nslm7x.c revision 1.5 1 1.4 thorpej /* $NetBSD: nslm7x.c,v 1.5 2000/07/27 21:49:22 bouyer Exp $ */
2 1.1 groo
3 1.1 groo /*-
4 1.1 groo * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.1 groo * All rights reserved.
6 1.1 groo *
7 1.1 groo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 groo * by Bill Squier.
9 1.1 groo *
10 1.1 groo * Redistribution and use in source and binary forms, with or without
11 1.1 groo * modification, are permitted provided that the following conditions
12 1.1 groo * are met:
13 1.1 groo * 1. Redistributions of source code must retain the above copyright
14 1.1 groo * notice, this list of conditions and the following disclaimer.
15 1.1 groo * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 groo * notice, this list of conditions and the following disclaimer in the
17 1.1 groo * documentation and/or other materials provided with the distribution.
18 1.1 groo * 3. All advertising materials mentioning features or use of this software
19 1.1 groo * must display the following acknowledgement:
20 1.1 groo * This product includes software developed by the NetBSD
21 1.1 groo * Foundation, Inc. and its contributors.
22 1.1 groo * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 groo * contributors may be used to endorse or promote products derived
24 1.1 groo * from this software without specific prior written permission.
25 1.1 groo *
26 1.1 groo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 groo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 groo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 groo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 groo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 groo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 groo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 groo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 groo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 groo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 groo * POSSIBILITY OF SUCH DAMAGE.
37 1.1 groo */
38 1.1 groo
39 1.1 groo #include <sys/param.h>
40 1.1 groo #include <sys/systm.h>
41 1.1 groo #include <sys/kernel.h>
42 1.1 groo #include <sys/proc.h>
43 1.1 groo #include <sys/device.h>
44 1.1 groo #include <sys/malloc.h>
45 1.1 groo #include <sys/errno.h>
46 1.1 groo #include <sys/queue.h>
47 1.1 groo #include <sys/lock.h>
48 1.1 groo #include <sys/ioctl.h>
49 1.1 groo #include <sys/conf.h>
50 1.1 groo #include <sys/time.h>
51 1.1 groo
52 1.1 groo #include <machine/bus.h>
53 1.1 groo
54 1.1 groo #include <dev/isa/isareg.h>
55 1.1 groo #include <dev/isa/isavar.h>
56 1.1 groo
57 1.4 thorpej #include <dev/sysmon/sysmonvar.h>
58 1.4 thorpej
59 1.1 groo #include <dev/ic/nslm7xvar.h>
60 1.1 groo
61 1.1 groo #include <machine/intr.h>
62 1.1 groo #include <machine/bus.h>
63 1.1 groo
64 1.1 groo #if defined(LMDEBUG)
65 1.1 groo #define DPRINTF(x) do { printf x; } while (0)
66 1.1 groo #else
67 1.1 groo #define DPRINTF(x)
68 1.1 groo #endif
69 1.1 groo
70 1.4 thorpej const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
71 1.5 bouyer /* for each unit type */
72 1.1 groo { 7, 7, ENVSYS_STEMP },
73 1.1 groo { 8, 10, ENVSYS_SFANRPM },
74 1.1 groo { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
75 1.1 groo { 0, 6, ENVSYS_SVOLTS_DC },
76 1.1 groo { 1, 0, ENVSYS_SOHMS }, /* None */
77 1.1 groo { 1, 0, ENVSYS_SWATTS }, /* None */
78 1.1 groo { 1, 0, ENVSYS_SAMPS } /* None */
79 1.1 groo };
80 1.1 groo
81 1.5 bouyer
82 1.1 groo u_int8_t lm_readreg __P((struct lm_softc *, int));
83 1.1 groo void lm_writereg __P((struct lm_softc *, int, int));
