nslm7x.c revision 1.31 1 1.31 xtraeme /* $NetBSD: nslm7x.c,v 1.31 2007/03/11 21:23:22 xtraeme Exp $ */
2 1.1 groo
3 1.1 groo /*-
4 1.1 groo * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.1 groo * All rights reserved.
6 1.1 groo *
7 1.1 groo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 groo * by Bill Squier.
9 1.1 groo *
10 1.1 groo * Redistribution and use in source and binary forms, with or without
11 1.1 groo * modification, are permitted provided that the following conditions
12 1.1 groo * are met:
13 1.1 groo * 1. Redistributions of source code must retain the above copyright
14 1.1 groo * notice, this list of conditions and the following disclaimer.
15 1.1 groo * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 groo * notice, this list of conditions and the following disclaimer in the
17 1.1 groo * documentation and/or other materials provided with the distribution.
18 1.1 groo * 3. All advertising materials mentioning features or use of this software
19 1.1 groo * must display the following acknowledgement:
20 1.1 groo * This product includes software developed by the NetBSD
21 1.1 groo * Foundation, Inc. and its contributors.
22 1.1 groo * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 groo * contributors may be used to endorse or promote products derived
24 1.1 groo * from this software without specific prior written permission.
25 1.1 groo *
26 1.1 groo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 groo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 groo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 groo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 groo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 groo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 groo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 groo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 groo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 groo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 groo * POSSIBILITY OF SUCH DAMAGE.
37 1.1 groo */
38 1.13 lukem
39 1.13 lukem #include <sys/cdefs.h>
40 1.31 xtraeme __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.31 2007/03/11 21:23:22 xtraeme Exp $");
41 1.1 groo
42 1.1 groo #include <sys/param.h>
43 1.1 groo #include <sys/systm.h>
44 1.1 groo #include <sys/kernel.h>
45 1.1 groo #include <sys/proc.h>
46 1.1 groo #include <sys/device.h>
47 1.1 groo #include <sys/conf.h>
48 1.1 groo #include <sys/time.h>
49 1.1 groo
50 1.1 groo #include <machine/bus.h>
51 1.1 groo
52 1.1 groo #include <dev/isa/isareg.h>
53 1.1 groo #include <dev/isa/isavar.h>
54 1.1 groo
55 1.4 thorpej #include <dev/sysmon/sysmonvar.h>
56 1.4 thorpej
57 1.1 groo #include <dev/ic/nslm7xvar.h>
58 1.1 groo
59 1.1 groo #include <machine/intr.h>
60 1.1 groo
61 1.1 groo #if defined(LMDEBUG)
62 1.30 xtraeme #define DPRINTF(x) do { printf x; } while (0)
63 1.1 groo #else
64 1.1 groo #define DPRINTF(x)
65 1.1 groo #endif
66 1.1 groo
67 1.30 xtraeme /*
68 1.30 xtraeme * LM78-compatible chips can typically measure voltages up to 4.096 V.
69 1.30 xtraeme * To measure higher voltages the input is attenuated with (external)
70 1.30 xtraeme * resistors. Negative voltages are measured using inverting op amps
71 1.30 xtraeme * and resistors. So we have to convert the sensor values back to
72 1.30 xtraeme * real voltages by applying the appropriate resistor factor.
73 1.30 xtraeme */
74 1.30 xtraeme #define RFACT_NONE 10000
75 1.30 xtraeme #define RFACT(x, y) (RFACT_NONE * ((x) + (y)) / (y))
76 1.30 xtraeme #define NRFACT(x, y) (-RFACT_NONE * (x) / (y))
77 1.30 xtraeme
78 1.4 thorpej const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
79 1.30 xtraeme /* for each unit type */
80 1.1 groo { 7, 7, ENVSYS_STEMP },
81 1.1 groo { 8, 10, ENVSYS_SFANRPM },
82 1.1 groo { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
83 1.1 groo { 0, 6, ENVSYS_SVOLTS_DC },
84 1.1 groo { 1, 0, ENVSYS_SOHMS }, /* None */
85 1.1 groo { 1, 0, ENVSYS_SWATTS }, /* None */
86 1.1 groo { 1, 0, ENVSYS_SAMPS } /* None */
87 1.1 groo };
88 1.1 groo
89 1.30 xtraeme static int lm_match(struct lm_softc *);
90 1.30 xtraeme static int wb_match(struct lm_softc *);
91 1.30 xtraeme static int def_match(struct lm_softc *);
92 1.30 xtraeme
93 1.30 xtraeme static void lm_generic_banksel(struct lm_softc *, int);
94 1.30 xtraeme static void lm_setup_sensors(struct lm_softc *, struct lm_sensor *);
95 1.30 xtraeme
96 1.30 xtraeme static void lm_refresh_sensor_data(struct lm_softc *);
97 1.30 xtraeme static void lm_refresh_volt(struct lm_softc *, int);
98 1.30 xtraeme static void lm_refresh_temp(struct lm_softc *, int);
99 1.30 xtraeme static void lm_refresh_fanrpm(struct lm_softc *, int);
100 1.30 xtraeme
101 1.30 xtraeme static void wb_refresh_sensor_data(struct lm_softc *);
102 1.30 xtraeme static void wb_w83637hf_refresh_vcore(struct lm_softc *, int);
103 1.30 xtraeme static void wb_refresh_nvolt(struct lm_softc *, int);
104 1.30 xtraeme static void wb_w83627ehf_refresh_nvolt(struct lm_softc *, int);
105 1.30 xtraeme static void wb_refresh_temp(struct lm_softc *, int);
106 1.30 xtraeme static void wb_refresh_fanrpm(struct lm_softc *, int);
107 1.30 xtraeme static void wb_w83792d_refresh_fanrpm(struct lm_softc *, int);
108 1.5 bouyer
109 1.30 xtraeme static void as_refresh_temp(struct lm_softc *, int);
110 1.20 perry
111 1.30 xtraeme static int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
112 1.30 xtraeme static int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *,
113 1.20 perry int, struct envsys_basic_info *);
114 1.30 xtraeme static int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
115 1.30 xtraeme static int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
116 1.30 xtraeme static int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
117 1.5 bouyer
118 1.5 bouyer struct lm_chip {
119 1.20 perry int (*chip_match)(struct lm_softc *);
120 1.5 bouyer };
121 1.5 bouyer
122 1.30 xtraeme static struct lm_chip lm_chips[] = {
123 1.8 bouyer { wb_match },
124 1.8 bouyer { lm_match },
125 1.8 bouyer { def_match } /* Must be last */
126 1.5 bouyer };
127 1.5 bouyer
128 1.30 xtraeme static struct lm_sensor lm78_sensors[] = {
129 1.30 xtraeme /* Voltage */
130 1.30 xtraeme { "VCore A", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
131 1.30 xtraeme { "VCore B", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
132 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
133 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(68, 100) },
134 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(30, 10) },
135 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x25, lm_refresh_volt, NRFACT(240, 60) },
136 1.30 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x26, lm_refresh_volt, NRFACT(100, 60) },
137 1.30 xtraeme
138 1.30 xtraeme /* Temperature */
139 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
140 1.30 xtraeme
141 1.30 xtraeme /* Fans */
142 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, lm_refresh_fanrpm, 0 },
143 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, lm_refresh_fanrpm, 0 },
144 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, lm_refresh_fanrpm, 0 },
145 1.30 xtraeme
146 1.30 xtraeme { NULL }
147 1.30 xtraeme };
148 1.30 xtraeme
149 1.30 xtraeme static struct lm_sensor w83627hf_sensors[] = {
150 1.30 xtraeme /* Voltage */
151 1.30 xtraeme { "VCore A", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
152 1.30 xtraeme { "VCore B", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
153 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
154 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
155 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
156 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
157 1.30 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
158 1.30 xtraeme { "5VSB", ENVSYS_SVOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
159 1.30 xtraeme { "VBAT", ENVSYS_SVOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
160 1.30 xtraeme
161 1.30 xtraeme /* Temperature */
162 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
163 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 1, 0x50, wb_refresh_temp, 0 },
164 1.31 xtraeme { "Temp2", ENVSYS_STEMP, 2, 0x50, wb_refresh_temp, 0 },
165 1.30 xtraeme
166 1.30 xtraeme /* Fans */
167 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, wb_refresh_fanrpm, 0 },
168 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, wb_refresh_fanrpm, 0 },
169 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, wb_refresh_fanrpm, 0 },
170 1.30 xtraeme
171 1.30 xtraeme { NULL }
172 1.30 xtraeme };
173 1.30 xtraeme
174 1.30 xtraeme /*
175 1.30 xtraeme * The W83627EHF can measure voltages up to 2.048 V instead of the
176 1.30 xtraeme * traditional 4.096 V. For measuring positive voltages, this can be
177 1.30 xtraeme * accounted for by halving the resistor factor. Negative voltages
178 1.30 xtraeme * need special treatment, also because the reference voltage is 2.048 V
179 1.30 xtraeme * instead of the traditional 3.6 V.
