nslm7x.c revision 1.7 1 1.7 bouyer /* $NetBSD: nslm7x.c,v 1.7 2000/07/30 22:23:53 bouyer Exp $ */
2 1.1 groo
3 1.1 groo /*-
4 1.1 groo * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.1 groo * All rights reserved.
6 1.1 groo *
7 1.1 groo * This code is derived from software contributed to The NetBSD Foundation
8 1.1 groo * by Bill Squier.
9 1.1 groo *
10 1.1 groo * Redistribution and use in source and binary forms, with or without
11 1.1 groo * modification, are permitted provided that the following conditions
12 1.1 groo * are met:
13 1.1 groo * 1. Redistributions of source code must retain the above copyright
14 1.1 groo * notice, this list of conditions and the following disclaimer.
15 1.1 groo * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 groo * notice, this list of conditions and the following disclaimer in the
17 1.1 groo * documentation and/or other materials provided with the distribution.
18 1.1 groo * 3. All advertising materials mentioning features or use of this software
19 1.1 groo * must display the following acknowledgement:
20 1.1 groo * This product includes software developed by the NetBSD
21 1.1 groo * Foundation, Inc. and its contributors.
22 1.1 groo * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 groo * contributors may be used to endorse or promote products derived
24 1.1 groo * from this software without specific prior written permission.
25 1.1 groo *
26 1.1 groo * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 groo * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 groo * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 groo * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 groo * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 groo * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 groo * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 groo * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 groo * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 groo * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 groo * POSSIBILITY OF SUCH DAMAGE.
37 1.1 groo */
38 1.1 groo
39 1.1 groo #include <sys/param.h>
40 1.1 groo #include <sys/systm.h>
41 1.1 groo #include <sys/kernel.h>
42 1.1 groo #include <sys/proc.h>
43 1.1 groo #include <sys/device.h>
44 1.1 groo #include <sys/malloc.h>
45 1.1 groo #include <sys/errno.h>
46 1.1 groo #include <sys/queue.h>
47 1.1 groo #include <sys/lock.h>
48 1.1 groo #include <sys/ioctl.h>
49 1.1 groo #include <sys/conf.h>
50 1.1 groo #include <sys/time.h>
51 1.1 groo
52 1.1 groo #include <machine/bus.h>
53 1.1 groo
54 1.1 groo #include <dev/isa/isareg.h>
55 1.1 groo #include <dev/isa/isavar.h>
56 1.1 groo
57 1.4 thorpej #include <dev/sysmon/sysmonvar.h>
58 1.4 thorpej
59 1.1 groo #include <dev/ic/nslm7xvar.h>
60 1.1 groo
61 1.1 groo #include <machine/intr.h>
62 1.1 groo #include <machine/bus.h>
63 1.1 groo
64 1.1 groo #if defined(LMDEBUG)
65 1.1 groo #define DPRINTF(x) do { printf x; } while (0)
66 1.1 groo #else
67 1.1 groo #define DPRINTF(x)
68 1.1 groo #endif
69 1.1 groo
70 1.4 thorpej const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
71 1.5 bouyer /* for each unit type */
72 1.1 groo { 7, 7, ENVSYS_STEMP },
73 1.1 groo { 8, 10, ENVSYS_SFANRPM },
74 1.1 groo { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
75 1.1 groo { 0, 6, ENVSYS_SVOLTS_DC },
76 1.1 groo { 1, 0, ENVSYS_SOHMS }, /* None */
77 1.1 groo { 1, 0, ENVSYS_SWATTS }, /* None */
78 1.1 groo { 1, 0, ENVSYS_SAMPS } /* None */
79 1.1 groo };
80 1.1 groo
81 1.5 bouyer
82 1.1 groo u_int8_t lm_readreg __P((struct lm_softc *, int));
83 1.1 groo void lm_writereg __P((struct lm_softc *, int, int));
84 1.5 bouyer
85 1.5 bouyer int lm_match __P((struct lm_softc *));
86 1.5 bouyer int wb_match __P((struct lm_softc *));
87 1.5 bouyer int def_match __P((struct lm_softc *));
88 1.5 bouyer void lm_common_match __P((struct lm_softc *));
89 1.5 bouyer
90 1.7 bouyer void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
