Home | History | Annotate | Line # | Download | only in ic
nslm7x.c revision 1.9
      1  1.9   bouyer /*	$NetBSD: nslm7x.c,v 1.9 2000/08/02 22:20:41 bouyer Exp $ */
      2  1.1     groo 
      3  1.1     groo /*-
      4  1.1     groo  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  1.1     groo  * All rights reserved.
      6  1.1     groo  *
      7  1.1     groo  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1     groo  * by Bill Squier.
      9  1.1     groo  *
     10  1.1     groo  * Redistribution and use in source and binary forms, with or without
     11  1.1     groo  * modification, are permitted provided that the following conditions
     12  1.1     groo  * are met:
     13  1.1     groo  * 1. Redistributions of source code must retain the above copyright
     14  1.1     groo  *    notice, this list of conditions and the following disclaimer.
     15  1.1     groo  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1     groo  *    notice, this list of conditions and the following disclaimer in the
     17  1.1     groo  *    documentation and/or other materials provided with the distribution.
     18  1.1     groo  * 3. All advertising materials mentioning features or use of this software
     19  1.1     groo  *    must display the following acknowledgement:
     20  1.1     groo  *        This product includes software developed by the NetBSD
     21  1.1     groo  *        Foundation, Inc. and its contributors.
     22  1.1     groo  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.1     groo  *    contributors may be used to endorse or promote products derived
     24  1.1     groo  *    from this software without specific prior written permission.
     25  1.1     groo  *
     26  1.1     groo  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.1     groo  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.1     groo  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.1     groo  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.1     groo  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.1     groo  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.1     groo  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.1     groo  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.1     groo  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.1     groo  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.1     groo  * POSSIBILITY OF SUCH DAMAGE.
     37  1.1     groo  */
     38  1.1     groo 
     39  1.1     groo #include <sys/param.h>
     40  1.1     groo #include <sys/systm.h>
     41  1.1     groo #include <sys/kernel.h>
     42  1.1     groo #include <sys/proc.h>
     43  1.1     groo #include <sys/device.h>
     44  1.1     groo #include <sys/malloc.h>
     45  1.1     groo #include <sys/errno.h>
     46  1.1     groo #include <sys/queue.h>
     47  1.1     groo #include <sys/lock.h>
     48  1.1     groo #include <sys/ioctl.h>
     49  1.1     groo #include <sys/conf.h>
     50  1.1     groo #include <sys/time.h>
     51  1.1     groo 
     52  1.1     groo #include <machine/bus.h>
     53  1.1     groo 
     54  1.1     groo #include <dev/isa/isareg.h>
     55  1.1     groo #include <dev/isa/isavar.h>
     56  1.1     groo 
     57  1.4  thorpej #include <dev/sysmon/sysmonvar.h>
     58  1.4  thorpej 
     59  1.1     groo #include <dev/ic/nslm7xvar.h>
     60  1.1     groo 
     61  1.1     groo #include <machine/intr.h>
     62  1.1     groo #include <machine/bus.h>
     63  1.1     groo 
     64  1.1     groo #if defined(LMDEBUG)
     65  1.1     groo #define DPRINTF(x)		do { printf x; } while (0)
     66  1.1     groo #else
     67  1.1     groo #define DPRINTF(x)
     68  1.1     groo #endif
     69  1.1     groo 
     70  1.4  thorpej const struct envsys_range lm_ranges[] = {	/* sc->sensors sub-intervals */
     71  1.5   bouyer 					/* for each unit type */
     72  1.1     groo 	{ 7, 7,    ENVSYS_STEMP   },
     73  1.1     groo 	{ 8, 10,   ENVSYS_SFANRPM },
     74  1.1     groo 	{ 1, 0,    ENVSYS_SVOLTS_AC },	/* None */