180 1.30 xtraeme */
181 1.30 xtraeme static struct lm_sensor w83627ehf_sensors[] = {
182 1.30 xtraeme /* Voltage */
183 1.30 xtraeme { "VCore", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE / 2},
184 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56, 10) / 2 },
185 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT(34, 34) / 2 },
186 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 24) / 2 },
187 1.31 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x24, wb_w83627ehf_refresh_nvolt, 0 },
188 1.30 xtraeme { "Unknown", ENVSYS_SVOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT_NONE / 2 },
189 1.30 xtraeme { "Unknown", ENVSYS_SVOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT_NONE / 2 },
190 1.30 xtraeme { "3.3VSB", ENVSYS_SVOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 34) / 2 },
191 1.30 xtraeme { "VBAT", ENVSYS_SVOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE / 2 },
192 1.30 xtraeme { "Unknown", ENVSYS_SVOLTS_DC, 5, 0x52, lm_refresh_volt, RFACT_NONE / 2 },
193 1.30 xtraeme
194 1.30 xtraeme /* Temperature */
195 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
196 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 1, 0x50, wb_refresh_temp, 0 },
197 1.31 xtraeme { "Temp2", ENVSYS_STEMP, 2, 0x50, wb_refresh_temp, 0 },
198 1.30 xtraeme
199 1.30 xtraeme /* Fans */
200 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, wb_refresh_fanrpm, 0 },
201 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, wb_refresh_fanrpm, 0 },
202 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, wb_refresh_fanrpm, 0 },
203 1.30 xtraeme
204 1.30 xtraeme { NULL }
205 1.30 xtraeme };
206 1.30 xtraeme
207 1.30 xtraeme static struct lm_sensor w83627dhg_sensors[] = {
208 1.30 xtraeme /* Voltage */
209 1.31 xtraeme { "VCore", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE/2 },
210 1.31 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56,10)/2 },
211 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
212 1.31 xtraeme { "AVCC", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT_NONE },
213 1.31 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT(32, 56) },
214 1.30 xtraeme /*
215 1.31 xtraeme * I'm not sure about which one is -12V or -5V.
216 1.30 xtraeme */
217 1.30 xtraeme #if 0
218 1.31 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x24, wb_refresh_nvolt, RFACT(232, 60) },
219 1.31 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x26, wb_w83627ehf_refresh_nvolt },
220 1.30 xtraeme #endif
221 1.31 xtraeme { "+3.3VSB", ENVSYS_SVOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT_NONE },
222 1.30 xtraeme { "VBAT", ENVSYS_SVOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
223 1.30 xtraeme
224 1.30 xtraeme /* Temperature */
225 1.31 xtraeme { "System Temp", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
226 1.31 xtraeme { "CPU Temp", ENVSYS_STEMP, 1, 0x50, wb_refresh_temp, 0 },
227 1.31 xtraeme { "Aux Temp", ENVSYS_STEMP, 2, 0x50, wb_refresh_temp, 0 },
228 1.30 xtraeme
229 1.30 xtraeme /* Fans */
230 1.31 xtraeme { "System Fan", ENVSYS_SFANRPM, 0, 0x28, wb_refresh_fanrpm, 0 },
231 1.31 xtraeme { "CPU Fan", ENVSYS_SFANRPM, 0, 0x29, wb_refresh_fanrpm, 0 },
232 1.31 xtraeme { "Aux Fan", ENVSYS_SFANRPM, 0, 0x2a, wb_refresh_fanrpm, 0 },
233 1.30 xtraeme
234 1.30 xtraeme { NULL }
235 1.30 xtraeme };
236 1.30 xtraeme
237 1.30 xtraeme static struct lm_sensor w83637hf_sensors[] = {
238 1.30 xtraeme /* Voltage */
239 1.31 xtraeme { "VCore", ENVSYS_SVOLTS_DC, 0, 0x20, wb_w83637hf_refresh_vcore, 0 },
240 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(28, 10) },
241 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
242 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 51) },
243 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x24, wb_refresh_nvolt, RFACT(232, 56) },
244 1.30 xtraeme { "5VSB", ENVSYS_SVOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 51) },
245 1.30 xtraeme { "VBAT", ENVSYS_SVOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
246 1.30 xtraeme
247 1.30 xtraeme /* Temperature */
248 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
249 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 1, 0x50, wb_refresh_temp, 0 },
250 1.31 xtraeme { "Temp2", ENVSYS_STEMP, 2, 0x50, wb_refresh_temp, 0 },
251 1.30 xtraeme
252 1.30 xtraeme /* Fans */
253 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, wb_refresh_fanrpm, 0 },
254 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, wb_refresh_fanrpm, 0 },
255 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, wb_refresh_fanrpm, 0 },
256 1.30 xtraeme
257 1.30 xtraeme { NULL }
258 1.30 xtraeme };
259 1.30 xtraeme
260 1.30 xtraeme static struct lm_sensor w83697hf_sensors[] = {
261 1.30 xtraeme /* Voltage */
262 1.30 xtraeme { "VCore", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
263 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
264 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
265 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
266 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
267 1.30 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
268 1.30 xtraeme { "5VSB", ENVSYS_SVOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
269 1.30 xtraeme { "VBAT", ENVSYS_SVOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
270 1.30 xtraeme
271 1.30 xtraeme /* Temperature */
272 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
273 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 1, 0x50, wb_refresh_temp, 0 },
274 1.30 xtraeme
275 1.30 xtraeme /* Fans */
276 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, wb_refresh_fanrpm, 0 },
277 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, wb_refresh_fanrpm, 0 },
278 1.30 xtraeme
279 1.30 xtraeme { NULL }
280 1.30 xtraeme };
281 1.30 xtraeme
282 1.30 xtraeme /*
283 1.30 xtraeme * The datasheet doesn't mention the (internal) resistors used for the
284 1.30 xtraeme * +5V, but using the values from the W83782D datasheets seems to
285 1.30 xtraeme * provide sensible results.
