Home | History | Annotate | Line # | Download | only in ic
nslm7x.c revision 1.23
      1  1.23   xtraeme /*	$NetBSD: nslm7x.c,v 1.23 2005/10/15 00:41:48 xtraeme Exp $ */
      2   1.1      groo 
      3   1.1      groo /*-
      4   1.1      groo  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5   1.1      groo  * All rights reserved.
      6   1.1      groo  *
      7   1.1      groo  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1      groo  * by Bill Squier.
      9   1.1      groo  *
     10   1.1      groo  * Redistribution and use in source and binary forms, with or without
     11   1.1      groo  * modification, are permitted provided that the following conditions
     12   1.1      groo  * are met:
     13   1.1      groo  * 1. Redistributions of source code must retain the above copyright
     14   1.1      groo  *    notice, this list of conditions and the following disclaimer.
     15   1.1      groo  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1      groo  *    notice, this list of conditions and the following disclaimer in the
     17   1.1      groo  *    documentation and/or other materials provided with the distribution.
     18   1.1      groo  * 3. All advertising materials mentioning features or use of this software
     19   1.1      groo  *    must display the following acknowledgement:
     20   1.1      groo  *        This product includes software developed by the NetBSD
     21   1.1      groo  *        Foundation, Inc. and its contributors.
     22   1.1      groo  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1      groo  *    contributors may be used to endorse or promote products derived
     24   1.1      groo  *    from this software without specific prior written permission.
     25   1.1      groo  *
     26   1.1      groo  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1      groo  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1      groo  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1      groo  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1      groo  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1      groo  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1      groo  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1      groo  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1      groo  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1      groo  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1      groo  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1      groo  */
     38  1.13     lukem 
     39  1.13     lukem #include <sys/cdefs.h>
     40  1.23   xtraeme __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.23 2005/10/15 00:41:48 xtraeme Exp $");
     41   1.1      groo 
     42   1.1      groo #include <sys/param.h>
     43   1.1      groo #include <sys/systm.h>
     44   1.1      groo #include <sys/kernel.h>
     45   1.1      groo #include <sys/proc.h>
     46   1.1      groo #include <sys/device.h>
     47   1.1      groo #include <sys/malloc.h>
     48   1.1      groo #include <sys/errno.h>
     49   1.1      groo #include <sys/queue.h>
     50   1.1      groo #include <sys/lock.h>
     51   1.1      groo #include <sys/ioctl.h>
     52   1.1      groo #include <sys/conf.h>
     53   1.1      groo #include <sys/time.h>
     54   1.1      groo 
     55   1.1      groo #include <machine/bus.h>
     56   1.1      groo 
     57   1.1      groo #include <dev/isa/isareg.h>
     58   1.1      groo #include <dev/isa/isavar.h>
     59   1.1      groo 
     60   1.4   thorpej #include <dev/sysmon/sysmonvar.h>
     61   1.4   thorpej 
     62   1.1      groo #include <dev/ic/nslm7xvar.h>
     63   1.1      groo 
     64   1.1      groo #include <machine/intr.h>
     65   1.1      groo #include <machine/bus.h>
     66   1.1      groo 
     67   1.1      groo #if defined(LMDEBUG)
     68  1.19  christos #define DPRINTF(x)		printf x
     69   1.1      groo #else
     70   1.1      groo #define DPRINTF(x)
     71   1.1      groo #endif
     72   1.1      groo 
     73   1.4   thorpej const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
     74   1.5    bouyer 					/* for each unit type */
     75   1.1      groo 	{ 7, 7,    ENVSYS_STEMP   },
     76   1.1      groo 	{ 8, 10,   ENVSYS_SFANRPM },
     77   1.1      groo 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
     78   1.1      groo 	{ 0, 6,    ENVSYS_SVOLTS_DC },
     79   1.1      groo 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
     80   1.1      groo 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
     81   1.1      groo 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
     82   1.1      groo };
     83   1.1      groo 
     84   1.5    bouyer 
     85  1.20     perry static void setup_fan(struct lm_softc *, int, int);
     86  1.20     perry static void setup_temp(struct lm_softc *, int, int);
     87  1.20     perry static void wb_setup_volt(struct lm_softc *);
     88  1.20     perry 
     89  1.20     perry int lm_match(struct lm_softc *);
     90  1.20     perry int wb_match(struct lm_softc *);
     91  1.20     perry int itec_match(struct lm_softc *);
     92  1.20     perry int def_match(struct lm_softc *);
     93  1.20     perry void lm_common_match(struct lm_softc *);
     94  1.20     perry static int lm_generic_banksel(struct lm_softc *, int);
     95  1.20     perry 
     96  1.20     perry static void generic_stemp(struct lm_softc *, struct envsys_tre_data *);
     97  1.20     perry static void generic_svolt(struct lm_softc *, struct envsys_tre_data *,
     98  1.20     perry     struct envsys_basic_info *);
     99  1.20     perry static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    100  1.20     perry 
    101  1.20     perry void lm_refresh_sensor_data(struct lm_softc *);
    102  1.20     perry 
    103  1.20     perry static void wb_svolt(struct lm_softc *);
    104  1.20     perry static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int);
    105  1.20     perry static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    106  1.20     perry static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    107  1.20     perry 
    108  1.20     perry void wb781_refresh_sensor_data(struct lm_softc *);
    109  1.20     perry void wb782_refresh_sensor_data(struct lm_softc *);
    110  1.20     perry void wb697_refresh_sensor_data(struct lm_softc *);
    111  1.20     perry 
    112  1.20     perry static void itec_svolt(struct lm_softc *, struct envsys_tre_data *,
    113  1.20     perry     struct envsys_basic_info *);
    114  1.20     perry static void itec_stemp(struct lm_softc *, struct envsys_tre_data *);
    115  1.20     perry static void itec_fanrpm(struct lm_softc *, struct envsys_tre_data *);
    116  1.20     perry void itec_refresh_sensor_data(struct lm_softc *);
    117  1.20     perry 
    118  1.20     perry int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
    119  1.20     perry 
    120  1.20     perry int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *,
    121  1.20     perry            int, struct envsys_basic_info *);
    122  1.20     perry int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    123  1.20     perry int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    124  1.20     perry int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    125  1.20     perry int itec_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
    126   1.5    bouyer 
    127   1.5    bouyer struct lm_chip {
    128  1.20     perry 	int (*chip_match)(struct lm_softc *);
    129   1.5    bouyer };
    130   1.5    bouyer 
    131   1.5    bouyer struct lm_chip lm_chips[] = {
    132  1.19  christos 	{ itec_match },
    133   1.8    bouyer 	{ wb_match },
    134   1.8    bouyer 	{ lm_match },
    135   1.8    bouyer 	{ def_match } /* Must be last */
    136   1.5    bouyer };
    137   1.5    bouyer 
    138   1.1      groo 
    139  1.17        ad int
    140  1.17        ad lm_generic_banksel(lmsc, bank)
    141  1.17        ad 	struct lm_softc *lmsc;
    142  1.17        ad 	int bank;
    143   1.1      groo {
    144   1.1      groo 
    145  1.17        ad 	(*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
    146  1.19  christos 	return 0;
    147   1.1      groo }
    148   1.1      groo 
    149   1.1      groo 
    150   1.1      groo /*
    151   1.2      groo  * bus independent probe
    152   1.2      groo  */
    153   1.2      groo int
    154   1.2      groo lm_probe(iot, ioh)
    155   1.2      groo 	bus_space_tag_t iot;
    156   1.2      groo 	bus_space_handle_t ioh;
    157   1.2      groo {
    158   1.2      groo 	u_int8_t cr;
    159   1.2      groo 	int rv;
    160   1.2      groo 
    161  1.19  christos 	/*
    162  1.19  christos 	 * Check for it8705f, before we do the chip reset.