     75  1.1     groo 	{ 0, 6,    ENVSYS_SVOLTS_DC },
     76  1.1     groo 	{ 1, 0,    ENVSYS_SOHMS },	/* None */
     77  1.1     groo 	{ 1, 0,    ENVSYS_SWATTS },	/* None */
     78  1.1     groo 	{ 1, 0,    ENVSYS_SAMPS }	/* None */
     79  1.1     groo };
     80  1.1     groo 
     81  1.5   bouyer 
     82  1.1     groo u_int8_t lm_readreg __P((struct lm_softc *, int));
     83  1.1     groo void lm_writereg __P((struct lm_softc *, int, int));
     84  1.5   bouyer 
     85  1.8   bouyer static void setup_fan __P((struct lm_softc *, int, int));
     86  1.8   bouyer static void setup_temp __P((struct lm_softc *, int, int));
     87  1.8   bouyer static void wb_setup_volt __P((struct lm_softc *));
     88  1.8   bouyer 
     89  1.5   bouyer int lm_match __P((struct lm_softc *));
     90  1.5   bouyer int wb_match __P((struct lm_softc *));
     91  1.5   bouyer int def_match __P((struct lm_softc *));
     92  1.5   bouyer void lm_common_match __P((struct lm_softc *));
     93  1.5   bouyer 
     94  1.8   bouyer static void generic_stemp __P((struct lm_softc *, struct envsys_tre_data *));
     95  1.8   bouyer static void generic_svolt __P((struct lm_softc *, struct envsys_tre_data *,
     96  1.7   bouyer     struct envsys_basic_info *));
     97  1.8   bouyer static void generic_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
     98  1.8   bouyer 
     99  1.7   bouyer void lm_refresh_sensor_data __P((struct lm_softc *));
    100  1.8   bouyer 
    101  1.8   bouyer static void wb_svolt __P((struct lm_softc *));
    102  1.8   bouyer static void wb_stemp __P((struct lm_softc *, struct envsys_tre_data *, int));
    103  1.8   bouyer static void wb_fanrpm __P((struct lm_softc *, struct envsys_tre_data *));
    104  1.8   bouyer 
    105  1.7   bouyer void wb781_refresh_sensor_data __P((struct lm_softc *));
    106  1.7   bouyer void wb782_refresh_sensor_data __P((struct lm_softc *));
    107  1.8   bouyer void wb697_refresh_sensor_data __P((struct lm_softc *));
    108  1.7   bouyer 
    109  1.4  thorpej int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
    110  1.7   bouyer 
    111  1.7   bouyer int generic_streinfo_fan __P((struct lm_softc *, struct envsys_basic_info *,
    112  1.7   bouyer            int, struct envsys_basic_info *));
    113  1.4  thorpej int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    114  1.7   bouyer int wb781_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    115  1.7   bouyer int wb782_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
    116  1.5   bouyer 
    117  1.5   bouyer struct lm_chip {
    118  1.5   bouyer 	int (*chip_match) __P((struct lm_softc *));
    119  1.5   bouyer };
    120  1.5   bouyer 
    121  1.5   bouyer struct lm_chip lm_chips[] = {
    122  1.8   bouyer 	{ wb_match },
    123  1.8   bouyer 	{ lm_match },
    124  1.8   bouyer 	{ def_match } /* Must be last */
    125  1.5   bouyer };
    126  1.5   bouyer 
    127  1.1     groo 
    128  1.1     groo u_int8_t
    129  1.1     groo lm_readreg(sc, reg)
    130  1.1     groo 	struct lm_softc *sc;
    131  1.1     groo 	int reg;
    132  1.1     groo {
    133  1.1     groo 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    134  1.1     groo 	return (bus_space_read_1(sc->lm_iot, sc->lm_ioh, LMC_DATA));
    135  1.1     groo }
    136  1.1     groo 
    137  1.1     groo void
    138  1.1     groo lm_writereg(sc, reg, val)
    139  1.1     groo 	struct lm_softc *sc;
    140  1.1     groo 	int reg;
    141  1.1     groo 	int val;
    142  1.1     groo {
    143  1.1     groo 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_ADDR, reg);
    144  1.1     groo 	bus_space_write_1(sc->lm_iot, sc->lm_ioh, LMC_DATA, val);
    145  1.1     groo }
    146  1.1     groo 
    147  1.1     groo 
    148  1.1     groo /*
    149  1.2     groo  * bus independent probe
    150  1.2     groo  */
    151  1.2     groo int
    152  1.2     groo lm_probe(iot, ioh)
    153  1.2     groo 	bus_space_tag_t iot;
    154  1.2     groo 	bus_space_handle_t ioh;