84 1.5 bouyer
85 1.5 bouyer int lm_match __P((struct lm_softc *));
86 1.1 groo void lm_refresh_sensor_data __P((struct lm_softc *));
87 1.5 bouyer
88 1.5 bouyer int wb_match __P((struct lm_softc *));
89 1.5 bouyer void wb_refresh_sensor_data __P((struct lm_softc *));
90 1.5 bouyer
91 1.5 bouyer int def_match __P((struct lm_softc *));
92 1.5 bouyer void lm_common_match __P((struct lm_softc *));
93 1.5 bouyer
94 1.4 thorpej int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
95 1.4 thorpej int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
96 1.5 bouyer int wb_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
97 1.5 bouyer
98 1.5 bouyer struct lm_chip {
99 1.5 bouyer int (*chip_match) __P((struct lm_softc *));
100 1.5 bouyer };
101 1.5 bouyer
102 1.5 bouyer struct lm_chip lm_chips[] = {
103 1.5 bouyer { lm_match},
104 1.5 bouyer { wb_match},
105 1.5 bouyer { def_match} /* Must be last */
106 1.5 bouyer };
107 1.5 bouyer
108 1.1 groo
109 1.1 groo u_int8_t
110 1.1 groo lm_readreg(sc, reg)
111 1.1 groo struct lm_softc *sc;
112 1.1 groo int reg;
113 1.1 groo {
114 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
115 1.1 groo return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
116 1.1 groo }
117 1.1 groo
118 1.1 groo void
119 1.1 groo lm_writereg(sc, reg, val)
120 1.1 groo struct lm_softc *sc;
121 1.1 groo int reg;
122 1.1 groo int val;
123 1.1 groo {
124 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
125 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
126 1.1 groo }
127 1.1 groo
128 1.1 groo
129 1.1 groo /*
130 1.2 groo * bus independent probe
131 1.2 groo */
132 1.2 groo int
133 1.2 groo lm_probe(iot, ioh)
134 1.2 groo bus_space_tag_t iot;
135 1.2 groo bus_space_handle_t ioh;
136 1.2 groo {
137 1.2 groo u_int8_t cr;
138 1.2 groo int rv;
139 1.2 groo
140 1.2 groo /* Check for some power-on defaults */
141 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
142 1.2 groo
143 1.2 groo /* Perform LM78 reset */
144 1.2 groo bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
145 1.2 groo
146 1.2 groo /* XXX - Why do I have to reselect the register? */
147 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
148 1.2 groo cr = bus_space_read_1(iot, ioh, LMC_DATA);
149 1.2 groo
150 1.2 groo /* XXX - spec says *only* 0x08! */
151 1.2 groo if ((cr == 0x08) || (cr == 0x01))
152 1.2 groo rv = 1;
153 1.2 groo else
154 1.2 groo rv = 0;
155 1.2 groo
156 1.2 groo DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
157 1.2 groo
158 1.2 groo return (rv);
159 1.2 groo }
160 1.2 groo
161 1.2 groo
162 1.2 groo /*
163 1.1 groo * pre: lmsc contains valid busspace tag and handle
164 1.1 groo */
165 1.1 groo void
166 1.1 groo lm_attach(lmsc)
167 1.1 groo struct lm_softc *lmsc;
168 1.1 groo {
169 1.1 groo int i;
170 1.1 groo
171 1.5 bouyer for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
172 1.5 bouyer if (lm_chips[i].chip_match(lmsc))
173 1.5 bouyer break;
174 1.1 groo
175 1.1 groo /* Start the monitoring loop */
176 1.1 groo lm_writereg(lmsc, LMD_CONFIG, 0x01);
177 1.1 groo
178 1.1 groo /* Indicate we have never read the registers */
179 1.1 groo timerclear(&lmsc->lastread);
180 1.1 groo
181 1.1 groo /* Initialize sensors */
182 1.5 bouyer for (i = 0; i < lmsc->numsensors; ++i) {
183 1.1 groo lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
184 1.1 groo lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
185 1.1 groo lmsc->info[i].validflags = ENVSYS_FVALID;
186 1.1 groo lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
187 1.1 groo }
188 1.4 thorpej /*
189 1.4 thorpej * Hook into the System Monitor.
