 groo {
737 1.7 bouyer /* Refresh our stored data for every sensor */
738 1.7 bouyer generic_stemp(sc, &sc->sensors[7]);
739 1.7 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
740 1.7 bouyer generic_fanrpm(sc, &sc->sensors[8]);
741 1.7 bouyer }
742 1.7 bouyer
743 1.8 bouyer static void
744 1.8 bouyer wb_svolt(sc)
745 1.7 bouyer struct lm_softc *sc;
746 1.7 bouyer {
747 1.8 bouyer int i, sdata;
748 1.5 bouyer for (i = 0; i < 9; ++i) {
749 1.5 bouyer if (i < 7) {
750 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
751 1.5 bouyer } else {
752 1.5 bouyer /* from bank5 */
753 1.17 ad (*sc->lm_banksel)(sc, 5);
754 1.17 ad sdata = (*sc->lm_readreg)(sc, (i == 7) ?
755 1.5 bouyer WB_BANK5_5VSB : WB_BANK5_VBAT);
756 1.5 bouyer }
757 1.10 bouyer DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
758 1.5 bouyer /* voltage returned as (mV >> 4), we convert to uV */
759 1.5 bouyer sdata = sdata << 4;
760 1.5 bouyer /* special case for negative voltages */
761 1.5 bouyer if (i == 5) {
762 1.5 bouyer /*
763 1.5 bouyer * -12Vdc, assume Winbond recommended values for
764 1.5 bouyer * resistors
765 1.5 bouyer */
766 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 805)) / 195;
767 1.5 bouyer } else if (i == 6) {
768 1.5 bouyer /*
769 1.5 bouyer * -5Vdc, assume Winbond recommended values for
770 1.5 bouyer * resistors
771 1.5 bouyer */
772 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 682)) / 318;
773 1.5 bouyer }
774 1.5 bouyer /* rfact is (factor * 10^4) */
775 1.5 bouyer sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
776 1.5 bouyer /* division by 10 gets us back to uVDC */
777 1.5 bouyer sc->sensors[i].cur.data_s /= 10;
778 1.5 bouyer }
779 1.8 bouyer }
780 1.5 bouyer
781 1.8 bouyer static void
782 1.8 bouyer wb_stemp(sc, sensors, n)
783 1.8 bouyer struct lm_softc *sc;
784 1.8 bouyer struct envsys_tre_data *sensors;
785 1.8 bouyer int n;
786 1.8 bouyer {
787 1.8 bouyer int sdata;
788 1.8 bouyer /* temperatures. Given in dC, we convert to uK */
789 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
790 1.10 bouyer DPRINTF(("sdata[temp0] 0x%x\n", sdata));
791 1.8 bouyer sensors[0].cur.data_us = sdata * 1000000 + 273150000;
792 1.8 bouyer /* from bank1 */
793 1.17 ad if ((*sc->lm_banksel)(sc, 1))
794 1.17 ad sensors[1].validflags &= ~ENVSYS_FCURVALID;
795 1.17 ad else {
796 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
797 1.17 ad sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
798 1.17 ad DPRINTF(("sdata[temp1] 0x%x\n", sdata));
799 1.17 ad sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
800 1.17 ad }
801 1.8 bouyer if (n < 3)
802 1.8 bouyer return;
803 1.8 bouyer /* from bank2 */
804 1.17 ad if ((*sc->lm_banksel)(sc, 2))
805 1.17 ad sensors[2].validflags &= ~ENVSYS_FCURVALID;
806 1.17 ad else {
807 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
808 1.17 ad sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
809 1.17 ad DPRINTF(("sdata[temp2] 0x%x\n", sdata));
810 1.17 ad sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
811 1.17 ad }
812 1.8 bouyer }
813 1.8 bouyer
814 1.8 bouyer static void
815 1.14 tron wb781_fanrpm(sc, sensors)
816 1.14 tron struct lm_softc *sc;
817 1.14 tron struct envsys_tre_data *sensors;