91 1.7 bouyer void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
92 1.7 bouyer struct envsys_basic_info *));
93 1.7 bouyer void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
94 1.7 bouyer void lm_refresh_sensor_data __P((struct lm_softc *));
95 1.7 bouyer void wb_temp __P((struct lm_softc *, struct envsys_tre_data *));
96 1.7 bouyer void wb781_refresh_sensor_data __P((struct lm_softc *));
97 1.7 bouyer void wb782_refresh_sensor_data __P((struct lm_softc *));
98 1.7 bouyer
99 1.4 thorpej int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
100 1.7 bouyer
101 1.7 bouyer int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
102 1.7 bouyer int, struct envsys_basic_info *));
103 1.4 thorpej int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
104 1.7 bouyer int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
105 1.7 bouyer int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
106 1.5 bouyer
107 1.5 bouyer struct lm_chip {
108 1.5 bouyer int (*chip_match) __P((struct lm_softc *));
109 1.5 bouyer };
110 1.5 bouyer
111 1.5 bouyer struct lm_chip lm_chips[] = {
112 1.6 bouyer { wb_match},
113 1.5 bouyer { lm_match},
114 1.5 bouyer { def_match} /* Must be last */
115 1.5 bouyer };
116 1.5 bouyer
117 1.1 groo
118 1.1 groo u_int8_t
119 1.1 groo lm_readreg(sc, reg)
120 1.1 groo struct lm_softc *sc;
121 1.1 groo int reg;
122 1.1 groo {
123 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
124 1.1 groo return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
125 1.1 groo }
126 1.1 groo
127 1.1 groo void
128 1.1 groo lm_writereg(sc, reg, val)
129 1.1 groo struct lm_softc *sc;
130 1.1 groo int reg;
131 1.1 groo int val;
132 1.1 groo {
133 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
134 1.1 groo bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
135 1.1 groo }
136 1.1 groo
137 1.1 groo
138 1.1 groo /*
139 1.2 groo * bus independent probe
140 1.2 groo */
141 1.2 groo int
142 1.2 groo lm_probe(iot, ioh)
143 1.2 groo bus_space_tag_t iot;
144 1.2 groo bus_space_handle_t ioh;
145 1.2 groo {
146 1.2 groo u_int8_t cr;
147 1.2 groo int rv;
148 1.2 groo
149 1.2 groo /* Check for some power-on defaults */
150 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
151 1.2 groo
152 1.2 groo /* Perform LM78 reset */
153 1.2 groo bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
154 1.2 groo
155 1.2 groo /* XXX - Why do I have to reselect the register? */
156 1.2 groo bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
157 1.2 groo cr = bus_space_read_1(iot, ioh, LMC_DATA);
158 1.2 groo
159 1.2 groo /* XXX - spec says *only* 0x08! */
160 1.2 groo if ((cr == 0x08) || (cr == 0x01))
161 1.2 groo rv = 1;
162 1.2 groo else
163 1.2 groo rv = 0;
164 1.2 groo
165 1.2 groo DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
166 1.2 groo
167 1.2 groo return (rv);
168 1.2 groo }
169 1.2 groo
170 1.2 groo
171 1.2 groo /*
172 1.1 groo * pre: lmsc contains valid busspace tag and handle
173 1.1 groo */
174 1.1 groo void
175 1.1 groo lm_attach(lmsc)
176 1.1 groo struct lm_softc *lmsc;
177 1.1 groo {
178 1.1 groo int i;
179 1.1 groo
180 1.5 bouyer for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
181 1.5 bouyer if (lm_chips[i].chip_match(lmsc))
182 1.5 bouyer break;
183 1.1 groo
184 1.1 groo /* Start the monitoring loop */
185 1.1 groo lm_writereg(lmsc, LMD_CONFIG, 0x01);
186 1.1 groo
187 1.1 groo /* Indicate we have never read the registers */
188 1.1 groo timerclear(&lmsc->lastread);
189 1.1 groo
190 1.1 groo /* Initialize sensors */
191 1.5 bouyer for (i = 0; i < lmsc->numsensors; ++i) {
192 1.1 groo lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
193 1.1 groo lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
194 1.1 groo lmsc->info[i].validflags = ENVSYS_FVALID;
195 1.1 groo lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
196 1.1 groo }
197 1.4 thorpej /*
198 1.4 thorpej * Hook into the System Monitor.