190 1.4 thorpej */
191 1.4 thorpej lmsc->sc_sysmon.sme_ranges = lm_ranges;
192 1.4 thorpej lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
193 1.4 thorpej lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
194 1.4 thorpej lmsc->sc_sysmon.sme_cookie = lmsc;
195 1.4 thorpej
196 1.4 thorpej lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
197 1.5 bouyer /* sme_streinfo set in chip-specific attach */
198 1.4 thorpej
199 1.5 bouyer lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
200 1.4 thorpej lmsc->sc_sysmon.sme_envsys_version = 1000;
201 1.4 thorpej
202 1.4 thorpej if (sysmon_envsys_register(&lmsc->sc_sysmon))
203 1.4 thorpej printf("%s: unable to register with sysmon\n",
204 1.4 thorpej lmsc->sc_dev.dv_xname);
205 1.1 groo }
206 1.1 groo
207 1.5 bouyer int
208 1.5 bouyer lm_match(sc)
209 1.5 bouyer struct lm_softc *sc;
210 1.5 bouyer {
211 1.5 bouyer int i;
212 1.5 bouyer
213 1.5 bouyer /* See if we have an LM78 or LM79 */
214 1.5 bouyer i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
215 1.5 bouyer switch(i) {
216 1.5 bouyer case LM_ID_LM78:
217 1.5 bouyer printf(": LM78\n");
218 1.5 bouyer break;
219 1.5 bouyer case LM_ID_LM78J:
220 1.5 bouyer printf(": LM78J\n");
221 1.5 bouyer break;
222 1.5 bouyer case LM_ID_LM79:
223 1.5 bouyer printf(": LM79\n");
224 1.5 bouyer break;
225 1.5 bouyer default:
226 1.5 bouyer return 0;
227 1.5 bouyer }
228 1.5 bouyer lm_common_match(sc);
229 1.5 bouyer return 1;
230 1.5 bouyer }
231 1.1 groo
232 1.1 groo int
233 1.5 bouyer def_match(sc)
234 1.5 bouyer struct lm_softc *sc;
235 1.5 bouyer {
236 1.5 bouyer int i;
237 1.5 bouyer
238 1.5 bouyer i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
239 1.5 bouyer printf(": Unknow chip (ID %d)\n", i);
240 1.5 bouyer lm_common_match(sc);
241 1.5 bouyer return 1;
242 1.5 bouyer }
243 1.5 bouyer
244 1.5 bouyer void
245 1.5 bouyer lm_common_match(sc)
246 1.5 bouyer struct lm_softc *sc;
247 1.1 groo {
248 1.5 bouyer int i;
249 1.5 bouyer sc->numsensors = LM_NUM_SENSORS;
250 1.5 bouyer sc->refresh_sensor_data = lm_refresh_sensor_data;
251 1.5 bouyer
252 1.5 bouyer for (i = 0; i < 7; ++i) {
253 1.5 bouyer sc->sensors[i].units = sc->info[i].units =
254 1.5 bouyer ENVSYS_SVOLTS_DC;
255 1.5 bouyer sprintf(sc->info[i].desc, "IN %d", i);
256 1.5 bouyer }
257 1.5 bouyer
258 1.5 bouyer /* default correction factors for resistors on higher voltage inputs */
259 1.5 bouyer sc->info[0].rfact = sc->info[1].rfact =
260 1.5 bouyer sc->info[2].rfact = 10000;
261 1.5 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
262 1.5 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
263 1.5 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
264 1.5 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
265 1.5 bouyer
266 1.5 bouyer sc->sensors[7].units = ENVSYS_STEMP;
267 1.5 bouyer strcpy(sc->info[7].desc, "Temp");
268 1.5 bouyer
269 1.5 bouyer for (i = 8; i < 11; ++i) {
270 1.5 bouyer sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
271 1.5 bouyer sprintf(sc->info[i].desc, "Fan %d", i - 7);
272 1.4 thorpej }
273 1.5 bouyer sc->sc_sysmon.sme_streinfo = lm_streinfo;
274 1.5 bouyer }
275 1.1 groo
276 1.5 bouyer int
277 1.5 bouyer wb_match(sc)
278 1.5 bouyer struct lm_softc *sc;
279 1.5 bouyer {
280 1.5 bouyer int i, j;
281 1.1 groo
282 1.5 bouyer /* See if we have a winbond */
283 1.5 bouyer i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
284 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
285 1.5 bouyer j = lm_readreg(sc, WB_VENDID) << 8;
286 1.5 bouyer lm_writereg(sc, WB_BANKSEL, 0);
287 1.5 bouyer j |= lm_readreg(sc, WB_VENDID);