    163  1.19  christos 	 * In case of an it8705f this might reset all the fan control
    164  1.19  christos 	 * parameters to defaults which would void all settings done by
    165  1.19  christos 	 * the BOOTROM/BIOS.
    166  1.19  christos 	 */
    167  1.19  christos 	bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48);
    168  1.19  christos 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    169  1.19  christos 
    170  1.19  christos 	if (cr == ITEC_RES48_DEFAULT) {
    171  1.19  christos 		bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52);
    172  1.19  christos 		cr = bus_space_read_1(iot, ioh, LMC_DATA);
    173  1.19  christos 		if (cr == ITEC_RES52_DEFAULT)
    174  1.19  christos 			return 1;
    175  1.19  christos 	}
    176  1.19  christos 
    177   1.2      groo 	/* Check for some power-on defaults */
    178   1.2      groo 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    179   1.2      groo 
    180   1.2      groo 	/* Perform LM78 reset */
    181   1.2      groo 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
    182   1.2      groo 
    183   1.2      groo 	/* XXX - Why do I have to reselect the register? */
    184   1.2      groo 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    185   1.2      groo 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    186   1.2      groo 
    187   1.2      groo 	/* XXX - spec says *only* 0x08! */
    188  1.23   xtraeme 	if ((cr == 0x08) || (cr == 0x01) || (cr == 0x03))
    189   1.2      groo 		rv = 1;
    190   1.2      groo 	else
    191   1.2      groo 		rv = 0;
    192   1.2      groo 
    193   1.2      groo 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
    194   1.2      groo 
    195   1.2      groo 	return (rv);
    196   1.2      groo }
    197   1.2      groo 
    198   1.2      groo 
    199   1.2      groo /*
    200   1.1      groo  * pre:  lmsc contains valid busspace tag and handle
    201   1.1      groo  */
    202   1.1      groo void
    203   1.1      groo lm_attach(lmsc)
    204   1.1      groo 	struct lm_softc *lmsc;
    205   1.1      groo {
    206  1.16   thorpej 	u_int i;
    207   1.1      groo 
    208  1.17        ad 	/* Install default bank selection routine, if none given. */
    209  1.17        ad 	if (lmsc->lm_banksel == NULL)
    210  1.17        ad 		lmsc->lm_banksel = lm_generic_banksel;
    211  1.17        ad 
    212   1.5    bouyer 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
    213   1.5    bouyer 		if (lm_chips[i].chip_match(lmsc))
    214   1.5    bouyer 			break;
    215   1.1      groo 
    216   1.1      groo 	/* Start the monitoring loop */
    217  1.17        ad 	(*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
    218   1.1      groo 
    219   1.1      groo 	/* Indicate we have never read the registers */
    220   1.1      groo 	timerclear(&lmsc->lastread);
    221   1.1      groo 
    222   1.1      groo 	/* Initialize sensors */
    223   1.5    bouyer 	for (i = 0; i < lmsc->numsensors; ++i) {
    224   1.1      groo 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
    225   1.1      groo 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
    226   1.1      groo 		lmsc->info[i].validflags = ENVSYS_FVALID;
    227   1.1      groo 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
    228   1.1      groo 	}
    229   1.4   thorpej 	/*
    230   1.4   thorpej 	 * Hook into the System Monitor.
    231   1.4   thorpej 	 */
    232   1.4   thorpej 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
    233   1.4   thorpej 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
    234   1.4   thorpej 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
    235   1.4   thorpej 	lmsc->sc_sysmon.sme_cookie = lmsc;
    236   1.4   thorpej 
    237   1.4   thorpej 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
    238   1.5    bouyer 	/* sme_streinfo set in chip-specific attach */
    239   1.4   thorpej 
    240   1.5    bouyer 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
    241   1.4   thorpej 	lmsc->sc_sysmon.sme_envsys_version = 1000;
    242   1.4   thorpej 
    243   1.4   thorpej 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
    244   1.4   thorpej 		printf("%s: unable to register with sysmon\n",
    245   1.4   thorpej 		    lmsc->sc_dev.dv_xname);
    246   1.1      groo }
    247   1.1      groo 
    248   1.5    bouyer int
    249   1.5    bouyer lm_match(sc)
    250   1.5    bouyer 	struct lm_softc *sc;
    251   1.5    bouyer {
    252   1.5    bouyer 	int i;
    253   1.5    bouyer 
    254   1.5    bouyer 	/* See if we have an LM78 or LM79 */
    255  1.17        ad 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
    256   1.5    bouyer 	switch(i) {
    257   1.5    bouyer 	case LM_ID_LM78:
    258   1.5    bouyer 		printf(": LM78\n");
    259   1.5    bouyer 		break;
    260   1.5    bouyer 	case LM_ID_LM78J:
    261   1.5    bouyer 		printf(": LM78J\n");
    262   1.5    bouyer 		break;
    263   1.5    bouyer 	case LM_ID_LM79:
    264   1.5    bouyer 		printf(": LM79\n");
    265  1.15    bouyer 		break;
    266  1.15    bouyer 	case LM_ID_LM81:
    267  1.15    bouyer 		printf(": LM81\n");
    268   1.5    bouyer 		break;
    269   1.5    bouyer 	default:
    270   1.5    bouyer 		return 0;
    271   1.5    bouyer 	}
    272   1.5    bouyer 	lm_common_match(sc);
    273   1.5    bouyer 	return 1;
    274   1.5    bouyer }
    275   1.1      groo 
    276   1.1      groo int
    277   1.5    bouyer def_match(sc)
    278   1.5    bouyer 	struct lm_softc *sc;
    279   1.5    bouyer {
    280   1.5    bouyer 	int i;
    281   1.5    bouyer 
    282  1.17        ad 	i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
    283  1.17        ad 	printf(": Unknown chip (ID %d)\n", i);
    284   1.5    bouyer 	lm_common_match(sc);
    285   1.5    bouyer 	return 1;
    286   1.5    bouyer }
    287   1.5    bouyer 
    288   1.5    bouyer void
    289   1.5    bouyer lm_common_match(sc)
    290   1.5    bouyer 	struct lm_softc *sc;
    291   1.1      groo {
    292   1.5    bouyer 	int i;
    293   1.5    bouyer 	sc->numsensors = LM_NUM_SENSORS;
    294   1.5    bouyer 	sc->refresh_sensor_data = lm_refresh_sensor_data;
    295   1.5    bouyer 
    296   1.5    bouyer 	for (i = 0; i < 7; ++i) {
    297   1.5    bouyer 		sc->sensors[i].units = sc->info[i].units =
    298   1.5    bouyer 		    ENVSYS_SVOLTS_DC;
    299  1.18    itojun 		snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
    300  1.18    itojun 		    "IN %d", i);
    301   1.5    bouyer 	}
    302   1.5    bouyer 
    303   1.5    bouyer 	/* default correction factors for resistors on higher voltage inputs */
    304   1.5    bouyer 	sc->info[0].rfact = sc->info[1].rfact =
    305   1.5    bouyer 	    sc->info[2].rfact = 10000;
    306   1.5    bouyer 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    307   1.5    bouyer 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    308   1.5    bouyer 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    309   1.5    bouyer 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    310   1.5    bouyer 
    311   1.5    bouyer 	sc->sensors[7].units = ENVSYS_STEMP;
    312   1.5    bouyer 	strcpy(sc->info[7].desc, "Temp");
    313   1.5    bouyer 
    314   1.8    bouyer 	setup_fan(sc, 8, 3);
    315   1.5    bouyer 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
    316   1.5    bouyer }
    317   1.1      groo 
    318   1.5    bouyer int
    319   1.5    bouyer wb_match(sc)