199 1.4 thorpej */
200 1.4 thorpej lmsc->sc_sysmon.sme_ranges = lm_ranges;
201 1.4 thorpej lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
202 1.4 thorpej lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
203 1.4 thorpej lmsc->sc_sysmon.sme_cookie = lmsc;
204 1.4 thorpej
205 1.4 thorpej lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
206 1.5 bouyer /* sme_streinfo set in chip-specific attach */
207 1.4 thorpej
208 1.5 bouyer lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
209 1.4 thorpej lmsc->sc_sysmon.sme_envsys_version = 1000;
210 1.4 thorpej
211 1.4 thorpej if (sysmon_envsys_register(&lmsc->sc_sysmon))
212 1.4 thorpej printf("%s: unable to register with sysmon\n",
213 1.4 thorpej lmsc->sc_dev.dv_xname);
214 1.1 groo }
215 1.1 groo
216 1.5 bouyer int
217 1.5 bouyer lm_match(sc)
218 1.5 bouyer struct lm_softc *sc;
219 1.5 bouyer {
220 1.5 bouyer int i;
221 1.5 bouyer
222 1.5 bouyer /* See if we have an LM78 or LM79 */
223 1.5 bouyer i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
224 1.5 bouyer switch(i) {
225 1.5 bouyer case LM_ID_LM78:
226 1.5 bouyer printf(": LM78\n");
227 1.5 bouyer break;
228 1.5 bouyer case LM_ID_LM78J:
229 1.5 bouyer printf(": LM78J\n");
230 1.5 bouyer break;
231 1.5 bouyer case LM_ID_LM79:
232 1.5 bouyer printf(": LM79\n");
233 1.5 bouyer break;
234 1.5 bouyer default:
235 1.5 bouyer return 0;
236 1.5 bouyer }
237 1.5 bouyer lm_common_match(sc);
238 1.5 bouyer return 1;
239 1.5 bouyer }
240 1.1 groo
241 1.1 groo int
242 1.5 bouyer def_match(sc)
243 1.5 bouyer struct lm_softc *sc;
244 1.5 bouyer {
245 1.5 bouyer int i;
246 1.5 bouyer
247 1.5 bouyer i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
248 1.5 bouyer printf(": Unknow chip (ID %d)\n", i);
249 1.5 bouyer lm_common_match(sc);
250 1.5 bouyer return 1;
251 1.5 bouyer }
252 1.5 bouyer
253 1.5 bouyer void
254 1.5 bouyer lm_common_match(sc)
255 1.5 bouyer struct lm_softc *sc;
256 1.1 groo {
257 1.5 bouyer int i;
258 1.5 bouyer sc->numsensors = LM_NUM_SENSORS;
259 1.5 bouyer sc->refresh_sensor_data = lm_refresh_sensor_data;
260 1.5 bouyer
261 1.5 bouyer for (i = 0; i < 7; ++i) {
262 1.5 bouyer sc->sensors[i].units = sc->info[i].units =
263 1.5 bouyer ENVSYS_SVOLTS_DC;
264 1.5 bouyer sprintf(sc->info[i].desc, "IN %d", i);
265 1.5 bouyer }
266 1.5 bouyer
267 1.5 bouyer /* default correction factors for resistors on higher voltage inputs */
268 1.5 bouyer sc->info[0].rfact = sc->info[1].rfact =
269 1.5 bouyer sc->info[2].rfact = 10000;
270 1.5 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
271 1.5 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
272 1.5 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
273 1.5 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
274 1.5 bouyer
275 1.5 bouyer sc->sensors[7].units = ENVSYS_STEMP;
276 1.5 bouyer strcpy(sc->info[7].desc, "Temp");
277 1.5 bouyer
278 1.5 bouyer for (i = 8; i < 11; ++i) {
279 1.5 bouyer sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
280 1.5 bouyer sprintf(sc->info[i].desc, "Fan %d", i - 7);
281 1.4 thorpej }
282 1.5 bouyer sc->sc_sysmon.sme_streinfo = lm_streinfo;
283 1.5 bouyer }
284 1.1 groo
285 1.5 bouyer int
286 1.5 bouyer wb_match(sc)
287 1.5 bouyer struct lm_softc *sc;
288 1.5 bouyer {
289 1.5 bouyer int i, j;
290 1.1 groo
291 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
292 1.5 bouyer j = lm_readreg(sc, WB_VENDID) << 8;
293 1.5 bouyer lm_writereg(sc, WB_BANKSEL, 0);
294 1.5 bouyer j |= lm_readreg(sc, WB_VENDID);
295 1.5 bouyer DPRINTF(("winbond vend id %d\n", j));
296 1.5 bouyer if (j != WB_VENDID_WINBOND)
297 1.5 bouyer return 0;
298 1.7 bouyer /* read device ID */