288 1.5 bouyer DPRINTF(("winbond vend id %d\n", j));
289 1.5 bouyer if (j != WB_VENDID_WINBOND)
290 1.5 bouyer return 0;
291 1.5 bouyer printf(": W83627HF (device ID %d)\n", i);
292 1.5 bouyer sc->numsensors = WB_NUM_SENSORS;
293 1.5 bouyer sc->refresh_sensor_data = wb_refresh_sensor_data;
294 1.5 bouyer
295 1.5 bouyer sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
296 1.5 bouyer sprintf(sc->info[0].desc, "VCORE A");
297 1.5 bouyer sc->info[0].rfact = 10000;
298 1.5 bouyer sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
299 1.5 bouyer sprintf(sc->info[1].desc, "VCORE B");
300 1.5 bouyer sc->info[1].rfact = 10000;
301 1.5 bouyer sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
302 1.5 bouyer sprintf(sc->info[2].desc, "+3.3V");
303 1.5 bouyer sc->info[2].rfact = 10000;
304 1.5 bouyer sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
305 1.5 bouyer sprintf(sc->info[3].desc, "+5V");
306 1.5 bouyer sc->info[3].rfact = 16778;
307 1.5 bouyer sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
308 1.5 bouyer sprintf(sc->info[4].desc, "+12V");
309 1.5 bouyer sc->info[4].rfact = 38000;
310 1.5 bouyer sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
311 1.5 bouyer sprintf(sc->info[5].desc, "-12V");
312 1.5 bouyer sc->info[5].rfact = 10000;
313 1.5 bouyer sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
314 1.5 bouyer sprintf(sc->info[6].desc, "-5V");
315 1.5 bouyer sc->info[6].rfact = 10000;
316 1.5 bouyer sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
317 1.5 bouyer sprintf(sc->info[7].desc, "+5VSB");
318 1.5 bouyer sc->info[7].rfact = 15151;
319 1.5 bouyer sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
320 1.5 bouyer sprintf(sc->info[8].desc, "VBAT");
321 1.5 bouyer sc->info[8].rfact = 10000;
322 1.5 bouyer
323 1.5 bouyer sc->sensors[9].units = ENVSYS_STEMP;
324 1.5 bouyer strcpy(sc->info[9].desc, "Temp 1");
325 1.5 bouyer sc->sensors[10].units = ENVSYS_STEMP;
326 1.5 bouyer strcpy(sc->info[10].desc, "Temp 2");
327 1.5 bouyer sc->sensors[11].units = ENVSYS_STEMP;
328 1.5 bouyer strcpy(sc->info[11].desc, "Temp 3");
329 1.5 bouyer
330 1.5 bouyer for (i = 12; i < 15; ++i) {
331 1.5 bouyer sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
332 1.5 bouyer sprintf(sc->info[i].desc, "Fan %d", i - 11);
333 1.5 bouyer }
334 1.5 bouyer sc->sc_sysmon.sme_streinfo = wb_streinfo;
335 1.5 bouyer return 1;
336 1.1 groo }
337 1.1 groo
338 1.5 bouyer int
339 1.5 bouyer lm_gtredata(sme, tred)
340 1.5 bouyer struct sysmon_envsys *sme;
341 1.5 bouyer struct envsys_tre_data *tred;
342 1.5 bouyer {
343 1.5 bouyer static const struct timeval onepointfive = { 1, 500000 };
344 1.5 bouyer struct timeval t;
345 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
346 1.5 bouyer int i, s;
347 1.5 bouyer
348 1.5 bouyer /* read new values at most once every 1.5 seconds */
349 1.5 bouyer timeradd(&sc->lastread, &onepointfive, &t);
350 1.5 bouyer s = splclock();
351 1.5 bouyer i = timercmp(&mono_time, &t, >);
352 1.5 bouyer if (i) {
353 1.5 bouyer sc->lastread.tv_sec = mono_time.tv_sec;
354 1.5 bouyer sc->lastread.tv_usec = mono_time.tv_usec;
355 1.5 bouyer }
356 1.5 bouyer splx(s);
357 1.5 bouyer
358 1.5 bouyer if (i)
359 1.5 bouyer sc->refresh_sensor_data(sc);
360 1.5 bouyer
361 1.5 bouyer *tred = sc->sensors[tred->sensor];
362 1.5 bouyer
363 1.5 bouyer return (0);
364 1.5 bouyer }
365 1.1 groo
366 1.1 groo int
367 1.4 thorpej lm_streinfo(sme, binfo)
368 1.5 bouyer struct sysmon_envsys *sme;
369 1.5 bouyer struct envsys_basic_info *binfo;
370 1.1 groo {
371 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
372 1.5 bouyer int divisor;