    320   1.5    bouyer 	struct lm_softc *sc;
    321   1.5    bouyer {
    322   1.5    bouyer 	int i, j;
    323   1.1      groo 
    324  1.17        ad 	(*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
    325  1.17        ad 	j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
    326  1.17        ad 	(*sc->lm_writereg)(sc, WB_BANKSEL, 0);
    327  1.17        ad 	j |= (*sc->lm_readreg)(sc, WB_VENDID);
    328  1.11     veego 	DPRINTF(("winbond vend id 0x%x\n", j));
    329   1.5    bouyer 	if (j != WB_VENDID_WINBOND)
    330   1.5    bouyer 		return 0;
    331   1.7    bouyer 	/* read device ID */
    332  1.17        ad 	(*sc->lm_banksel)(sc, 0);
    333  1.17        ad 	j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
    334  1.11     veego 	DPRINTF(("winbond chip id 0x%x\n", j));
    335   1.7    bouyer 	switch(j) {
    336   1.7    bouyer 	case WB_CHIPID_83781:
    337  1.10    bouyer 	case WB_CHIPID_83781_2:
    338   1.7    bouyer 		printf(": W83781D\n");
    339   1.7    bouyer 
    340   1.7    bouyer 		for (i = 0; i < 7; ++i) {
    341   1.7    bouyer 			sc->sensors[i].units = sc->info[i].units =
    342   1.7    bouyer 			    ENVSYS_SVOLTS_DC;
    343  1.18    itojun 			snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
    344  1.18    itojun 			    "IN %d", i);
    345   1.7    bouyer 		}
    346   1.7    bouyer 
    347   1.7    bouyer 		/* default correction factors for higher voltage inputs */
    348   1.7    bouyer 		sc->info[0].rfact = sc->info[1].rfact =
    349   1.7    bouyer 		    sc->info[2].rfact = 10000;
    350   1.7    bouyer 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    351   1.7    bouyer 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    352   1.7    bouyer 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    353   1.7    bouyer 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    354   1.7    bouyer 
    355   1.9    bouyer 		setup_temp(sc, 7, 3);
    356   1.9    bouyer 		setup_fan(sc, 10, 3);
    357   1.7    bouyer 
    358   1.9    bouyer 		sc->numsensors = WB83781_NUM_SENSORS;
    359   1.9    bouyer 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
    360   1.7    bouyer 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
    361   1.7    bouyer 		return 1;
    362   1.8    bouyer 	case WB_CHIPID_83697:
    363   1.8    bouyer 		printf(": W83697HF\n");
    364   1.8    bouyer 		wb_setup_volt(sc);
    365   1.8    bouyer 		setup_temp(sc, 9, 2);
    366   1.8    bouyer 		setup_fan(sc, 11, 3);
    367   1.8    bouyer 		sc->numsensors = WB83697_NUM_SENSORS;
    368   1.8    bouyer 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
    369   1.8    bouyer 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    370  1.17        ad 		return 1;
    371   1.7    bouyer 	case WB_CHIPID_83782:
    372   1.7    bouyer 		printf(": W83782D\n");
    373   1.7    bouyer 		break;
    374   1.7    bouyer 	case WB_CHIPID_83627:
    375   1.7    bouyer 		printf(": W83627HF\n");
    376   1.7    bouyer 		break;
    377  1.23   xtraeme 	case WB_CHIPID_83627THF:
    378  1.23   xtraeme 		printf(": W83627THF\n");
    379  1.23   xtraeme 		break;
    380   1.7    bouyer 	default:
    381   1.7    bouyer 		printf(": unknow winbond chip ID 0x%x\n", j);
    382   1.7    bouyer 		/* handle as a standart lm7x */
    383   1.7    bouyer 		lm_common_match(sc);
    384   1.7    bouyer 		return 1;
    385   1.7    bouyer 	}
    386   1.8    bouyer 	/* common code for the W83782D and W83627HF */
    387   1.8    bouyer 	wb_setup_volt(sc);
    388   1.8    bouyer 	setup_temp(sc, 9, 3);
    389   1.8    bouyer 	setup_fan(sc, 12, 3);
    390   1.5    bouyer 	sc->numsensors = WB_NUM_SENSORS;
    391   1.7    bouyer 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
    392   1.8    bouyer 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    393   1.8    bouyer 	return 1;
    394   1.8    bouyer }
    395   1.5    bouyer 
    396   1.8    bouyer static void
    397   1.8    bouyer wb_setup_volt(sc)
    398   1.8    bouyer 	struct lm_softc *sc;
    399   1.8    bouyer {
    400   1.5    bouyer 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
    401  1.18    itojun 	snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
    402   1.5    bouyer 	sc->info[0].rfact = 10000;
    403   1.5    bouyer 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
    404  1.18    itojun 	snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
    405   1.5    bouyer 	sc->info[1].rfact = 10000;
    406   1.5    bouyer 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
    407  1.18    itojun 	snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
    408   1.5    bouyer 	sc->info[2].rfact = 10000;
    409   1.5    bouyer 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
    410  1.18    itojun 	snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
    411   1.5    bouyer 	sc->info[3].rfact = 16778;
    412   1.5    bouyer 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
    413  1.18    itojun 	snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
    414   1.5    bouyer 	sc->info[4].rfact = 38000;
    415   1.5    bouyer 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
    416  1.18    itojun 	snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
    417   1.5    bouyer 	sc->info[5].rfact = 10000;
    418   1.5    bouyer 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
    419  1.18    itojun 	snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
    420   1.5    bouyer 	sc->info[6].rfact = 10000;
    421   1.5    bouyer 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
    422  1.18    itojun 	snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
    423   1.5    bouyer 	sc->info[7].rfact = 15151;
    424   1.5    bouyer 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
    425  1.18    itojun 	snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
    426   1.5    bouyer 	sc->info[8].rfact = 10000;
    427   1.8    bouyer }
    428   1.8    bouyer 
    429  1.19  christos int
    430  1.19  christos itec_match(sc)
    431  1.19  christos 	struct lm_softc *sc;
    432  1.19  christos {
    433  1.22   xtraeme 	int vendor, coreid;
    434  1.22   xtraeme 
    435  1.19  christos 	/* do the same thing as in  lm_probe() */
    436  1.19  christos 	if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT)
    437  1.19  christos 		return 0;
    438  1.19  christos 
    439  1.19  christos 	if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT)
    440  1.19  christos 		return 0;
    441  1.19  christos 
    442  1.22   xtraeme 	/* We check for the core ID register (0x5B), which is available
    443  1.22   xtraeme 	 * only in the 8712F, if that fails, we check the vendor ID
    444  1.22   xtraeme 	 * register, available on 8705F and 8712F */
    445  1.22   xtraeme 
    446  1.22   xtraeme 	coreid = (*sc->lm_readreg)(sc, ITEC_COREID);
    447  1.19  christos 
    448  1.22   xtraeme 	if (coreid == ITEC_COREID_ITE)
    449  1.22   xtraeme 		printf(": ITE8712F\n");
    450  1.22   xtraeme 	else {
    451  1.22   xtraeme 		vendor = (*sc->lm_readreg)(sc, ITEC_VENDID);
    452  1.22   xtraeme 		if (vendor == ITEC_VENDID_ITE)
    453  1.22   xtraeme 			printf(": ITE8705F\n");
    454  1.22   xtraeme 		else
    455  1.22   xtraeme 			printf(": unknown ITE87%02x compatible\n", vendor);
    456  1.22   xtraeme 	}
    457  1.19  christos 
    458  1.19  christos 	/*
    459  1.19  christos 	 * XXX this is a litle bit lame...