299 1.7 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
300 1.7 bouyer j = lm_readreg(sc, WB_BANK0_CHIPID);
301 1.7 bouyer DPRINTF(("winbond chip id %d\n", j));
302 1.7 bouyer switch(j) {
303 1.7 bouyer case WB_CHIPID_83781:
304 1.7 bouyer printf(": W83781D\n");
305 1.7 bouyer sc->numsensors = WB83781_NUM_SENSORS;
306 1.7 bouyer sc->refresh_sensor_data = wb781_refresh_sensor_data;
307 1.7 bouyer
308 1.7 bouyer for (i = 0; i < 7; ++i) {
309 1.7 bouyer sc->sensors[i].units = sc->info[i].units =
310 1.7 bouyer ENVSYS_SVOLTS_DC;
311 1.7 bouyer sprintf(sc->info[i].desc, "IN %d", i);
312 1.7 bouyer }
313 1.7 bouyer
314 1.7 bouyer /* default correction factors for higher voltage inputs */
315 1.7 bouyer sc->info[0].rfact = sc->info[1].rfact =
316 1.7 bouyer sc->info[2].rfact = 10000;
317 1.7 bouyer sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
318 1.7 bouyer sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
319 1.7 bouyer sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
320 1.7 bouyer sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
321 1.7 bouyer
322 1.7 bouyer for (i = 7; i < 10; ++i) {
323 1.7 bouyer sc->sensors[i].units = sc->info[i].units =
324 1.7 bouyer ENVSYS_STEMP;
325 1.7 bouyer sprintf(sc->info[i].desc, "Temp%d", i - 6);
326 1.7 bouyer }
327 1.7 bouyer
328 1.7 bouyer for (i = 10; i < 13; ++i) {
329 1.7 bouyer sc->sensors[i].units = sc->info[i].units =
330 1.7 bouyer ENVSYS_SFANRPM;
331 1.7 bouyer sprintf(sc->info[i].desc, "Fan %d", i - 9);
332 1.7 bouyer }
333 1.7 bouyer sc->sc_sysmon.sme_streinfo = wb781_streinfo;
334 1.7 bouyer return 1;
335 1.7 bouyer case WB_CHIPID_83782:
336 1.7 bouyer printf(": W83782D\n");
337 1.7 bouyer break;
338 1.7 bouyer case WB_CHIPID_83627:
339 1.7 bouyer printf(": W83627HF\n");
340 1.7 bouyer break;
341 1.7 bouyer default:
342 1.7 bouyer printf(": unknow winbond chip ID 0x%x\n", j);
343 1.7 bouyer /* handle as a standart lm7x */
344 1.7 bouyer lm_common_match(sc);
345 1.7 bouyer return 1;
346 1.7 bouyer }
347 1.7 bouyer
348 1.5 bouyer sc->numsensors = WB_NUM_SENSORS;
349 1.7 bouyer sc->refresh_sensor_data = wb782_refresh_sensor_data;
350 1.5 bouyer
351 1.5 bouyer sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
352 1.5 bouyer sprintf(sc->info[0].desc, "VCORE A");
353 1.5 bouyer sc->info[0].rfact = 10000;
354 1.5 bouyer sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
355 1.5 bouyer sprintf(sc->info[1].desc, "VCORE B");
356 1.5 bouyer sc->info[1].rfact = 10000;
357 1.5 bouyer sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
358 1.5 bouyer sprintf(sc->info[2].desc, "+3.3V");
359 1.5 bouyer sc->info[2].rfact = 10000;
360 1.5 bouyer sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
361 1.5 bouyer sprintf(sc->info[3].desc, "+5V");
362 1.5 bouyer sc->info[3].rfact = 16778;
363 1.5 bouyer sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
364 1.5 bouyer sprintf(sc->info[4].desc, "+12V");
365 1.5 bouyer sc->info[4].rfact = 38000;
366 1.5 bouyer sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
367 1.5 bouyer sprintf(sc->info[5].desc, "-12V");
368 1.5 bouyer sc->info[5].rfact = 10000;
369 1.5 bouyer sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
370 1.5 bouyer sprintf(sc->info[6].desc, "-5V");
371 1.5 bouyer sc->info[6].rfact = 10000;
372 1.5 bouyer sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
373 1.5 bouyer sprintf(sc->info[7].desc, "+5VSB");
374 1.5 bouyer sc->info[7].rfact = 15151;
375 1.5 bouyer sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
376 1.5 bouyer sprintf(sc->info[8].desc, "VBAT");
377 1.5 bouyer sc->info[8].rfact = 10000;