373 1.5 bouyer u_int8_t sdata;
374 1.5 bouyer
375 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
376 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
377 1.5 bouyer else {
378 1.5 bouyer /* FAN1 and FAN2 can have divisors set, but not FAN3 */
379 1.5 bouyer if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
380 1.5 bouyer && (binfo->sensor != 10)) {
381 1.5 bouyer
382 1.5 bouyer if (binfo->rpms == 0) {
383 1.5 bouyer binfo->validflags = 0;
384 1.5 bouyer return (0);
385 1.5 bouyer }
386 1.5 bouyer
387 1.5 bouyer /* 153 is the nominal FAN speed value */
388 1.5 bouyer divisor = 1350000 / (binfo->rpms * 153);
389 1.5 bouyer
390 1.5 bouyer /* ...but we need lg(divisor) */
391 1.5 bouyer if (divisor <= 1)
392 1.5 bouyer divisor = 0;
393 1.5 bouyer else if (divisor <= 2)
394 1.5 bouyer divisor = 1;
395 1.5 bouyer else if (divisor <= 4)
396 1.5 bouyer divisor = 2;
397 1.5 bouyer else
398 1.5 bouyer divisor = 3;
399 1.5 bouyer
400 1.5 bouyer /*
401 1.5 bouyer * FAN1 div is in bits <5:4>, FAN2 div is
402 1.5 bouyer * in <7:6>
403 1.5 bouyer */
404 1.5 bouyer sdata = lm_readreg(sc, LMD_VIDFAN);
405 1.5 bouyer if ( binfo->sensor == 8 ) { /* FAN1 */
406 1.5 bouyer divisor <<= 4;
407 1.5 bouyer sdata = (sdata & 0xCF) | divisor;
408 1.5 bouyer } else { /* FAN2 */
409 1.5 bouyer divisor <<= 6;
410 1.5 bouyer sdata = (sdata & 0x3F) | divisor;
411 1.5 bouyer }
412 1.5 bouyer
413 1.5 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
414 1.5 bouyer }
415 1.5 bouyer
416 1.5 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
417 1.5 bouyer sizeof(sc->info[binfo->sensor].desc));
418 1.5 bouyer sc->info[binfo->sensor].desc[
419 1.5 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
420 1.5 bouyer
421 1.5 bouyer binfo->validflags = ENVSYS_FVALID;
422 1.5 bouyer }
423 1.5 bouyer return (0);
424 1.5 bouyer }
425 1.5 bouyer
426 1.5 bouyer int
427 1.5 bouyer wb_streinfo(sme, binfo)
428 1.5 bouyer struct sysmon_envsys *sme;
429 1.5 bouyer struct envsys_basic_info *binfo;
430 1.5 bouyer {
431 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
432 1.5 bouyer int divisor;
433 1.5 bouyer u_int8_t sdata;
434 1.5 bouyer int i;
435 1.5 bouyer
436 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
437 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
438 1.5 bouyer else {
439 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
440 1.4 thorpej
441 1.4 thorpej if (binfo->rpms == 0) {
442 1.4 thorpej binfo->validflags = 0;
443 1.4 thorpej return (0);
444 1.1 groo }
445 1.1 groo
446 1.4 thorpej /* 153 is the nominal FAN speed value */
447 1.4 thorpej divisor = 1350000 / (binfo->rpms * 153);
448 1.1 groo
449 1.4 thorpej /* ...but we need lg(divisor) */
450 1.5 bouyer for (i = 0; i < 7; i++) {
451 1.5 bouyer if (divisor <= (1 << i))
452 1.5 bouyer break;
453 1.5 bouyer }
454 1.5 bouyer divisor = i;
455 1.4 thorpej
456 1.5 bouyer if (binfo->sensor == 12 || binfo->sensor == 13) {
457 1.5 bouyer /*
458 1.5 bouyer * FAN1 div is in bits <5:4>, FAN2 div
459 1.5 bouyer * is in <7:6>
460 1.5 bouyer */
461 1.5 bouyer sdata = lm_readreg(sc, LMD_VIDFAN);
462 1.5 bouyer if ( binfo->sensor == 12 ) { /* FAN1 */
463 1.5 bouyer sdata = (sdata & 0xCF) |
464 1.5 bouyer ((divisor & 0x3) << 4);
465 1.5 bouyer } else { /* FAN2 */
466 1.5 bouyer sdata = (sdata & 0x3F) |
467 1.5 bouyer ((divisor & 0x3) << 6);
468 1.5 bouyer }
469 1.5 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
470 1.5 bouyer } else {
471 1.5 bouyer /* FAN3 is in WB_PIN <7:6> */
472 1.5 bouyer sdata = lm_readreg(sc, WB_PIN);
473 1.5 bouyer sdata = (sdata & 0x3F) |
474 1.5 bouyer ((divisor & 0x3) << 6);