    155  1.2     groo {
    156  1.2     groo 	u_int8_t cr;
    157  1.2     groo 	int rv;
    158  1.2     groo 
    159  1.2     groo 	/* Check for some power-on defaults */
    160  1.2     groo 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    161  1.2     groo 
    162  1.2     groo 	/* Perform LM78 reset */
    163  1.2     groo 	bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
    164  1.2     groo 
    165  1.2     groo 	/* XXX - Why do I have to reselect the register? */
    166  1.2     groo 	bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
    167  1.2     groo 	cr = bus_space_read_1(iot, ioh, LMC_DATA);
    168  1.2     groo 
    169  1.2     groo 	/* XXX - spec says *only* 0x08! */
    170  1.2     groo 	if ((cr == 0x08) || (cr == 0x01))
    171  1.2     groo 		rv = 1;
    172  1.2     groo 	else
    173  1.2     groo 		rv = 0;
    174  1.2     groo 
    175  1.2     groo 	DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
    176  1.2     groo 
    177  1.2     groo 	return (rv);
    178  1.2     groo }
    179  1.2     groo 
    180  1.2     groo 
    181  1.2     groo /*
    182  1.1     groo  * pre:  lmsc contains valid busspace tag and handle
    183  1.1     groo  */
    184  1.1     groo void
    185  1.1     groo lm_attach(lmsc)
    186  1.1     groo 	struct lm_softc *lmsc;
    187  1.1     groo {
    188  1.1     groo 	int i;
    189  1.1     groo 
    190  1.5   bouyer 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
    191  1.5   bouyer 		if (lm_chips[i].chip_match(lmsc))
    192  1.5   bouyer 			break;
    193  1.1     groo 
    194  1.1     groo 	/* Start the monitoring loop */
    195  1.1     groo 	lm_writereg(lmsc, LMD_CONFIG, 0x01);
    196  1.1     groo 
    197  1.1     groo 	/* Indicate we have never read the registers */
    198  1.1     groo 	timerclear(&lmsc->lastread);
    199  1.1     groo 
    200  1.1     groo 	/* Initialize sensors */
    201  1.5   bouyer 	for (i = 0; i < lmsc->numsensors; ++i) {
    202  1.1     groo 		lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
    203  1.1     groo 		lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
    204  1.1     groo 		lmsc->info[i].validflags = ENVSYS_FVALID;
    205  1.1     groo 		lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
    206  1.1     groo 	}
    207  1.4  thorpej 	/*
    208  1.4  thorpej 	 * Hook into the System Monitor.
    209  1.4  thorpej 	 */
    210  1.4  thorpej 	lmsc->sc_sysmon.sme_ranges = lm_ranges;
    211  1.4  thorpej 	lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
    212  1.4  thorpej 	lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
    213  1.4  thorpej 	lmsc->sc_sysmon.sme_cookie = lmsc;
    214  1.4  thorpej 
    215  1.4  thorpej 	lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
    216  1.5   bouyer 	/* sme_streinfo set in chip-specific attach */
    217  1.4  thorpej 
    218  1.5   bouyer 	lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
    219  1.4  thorpej 	lmsc->sc_sysmon.sme_envsys_version = 1000;
    220  1.4  thorpej 
    221  1.4  thorpej 	if (sysmon_envsys_register(&lmsc->sc_sysmon))
    222  1.4  thorpej 		printf("%s: unable to register with sysmon\n",
    223  1.4  thorpej 		    lmsc->sc_dev.dv_xname);
    224  1.1     groo }
    225  1.1     groo 
    226  1.5   bouyer int
    227  1.5   bouyer lm_match(sc)
    228  1.5   bouyer 	struct lm_softc *sc;
    229  1.5   bouyer {
    230  1.5   bouyer 	int i;
    231  1.5   bouyer 
    232  1.5   bouyer 	/* See if we have an LM78 or LM79 */
    233  1.5   bouyer 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    234  1.5   bouyer 	switch(i) {
    235  1.5   bouyer 	case LM_ID_LM78:
    236  1.5   bouyer 		printf(": LM78\n");
    237  1.5   bouyer 		break;
    238  1.5   bouyer 	case LM_ID_LM78J:
    239  1.5   bouyer 		printf(": LM78J\n");
    240  1.5   bouyer 		break;
    241  1.5   bouyer 	case LM_ID_LM79:
    242  1.5   bouyer 		printf(": LM79\n");
    243  1.5   bouyer 		break;
    244  1.5   bouyer 	default:
    245  1.5   bouyer 		return 0;