378 1.5 bouyer
379 1.5 bouyer sc->sensors[9].units = ENVSYS_STEMP;
380 1.5 bouyer strcpy(sc->info[9].desc, "Temp 1");
381 1.5 bouyer sc->sensors[10].units = ENVSYS_STEMP;
382 1.5 bouyer strcpy(sc->info[10].desc, "Temp 2");
383 1.5 bouyer sc->sensors[11].units = ENVSYS_STEMP;
384 1.5 bouyer strcpy(sc->info[11].desc, "Temp 3");
385 1.5 bouyer
386 1.5 bouyer for (i = 12; i < 15; ++i) {
387 1.5 bouyer sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
388 1.5 bouyer sprintf(sc->info[i].desc, "Fan %d", i - 11);
389 1.5 bouyer }
390 1.7 bouyer sc->sc_sysmon.sme_streinfo = wb782_streinfo;
391 1.5 bouyer return 1;
392 1.1 groo }
393 1.1 groo
394 1.5 bouyer int
395 1.5 bouyer lm_gtredata(sme, tred)
396 1.5 bouyer struct sysmon_envsys *sme;
397 1.5 bouyer struct envsys_tre_data *tred;
398 1.5 bouyer {
399 1.5 bouyer static const struct timeval onepointfive = { 1, 500000 };
400 1.5 bouyer struct timeval t;
401 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
402 1.5 bouyer int i, s;
403 1.5 bouyer
404 1.5 bouyer /* read new values at most once every 1.5 seconds */
405 1.5 bouyer timeradd(&sc->lastread, &onepointfive, &t);
406 1.5 bouyer s = splclock();
407 1.5 bouyer i = timercmp(&mono_time, &t, >);
408 1.5 bouyer if (i) {
409 1.5 bouyer sc->lastread.tv_sec = mono_time.tv_sec;
410 1.5 bouyer sc->lastread.tv_usec = mono_time.tv_usec;
411 1.5 bouyer }
412 1.5 bouyer splx(s);
413 1.5 bouyer
414 1.5 bouyer if (i)
415 1.5 bouyer sc->refresh_sensor_data(sc);
416 1.5 bouyer
417 1.5 bouyer *tred = sc->sensors[tred->sensor];
418 1.5 bouyer
419 1.5 bouyer return (0);
420 1.5 bouyer }
421 1.1 groo
422 1.1 groo int
423 1.7 bouyer generic_streinfo_fan(sc, info, n, binfo)
424 1.7 bouyer struct lm_softc *sc;
425 1.7 bouyer struct envsys_basic_info *info;
426 1.7 bouyer int n;
427 1.7 bouyer struct envsys_basic_info *binfo;
428 1.7 bouyer {
429 1.7 bouyer u_int8_t sdata;
430 1.7 bouyer int divisor;
431 1.7 bouyer
432 1.7 bouyer /* FAN1 and FAN2 can have divisors set, but not FAN3 */
433 1.7 bouyer if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
434 1.7 bouyer && (binfo->sensor != 2)) {
435 1.7 bouyer if (binfo->rpms == 0) {
436 1.7 bouyer binfo->validflags = 0;
437 1.7 bouyer return (0);
438 1.7 bouyer }
439 1.7 bouyer
440 1.7 bouyer /* 153 is the nominal FAN speed value */
441 1.7 bouyer divisor = 1350000 / (binfo->rpms * 153);
442 1.7 bouyer
443 1.7 bouyer /* ...but we need lg(divisor) */
444 1.7 bouyer if (divisor <= 1)
445 1.7 bouyer divisor = 0;
446 1.7 bouyer else if (divisor <= 2)
447 1.7 bouyer divisor = 1;
448 1.7 bouyer else if (divisor <= 4)
449 1.7 bouyer divisor = 2;
450 1.7 bouyer else
451 1.7 bouyer divisor = 3;
452 1.7 bouyer
453 1.7 bouyer /*
454 1.7 bouyer * FAN1 div is in bits <5:4>, FAN2 div is
455 1.7 bouyer * in <7:6>
456 1.7 bouyer */
457 1.7 bouyer sdata = lm_readreg(sc, LMD_VIDFAN);
458 1.7 bouyer if ( binfo->sensor == 0 ) { /* FAN1 */
459 1.7 bouyer divisor <<= 4;
460 1.7 bouyer sdata = (sdata & 0xCF) | divisor;
461 1.7 bouyer } else { /* FAN2 */
462 1.7 bouyer divisor <<= 6;
463 1.7 bouyer sdata = (sdata & 0x3F) | divisor;
464 1.7 bouyer }
465 1.7 bouyer
466 1.7 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
467 1.7 bouyer }
468 1.7 bouyer return (0);
469 1.7 bouyer
470 1.7 bouyer }
471 1.7 bouyer
472 1.7 bouyer int
473 1.4 thorpej lm_streinfo(sme, binfo)
474 1.5 bouyer struct sysmon_envsys *sme;
475 1.5 bouyer struct envsys_basic_info *binfo;
476 1.1 groo {
477 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
478 1.5 bouyer
479 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
480 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