    460  1.19  christos 	 * All VIN inputs work exactly the same way, it depends of the
    461  1.19  christos 	 * external wiring what voltages they monitor and which correction
    462  1.19  christos 	 * factors are needed. We assume a pretty standard setup here
    463  1.19  christos 	 */
    464  1.19  christos 	wb_setup_volt(sc);
    465  1.19  christos 	strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc));
    466  1.19  christos 	strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc));
    467  1.19  christos 	strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc));
    468  1.19  christos 	sc->info[5].rfact = 51100;
    469  1.19  christos 	sc->info[7].rfact = 16778;
    470  1.19  christos 
    471  1.19  christos 	setup_temp(sc, 9, 3);
    472  1.19  christos 	setup_fan(sc, 12, 3);
    473  1.19  christos 	sc->numsensors = ITEC_NUM_SENSORS;
    474  1.19  christos 	sc->refresh_sensor_data = itec_refresh_sensor_data;
    475  1.19  christos 	sc->sc_sysmon.sme_streinfo = itec_streinfo;
    476  1.19  christos 
    477  1.19  christos 	return 1;
    478  1.19  christos }
    479  1.19  christos 
    480  1.19  christos 
    481   1.8    bouyer static void
    482   1.8    bouyer setup_temp(sc, start, n)
    483   1.8    bouyer 	struct lm_softc *sc;
    484   1.8    bouyer 	int start, n;
    485   1.8    bouyer {
    486   1.8    bouyer 	int i;
    487   1.5    bouyer 
    488   1.8    bouyer 	for (i = 0; i < n; i++) {
    489   1.8    bouyer 		sc->sensors[start + i].units = ENVSYS_STEMP;
    490  1.18    itojun 		snprintf(sc->info[start + i].desc,
    491  1.18    itojun 		    sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
    492   1.8    bouyer 	}
    493   1.8    bouyer }
    494   1.8    bouyer 
    495   1.8    bouyer 
    496   1.8    bouyer static void
    497   1.8    bouyer setup_fan(sc, start, n)
    498   1.8    bouyer 	struct lm_softc *sc;
    499   1.8    bouyer 	int start, n;
    500   1.8    bouyer {
    501   1.8    bouyer 	int i;
    502   1.8    bouyer 	for (i = 0; i < n; ++i) {
    503   1.8    bouyer 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
    504   1.8    bouyer 		sc->info[start + i].units = ENVSYS_SFANRPM;
    505  1.18    itojun 		snprintf(sc->info[start + i].desc,
    506  1.18    itojun 		    sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
    507   1.5    bouyer 	}
    508   1.1      groo }
    509   1.1      groo 
    510   1.5    bouyer int
    511   1.5    bouyer lm_gtredata(sme, tred)
    512   1.5    bouyer 	 struct sysmon_envsys *sme;
    513   1.5    bouyer 	 struct envsys_tre_data *tred;
    514   1.5    bouyer {
    515   1.5    bouyer 	 static const struct timeval onepointfive = { 1, 500000 };
    516   1.5    bouyer 	 struct timeval t;
    517   1.5    bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    518   1.5    bouyer 	 int i, s;
    519   1.5    bouyer 
    520   1.5    bouyer 	 /* read new values at most once every 1.5 seconds */
    521   1.5    bouyer 	 timeradd(&sc->lastread, &onepointfive, &t);
    522   1.5    bouyer 	 s = splclock();
    523   1.5    bouyer 	 i = timercmp(&mono_time, &t, >);
    524   1.5    bouyer 	 if (i) {
    525   1.5    bouyer 		  sc->lastread.tv_sec  = mono_time.tv_sec;
    526   1.5    bouyer 		  sc->lastread.tv_usec = mono_time.tv_usec;
    527   1.5    bouyer 	 }
    528   1.5    bouyer 	 splx(s);
    529   1.5    bouyer 
    530   1.5    bouyer 	 if (i)
    531   1.5    bouyer 		  sc->refresh_sensor_data(sc);
    532   1.5    bouyer 
    533   1.5    bouyer 	 *tred = sc->sensors[tred->sensor];
    534   1.5    bouyer 
    535  1.19  christos 	 return 0;
    536   1.5    bouyer }
    537   1.1      groo 
    538   1.1      groo int
    539   1.7    bouyer generic_streinfo_fan(sc, info, n, binfo)
    540   1.7    bouyer 	struct lm_softc *sc;
    541   1.7    bouyer 	struct envsys_basic_info *info;
    542   1.7    bouyer 	int n;
    543   1.7    bouyer 	struct envsys_basic_info *binfo;
    544   1.7    bouyer {
    545   1.7    bouyer 	u_int8_t sdata;
    546   1.7    bouyer 	int divisor;
    547   1.7    bouyer 
    548   1.7    bouyer 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
    549   1.7    bouyer 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
    550  1.14      tron 	    && (n < 2)) {
    551   1.7    bouyer 		if (binfo->rpms == 0) {
    552   1.7    bouyer 			binfo->validflags = 0;
    553  1.19  christos 			return 0;
    554   1.7    bouyer 		}
    555   1.7    bouyer 
    556  1.14      tron 		/* write back the nominal FAN speed  */
    557  1.14      tron 		info->rpms = binfo->rpms;
    558  1.14      tron 
    559   1.7    bouyer 		/* 153 is the nominal FAN speed value */
    560   1.7    bouyer 		divisor = 1350000 / (binfo->rpms * 153);
    561   1.7    bouyer 
    562   1.7    bouyer 		/* ...but we need lg(divisor) */
    563   1.7    bouyer 		if (divisor <= 1)
    564   1.7    bouyer 		    divisor = 0;
    565   1.7    bouyer 		else if (divisor <= 2)
    566   1.7    bouyer 		    divisor = 1;
    567   1.7    bouyer 		else if (divisor <= 4)
    568   1.7    bouyer 		    divisor = 2;
    569   1.7    bouyer 		else
    570   1.7    bouyer 		    divisor = 3;
    571   1.7    bouyer 
    572   1.7    bouyer 		/*
    573   1.7    bouyer 		 * FAN1 div is in bits <5:4>, FAN2 div is
    574   1.7    bouyer 		 * in <7:6>
    575   1.7    bouyer 		 */
    576  1.17        ad 		sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    577  1.14      tron 		if ( n == 0 ) {  /* FAN1 */
    578   1.7    bouyer 		    divisor <<= 4;
    579   1.7    bouyer 		    sdata = (sdata & 0xCF) | divisor;
    580   1.7    bouyer 		} else { /* FAN2 */
    581   1.7    bouyer 		    divisor <<= 6;
    582   1.7    bouyer 		    sdata = (sdata & 0x3F) | divisor;
    583   1.7    bouyer 		}
    584   1.7    bouyer 
    585  1.17        ad 		(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    586   1.7    bouyer 	}
    587  1.19  christos 	return 0;
    588   1.7    bouyer 
    589   1.7    bouyer }
    590   1.7    bouyer 
    591   1.7    bouyer int
    592   1.4   thorpej lm_streinfo(sme, binfo)
    593   1.5    bouyer 	 struct sysmon_envsys *sme;
    594   1.5    bouyer 	 struct envsys_basic_info *binfo;
    595   1.1      groo {
    596   1.5    bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    597   1.5    bouyer 
    598   1.5    bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    599   1.5    bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    600   1.5    bouyer 	 else {
    601   1.7    bouyer 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    602   1.7    bouyer 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    603   1.7    bouyer 			    binfo->sensor - 8, binfo);
    604   1.7    bouyer 		}