286 1.30 xtraeme */
287 1.30 xtraeme static struct lm_sensor w83781d_sensors[] = {
288 1.30 xtraeme /* Voltage */
289 1.30 xtraeme { "VCore A", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
290 1.30 xtraeme { "VCore B", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
291 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
292 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
293 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
294 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x25, lm_refresh_volt, NRFACT(2100, 604) },
295 1.30 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x26, lm_refresh_volt, NRFACT(909, 604) },
296 1.30 xtraeme
297 1.30 xtraeme /* Temperature */
298 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
299 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 1, 0x50, wb_refresh_temp, 0 },
300 1.31 xtraeme { "Temp2", ENVSYS_STEMP, 2, 0x50, wb_refresh_temp, 0 },
301 1.30 xtraeme
302 1.30 xtraeme /* Fans */
303 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, lm_refresh_fanrpm, 0 },
304 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, lm_refresh_fanrpm, 0 },
305 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, lm_refresh_fanrpm, 0 },
306 1.30 xtraeme
307 1.30 xtraeme { NULL }
308 1.30 xtraeme };
309 1.30 xtraeme
310 1.30 xtraeme static struct lm_sensor w83782d_sensors[] = {
311 1.30 xtraeme /* Voltage */
312 1.30 xtraeme { "VCore", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
313 1.30 xtraeme { "VINR0", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
314 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
315 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
316 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
317 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
318 1.30 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
319 1.30 xtraeme { "5VSB", ENVSYS_SVOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
320 1.30 xtraeme { "VBAT", ENVSYS_SVOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
321 1.30 xtraeme
322 1.30 xtraeme /* Temperature */
323 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
324 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 1, 0x50, wb_refresh_temp, 0 },
325 1.31 xtraeme { "Temp2", ENVSYS_STEMP, 2, 0x50, wb_refresh_temp, 0 },
326 1.30 xtraeme
327 1.30 xtraeme /* Fans */
328 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, wb_refresh_fanrpm, 0 },
329 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, wb_refresh_fanrpm, 0 },
330 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, wb_refresh_fanrpm, 0 },
331 1.30 xtraeme
332 1.30 xtraeme { NULL }
333 1.30 xtraeme };
334 1.30 xtraeme
335 1.30 xtraeme static struct lm_sensor w83783s_sensors[] = {
336 1.30 xtraeme /* Voltage */
337 1.30 xtraeme { "VCore", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
338 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
339 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
340 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
341 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
342 1.30 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
343 1.30 xtraeme
344 1.30 xtraeme /* Temperature */
345 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
346 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 1, 0x50, wb_refresh_temp, 0 },
347 1.30 xtraeme
348 1.30 xtraeme /* Fans */
349 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, wb_refresh_fanrpm, 0 },
350 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, wb_refresh_fanrpm, 0 },
351 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, wb_refresh_fanrpm, 0 },
352 1.30 xtraeme
353 1.30 xtraeme { NULL }
354 1.30 xtraeme };
355 1.30 xtraeme
356 1.30 xtraeme static struct lm_sensor w83791d_sensors[] = {
357 1.30 xtraeme /* Voltage */
358 1.30 xtraeme { "VCore", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, 10000 },
359 1.30 xtraeme { "VINR0", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, 10000 },
360 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, 10000 },
361 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
362 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
363 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
364 1.30 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
365 1.30 xtraeme { "5VSB", ENVSYS_SVOLTS_DC, 0, 0xb0, lm_refresh_volt, RFACT(17, 33) },
366 1.30 xtraeme { "VBAT", ENVSYS_SVOLTS_DC, 0, 0xb1, lm_refresh_volt, RFACT_NONE },
367 1.30 xtraeme { "VINR1", ENVSYS_SVOLTS_DC, 0, 0xb2, lm_refresh_volt, RFACT_NONE },
368 1.30 xtraeme
369 1.30 xtraeme /* Temperature */
370 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
371 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 0, 0xc0, wb_refresh_temp, 0 },
372 1.31 xtraeme { "Temp2", ENVSYS_STEMP, 0, 0xc8, wb_refresh_temp, 0 },
373 1.30 xtraeme
374 1.30 xtraeme /* Fans */
375 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, wb_refresh_fanrpm, 0 },
376 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, wb_refresh_fanrpm, 0 },
377 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, wb_refresh_fanrpm, 0 },
378 1.31 xtraeme { "Fan3", ENVSYS_SFANRPM, 0, 0xba, wb_refresh_fanrpm, 0 },
379 1.31 xtraeme { "Fan4", ENVSYS_SFANRPM, 0, 0xbb, wb_refresh_fanrpm, 0 },
380 1.30 xtraeme
381 1.30 xtraeme { NULL }
382 1.30 xtraeme };
383 1.30 xtraeme
384 1.30 xtraeme static struct lm_sensor w83792d_sensors[] = {
385 1.30 xtraeme /* Voltage */
386 1.30 xtraeme { "VCore A", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
387 1.30 xtraeme { "VCore B", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
388 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
389 1.30 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x23, wb_refresh_nvolt, RFACT(120, 56) },
390 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
391 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
392 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT(34, 50) },
393 1.30 xtraeme { "5VSB", ENVSYS_SVOLTS_DC, 0, 0xb0, lm_refresh_volt, RFACT(17, 33) },
394 1.30 xtraeme { "VBAT", ENVSYS_SVOLTS_DC, 0, 0xb1, lm_refresh_volt, RFACT_NONE },
395 1.30 xtraeme
396 1.30 xtraeme /* Temperature */
397 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
398 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 0, 0xc0, wb_refresh_temp, 0 },
399 1.31 xtraeme { "Temp2", ENVSYS_STEMP, 0, 0xc8, wb_refresh_temp, 0 },
400 1.30 xtraeme
401 1.30 xtraeme /* Fans */
402 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, wb_w83792d_refresh_fanrpm, 0 },
403 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, wb_w83792d_refresh_fanrpm, 0 },
404 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, wb_w83792d_refresh_fanrpm, 0 },
405 1.31 xtraeme { "Fan3", ENVSYS_SFANRPM, 0, 0xb8, wb_w83792d_refresh_fanrpm, 0 },
406 1.31 xtraeme { "Fan4", ENVSYS_SFANRPM, 0, 0xb9, wb_w83792d_refresh_fanrpm, 0 },
407 1.31 xtraeme { "Fan5", ENVSYS_SFANRPM, 0, 0xba, wb_w83792d_refresh_fanrpm, 0 },
408 1.31 xtraeme { "Fan6", ENVSYS_SFANRPM, 0, 0xbe, wb_w83792d_refresh_fanrpm, 0 },
409 1.30 xtraeme
410 1.30 xtraeme { NULL }
411 1.30 xtraeme };
412 1.1 groo
413 1.30 xtraeme static struct lm_sensor as99127f_sensors[] = {
414 1.30 xtraeme /* Voltage */
415 1.30 xtraeme { "VCore A", ENVSYS_SVOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
416 1.30 xtraeme { "VCore B", ENVSYS_SVOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
417 1.30 xtraeme { "+3.3V", ENVSYS_SVOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
418 1.30 xtraeme { "+5V", ENVSYS_SVOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
419 1.30 xtraeme { "+12V", ENVSYS_SVOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
420 1.30 xtraeme { "-12V", ENVSYS_SVOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
421 1.30 xtraeme { "-5V", ENVSYS_SVOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
422 1.30 xtraeme
423 1.30 xtraeme /* Temperature */
424 1.31 xtraeme { "Temp0", ENVSYS_STEMP, 0, 0x27, lm_refresh_temp, 0 },
425 1.31 xtraeme { "Temp1", ENVSYS_STEMP, 1, 0x50, as_refresh_temp, 0 },
426 1.31 xtraeme { "Temp2", ENVSYS_STEMP, 2, 0x50, as_refresh_temp, 0 },
427 1.30 xtraeme
428 1.30 xtraeme /* Fans */
429 1.31 xtraeme { "Fan0", ENVSYS_SFANRPM, 0, 0x28, lm_refresh_fanrpm, 0 },
430 1.31 xtraeme { "Fan1", ENVSYS_SFANRPM, 0, 0x29, lm_refresh_fanrpm, 0 },
431 1.31 xtraeme { "Fan2", ENVSYS_SFANRPM, 0, 0x2a, lm_refresh_fanrpm, 0 },
432 1.30 xtraeme
433 1.30 xtraeme { NULL }
434 1.30 xtraeme };
435 1.30 xtraeme
436 1.30 xtraeme static void
437 1.30 xtraeme lm_generic_banksel(struct lm_softc *lmsc, int bank)
438 1.1 groo {
439 1.17 ad (*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
440 1.1 groo }
441 1.1 groo
442 1.1 groo /*
443 1.2 groo * bus independent probe
444 1.2 groo */
445 1.2 groo int
446 1.30 xtraeme lm_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
447 1.2 groo {
448 1.30 xtraeme uint8_t cr;
449 1.2 groo int rv;
450 1.2 groo
451 1.2 groo /* Check for some power-on defaults */
452 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
453 1.2 groo
454 1.2 groo /* Perform LM78 reset */
455 1.2 groo bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
456 1.2 groo
457 1.2 groo /* XXX - Why do I have to reselect the register? */
458 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
459 1.2 groo cr = bus_space_read_1(iot, ioh, LMC_DATA);
460 1.2 groo
461 1.2 groo /* XXX - spec says *only* 0x08! */
462 1.23 xtraeme if ((cr == 0x08) || (cr == 0x01) || (cr == 0x03))
463 1.2 groo rv = 1;
464 1.2 groo else
465 1.2 groo rv = 0;
466 1.2 groo
467 1.2 groo DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
468 1.2 groo
469 1.30 xtraeme return rv;
470 1.2 groo }
471 1.2 groo
472 1.2 groo
473 1.2 groo /*
474 1.1 groo * pre: lmsc contains valid busspace tag and handle
475 1.1 groo */
476 1.1 groo void
477 1.30 xtraeme lm_attach(struct lm_softc *lmsc)
478 1.1 groo {
479 1.30 xtraeme uint32_t i;
480 1.1 groo
481 1.30 xtraeme for (i = 0; i < __arraycount(lm_chips); i++)
482 1.5 bouyer if (lm_chips[i].chip_match(lmsc))
483 1.5 bouyer break;
484 1.1 groo
485 1.1 groo /* Start the monitoring loop */
486 1.17 ad (*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
487 1.1 groo
488 1.1 groo /* Indicate we have never read the registers */
489 1.1 groo timerclear(&lmsc->lastread);
490 1.1 groo
491 1.1 groo /* Initialize sensors */
492 1.5 bouyer for (i = 0; i < lmsc->numsensors; ++i) {
493 1.1 groo lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
494 1.1 groo lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
495 1.1 groo lmsc->info[i].validflags = ENVSYS_FVALID;
496 1.1 groo lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
497 1.1 groo }
498 1.4 thorpej /*
499 1.4 thorpej * Hook into the System Monitor.