818 1.14 tron {
819 1.14 tron int i, divisor, sdata;
820 1.17 ad (*sc->lm_banksel)(sc, 0);
821 1.14 tron for (i = 0; i < 3; i++) {
822 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
823 1.14 tron DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
824 1.14 tron if (i == 0)
825 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
826 1.14 tron else if (i == 1)
827 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
828 1.14 tron else
829 1.17 ad divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
830 1.14 tron
831 1.14 tron DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
832 1.14 tron if (sdata == 0xff || sdata == 0x00) {
833 1.14 tron sensors[i].cur.data_us = 0;
834 1.14 tron } else {
835 1.14 tron sensors[i].cur.data_us = 1350000 /
836 1.14 tron (sdata << divisor);
837 1.14 tron }
838 1.14 tron }
839 1.14 tron }
840 1.14 tron
841 1.14 tron static void
842 1.8 bouyer wb_fanrpm(sc, sensors)
843 1.8 bouyer struct lm_softc *sc;
844 1.8 bouyer struct envsys_tre_data *sensors;
845 1.8 bouyer {
846 1.8 bouyer int i, divisor, sdata;
847 1.17 ad (*sc->lm_banksel)(sc, 0);
848 1.8 bouyer for (i = 0; i < 3; i++) {
849 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
850 1.10 bouyer DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
851 1.8 bouyer if (i == 0)
852 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
853 1.8 bouyer else if (i == 1)
854 1.17 ad divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
855 1.5 bouyer else
856 1.17 ad divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
857 1.17 ad divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
858 1.5 bouyer
859 1.5 bouyer DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
860 1.5 bouyer if (sdata == 0xff || sdata == 0x00) {
861 1.8 bouyer sensors[i].cur.data_us = 0;
862 1.5 bouyer } else {
863 1.8 bouyer sensors[i].cur.data_us = 1350000 /
864 1.5 bouyer (sdata << divisor);
865 1.1 groo }
866 1.1 groo }
867 1.8 bouyer }
868 1.8 bouyer
869 1.8 bouyer void
870 1.8 bouyer wb781_refresh_sensor_data(sc)
871 1.8 bouyer struct lm_softc *sc;
872 1.8 bouyer {
873 1.8 bouyer /* Refresh our stored data for every sensor */
874 1.9 bouyer /* we need to reselect bank0 to access common registers */
875 1.17 ad (*sc->lm_banksel)(sc, 0);
876 1.8 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
877 1.17 ad (*sc->lm_banksel)(sc, 0);
878 1.8 bouyer wb_stemp(sc, &sc->sensors[7], 3);
879 1.17 ad (*sc->lm_banksel)(sc, 0);
880 1.14 tron wb781_fanrpm(sc, &sc->sensors[10]);
881 1.8 bouyer }
882 1.8 bouyer
883 1.8 bouyer void
884 1.8 bouyer wb782_refresh_sensor_data(sc)
885 1.8 bouyer struct lm_softc *sc;
886 1.8 bouyer {
887 1.8 bouyer /* Refresh our stored data for every sensor */
888 1.8 bouyer wb_svolt(sc);
889 1.8 bouyer wb_stemp(sc, &sc->sensors[9], 3);
890 1.8 bouyer wb_fanrpm(sc, &sc->sensors[12]);
891 1.8 bouyer }
892 1.8 bouyer
893 1.8 bouyer void
894 1.8 bouyer wb697_refresh_sensor_data(sc)
895 1.8 bouyer struct lm_softc *sc;
896 1.8 bouyer {
897 1.8 bouyer /* Refresh our stored data for every sensor */
898 1.8 bouyer wb_svolt(sc);
899 1.8 bouyer wb_stemp(sc, &sc->sensors[9], 2);
900 1.8 bouyer wb_fanrpm(sc, &sc->sensors[11]);
901 1.1 groo }
902