    605  1.19  christos 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    606   1.7    bouyer 		    sizeof(sc->info[binfo->sensor].desc));
    607   1.7    bouyer 		binfo->validflags = ENVSYS_FVALID;
    608   1.7    bouyer 	 }
    609  1.19  christos 	 return 0;
    610   1.7    bouyer }
    611   1.5    bouyer 
    612   1.7    bouyer int
    613   1.7    bouyer wb781_streinfo(sme, binfo)
    614   1.7    bouyer 	 struct sysmon_envsys *sme;
    615   1.7    bouyer 	 struct envsys_basic_info *binfo;
    616   1.7    bouyer {
    617   1.7    bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    618  1.14      tron 	 int divisor;
    619  1.14      tron 	 u_int8_t sdata;
    620  1.14      tron 	 int i;
    621   1.5    bouyer 
    622   1.7    bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    623   1.7    bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    624   1.7    bouyer 	 else {
    625   1.7    bouyer 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    626  1.14      tron 			if (binfo->rpms == 0) {
    627  1.14      tron 				binfo->validflags = 0;
    628  1.19  christos 				return 0;
    629  1.14      tron 			}
    630  1.14      tron 
    631  1.14      tron 			/* write back the nominal FAN speed  */
    632  1.14      tron 			sc->info[binfo->sensor].rpms = binfo->rpms;
    633  1.14      tron 
    634  1.14      tron 			/* 153 is the nominal FAN speed value */
    635  1.14      tron 			divisor = 1350000 / (binfo->rpms * 153);
    636  1.14      tron 
    637  1.14      tron 			/* ...but we need lg(divisor) */
    638  1.14      tron 			for (i = 0; i < 7; i++) {
    639  1.14      tron 				if (divisor <= (1 << i))
    640  1.14      tron 				 	break;
    641  1.14      tron 			}
    642  1.14      tron 			divisor = i;
    643  1.14      tron 
    644  1.14      tron 			if (binfo->sensor == 10 || binfo->sensor == 11) {
    645  1.14      tron 				/*
    646  1.14      tron 				 * FAN1 div is in bits <5:4>, FAN2 div
    647  1.14      tron 				 * is in <7:6>
    648  1.14      tron 				 */
    649  1.17        ad 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    650  1.14      tron 				if ( binfo->sensor == 10 ) {  /* FAN1 */
    651  1.14      tron 					 sdata = (sdata & 0xCF) |
    652  1.14      tron 					     ((divisor & 0x3) << 4);
    653  1.14      tron 				} else { /* FAN2 */
    654  1.14      tron 					 sdata = (sdata & 0x3F) |
    655  1.14      tron 					     ((divisor & 0x3) << 6);
    656  1.14      tron 				}
    657  1.17        ad 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    658  1.14      tron 			} else {
    659  1.14      tron 				/* FAN3 is in WB_PIN <7:6> */
    660  1.17        ad 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
    661  1.14      tron 				sdata = (sdata & 0x3F) |
    662  1.14      tron 				     ((divisor & 0x3) << 6);
    663  1.17        ad 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
    664  1.14      tron 			}
    665   1.7    bouyer 		}
    666  1.19  christos 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    667   1.7    bouyer 		    sizeof(sc->info[binfo->sensor].desc));
    668   1.7    bouyer 		binfo->validflags = ENVSYS_FVALID;
    669   1.5    bouyer 	 }
    670  1.19  christos 	 return 0;
    671   1.5    bouyer }
    672   1.5    bouyer 
    673   1.5    bouyer int
    674   1.7    bouyer wb782_streinfo(sme, binfo)
    675   1.5    bouyer 	 struct sysmon_envsys *sme;
    676   1.5    bouyer 	 struct envsys_basic_info *binfo;
    677   1.5    bouyer {
    678   1.5    bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    679   1.5    bouyer 	 int divisor;
    680   1.5    bouyer 	 u_int8_t sdata;
    681   1.5    bouyer 	 int i;
    682   1.5    bouyer 
    683   1.5    bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    684   1.5    bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    685   1.5    bouyer 	 else {
    686   1.5    bouyer 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    687   1.4   thorpej 			if (binfo->rpms == 0) {
    688   1.4   thorpej 				binfo->validflags = 0;
    689  1.19  christos 				return 0;
    690   1.1      groo 			}
    691   1.1      groo 
    692  1.14      tron 			/* write back the nominal FAN speed  */
    693  1.14      tron 			sc->info[binfo->sensor].rpms = binfo->rpms;
    694  1.14      tron 
    695   1.4   thorpej 			/* 153 is the nominal FAN speed value */
    696   1.4   thorpej 			divisor = 1350000 / (binfo->rpms * 153);
    697   1.1      groo 
    698   1.4   thorpej 			/* ...but we need lg(divisor) */
    699   1.5    bouyer 			for (i = 0; i < 7; i++) {
    700   1.5    bouyer 				if (divisor <= (1 << i))
    701   1.5    bouyer 				 	break;
    702   1.5    bouyer 			}
    703   1.5    bouyer 			divisor = i;
    704   1.4   thorpej 
    705   1.5    bouyer 			if (binfo->sensor == 12 || binfo->sensor == 13) {
    706   1.5    bouyer 				/*
    707   1.5    bouyer 				 * FAN1 div is in bits <5:4>, FAN2 div
    708   1.5    bouyer 				 * is in <7:6>
    709   1.5    bouyer 				 */
    710  1.17        ad 				sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
    711   1.5    bouyer 				if ( binfo->sensor == 12 ) {  /* FAN1 */
    712   1.5    bouyer 					 sdata = (sdata & 0xCF) |
    713   1.5    bouyer 					     ((divisor & 0x3) << 4);
    714   1.5    bouyer 				} else { /* FAN2 */
    715   1.5    bouyer 					 sdata = (sdata & 0x3F) |
    716   1.5    bouyer 					     ((divisor & 0x3) << 6);
    717   1.5    bouyer 				}
    718  1.17        ad 				(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
    719   1.5    bouyer 			} else {
    720   1.5    bouyer 				/* FAN3 is in WB_PIN <7:6> */
    721  1.17        ad 				sdata = (*sc->lm_readreg)(sc, WB_PIN);
    722   1.5    bouyer 				sdata = (sdata & 0x3F) |
    723   1.5    bouyer 				     ((divisor & 0x3) << 6);
    724  1.17        ad 				(*sc->lm_writereg)(sc, WB_PIN, sdata);
    725   1.1      groo 			}
    726   1.5    bouyer 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
    727  1.17        ad 			(*sc->lm_banksel)(sc, 0);
    728  1.17        ad 			sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
    729   1.5    bouyer 			sdata &= ~(0x20 << (binfo->sensor - 12));
    730   1.5    bouyer 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
    731  1.17        ad 			(*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
    732   1.1      groo 		}
    733   1.1      groo 
    734  1.19  christos 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    735   1.4   thorpej 		    sizeof(sc->info[binfo->sensor].desc));
    736  1.19  christos 		binfo->validflags = ENVSYS_FVALID;
    737  1.19  christos 	}
    738  1.19  christos 	return 0;
    739  1.19  christos }
    740  1.19  christos 
    741  1.19  christos int
    742  1.19  christos itec_streinfo(sme, binfo)
    743  1.19  christos 	 struct sysmon_envsys *sme;