500 1.4 thorpej */
501 1.4 thorpej lmsc->sc_sysmon.sme_ranges = lm_ranges;
502 1.4 thorpej lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
503 1.4 thorpej lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
504 1.4 thorpej lmsc->sc_sysmon.sme_cookie = lmsc;
505 1.4 thorpej
506 1.4 thorpej lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
507 1.5 bouyer /* sme_streinfo set in chip-specific attach */
508 1.4 thorpej
509 1.5 bouyer lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
510 1.4 thorpej lmsc->sc_sysmon.sme_envsys_version = 1000;
511 1.4 thorpej
512 1.4 thorpej if (sysmon_envsys_register(&lmsc->sc_sysmon))
513 1.30 xtraeme aprint_error("%s: unable to register with sysmon\n",
514 1.4 thorpej lmsc->sc_dev.dv_xname);
515 1.1 groo }
516 1.1 groo
517 1.30 xtraeme static int
518 1.30 xtraeme lm_match(struct lm_softc *sc)
519 1.5 bouyer {
520 1.30 xtraeme const char *model = NULL;
521 1.30 xtraeme int chipid;
522 1.5 bouyer
523 1.30 xtraeme /* See if we have an LM78/LM78J/LM79 or LM81 */
524 1.30 xtraeme chipid = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
525 1.30 xtraeme switch(chipid) {
526 1.5 bouyer case LM_ID_LM78:
527 1.30 xtraeme model = "LM78";
528 1.5 bouyer break;
529 1.5 bouyer case LM_ID_LM78J:
530 1.30 xtraeme model = "LM78J";
531 1.5 bouyer break;
532 1.5 bouyer case LM_ID_LM79:
533 1.30 xtraeme model = "LM79";
534 1.15 bouyer break;
535 1.15 bouyer case LM_ID_LM81:
536 1.30 xtraeme model = "LM81";
537 1.5 bouyer break;
538 1.5 bouyer default:
539 1.5 bouyer return 0;
540 1.5 bouyer }
541 1.1 groo
542 1.30 xtraeme aprint_normal(": National Semiconductor %s Hardware monitor\n", model);
543 1.5 bouyer
544 1.30 xtraeme lm_setup_sensors(sc, lm78_sensors);
545 1.30 xtraeme sc->sc_sysmon.sme_streinfo = lm_streinfo;
546 1.30 xtraeme sc->refresh_sensor_data = lm_refresh_sensor_data;
547 1.5 bouyer return 1;
548 1.5 bouyer }
549 1.5 bouyer
550 1.30 xtraeme static int
551 1.30 xtraeme def_match(struct lm_softc *sc)
552 1.1 groo {
553 1.30 xtraeme int chipid;
554 1.5 bouyer
555 1.30 xtraeme chipid = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
556 1.30 xtraeme aprint_error(": Unknown chip (ID %d)\n", chipid);
557 1.5 bouyer
558 1.30 xtraeme lm_setup_sensors(sc, lm78_sensors);
559 1.5 bouyer sc->sc_sysmon.sme_streinfo = lm_streinfo;
560 1.30 xtraeme sc->refresh_sensor_data = lm_refresh_sensor_data;
561 1.30 xtraeme return 1;
562 1.5 bouyer }
563 1.1 groo
564 1.30 xtraeme static int
565 1.30 xtraeme wb_match(struct lm_softc *sc)
566 1.5 bouyer {
567 1.30 xtraeme const char *model;
568 1.30 xtraeme int banksel, vendid, devid;
569 1.1 groo
570 1.30 xtraeme model = NULL;
571 1.30 xtraeme
572 1.30 xtraeme /* Read vendor ID */
573 1.30 xtraeme banksel = (*sc->lm_readreg)(sc, WB_BANKSEL);
574 1.30 xtraeme lm_generic_banksel(sc, WB_BANKSEL_HBAC);
575 1.30 xtraeme
576 1.30 xtraeme vendid = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
577 1.30 xtraeme lm_generic_banksel(sc, 0);
578 1.30 xtraeme vendid |= (*sc->lm_readreg)(sc, WB_VENDID);
579 1.30 xtraeme DPRINTF(("winbond vend id 0x%x\n", vendid));
580 1.30 xtraeme if (vendid != WB_VENDID_WINBOND && vendid != WB_VENDID_ASUS)
581 1.5 bouyer return 0;
582 1.7 bouyer
583 1.30 xtraeme /* Read device/chip ID */
584 1.30 xtraeme lm_generic_banksel(sc, WB_BANKSEL_B0);
585 1.30 xtraeme devid = (*sc->lm_readreg)(sc, LMD_CHIPID);
586 1.30 xtraeme sc->chipid = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
587 1.30 xtraeme lm_generic_banksel(sc, banksel);
588 1.30 xtraeme DPRINTF(("winbond chip id 0x%x\n", sc->chipid));
589 1.30 xtraeme
590 1.30 xtraeme switch(sc->chipid) {
591 1.30 xtraeme case WB_CHIPID_W83627HF:
592 1.30 xtraeme model = "W83627HF";
593 1.30 xtraeme lm_setup_sensors(sc, w83627hf_sensors);
594 1.30 xtraeme break;
595 1.30 xtraeme case WB_CHIPID_W83627THF:
596 1.30 xtraeme model = "W83627THF";
597 1.30 xtraeme lm_setup_sensors(sc, w83637hf_sensors);
598 1.30 xtraeme break;
599 1.30 xtraeme case WB_CHIPID_W83627EHF:
600 1.30 xtraeme model = "W83627EHF";
601 1.30 xtraeme lm_setup_sensors(sc, w83627ehf_sensors);
602 1.30 xtraeme break;
603 1.30 xtraeme case WB_CHIPID_W83627DHG:
604 1.30 xtraeme model = "W83627DHG";
605 1.30 xtraeme lm_setup_sensors(sc, w83627dhg_sensors);
606 1.30 xtraeme break;
607 1.30 xtraeme case WB_CHIPID_W83637HF:
608 1.30 xtraeme model = "W83637HF";
609 1.30 xtraeme lm_generic_banksel(sc, WB_BANKSEL_B0);
610 1.30 xtraeme if ((*sc->lm_readreg)(sc, WB_BANK0_CONFIG) & WB_CONFIG_VMR9)
611 1.30 xtraeme sc->vrm9 = 1;
612 1.30 xtraeme lm_generic_banksel(sc, banksel);
613 1.30 xtraeme lm_setup_sensors(sc, w83637hf_sensors);
614 1.30 xtraeme break;
615 1.30 xtraeme case WB_CHIPID_W83697HF:
616 1.30 xtraeme model = "W83697HF";
617 1.30 xtraeme lm_setup_sensors(sc, w83697hf_sensors);
618 1.30 xtraeme break;
619 1.30 xtraeme case WB_CHIPID_W83781D:
620 1.30 xtraeme case WB_CHIPID_W83781D_2:
621 1.30 xtraeme model = "W83781D";
622 1.30 xtraeme lm_setup_sensors(sc, w83781d_sensors);
623 1.7 bouyer sc->sc_sysmon.sme_streinfo = wb781_streinfo;
624 1.30 xtraeme break;
625 1.30 xtraeme case WB_CHIPID_W83782D:
626 1.30 xtraeme model = "W83782D";
627 1.30 xtraeme lm_setup_sensors(sc, w83782d_sensors);
628 1.8 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
629 1.7 bouyer break;
630 1.30 xtraeme case WB_CHIPID_W83783S:
631 1.30 xtraeme model = "W83783S";
632 1.30 xtraeme lm_setup_sensors(sc, w83783s_sensors);
633 1.30 xtraeme break;
634 1.30 xtraeme case WB_CHIPID_W83791D:
635 1.30 xtraeme model = "W83791D";
636 1.30 xtraeme lm_setup_sensors(sc, w83791d_sensors);
637 1.30 xtraeme break;
638 1.30 xtraeme case WB_CHIPID_W83791SD:
639 1.30 xtraeme model = "W83791SD";
640 1.30 xtraeme break;
641 1.30 xtraeme case WB_CHIPID_W83792D:
642 1.30 xtraeme model = "W83792D";
643 1.30 xtraeme lm_setup_sensors(sc, w83792d_sensors);
644 1.7 bouyer break;
645 1.30 xtraeme case WB_CHIPID_AS99127F:
646 1.30 xtraeme if (vendid == WB_VENDID_ASUS) {
647 1.30 xtraeme model = "AS99127F";
648 1.30 xtraeme lm_setup_sensors(sc, w83781d_sensors);
649 1.30 xtraeme } else {
650 1.30 xtraeme model = "AS99127F rev 2";
651 1.30 xtraeme lm_setup_sensors(sc, as99127f_sensors);
652 1.30 xtraeme }
653 1.23 xtraeme break;
654 1.7 bouyer default:
655 1.30 xtraeme aprint_normal(": unknown Winbond chip (ID 0x%x)\n",
656 1.30 xtraeme sc->chipid);
657 1.30 xtraeme /* Handle as a standard LM78. */
658 1.30 xtraeme lm_setup_sensors(sc, lm78_sensors);
659 1.30 xtraeme sc->refresh_sensor_data = lm_refresh_sensor_data;
660 1.7 bouyer return 1;
661 1.7 bouyer }
662 1.30 xtraeme
663 1.30 xtraeme aprint_normal(": Winbond %s Hardware monitor\n", model);
664 1.30 xtraeme
665 1.30 xtraeme sc->sc_sysmon.sme_streinfo = lm_streinfo;
666 1.30 xtraeme sc->refresh_sensor_data = wb_refresh_sensor_data;
667 1.8 bouyer return 1;
668 1.8 bouyer }
669 1.5 bouyer
670 1.8 bouyer static void
671 1.30 xtraeme lm_setup_sensors(struct lm_softc *sc, struct lm_sensor *sensors)
672 1.8 bouyer {
673 1.30 xtraeme int i;
674 1.30 xtraeme
675 1.30 xtraeme for (i = 0; sensors[i].desc; i++) {
676 1.30 xtraeme sc->sensors[i].units = sc->info[i].units = sensors[i].type;
677 1.30 xtraeme strlcpy(sc->info[i].desc, sensors[i].desc,
678 1.30 xtraeme sizeof(sc->info[i].desc));
679 1.30 xtraeme sc->numsensors++;
680 1.30 xtraeme }
681 1.30 xtraeme sc->lm_sensors = sensors;
682 1.8 bouyer }
683 1.8 bouyer
684 1.8 bouyer static void
685 1.30 xtraeme lm_refresh_sensor_data(struct lm_softc *sc)
686 1.8 bouyer {
687 1.8 bouyer int i;
688 1.5 bouyer
689 1.30 xtraeme /* Refresh our stored data for every sensor */
690 1.30 xtraeme for (i = 0; i < sc->numsensors; i++)
691 1.30 xtraeme sc->lm_sensors[i].refresh(sc, i);
692 1.30 xtraeme }
693 1.30 xtraeme
694 1.30 xtraeme static void
695 1.30 xtraeme lm_refresh_volt(struct lm_softc *sc, int n)
696 1.30 xtraeme {
697 1.30 xtraeme int data;
698 1.30 xtraeme
699 1.30 xtraeme data = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg);
700 1.30 xtraeme DPRINTF(("%s: volt[%d] 0x%x\n", __func__, n, data));
701 1.30 xtraeme sc->sensors[n].cur.data_s = (data << 4);
702 1.30 xtraeme sc->sensors[n].cur.data_s *= sc->lm_sensors[n].rfact;
703 1.30 xtraeme sc->sensors[n].cur.data_s /= 10;
704 1.30 xtraeme sc->info[n].rfact = sc->lm_sensors[n].rfact;
705 1.30 xtraeme }
706 1.30 xtraeme
707 1.30 xtraeme #define INVALIDATE_SENSOR(x) \
708 1.30 xtraeme do { \
709 1.30 xtraeme sc->sensors[(x)].validflags &= ~ENVSYS_FCURVALID; \
710 1.30 xtraeme sc->sensors[(x)].cur.data_us = 0; \
711 1.30 xtraeme } while (/* CONSTCOND */ 0)
712 1.30 xtraeme
713 1.30 xtraeme static void
714 1.30 xtraeme lm_refresh_temp(struct lm_softc *sc, int n)
715 1.30 xtraeme {
716 1.30 xtraeme int sdata;
717 1.30 xtraeme
718 1.30 xtraeme /*
719 1.30 xtraeme * The data sheet suggests that the range of the temperature
720 1.30 xtraeme * sensor is between -55 degC and +125 degC.
721 1.30 xtraeme */
722 1.30 xtraeme sdata = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg);
723 1.30 xtraeme if (sdata > 0x7d && sdata < 0xc9) {
724 1.30 xtraeme INVALIDATE_SENSOR(n);
725 1.30 xtraeme } else {
726 1.30 xtraeme if (sdata & 0x80)
727 1.30 xtraeme sdata -= 0x100;
728 1.30 xtraeme sc->sensors[n].validflags |= (ENVSYS_FVALID|ENVSYS_FCURVALID);
729 1.30 xtraeme sc->sensors[n].cur.data_us = sdata * 1000000 + 273150000;
730 1.8 bouyer }
731 1.8 bouyer }
732 1.8 bouyer
733 1.30 xtraeme static void
734 1.30 xtraeme lm_refresh_fanrpm(struct lm_softc *sc, int n)
735 1.30 xtraeme {
736 1.30 xtraeme int data, divisor = 1;
737 1.30 xtraeme
738 1.30 xtraeme /*
739 1.30 xtraeme * We might get more accurate fan readings by adjusting the
740 1.30 xtraeme * divisor, but that might interfere with APM or other SMM
741 1.30 xtraeme * BIOS code reading the fan speeds.