    246  1.5   bouyer 	}
    247  1.5   bouyer 	lm_common_match(sc);
    248  1.5   bouyer 	return 1;
    249  1.5   bouyer }
    250  1.1     groo 
    251  1.1     groo int
    252  1.5   bouyer def_match(sc)
    253  1.5   bouyer 	struct lm_softc *sc;
    254  1.5   bouyer {
    255  1.5   bouyer 	int i;
    256  1.5   bouyer 
    257  1.5   bouyer 	i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
    258  1.5   bouyer 	printf(": Unknow chip (ID %d)\n", i);
    259  1.5   bouyer 	lm_common_match(sc);
    260  1.5   bouyer 	return 1;
    261  1.5   bouyer }
    262  1.5   bouyer 
    263  1.5   bouyer void
    264  1.5   bouyer lm_common_match(sc)
    265  1.5   bouyer 	struct lm_softc *sc;
    266  1.1     groo {
    267  1.5   bouyer 	int i;
    268  1.5   bouyer 	sc->numsensors = LM_NUM_SENSORS;
    269  1.5   bouyer 	sc->refresh_sensor_data = lm_refresh_sensor_data;
    270  1.5   bouyer 
    271  1.5   bouyer 	for (i = 0; i < 7; ++i) {
    272  1.5   bouyer 		sc->sensors[i].units = sc->info[i].units =
    273  1.5   bouyer 		    ENVSYS_SVOLTS_DC;
    274  1.5   bouyer 		sprintf(sc->info[i].desc, "IN %d", i);
    275  1.5   bouyer 	}
    276  1.5   bouyer 
    277  1.5   bouyer 	/* default correction factors for resistors on higher voltage inputs */
    278  1.5   bouyer 	sc->info[0].rfact = sc->info[1].rfact =
    279  1.5   bouyer 	    sc->info[2].rfact = 10000;
    280  1.5   bouyer 	sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    281  1.5   bouyer 	sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    282  1.5   bouyer 	sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    283  1.5   bouyer 	sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    284  1.5   bouyer 
    285  1.5   bouyer 	sc->sensors[7].units = ENVSYS_STEMP;
    286  1.5   bouyer 	strcpy(sc->info[7].desc, "Temp");
    287  1.5   bouyer 
    288  1.8   bouyer 	setup_fan(sc, 8, 3);
    289  1.5   bouyer 	sc->sc_sysmon.sme_streinfo = lm_streinfo;
    290  1.5   bouyer }
    291  1.1     groo 
    292  1.5   bouyer int
    293  1.5   bouyer wb_match(sc)
    294  1.5   bouyer 	struct lm_softc *sc;
    295  1.5   bouyer {
    296  1.5   bouyer 	int i, j;
    297  1.1     groo 
    298  1.5   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
    299  1.5   bouyer 	j = lm_readreg(sc, WB_VENDID) << 8;
    300  1.5   bouyer 	lm_writereg(sc, WB_BANKSEL, 0);
    301  1.5   bouyer 	j |= lm_readreg(sc, WB_VENDID);
    302  1.5   bouyer 	DPRINTF(("winbond vend id %d\n", j));
    303  1.5   bouyer 	if (j != WB_VENDID_WINBOND)
    304  1.5   bouyer 		return 0;
    305  1.7   bouyer 	/* read device ID */
    306  1.7   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    307  1.7   bouyer 	j = lm_readreg(sc, WB_BANK0_CHIPID);
    308  1.7   bouyer 	DPRINTF(("winbond chip id %d\n", j));
    309  1.7   bouyer 	switch(j) {
    310  1.7   bouyer 	case WB_CHIPID_83781:
    311  1.7   bouyer 		printf(": W83781D\n");
    312  1.7   bouyer 
    313  1.7   bouyer 		for (i = 0; i < 7; ++i) {
    314  1.7   bouyer 			sc->sensors[i].units = sc->info[i].units =
    315  1.7   bouyer 			    ENVSYS_SVOLTS_DC;
    316  1.7   bouyer 			sprintf(sc->info[i].desc, "IN %d", i);
    317  1.7   bouyer 		}
    318  1.7   bouyer 
    319  1.7   bouyer 		/* default correction factors for higher voltage inputs */
    320  1.7   bouyer 		sc->info[0].rfact = sc->info[1].rfact =
    321  1.7   bouyer 		    sc->info[2].rfact = 10000;
    322  1.7   bouyer 		sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
    323  1.7   bouyer 		sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
    324  1.7   bouyer 		sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
    325  1.7   bouyer 		sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
    326  1.7   bouyer 
    327  1.9   bouyer 		setup_temp(sc, 7, 3);
    328  1.9   bouyer 		setup_fan(sc, 10, 3);
    329  1.7   bouyer 
    330  1.9   bouyer 		sc->numsensors = WB83781_NUM_SENSORS;
    331  1.9   bouyer 		sc->refresh_sensor_data = wb781_refresh_sensor_data;