481 1.5 bouyer else {
482 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
483 1.7 bouyer generic_streinfo_fan(sc, &sc->info[binfo->sensor],
484 1.7 bouyer binfo->sensor - 8, binfo);
485 1.7 bouyer }
486 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
487 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
488 1.7 bouyer sc->info[binfo->sensor].desc[
489 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
490 1.5 bouyer
491 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
492 1.7 bouyer }
493 1.7 bouyer return (0);
494 1.7 bouyer }
495 1.5 bouyer
496 1.7 bouyer int
497 1.7 bouyer wb781_streinfo(sme, binfo)
498 1.7 bouyer struct sysmon_envsys *sme;
499 1.7 bouyer struct envsys_basic_info *binfo;
500 1.7 bouyer {
501 1.7 bouyer struct lm_softc *sc = sme->sme_cookie;
502 1.5 bouyer
503 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
504 1.7 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
505 1.7 bouyer else {
506 1.7 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
507 1.7 bouyer generic_streinfo_fan(sc, &sc->info[binfo->sensor],
508 1.7 bouyer binfo->sensor - 10, binfo);
509 1.7 bouyer }
510 1.7 bouyer memcpy(sc->info[binfo->sensor].desc, binfo->desc,
511 1.7 bouyer sizeof(sc->info[binfo->sensor].desc));
512 1.7 bouyer sc->info[binfo->sensor].desc[
513 1.7 bouyer sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
514 1.5 bouyer
515 1.7 bouyer binfo->validflags = ENVSYS_FVALID;
516 1.5 bouyer }
517 1.5 bouyer return (0);
518 1.5 bouyer }
519 1.5 bouyer
520 1.5 bouyer int
521 1.7 bouyer wb782_streinfo(sme, binfo)
522 1.5 bouyer struct sysmon_envsys *sme;
523 1.5 bouyer struct envsys_basic_info *binfo;
524 1.5 bouyer {
525 1.5 bouyer struct lm_softc *sc = sme->sme_cookie;
526 1.5 bouyer int divisor;
527 1.5 bouyer u_int8_t sdata;
528 1.5 bouyer int i;
529 1.5 bouyer
530 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
531 1.5 bouyer sc->info[binfo->sensor].rfact = binfo->rfact;
532 1.5 bouyer else {
533 1.5 bouyer if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
534 1.4 thorpej if (binfo->rpms == 0) {
535 1.4 thorpej binfo->validflags = 0;
536 1.4 thorpej return (0);
537 1.1 groo }
538 1.1 groo
539 1.4 thorpej /* 153 is the nominal FAN speed value */
540 1.4 thorpej divisor = 1350000 / (binfo->rpms * 153);
541 1.1 groo
542 1.4 thorpej /* ...but we need lg(divisor) */
543 1.5 bouyer for (i = 0; i < 7; i++) {
544 1.5 bouyer if (divisor <= (1 << i))
545 1.5 bouyer break;
546 1.5 bouyer }
547 1.5 bouyer divisor = i;
548 1.4 thorpej
549 1.5 bouyer if (binfo->sensor == 12 || binfo->sensor == 13) {
550 1.5 bouyer /*
551 1.5 bouyer * FAN1 div is in bits <5:4>, FAN2 div
552 1.5 bouyer * is in <7:6>
553 1.5 bouyer */
554 1.5 bouyer sdata = lm_readreg(sc, LMD_VIDFAN);
555 1.5 bouyer if ( binfo->sensor == 12 ) { /* FAN1 */
556 1.5 bouyer sdata = (sdata & 0xCF) |
557 1.5 bouyer ((divisor & 0x3) << 4);
558 1.5 bouyer } else { /* FAN2 */
559 1.5 bouyer sdata = (sdata & 0x3F) |
560 1.5 bouyer ((divisor & 0x3) << 6);
561 1.5 bouyer }
562 1.5 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
563 1.5 bouyer } else {
564 1.5 bouyer /* FAN3 is in WB_PIN <7:6> */
565 1.5 bouyer sdata = lm_readreg(sc, WB_PIN);
566 1.5 bouyer sdata = (sdata & 0x3F) |
567 1.5 bouyer ((divisor & 0x3) << 6);
568 1.5 bouyer lm_writereg(sc, LMD_VIDFAN, sdata);
569 1.1 groo }
570 1.5 bouyer /* Bit 2 of divisor is in WB_BANK0_FANBAT */
571 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
572 1.5 bouyer sdata = lm_readreg(sc, WB_BANK0_FANBAT);
573 1.5 bouyer sdata &= ~(0x20 << (binfo->sensor - 12));
574 1.5 bouyer sdata |= (divisor & 0x4) << (binfo->sensor - 9);