742 1.30 xtraeme */
743 1.30 xtraeme
744 1.30 xtraeme /* FAN3 has a fixed fan divisor. */
745 1.30 xtraeme if (sc->lm_sensors[n].reg == LMD_FAN1 ||
746 1.30 xtraeme sc->lm_sensors[n].reg == LMD_FAN2) {
747 1.30 xtraeme data = (*sc->lm_readreg)(sc, LMD_VIDFAN);
748 1.30 xtraeme if (sc->lm_sensors[n].reg == LMD_FAN1)
749 1.30 xtraeme divisor = (data >> 4) & 0x03;
750 1.30 xtraeme else
751 1.30 xtraeme divisor = (data >> 6) & 0x03;
752 1.30 xtraeme }
753 1.30 xtraeme
754 1.30 xtraeme data = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg);
755 1.30 xtraeme if (data == 0xff || data == 0x00) {
756 1.30 xtraeme INVALIDATE_SENSOR(n);
757 1.30 xtraeme } else {
758 1.30 xtraeme sc->sensors[n].validflags |= (ENVSYS_FVALID|ENVSYS_FCURVALID);
759 1.30 xtraeme sc->sensors[n].cur.data_us = 1350000 / (data << divisor);
760 1.30 xtraeme }
761 1.30 xtraeme }
762 1.30 xtraeme
763 1.30 xtraeme static void
764 1.30 xtraeme wb_refresh_sensor_data(struct lm_softc *sc)
765 1.30 xtraeme {
766 1.30 xtraeme int banksel, bank, i;
767 1.30 xtraeme
768 1.30 xtraeme /*
769 1.30 xtraeme * Properly save and restore bank selection register.
770 1.30 xtraeme */
771 1.30 xtraeme
772 1.30 xtraeme banksel = bank = sc->lm_readreg(sc, WB_BANKSEL);
773 1.30 xtraeme for (i = 0; i < sc->numsensors; i++) {
774 1.30 xtraeme if (bank != sc->lm_sensors[i].bank) {
775 1.30 xtraeme bank = sc->lm_sensors[i].bank;
776 1.30 xtraeme lm_generic_banksel(sc, bank);
777 1.30 xtraeme }
778 1.30 xtraeme sc->lm_sensors[i].refresh(sc, i);
779 1.30 xtraeme }
780 1.30 xtraeme lm_generic_banksel(sc, banksel);
781 1.30 xtraeme }
782 1.30 xtraeme
783 1.30 xtraeme static void
784 1.30 xtraeme wb_w83637hf_refresh_vcore(struct lm_softc *sc, int n)
785 1.30 xtraeme {
786 1.30 xtraeme int data;
787 1.30 xtraeme
788 1.30 xtraeme data = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg);
789 1.30 xtraeme
790 1.30 xtraeme /*
791 1.30 xtraeme * Depending on the voltage detection method,
792 1.30 xtraeme * one of the following formulas is used:
793 1.30 xtraeme * VRM8 method: value = raw * 0.016V
794 1.30 xtraeme * VRM9 method: value = raw * 0.00488V + 0.70V
795 1.30 xtraeme */
796 1.30 xtraeme if (sc->vrm9)
797 1.30 xtraeme sc->sensors[n].cur.data_s = (data * 4880) + 700000;
798 1.30 xtraeme else
799 1.30 xtraeme sc->sensors[n].cur.data_s = (data * 16000);
800 1.30 xtraeme }
801 1.8 bouyer
802 1.8 bouyer static void
803 1.30 xtraeme wb_refresh_nvolt(struct lm_softc *sc, int n)
804 1.8 bouyer {
805 1.30 xtraeme int data;
806 1.30 xtraeme
807 1.30 xtraeme data = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg);
808 1.30 xtraeme sc->sensors[n].cur.data_s = ((data << 4) - WB_VREF);
809 1.30 xtraeme sc->sensors[n].cur.data_s *= sc->lm_sensors[n].rfact;
810 1.30 xtraeme sc->sensors[n].cur.data_s /= 10;
811 1.30 xtraeme sc->sensors[n].cur.data_s += WB_VREF * 1000;
812 1.30 xtraeme }
813 1.30 xtraeme
814 1.30 xtraeme static void
815 1.30 xtraeme wb_w83627ehf_refresh_nvolt(struct lm_softc *sc, int n)
816 1.30 xtraeme {
817 1.30 xtraeme int data;
818 1.30 xtraeme
819 1.30 xtraeme data = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg);
820 1.30 xtraeme sc->sensors[n].cur.data_s = ((data << 3) - WB_W83627EHF_VREF);
821 1.30 xtraeme sc->sensors[n].cur.data_s *= RFACT(232, 10);
822 1.30 xtraeme sc->sensors[n].cur.data_s /= 10;
823 1.30 xtraeme sc->sensors[n].cur.data_s += WB_W83627EHF_VREF * 1000;
824 1.30 xtraeme }
825 1.30 xtraeme
826 1.30 xtraeme static void
827 1.30 xtraeme wb_refresh_temp(struct lm_softc *sc, int n)
828 1.30 xtraeme {
829 1.30 xtraeme int sdata;
830 1.30 xtraeme
831 1.30 xtraeme /*
832 1.30 xtraeme * The data sheet suggests that the range of the temperature
833 1.30 xtraeme * sensor is between -55 degC and +125 degC. However, values
834 1.30 xtraeme * around -48 degC seem to be a very common bogus values.
835 1.30 xtraeme * Since such values are unreasonably low, we use -45 degC for
836 1.30 xtraeme * the lower limit instead.
837 1.30 xtraeme */
838 1.30 xtraeme sdata = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg) << 1;
839 1.30 xtraeme sdata += (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg + 1) >> 7;
840 1.30 xtraeme if (sdata > 0x0fa && sdata < 0x1a6) {
841 1.30 xtraeme INVALIDATE_SENSOR(n);
842 1.30 xtraeme } else {
843 1.30 xtraeme if (sdata & 0x100)
844 1.30 xtraeme sdata -= 0x200;
845 1.30 xtraeme sc->sensors[n].validflags |= (ENVSYS_FVALID|ENVSYS_FCURVALID);
846 1.30 xtraeme sc->sensors[n].cur.data_us = sdata * 500000 + 273150000;
847 1.30 xtraeme }
848 1.30 xtraeme }
849 1.30 xtraeme
850 1.30 xtraeme static void
851 1.30 xtraeme wb_refresh_fanrpm(struct lm_softc *sc, int n)
852 1.30 xtraeme {
853 1.30 xtraeme int fan, data, divisor = 0;
854 1.30 xtraeme
855 1.30 xtraeme /*
856 1.30 xtraeme * This is madness; the fan divisor bits are scattered all
857 1.30 xtraeme * over the place.