475 1.5 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
476 1.1 groo }
477 1.5 bouyer /* Bit 2 of divisor is in WB_BANK0_FANBAT */
478 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
479 1.5 bouyer sdata = lm_readreg(sc, WB_BANK0_FANBAT);
480 1.5 bouyer sdata &= ~(0x20 << (binfo->sensor - 12));
481 1.5 bouyer sdata |= (divisor & 0x4) << (binfo->sensor - 9);
482 1.5 bouyer lm_writereg(sc, WB_BANK0_FANBAT, sdata);
483 1.1 groo }
484 1.1 groo
485 1.4 thorpej memcpy(sc->info[binfo->sensor].desc, binfo->desc,
486 1.4 thorpej sizeof(sc->info[binfo->sensor].desc));
487 1.4 thorpej sc->info[binfo->sensor].desc[
488 1.4 thorpej sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
489 1.1 groo
490 1.4 thorpej binfo->validflags = ENVSYS_FVALID;
491 1.1 groo }
492 1.4 thorpej return (0);
493 1.1 groo }
494 1.1 groo
495 1.1 groo /*
496 1.1 groo * pre: last read occured >= 1.5 seconds ago
497 1.1 groo * post: sensors[] current data are the latest from the chip
498 1.1 groo */
499 1.1 groo void
500 1.1 groo lm_refresh_sensor_data(sc)
501 1.1 groo struct lm_softc *sc;
502 1.1 groo {
503 1.5 bouyer int sdata;
504 1.1 groo int i, divisor;
505 1.1 groo
506 1.1 groo /* Refresh our stored data for every sensor */
507 1.1 groo for (i = 0; i < LM_NUM_SENSORS; ++i) {
508 1.1 groo sdata = lm_readreg(sc, LMD_SENSORBASE + i);
509 1.5 bouyer
510 1.1 groo switch (sc->sensors[i].units) {
511 1.1 groo case ENVSYS_STEMP:
512 1.1 groo /* temp is given in deg. C, we convert to uK */
513 1.1 groo sc->sensors[i].cur.data_us = sdata * 1000000 +
514 1.1 groo 273150000;
515 1.1 groo break;
516 1.5 bouyer
517 1.1 groo case ENVSYS_SVOLTS_DC:
518 1.1 groo /* voltage returned as (mV >> 4), we convert to uVDC */
519 1.3 groo sc->sensors[i].cur.data_s = (sdata << 4);
520 1.3 groo /* rfact is (factor * 10^4) */
521 1.3 groo sc->sensors[i].cur.data_s *= sc->info[i].rfact;
522 1.3 groo /* division by 10 gets us back to uVDC */
523 1.3 groo sc->sensors[i].cur.data_s /= 10;
524 1.5 bouyer
525 1.1 groo /* these two are negative voltages */
526 1.1 groo if ( (i == 5) || (i == 6) )
527 1.1 groo sc->sensors[i].cur.data_s *= -1;
528 1.3 groo
529 1.1 groo break;
530 1.5 bouyer
531 1.1 groo case ENVSYS_SFANRPM:
532 1.1 groo if (i == 10)
533 1.1 groo divisor = 2; /* Fixed divisor for FAN3 */
534 1.1 groo else if (i == 9) /* Bits 7 & 6 of VID/FAN */
535 1.1 groo divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) &
536 1.1 groo 0x3;
537 1.1 groo else
538 1.1 groo divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) &
539 1.1 groo 0x3;
540 1.5 bouyer
541 1.5 bouyer if (sdata == 0xff || sdata == 0x00) {
542 1.5 bouyer sc->sensors[i].cur.data_us = 0;
543 1.5 bouyer } else {
544 1.5 bouyer sc->sensors[i].cur.data_us = 1350000 /
545 1.5 bouyer (sdata << divisor);
546 1.5 bouyer }
547 1.1 groo break;
548 1.5 bouyer
549 1.1 groo default:
550 1.1 groo /* XXX - debug log something? */
551 1.1 groo sc->sensors[i].validflags = 0;
552 1.5 bouyer
553 1.1 groo break;
554 1.5 bouyer }
555 1.5 bouyer }
556 1.5 bouyer }
557 1.5 bouyer
558 1.5 bouyer void
559 1.5 bouyer wb_refresh_sensor_data(sc)
560 1.5 bouyer struct lm_softc *sc;
561 1.5 bouyer {
562 1.5 bouyer int sdata;
563 1.5 bouyer int i, divisor;
564 1.5 bouyer
565 1.5 bouyer /* Refresh our stored data for every sensor */
566 1.5 bouyer /* first voltage sensors */
567 1.5 bouyer for (i = 0; i < 9; ++i) {
568 1.5 bouyer if (i < 7) {
569 1.5 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i);
570 1.5 bouyer } else {
571 1.5 bouyer /* from bank5 */
572 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
573 1.5 bouyer sdata = lm_readreg(sc, (i == 7) ?