    744  1.19  christos 	 struct envsys_basic_info *binfo;
    745  1.19  christos {
    746  1.19  christos 	 struct lm_softc *sc = sme->sme_cookie;
    747  1.19  christos 	 int divisor;
    748  1.19  christos 	 u_int8_t sdata;
    749  1.19  christos 	 int i;
    750  1.19  christos 
    751  1.19  christos 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    752  1.19  christos 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    753  1.19  christos 	 else {
    754  1.19  christos 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    755  1.19  christos 			if (binfo->rpms == 0) {
    756  1.19  christos 				binfo->validflags = 0;
    757  1.19  christos 				return 0;
    758  1.19  christos 			}
    759  1.19  christos 
    760  1.19  christos 			/* write back the nominal FAN speed  */
    761  1.19  christos 			sc->info[binfo->sensor].rpms = binfo->rpms;
    762  1.19  christos 
    763  1.19  christos 			/* 153 is the nominal FAN speed value */
    764  1.19  christos 			divisor = 1350000 / (binfo->rpms * 153);
    765   1.1      groo 
    766  1.19  christos 			/* ...but we need lg(divisor) */
    767  1.19  christos 			for (i = 0; i < 7; i++) {
    768  1.19  christos 				if (divisor <= (1 << i))
    769  1.19  christos 				 	break;
    770  1.19  christos 			}
    771  1.19  christos 			divisor = i;
    772  1.19  christos 
    773  1.19  christos 			sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV);
    774  1.19  christos 			/*
    775  1.19  christos 			 * FAN1 div is in bits <0:2>, FAN2 is in <3:5>
    776  1.19  christos 			 * FAN3 is in <6>, if set divisor is 8, else 2
    777  1.19  christos 			 */
    778  1.19  christos 			if ( binfo->sensor == 10 ) {  /* FAN1 */
    779  1.19  christos 				 sdata = (sdata & 0xf8) | divisor;
    780  1.19  christos 			} else if ( binfo->sensor == 11 ) { /* FAN2 */
    781  1.19  christos 				 sdata = (sdata & 0xc7) | divisor << 3;
    782  1.19  christos 			} else { /* FAN3 */
    783  1.19  christos 				if (divisor>2)
    784  1.19  christos 					sdata = sdata & 0xbf;
    785  1.19  christos 				else
    786  1.19  christos 					sdata = sdata | 0x40;
    787  1.19  christos 			}
    788  1.19  christos 			(*sc->lm_writereg)(sc, ITEC_FANDIV, sdata);
    789  1.19  christos 		}
    790  1.19  christos 		strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
    791  1.19  christos 		    sizeof(sc->info[binfo->sensor].desc));
    792   1.4   thorpej 		binfo->validflags = ENVSYS_FVALID;
    793  1.19  christos 	 }
    794  1.19  christos 	 return 0;
    795   1.1      groo }
    796   1.1      groo 
    797   1.8    bouyer static void
    798   1.7    bouyer generic_stemp(sc, sensor)
    799   1.7    bouyer 	struct lm_softc *sc;
    800   1.7    bouyer 	struct envsys_tre_data *sensor;
    801   1.7    bouyer {
    802  1.17        ad 	int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
    803  1.10    bouyer 	DPRINTF(("sdata[temp] 0x%x\n", sdata));
    804   1.7    bouyer 	/* temp is given in deg. C, we convert to uK */
    805   1.7    bouyer 	sensor->cur.data_us = sdata * 1000000 + 273150000;
    806   1.7    bouyer }
    807   1.7    bouyer 
    808   1.8    bouyer static void
    809   1.7    bouyer generic_svolt(sc, sensors, infos)
    810   1.7    bouyer 	struct lm_softc *sc;
    811   1.7    bouyer 	struct envsys_tre_data *sensors;
    812   1.7    bouyer 	struct envsys_basic_info *infos;
    813   1.7    bouyer {
    814   1.7    bouyer 	int i, sdata;
    815   1.7    bouyer 
    816   1.7    bouyer 	for (i = 0; i < 7; i++) {
    817  1.17        ad 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
    818  1.10    bouyer 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    819   1.7    bouyer 		/* voltage returned as (mV >> 4), we convert to uVDC */
    820   1.7    bouyer 		sensors[i].cur.data_s = (sdata << 4);
    821   1.7    bouyer 		/* rfact is (factor * 10^4) */
    822   1.7    bouyer 		sensors[i].cur.data_s *= infos[i].rfact;
    823   1.7    bouyer 		/* division by 10 gets us back to uVDC */
    824   1.7    bouyer 		sensors[i].cur.data_s /= 10;
    825   1.7    bouyer 
    826   1.7    bouyer 		/* these two are negative voltages */
    827   1.7    bouyer 		if ( (i == 5) || (i == 6) )
    828   1.7    bouyer 			sensors[i].cur.data_s *= -1;
    829   1.7    bouyer 	}
    830   1.7    bouyer }
    831   1.7    bouyer 
    832   1.8    bouyer static void
    833   1.7    bouyer generic_fanrpm(sc, sensors)
    834   1.7    bouyer 	struct lm_softc *sc;
    835   1.7    bouyer 	struct envsys_tre_data *sensors;
    836   1.7    bouyer {
    837   1.7    bouyer 	int i, sdata, divisor;
    838   1.7    bouyer 	for (i = 0; i < 3; i++) {
    839  1.17        ad 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
    840  1.10    bouyer 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    841   1.7    bouyer 		if (i == 2)
    842   1.7    bouyer 			divisor = 2;	/* Fixed divisor for FAN3 */
    843   1.7    bouyer 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
    844  1.17        ad 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    845   1.7    bouyer 		else
    846  1.17        ad 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    847   1.7    bouyer 
    848   1.7    bouyer 		if (sdata == 0xff || sdata == 0x00) {
    849   1.7    bouyer 			sensors[i].cur.data_us = 0;
    850   1.7    bouyer 		} else {
    851   1.7    bouyer 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
    852   1.7    bouyer 		}
    853   1.7    bouyer 	}
    854   1.7    bouyer }
    855   1.7    bouyer 
    856   1.1      groo /*
    857  1.12       wiz  * pre:  last read occurred >= 1.5 seconds ago
    858   1.1      groo  * post: sensors[] current data are the latest from the chip
    859   1.1      groo  */
    860   1.1      groo void
    861   1.1      groo lm_refresh_sensor_data(sc)
    862   1.1      groo 	struct lm_softc *sc;
    863   1.1      groo {
    864   1.7    bouyer 	/* Refresh our stored data for every sensor */
    865   1.7    bouyer 	generic_stemp(sc, &sc->sensors[7]);
    866   1.7    bouyer 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    867   1.7    bouyer 	generic_fanrpm(sc, &sc->sensors[8]);
    868   1.7    bouyer }
    869   1.7    bouyer 
    870   1.8    bouyer static void
    871   1.8    bouyer wb_svolt(sc)
    872   1.7    bouyer 	struct lm_softc *sc;
    873   1.7    bouyer {
    874   1.8    bouyer 	int i, sdata;
    875   1.5    bouyer 	for (i = 0; i < 9; ++i) {
    876   1.5    bouyer 		if (i < 7) {
    877  1.17        ad 			sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
    878   1.5    bouyer 		} else {
    879   1.5    bouyer 			/* from bank5 */
    880  1.17        ad 			(*sc->lm_banksel)(sc, 5);
    881  1.17        ad 			sdata = (*sc->lm_readreg)(sc, (i == 7) ?