575 1.5 bouyer lm_writereg(sc, WB_BANK0_FANBAT, sdata);
576 1.1 groo }
577 1.1 groo
578 1.4 thorpej memcpy(sc->info[binfo->sensor].desc, binfo->desc,
579 1.4 thorpej sizeof(sc->info[binfo->sensor].desc));
580 1.4 thorpej sc->info[binfo->sensor].desc[
581 1.4 thorpej sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
582 1.1 groo
583 1.4 thorpej binfo->validflags = ENVSYS_FVALID;
584 1.1 groo }
585 1.4 thorpej return (0);
586 1.1 groo }
587 1.1 groo
588 1.7 bouyer void
589 1.7 bouyer generic_stemp(sc, sensor)
590 1.7 bouyer struct lm_softc *sc;
591 1.7 bouyer struct envsys_tre_data *sensor;
592 1.7 bouyer {
593 1.7 bouyer int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
594 1.7 bouyer /* temp is given in deg. C, we convert to uK */
595 1.7 bouyer sensor->cur.data_us = sdata * 1000000 + 273150000;
596 1.7 bouyer }
597 1.7 bouyer
598 1.7 bouyer void
599 1.7 bouyer generic_svolt(sc, sensors, infos)
600 1.7 bouyer struct lm_softc *sc;
601 1.7 bouyer struct envsys_tre_data *sensors;
602 1.7 bouyer struct envsys_basic_info *infos;
603 1.7 bouyer {
604 1.7 bouyer int i, sdata;
605 1.7 bouyer
606 1.7 bouyer for (i = 0; i < 7; i++) {
607 1.7 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i);
608 1.7 bouyer /* voltage returned as (mV >> 4), we convert to uVDC */
609 1.7 bouyer sensors[i].cur.data_s = (sdata << 4);
610 1.7 bouyer /* rfact is (factor * 10^4) */
611 1.7 bouyer sensors[i].cur.data_s *= infos[i].rfact;
612 1.7 bouyer /* division by 10 gets us back to uVDC */
613 1.7 bouyer sensors[i].cur.data_s /= 10;
614 1.7 bouyer
615 1.7 bouyer /* these two are negative voltages */
616 1.7 bouyer if ( (i == 5) || (i == 6) )
617 1.7 bouyer sensors[i].cur.data_s *= -1;
618 1.7 bouyer }
619 1.7 bouyer }
620 1.7 bouyer
621 1.7 bouyer void
622 1.7 bouyer generic_fanrpm(sc, sensors)
623 1.7 bouyer struct lm_softc *sc;
624 1.7 bouyer struct envsys_tre_data *sensors;
625 1.7 bouyer {
626 1.7 bouyer int i, sdata, divisor;
627 1.7 bouyer for (i = 0; i < 3; i++) {
628 1.7 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
629 1.7 bouyer if (i == 2)
630 1.7 bouyer divisor = 2; /* Fixed divisor for FAN3 */
631 1.7 bouyer else if (i == 1) /* Bits 7 & 6 of VID/FAN */
632 1.7 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
633 1.7 bouyer else
634 1.7 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
635 1.7 bouyer
636 1.7 bouyer if (sdata == 0xff || sdata == 0x00) {
637 1.7 bouyer sensors[i].cur.data_us = 0;
638 1.7 bouyer } else {
639 1.7 bouyer sensors[i].cur.data_us = 1350000 / (sdata << divisor);
640 1.7 bouyer }
641 1.7 bouyer }
642 1.7 bouyer }
643 1.7 bouyer
644 1.1 groo /*
645 1.1 groo * pre: last read occured >= 1.5 seconds ago
646 1.1 groo * post: sensors[] current data are the latest from the chip
647 1.1 groo */
648 1.1 groo void
649 1.1 groo lm_refresh_sensor_data(sc)
650 1.1 groo struct lm_softc *sc;
651 1.1 groo {
652 1.7 bouyer /* Refresh our stored data for every sensor */
653 1.7 bouyer generic_stemp(sc, &sc->sensors[7]);
654 1.7 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
655 1.7 bouyer generic_fanrpm(sc, &sc->sensors[8]);
656 1.7 bouyer }
657 1.7 bouyer
658 1.7 bouyer void
659 1.7 bouyer wb_temp(sc, sensors)
660 1.7 bouyer struct lm_softc *sc;
661 1.7 bouyer struct envsys_tre_data *sensors;
662 1.7 bouyer {
663 1.5 bouyer int sdata;
664 1.7 bouyer /* temperatures. Given in dC, we convert to uK */
665 1.7 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
666 1.7 bouyer DPRINTF(("sdata[%d] 0x%x\n", 9, sdata));
667 1.7 bouyer sensors[0].cur.data_us = sdata * 1000000 + 273150000;
668 1.7 bouyer /* from bank1 */