858 1.30 xtraeme */
859 1.30 xtraeme
860 1.30 xtraeme if (sc->lm_sensors[n].reg == LMD_FAN1 ||
861 1.30 xtraeme sc->lm_sensors[n].reg == LMD_FAN2 ||
862 1.30 xtraeme sc->lm_sensors[n].reg == LMD_FAN3) {
863 1.30 xtraeme data = (*sc->lm_readreg)(sc, WB_BANK0_VBAT);
864 1.30 xtraeme fan = (sc->lm_sensors[n].reg - LMD_FAN1);
865 1.30 xtraeme if ((data >> 5) & (1 << fan))
866 1.30 xtraeme divisor |= 0x04;
867 1.30 xtraeme }
868 1.30 xtraeme
869 1.30 xtraeme if (sc->lm_sensors[n].reg == LMD_FAN1 ||
870 1.30 xtraeme sc->lm_sensors[n].reg == LMD_FAN2) {
871 1.30 xtraeme data = (*sc->lm_readreg)(sc, LMD_VIDFAN);
872 1.30 xtraeme if (sc->lm_sensors[n].reg == LMD_FAN1)
873 1.30 xtraeme divisor |= (data >> 4) & 0x03;
874 1.30 xtraeme else
875 1.30 xtraeme divisor |= (data >> 6) & 0x03;
876 1.30 xtraeme } else if (sc->lm_sensors[n].reg == LMD_FAN3) {
877 1.30 xtraeme data = (*sc->lm_readreg)(sc, WB_PIN);
878 1.30 xtraeme divisor |= (data >> 6) & 0x03;
879 1.30 xtraeme } else if (sc->lm_sensors[n].reg == WB_BANK0_FAN4 ||
880 1.30 xtraeme sc->lm_sensors[n].reg == WB_BANK0_FAN5) {
881 1.30 xtraeme data = (*sc->lm_readreg)(sc, WB_BANK0_FAN45);
882 1.30 xtraeme if (sc->lm_sensors[n].reg == WB_BANK0_FAN4)
883 1.30 xtraeme divisor |= (data >> 0) & 0x07;
884 1.30 xtraeme else
885 1.30 xtraeme divisor |= (data >> 4) & 0x07;
886 1.30 xtraeme }
887 1.30 xtraeme
888 1.30 xtraeme data = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg);
889 1.30 xtraeme if (data == 0xff || data == 0x00) {
890 1.30 xtraeme INVALIDATE_SENSOR(n);
891 1.30 xtraeme } else {
892 1.30 xtraeme sc->sensors[n].validflags |= (ENVSYS_FVALID|ENVSYS_FCURVALID);
893 1.30 xtraeme sc->sensors[n].cur.data_us = 1350000 / (data << divisor);
894 1.30 xtraeme }
895 1.30 xtraeme }
896 1.30 xtraeme
897 1.30 xtraeme static void
898 1.30 xtraeme wb_w83792d_refresh_fanrpm(struct lm_softc *sc, int n)
899 1.30 xtraeme {
900 1.30 xtraeme int reg, shift, data, divisor = 1;
901 1.30 xtraeme
902 1.30 xtraeme shift = 0;
903 1.30 xtraeme
904 1.30 xtraeme switch (sc->lm_sensors[n].reg) {
905 1.30 xtraeme case 0x28:
906 1.30 xtraeme reg = 0x47; shift = 0;
907 1.30 xtraeme break;
908 1.30 xtraeme case 0x29:
909 1.30 xtraeme reg = 0x47; shift = 4;
910 1.30 xtraeme break;
911 1.30 xtraeme case 0x2a:
912 1.30 xtraeme reg = 0x5b; shift = 0;
913 1.30 xtraeme break;
914 1.30 xtraeme case 0xb8:
915 1.30 xtraeme reg = 0x5b; shift = 4;
916 1.30 xtraeme break;
917 1.30 xtraeme case 0xb9:
918 1.30 xtraeme reg = 0x5c; shift = 0;
919 1.30 xtraeme break;
920 1.30 xtraeme case 0xba:
921 1.30 xtraeme reg = 0x5c; shift = 4;
922 1.30 xtraeme break;
923 1.30 xtraeme case 0xbe:
924 1.30 xtraeme reg = 0x9e; shift = 0;
925 1.30 xtraeme break;
926 1.30 xtraeme default:
927 1.30 xtraeme reg = 0;
928 1.30 xtraeme break;
929 1.30 xtraeme }
930 1.30 xtraeme
931 1.30 xtraeme data = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg);
932 1.30 xtraeme if (data == 0xff || data == 0x00) {
933 1.30 xtraeme INVALIDATE_SENSOR(n);
934 1.30 xtraeme } else {
935 1.30 xtraeme if (reg != 0)
936 1.30 xtraeme divisor = ((*sc->lm_readreg)(sc, reg) >> shift) & 0x7;
937 1.30 xtraeme sc->sensors[n].validflags |= (ENVSYS_FVALID|ENVSYS_FCURVALID);
938 1.30 xtraeme sc->sensors[n].cur.data_us = 1350000 / (data << divisor);
939 1.30 xtraeme }
940 1.30 xtraeme }
941 1.30 xtraeme
942 1.30 xtraeme static void
943 1.30 xtraeme as_refresh_temp(struct lm_softc *sc, int n)
944 1.30 xtraeme {
945 1.30 xtraeme int sdata;
946 1.30 xtraeme
947 1.30 xtraeme /*
948 1.30 xtraeme * It seems a shorted temperature diode produces an all-ones
949 1.30 xtraeme * bit pattern.
950 1.30 xtraeme */
951 1.30 xtraeme sdata = (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg) << 1;
952 1.30 xtraeme sdata += (*sc->lm_readreg)(sc, sc->lm_sensors[n].reg + 1) >> 7;
953 1.30 xtraeme if (sdata == 0x1ff) {
954 1.30 xtraeme INVALIDATE_SENSOR(n);
955 1.30 xtraeme } else {
956 1.30 xtraeme if (sdata & 0x100)
957 1.30 xtraeme sdata -= 0x200;
958 1.30 xtraeme sc->sensors[n].validflags |= (ENVSYS_FVALID|ENVSYS_FCURVALID);
959 1.30 xtraeme sc->sensors[n].cur.data_us = sdata * 500000 + 273150000;
960 1.5 bouyer }
961 1.1 groo }
962 1.1 groo
963 1.30 xtraeme #undef INVALIDATE_SENSOR
964 1.30 xtraeme
965 1.30 xtraeme static int
966 1.30 xtraeme lm_gtredata(struct sysmon_envsys *sme, envsys_tre_data_t *tred)
967 1.5 bouyer {
968 1.26 kardel static const struct timeval onepointfive = { 1, 500000 };
969 1.26 kardel struct timeval t, utv;
970 1.26 kardel struct lm_softc *sc = sme->sme_cookie;
971 1.26 kardel
972 1.26 kardel /* read new values at most once every 1.5 seconds */
973 1.26 kardel getmicrouptime(&utv);
974 1.26 kardel timeradd(&sc->lastread, &onepointfive, &t);
975 1.26 kardel if (timercmp(&utv, &t, >)) {
976 1.26 kardel sc->lastread = utv;
977 1.26 kardel sc->refresh_sensor_data(sc);
978 1.27 hannken }
979 1.5 bouyer
980 1.26 kardel *tred = sc->sensors[tred->sensor];
981 1.5 bouyer
982 1.26 kardel return 0;
983 1.5 bouyer }
984 1.1 groo
985 1.30 xtraeme static int
986 1.30 xtraeme generic_streinfo_fan(struct lm_softc *sc, envsys_basic_info_t *info, int n,
987 1.30 xtraeme envsys_basic_info_t *binfo)
988 1.7 bouyer {
989 1.30 xtraeme uint8_t sdata;
990 1.7 bouyer int divisor;
991 1.7 bouyer
992 1.7 bouyer /* FAN1 and FAN2 can have divisors set, but not FAN3 */
993 1.7 bouyer if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
994 1.14 tron && (n < 2)) {
995 1.7 bouyer if (binfo->rpms == 0) {
996 1.7 bouyer binfo->validflags = 0;
997 1.19 christos return 0;
998 1.7 bouyer }
999 1.7 bouyer
1000 1.14 tron /* write back the nominal FAN speed */
1001 1.14 tron info->rpms = binfo->rpms;
1002 1.14 tron
1003 1.7 bouyer /* 153 is the nominal FAN speed value */
1004 1.7 bouyer divisor = 1350000 / (binfo->rpms * 153);
1005 1.7 bouyer
1006 1.7 bouyer /* ...but we need lg(divisor) */
1007 1.7 bouyer if (divisor <= 1)
1008 1.7 bouyer divisor = 0;
1009 1.7 bouyer else if (divisor <= 2)
1010 1.7 bouyer divisor = 1;
1011 1.7 bouyer else if (divisor <= 4)
1012 1.7 bouyer divisor = 2;
1013 1.7 bouyer else
1014 1.7 bouyer divisor = 3;
1015 1.7 bouyer
1016 1.7 bouyer /*
1017 1.7 bouyer * FAN1 div is in bits <5:4>, FAN2 div is
1018 1.7 bouyer * in <7:6>