    882   1.5    bouyer 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
    883   1.5    bouyer 		}
    884  1.10    bouyer 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
    885   1.5    bouyer 		/* voltage returned as (mV >> 4), we convert to uV */
    886   1.5    bouyer 		sdata =  sdata << 4;
    887   1.5    bouyer 		/* special case for negative voltages */
    888   1.5    bouyer 		if (i == 5) {
    889   1.5    bouyer 			/*
    890   1.5    bouyer 			 * -12Vdc, assume Winbond recommended values for
    891   1.5    bouyer 			 * resistors
    892   1.5    bouyer 			 */
    893   1.5    bouyer 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
    894   1.5    bouyer 		} else if (i == 6) {
    895   1.5    bouyer 			/*
    896   1.5    bouyer 			 * -5Vdc, assume Winbond recommended values for
    897   1.5    bouyer 			 * resistors
    898   1.5    bouyer 			 */
    899   1.5    bouyer 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
    900   1.5    bouyer 		}
    901   1.5    bouyer 		/* rfact is (factor * 10^4) */
    902   1.5    bouyer 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
    903   1.5    bouyer 		/* division by 10 gets us back to uVDC */
    904   1.5    bouyer 		sc->sensors[i].cur.data_s /= 10;
    905   1.5    bouyer 	}
    906   1.8    bouyer }
    907   1.5    bouyer 
    908   1.8    bouyer static void
    909   1.8    bouyer wb_stemp(sc, sensors, n)
    910   1.8    bouyer 	struct lm_softc *sc;
    911   1.8    bouyer 	struct  envsys_tre_data *sensors;
    912   1.8    bouyer 	int n;
    913   1.8    bouyer {
    914   1.8    bouyer 	int sdata;
    915   1.8    bouyer 	/* temperatures. Given in dC, we convert to uK */
    916  1.17        ad 	sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
    917  1.10    bouyer 	DPRINTF(("sdata[temp0] 0x%x\n", sdata));
    918   1.8    bouyer 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
    919   1.8    bouyer 	/* from bank1 */
    920  1.17        ad 	if ((*sc->lm_banksel)(sc, 1))
    921  1.17        ad 		sensors[1].validflags &= ~ENVSYS_FCURVALID;
    922  1.17        ad 	else {
    923  1.17        ad 		sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
    924  1.17        ad 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
    925  1.17        ad 		DPRINTF(("sdata[temp1] 0x%x\n", sdata));
    926  1.17        ad 		sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    927  1.17        ad 	}
    928   1.8    bouyer 	if (n < 3)
    929   1.8    bouyer 		return;
    930   1.8    bouyer 	/* from bank2 */
    931  1.17        ad 	if ((*sc->lm_banksel)(sc, 2))
    932  1.17        ad 		sensors[2].validflags &= ~ENVSYS_FCURVALID;
    933  1.17        ad 	else {
    934  1.17        ad 		sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
    935  1.17        ad 		sdata |=  ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
    936  1.17        ad 		DPRINTF(("sdata[temp2] 0x%x\n", sdata));
    937  1.17        ad 		sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    938  1.17        ad 	}
    939   1.8    bouyer }
    940   1.8    bouyer 
    941   1.8    bouyer static void
    942  1.14      tron wb781_fanrpm(sc, sensors)
    943  1.14      tron 	struct lm_softc *sc;
    944  1.14      tron 	struct envsys_tre_data *sensors;
    945  1.14      tron {
    946  1.14      tron 	int i, divisor, sdata;
    947  1.17        ad 	(*sc->lm_banksel)(sc, 0);
    948  1.14      tron 	for (i = 0; i < 3; i++) {
    949  1.17        ad 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
    950  1.14      tron 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    951  1.14      tron 		if (i == 0)
    952  1.17        ad 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    953  1.14      tron 		else if (i == 1)
    954  1.17        ad 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    955  1.14      tron 		else
    956  1.17        ad 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
    957  1.14      tron 
    958  1.14      tron 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    959  1.14      tron 		if (sdata == 0xff || sdata == 0x00) {
    960  1.14      tron 			sensors[i].cur.data_us = 0;
    961  1.14      tron 		} else {
    962  1.14      tron 			sensors[i].cur.data_us = 1350000 /
    963  1.14      tron 			    (sdata << divisor);
    964  1.14      tron 		}
    965  1.14      tron 	}
    966  1.14      tron }
    967  1.14      tron 
    968  1.14      tron static void
    969   1.8    bouyer wb_fanrpm(sc, sensors)
    970   1.8    bouyer 	struct lm_softc *sc;
    971   1.8    bouyer 	struct envsys_tre_data *sensors;
    972   1.8    bouyer {
    973   1.8    bouyer 	int i, divisor, sdata;
    974  1.17        ad 	(*sc->lm_banksel)(sc, 0);
    975   1.8    bouyer 	for (i = 0; i < 3; i++) {
    976  1.17        ad 		sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
    977  1.10    bouyer 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
    978   1.8    bouyer 		if (i == 0)
    979  1.17        ad 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
    980   1.8    bouyer 		else if (i == 1)
    981  1.17        ad 			divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
    982   1.5    bouyer 		else
    983  1.17        ad 			divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
    984  1.17        ad 		divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
    985   1.5    bouyer 
    986   1.5    bouyer 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    987   1.5    bouyer 		if (sdata == 0xff || sdata == 0x00) {
    988   1.8    bouyer 			sensors[i].cur.data_us = 0;
    989   1.5    bouyer 		} else {
    990   1.8    bouyer 			sensors[i].cur.data_us = 1350000 /
    991   1.5    bouyer 			    (sdata << divisor);
    992   1.1      groo 		}
    993   1.1      groo 	}
    994   1.8    bouyer }
    995   1.8    bouyer 