574 1.5 bouyer WB_BANK5_5VSB : WB_BANK5_VBAT);
575 1.5 bouyer }
576 1.5 bouyer DPRINTF(("sdata[%d] 0x%x\n", i, sdata));
577 1.5 bouyer /* voltage returned as (mV >> 4), we convert to uV */
578 1.5 bouyer sdata = sdata << 4;
579 1.5 bouyer /* special case for negative voltages */
580 1.5 bouyer if (i == 5) {
581 1.5 bouyer /*
582 1.5 bouyer * -12Vdc, assume Winbond recommended values for
583 1.5 bouyer * resistors
584 1.5 bouyer */
585 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 805)) / 195;
586 1.5 bouyer } else if (i == 6) {
587 1.5 bouyer /*
588 1.5 bouyer * -5Vdc, assume Winbond recommended values for
589 1.5 bouyer * resistors
590 1.5 bouyer */
591 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 682)) / 318;
592 1.5 bouyer }
593 1.5 bouyer /* rfact is (factor * 10^4) */
594 1.5 bouyer sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
595 1.5 bouyer /* division by 10 gets us back to uVDC */
596 1.5 bouyer sc->sensors[i].cur.data_s /= 10;
597 1.5 bouyer }
598 1.5 bouyer /* temperatures. Given in dC, we convert to uK */
599 1.5 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
600 1.5 bouyer DPRINTF(("sdata[%d] 0x%x\n", 9, sdata));
601 1.5 bouyer sc->sensors[9].cur.data_us = sdata * 1000000 + 273150000;
602 1.5 bouyer /* from bank1 */
603 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
604 1.5 bouyer sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
605 1.5 bouyer sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
606 1.5 bouyer DPRINTF(("sdata[%d] 0x%x\n", 10, sdata));
607 1.5 bouyer sc->sensors[10].cur.data_us = (sdata * 1000000) / 2 + 273150000;
608 1.5 bouyer /* from bank2 */
609 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
610 1.5 bouyer sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
611 1.5 bouyer sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
612 1.5 bouyer DPRINTF(("sdata[%d] 0x%x\n", 11, sdata));
613 1.5 bouyer sc->sensors[11].cur.data_us = (sdata * 1000000) / 2 + 273150000;
614 1.5 bouyer
615 1.5 bouyer /* Fans */
616 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
617 1.5 bouyer for (i = 12; i < 15; i++) {
618 1.5 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i - 4);
619 1.5 bouyer if (i == 12)
620 1.5 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
621 1.5 bouyer else if (i == 13)
622 1.5 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
623 1.5 bouyer else
624 1.5 bouyer divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
625 1.5 bouyer divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i - 9)) & 0x4;
626 1.5 bouyer
627 1.5 bouyer DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
628 1.5 bouyer if (sdata == 0xff || sdata == 0x00) {
629 1.5 bouyer sc->sensors[i].cur.data_us = 0;
630 1.5 bouyer } else {
631 1.5 bouyer sc->sensors[i].cur.data_us = 1350000 /
632 1.5 bouyer (sdata << divisor);
633 1.1 groo }
634 1.1 groo }
635 1.1 groo }
636