669 1.7 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
670 1.7 bouyer sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
671 1.7 bouyer sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
672 1.7 bouyer DPRINTF(("sdata[%d] 0x%x\n", 10, sdata));
673 1.7 bouyer sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
674 1.7 bouyer /* from bank2 */
675 1.7 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
676 1.7 bouyer sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
677 1.7 bouyer sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
678 1.7 bouyer DPRINTF(("sdata[%d] 0x%x\n", 11, sdata));
679 1.7 bouyer sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
680 1.7 bouyer }
681 1.1 groo
682 1.7 bouyer void
683 1.7 bouyer wb781_refresh_sensor_data(sc)
684 1.7 bouyer struct lm_softc *sc;
685 1.7 bouyer {
686 1.1 groo /* Refresh our stored data for every sensor */
687 1.7 bouyer generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
688 1.7 bouyer wb_temp(sc, &sc->sensors[7]);
689 1.7 bouyer generic_fanrpm(sc, &sc->sensors[10]);
690 1.5 bouyer }
691 1.5 bouyer
692 1.5 bouyer void
693 1.7 bouyer wb782_refresh_sensor_data(sc)
694 1.5 bouyer struct lm_softc *sc;
695 1.5 bouyer {
696 1.5 bouyer int sdata;
697 1.5 bouyer int i, divisor;
698 1.5 bouyer
699 1.5 bouyer /* Refresh our stored data for every sensor */
700 1.5 bouyer /* first voltage sensors */
701 1.5 bouyer for (i = 0; i < 9; ++i) {
702 1.5 bouyer if (i < 7) {
703 1.5 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i);
704 1.5 bouyer } else {
705 1.5 bouyer /* from bank5 */
706 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
707 1.5 bouyer sdata = lm_readreg(sc, (i == 7) ?
708 1.5 bouyer WB_BANK5_5VSB : WB_BANK5_VBAT);
709 1.5 bouyer }
710 1.5 bouyer DPRINTF(("sdata[%d] 0x%x\n", i, sdata));
711 1.5 bouyer /* voltage returned as (mV >> 4), we convert to uV */
712 1.5 bouyer sdata = sdata << 4;
713 1.5 bouyer /* special case for negative voltages */
714 1.5 bouyer if (i == 5) {
715 1.5 bouyer /*
716 1.5 bouyer * -12Vdc, assume Winbond recommended values for
717 1.5 bouyer * resistors
718 1.5 bouyer */
719 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 805)) / 195;
720 1.5 bouyer } else if (i == 6) {
721 1.5 bouyer /*
722 1.5 bouyer * -5Vdc, assume Winbond recommended values for
723 1.5 bouyer * resistors
724 1.5 bouyer */
725 1.5 bouyer sdata = ((sdata * 1000) - (3600 * 682)) / 318;
726 1.5 bouyer }
727 1.5 bouyer /* rfact is (factor * 10^4) */
728 1.5 bouyer sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
729 1.5 bouyer /* division by 10 gets us back to uVDC */
730 1.5 bouyer sc->sensors[i].cur.data_s /= 10;
731 1.5 bouyer }
732 1.7 bouyer wb_temp(sc, &sc->sensors[9]);
733 1.5 bouyer
734 1.5 bouyer /* Fans */
735 1.5 bouyer lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
736 1.5 bouyer for (i = 12; i < 15; i++) {
737 1.5 bouyer sdata = lm_readreg(sc, LMD_SENSORBASE + i - 4);
738 1.5 bouyer if (i == 12)
739 1.5 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
740 1.5 bouyer else if (i == 13)
741 1.5 bouyer divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
742 1.5 bouyer else
743 1.5 bouyer divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
744 1.5 bouyer divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i - 9)) & 0x4;
745 1.5 bouyer
746 1.5 bouyer DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
747 1.5 bouyer if (sdata == 0xff || sdata == 0x00) {
748 1.5 bouyer sc->sensors[i].cur.data_us = 0;
749 1.5 bouyer } else {
750 1.5 bouyer sc->sensors[i].cur.data_us = 1350000 /
751 1.5 bouyer (sdata << divisor);
752 1.1 groo }
753 1.1 groo }
754 1.1 groo }
755