1019 1.7 bouyer */
1020 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
1021 1.14 tron if ( n == 0 ) { /* FAN1 */
1022 1.7 bouyer divisor <<= 4;
1023 1.7 bouyer sdata = (sdata & 0xCF) | divisor;
1024 1.7 bouyer } else { /* FAN2 */
1025 1.7 bouyer divisor <<= 6;
1026 1.7 bouyer sdata = (sdata & 0x3F) | divisor;
1027 1.7 bouyer }
1028 1.7 bouyer
1029 1.17 ad (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
1030 1.7 bouyer }
1031 1.19 christos return 0;
1032 1.7 bouyer
1033 1.7 bouyer }
1034 1.7 bouyer
1035 1.30 xtraeme static int
1036 1.30 xtraeme lm_streinfo(struct sysmon_envsys *sme, envsys_basic_info_t *binfo)
1037 1.1 groo {
1038 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
1039 1.5 bouyer
1040 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
1041 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
1042 1.5 bouyer else {
1043 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
1044 1.7 bouyer generic_streinfo_fan(sc, &sc->info[binfo->sensor],
1045 1.7 bouyer binfo->sensor - 8, binfo);
1046 1.7 bouyer }
1047 1.19 christos strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
1048 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
1049 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
1050 1.7 bouyer }
1051 1.19 christos return 0;
1052 1.7 bouyer }
1053 1.5 bouyer
1054 1.30 xtraeme static int
1055 1.30 xtraeme wb781_streinfo(struct sysmon_envsys *sme, envsys_basic_info_t *binfo)
1056 1.7 bouyer {
1057 1.7 bouyer struct lm_softc *sc = sme->sme_cookie;
1058 1.14 tron int divisor;
1059 1.30 xtraeme uint8_t sdata;
1060 1.14 tron int i;
1061 1.5 bouyer
1062 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
1063 1.7 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
1064 1.7 bouyer else {
1065 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
1066 1.14 tron if (binfo->rpms == 0) {
1067 1.14 tron binfo->validflags = 0;
1068 1.19 christos return 0;
1069 1.14 tron }
1070 1.14 tron
1071 1.14 tron /* write back the nominal FAN speed */
1072 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
1073 1.14 tron
1074 1.14 tron /* 153 is the nominal FAN speed value */
1075 1.14 tron divisor = 1350000 / (binfo->rpms * 153);
1076 1.14 tron
1077 1.14 tron /* ...but we need lg(divisor) */
1078 1.14 tron for (i = 0; i < 7; i++) {
1079 1.14 tron if (divisor <= (1 << i))
1080 1.14 tron break;
1081 1.14 tron }
1082 1.14 tron divisor = i;
1083 1.14 tron
1084 1.14 tron if (binfo->sensor == 10 || binfo->sensor == 11) {
1085 1.14 tron /*
1086 1.14 tron * FAN1 div is in bits <5:4>, FAN2 div
1087 1.14 tron * is in <7:6>
1088 1.14 tron */
1089 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
1090 1.14 tron if ( binfo->sensor == 10 ) { /* FAN1 */
1091 1.14 tron sdata = (sdata & 0xCF) |
1092 1.14 tron ((divisor & 0x3) << 4);
1093 1.14 tron } else { /* FAN2 */
1094 1.14 tron sdata = (sdata & 0x3F) |
1095 1.14 tron ((divisor & 0x3) << 6);
1096 1.14 tron }
1097 1.17 ad (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
1098 1.14 tron } else {
1099 1.14 tron /* FAN3 is in WB_PIN <7:6> */
1100 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_PIN);
1101 1.14 tron sdata = (sdata & 0x3F) |
1102 1.14 tron ((divisor & 0x3) << 6);
1103 1.17 ad (*sc->lm_writereg)(sc, WB_PIN, sdata);
1104 1.14 tron }
1105 1.7 bouyer }
1106 1.19 christos strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
1107 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
1108 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
1109 1.5 bouyer }
1110 1.19 christos return 0;
1111 1.5 bouyer }
1112 1.5 bouyer
1113 1.30 xtraeme static int
1114 1.30 xtraeme wb782_streinfo(struct sysmon_envsys *sme, envsys_basic_info_t *binfo)
1115 1.5 bouyer {
1116 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
1117 1.5 bouyer int divisor;
1118 1.30 xtraeme uint8_t sdata;
1119 1.5 bouyer int i;
1120 1.5 bouyer
1121 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
1122 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
1123 1.5 bouyer else {
1124 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
1125 1.4 thorpej if (binfo->rpms == 0) {
1126 1.4 thorpej binfo->validflags = 0;
1127 1.19 christos return 0;
1128 1.1 groo }
1129 1.1 groo
1130 1.14 tron /* write back the nominal FAN speed */
1131 1.14 tron sc->info[binfo->sensor].rpms = binfo->rpms;
1132 1.14 tron
1133 1.4 thorpej /* 153 is the nominal FAN speed value */
1134 1.4 thorpej divisor = 1350000 / (binfo->rpms * 153);
1135 1.1 groo
1136 1.4 thorpej /* ...but we need lg(divisor) */
1137 1.5 bouyer for (i = 0; i < 7; i++) {
1138 1.5 bouyer if (divisor <= (1 << i))
1139 1.5 bouyer break;
1140 1.5 bouyer }
1141 1.5 bouyer divisor = i;
1142 1.4 thorpej
1143 1.5 bouyer if (binfo->sensor == 12 || binfo->sensor == 13) {
1144 1.5 bouyer /*
1145 1.5 bouyer * FAN1 div is in bits <5:4>, FAN2 div
1146 1.5 bouyer * is in <7:6>
1147 1.5 bouyer */
1148 1.17 ad sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
1149 1.5 bouyer if ( binfo->sensor == 12 ) { /* FAN1 */
1150 1.5 bouyer sdata = (sdata & 0xCF) |
1151 1.5 bouyer ((divisor & 0x3) << 4);
1152 1.5 bouyer } else { /* FAN2 */
1153 1.5 bouyer sdata = (sdata & 0x3F) |
1154 1.5 bouyer ((divisor & 0x3) << 6);
1155 1.5 bouyer }
1156 1.17 ad (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
1157 1.5 bouyer } else {
1158 1.5 bouyer /* FAN3 is in WB_PIN <7:6> */
1159 1.17 ad sdata = (*sc->lm_readreg)(sc, WB_PIN);
1160 1.5 bouyer sdata = (sdata & 0x3F) |
1161 1.5 bouyer ((divisor & 0x3) << 6);
1162 1.17 ad (*sc->lm_writereg)(sc, WB_PIN, sdata);
1163 1.1 groo }
1164 1.30 xtraeme /* Bit 2 of divisor is in WB_BANK0_VBAT */
1165 1.30 xtraeme lm_generic_banksel(sc, WB_BANKSEL_B0);
1166 1.30 xtraeme sdata = (*sc->lm_readreg)(sc, WB_BANK0_VBAT);
1167 1.5 bouyer sdata &= ~(0x20 << (binfo->sensor - 12));
1168 1.5 bouyer sdata |= (divisor & 0x4) << (binfo->sensor - 9);
1169 1.30 xtraeme (*sc->lm_writereg)(sc, WB_BANK0_VBAT, sdata);
1170 1.1 groo }
1171 1.1 groo
1172 1.19 christos strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
1173 1.4 thorpej sizeof(sc->info[binfo->sensor].desc));
1174 1.19 christos binfo->validflags = ENVSYS_FVALID;
1175 1.19 christos }
1176 1.19 christos return 0;
1177 1.19 christos }
1178