    996   1.8    bouyer void
    997   1.8    bouyer wb781_refresh_sensor_data(sc)
    998   1.8    bouyer 	struct lm_softc *sc;
    999   1.8    bouyer {
   1000   1.8    bouyer 	/* Refresh our stored data for every sensor */
   1001   1.9    bouyer 	/* we need to reselect bank0 to access common registers */
   1002  1.17        ad 	(*sc->lm_banksel)(sc, 0);
   1003   1.8    bouyer 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
   1004  1.17        ad 	(*sc->lm_banksel)(sc, 0);
   1005   1.8    bouyer 	wb_stemp(sc, &sc->sensors[7], 3);
   1006  1.17        ad 	(*sc->lm_banksel)(sc, 0);
   1007  1.14      tron 	wb781_fanrpm(sc, &sc->sensors[10]);
   1008   1.8    bouyer }
   1009   1.8    bouyer 
   1010   1.8    bouyer void
   1011   1.8    bouyer wb782_refresh_sensor_data(sc)
   1012   1.8    bouyer 	struct lm_softc *sc;
   1013   1.8    bouyer {
   1014   1.8    bouyer 	/* Refresh our stored data for every sensor */
   1015   1.8    bouyer 	wb_svolt(sc);
   1016   1.8    bouyer 	wb_stemp(sc, &sc->sensors[9], 3);
   1017   1.8    bouyer 	wb_fanrpm(sc, &sc->sensors[12]);
   1018   1.8    bouyer }
   1019   1.8    bouyer 
   1020   1.8    bouyer void
   1021   1.8    bouyer wb697_refresh_sensor_data(sc)
   1022   1.8    bouyer 	struct lm_softc *sc;
   1023   1.8    bouyer {
   1024   1.8    bouyer 	/* Refresh our stored data for every sensor */
   1025   1.8    bouyer 	wb_svolt(sc);
   1026   1.8    bouyer 	wb_stemp(sc, &sc->sensors[9], 2);
   1027   1.8    bouyer 	wb_fanrpm(sc, &sc->sensors[11]);
   1028   1.1      groo }
   1029  1.19  christos 
   1030  1.19  christos static void
   1031  1.19  christos itec_svolt(sc, sensors, infos)
   1032  1.19  christos 	struct lm_softc *sc;
   1033  1.19  christos 	struct envsys_tre_data *sensors;
   1034  1.19  christos 	struct envsys_basic_info *infos;
   1035  1.19  christos {
   1036  1.19  christos 	int i, sdata;
   1037  1.19  christos 
   1038  1.19  christos 	for (i = 0; i < 9; i++) {
   1039  1.19  christos 		sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i);
   1040  1.19  christos 		DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
   1041  1.19  christos 		/* voltage returned as (mV >> 4), we convert to uVDC */
   1042  1.19  christos 		sensors[i].cur.data_s = ( sdata << 4 );
   1043  1.19  christos 		/* rfact is (factor * 10^4) */
   1044  1.19  christos 
   1045  1.19  christos 		sensors[i].cur.data_s *= infos[i].rfact;
   1046  1.19  christos 		/*
   1047  1.19  christos 		 * XXX We assume input 5 is wired the way iTE suggests to
   1048  1.19  christos 		 * monitor a negative voltage. I'd prefer using negative rfacts
   1049  1.19  christos 		 * for detecting those cases but since rfact is an u_int this
   1050  1.19  christos 		 * isn't possible.
   1051  1.19  christos 		 */
   1052  1.21     perry 		if (i == 5)
   1053  1.21     perry 			sensors[i].cur.data_s -=
   1054  1.19  christos 			    (infos[i].rfact - 10000) * ITEC_VREF;
   1055  1.19  christos 		/* division by 10 gets us back to uVDC */
   1056  1.19  christos 		sensors[i].cur.data_s /= 10;
   1057  1.19  christos 	}
   1058  1.19  christos }
   1059  1.19  christos 
   1060  1.19  christos static void
   1061  1.19  christos itec_stemp(sc, sensors)
   1062  1.19  christos 	struct lm_softc *sc;
   1063  1.19  christos 	struct  envsys_tre_data *sensors;
   1064  1.19  christos {
   1065  1.19  christos 	int i, sdata;
   1066  1.19  christos 
   1067  1.19  christos 	/* temperatures. Given in dC, we convert to uK */
   1068  1.19  christos 	for (i = 0; i < 3; i++) {
   1069  1.19  christos 		sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i);
   1070  1.19  christos 		DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata));
   1071  1.19  christos 		sensors[i].cur.data_us = sdata * 1000000 + 273150000;
   1072  1.19  christos 	}
   1073  1.19  christos }
   1074  1.19  christos 
   1075  1.19  christos static void
   1076  1.19  christos itec_fanrpm(sc, sensors)
   1077  1.19  christos 	struct lm_softc *sc;
   1078  1.19  christos 	struct envsys_tre_data *sensors;
   1079  1.19  christos {
   1080  1.19  christos 	int i, fandiv, divisor, sdata;
   1081  1.19  christos 	(*sc->lm_banksel)(sc, 0);
   1082  1.19  christos 	fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV));
   1083  1.19  christos 
   1084  1.19  christos 	for (i = 0; i < 3; i++) {
   1085  1.19  christos 		sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i);
   1086  1.19  christos 		DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
   1087  1.19  christos 		switch (i) {
   1088  1.19  christos 		case 0:
   1089  1.19  christos 			divisor = fandiv & 0x7;
   1090  1.19  christos 			break;
   1091  1.19  christos 		case 1:
   1092  1.19  christos 			divisor = (fandiv >> 3) & 0x7;
   1093  1.19  christos 			break;
   1094  1.19  christos 		case 2:
   1095  1.19  christos 		default:	/* XXX */
   1096  1.19  christos 			divisor = (fandiv & 0x40) ? 3 : 1;
   1097  1.19  christos 			break;
   1098  1.19  christos 		}
   1099  1.19  christos 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
   1100  1.19  christos 		if (sdata == 0xff || sdata == 0x00) {
   1101  1.19  christos 			sensors[i].cur.data_us = 0;
   1102  1.19  christos 		} else {
   1103  1.19  christos 			sensors[i].cur.data_us = 1350000 /
   1104  1.19  christos 			    (sdata << divisor);
   1105  1.19  christos 		}
   1106  1.19  christos 	}
   1107  1.19  christos 
   1108  1.19  christos }
   1109  1.19  christos 
   1110  1.19  christos void
   1111  1.19  christos itec_refresh_sensor_data(sc)
   1112  1.19  christos 	struct lm_softc *sc;
   1113  1.19  christos {
   1114  1.19  christos 	itec_svolt(sc, &sc->sensors[0], &sc->info[0]);
   1115  1.19  christos 	itec_stemp(sc, &sc->sensors[9]);
   1116  1.19  christos 	itec_fanrpm(sc, &sc->sensors[12]);
   1117  1.19  christos }
   1118