    332  1.7   bouyer 		sc->sc_sysmon.sme_streinfo = wb781_streinfo;
    333  1.7   bouyer 		return 1;
    334  1.8   bouyer 	case WB_CHIPID_83697:
    335  1.8   bouyer 		printf(": W83697HF\n");
    336  1.8   bouyer 		wb_setup_volt(sc);
    337  1.8   bouyer 		setup_temp(sc, 9, 2);
    338  1.8   bouyer 		setup_fan(sc, 11, 3);
    339  1.8   bouyer 		sc->numsensors = WB83697_NUM_SENSORS;
    340  1.8   bouyer 		sc->refresh_sensor_data = wb697_refresh_sensor_data;
    341  1.8   bouyer 		sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    342  1.8   bouyer 	return 1;
    343  1.8   bouyer 		break;
    344  1.7   bouyer 	case WB_CHIPID_83782:
    345  1.7   bouyer 		printf(": W83782D\n");
    346  1.7   bouyer 		break;
    347  1.7   bouyer 	case WB_CHIPID_83627:
    348  1.7   bouyer 		printf(": W83627HF\n");
    349  1.7   bouyer 		break;
    350  1.7   bouyer 	default:
    351  1.7   bouyer 		printf(": unknow winbond chip ID 0x%x\n", j);
    352  1.7   bouyer 		/* handle as a standart lm7x */
    353  1.7   bouyer 		lm_common_match(sc);
    354  1.7   bouyer 		return 1;
    355  1.7   bouyer 	}
    356  1.8   bouyer 	/* common code for the W83782D and W83627HF */
    357  1.8   bouyer 	wb_setup_volt(sc);
    358  1.8   bouyer 	setup_temp(sc, 9, 3);
    359  1.8   bouyer 	setup_fan(sc, 12, 3);
    360  1.5   bouyer 	sc->numsensors = WB_NUM_SENSORS;
    361  1.7   bouyer 	sc->refresh_sensor_data = wb782_refresh_sensor_data;
    362  1.8   bouyer 	sc->sc_sysmon.sme_streinfo = wb782_streinfo;
    363  1.8   bouyer 	return 1;
    364  1.8   bouyer }
    365  1.5   bouyer 
    366  1.8   bouyer static void
    367  1.8   bouyer wb_setup_volt(sc)
    368  1.8   bouyer 	struct lm_softc *sc;
    369  1.8   bouyer {
    370  1.5   bouyer 	sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
    371  1.5   bouyer 	sprintf(sc->info[0].desc, "VCORE A");
    372  1.5   bouyer 	sc->info[0].rfact = 10000;
    373  1.5   bouyer 	sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
    374  1.5   bouyer 	sprintf(sc->info[1].desc, "VCORE B");
    375  1.5   bouyer 	sc->info[1].rfact = 10000;
    376  1.5   bouyer 	sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
    377  1.5   bouyer 	sprintf(sc->info[2].desc, "+3.3V");
    378  1.5   bouyer 	sc->info[2].rfact = 10000;
    379  1.5   bouyer 	sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
    380  1.5   bouyer 	sprintf(sc->info[3].desc, "+5V");
    381  1.5   bouyer 	sc->info[3].rfact = 16778;
    382  1.5   bouyer 	sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
    383  1.5   bouyer 	sprintf(sc->info[4].desc, "+12V");
    384  1.5   bouyer 	sc->info[4].rfact = 38000;
    385  1.5   bouyer 	sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
    386  1.5   bouyer 	sprintf(sc->info[5].desc, "-12V");
    387  1.5   bouyer 	sc->info[5].rfact = 10000;
    388  1.5   bouyer 	sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
    389  1.5   bouyer 	sprintf(sc->info[6].desc, "-5V");
    390  1.5   bouyer 	sc->info[6].rfact = 10000;
    391  1.5   bouyer 	sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
    392  1.5   bouyer 	sprintf(sc->info[7].desc, "+5VSB");
    393  1.5   bouyer 	sc->info[7].rfact = 15151;
    394  1.5   bouyer 	sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
    395  1.5   bouyer 	sprintf(sc->info[8].desc, "VBAT");
    396  1.5   bouyer 	sc->info[8].rfact = 10000;
    397  1.8   bouyer }
    398  1.8   bouyer 
    399  1.8   bouyer static void
    400  1.8   bouyer setup_temp(sc, start, n)
    401  1.8   bouyer 	struct lm_softc *sc;
    402  1.8   bouyer 	int start, n;
    403  1.8   bouyer {
    404  1.8   bouyer 	int i;
    405  1.5   bouyer 
    406  1.8   bouyer 	for (i = 0; i < n; i++) {
    407  1.8   bouyer 		sc->sensors[start + i].units = ENVSYS_STEMP;
    408  1.8   bouyer 		sprintf(sc->info[start + i].desc, "Temp %d", i + 1);
    409  1.8   bouyer 	}
    410  1.8   bouyer }
    411  1.8   bouyer 
    412  1.8   bouyer 
    413  1.8   bouyer static void
    414  1.8   bouyer setup_fan(sc, start, n)
    415  1.8   bouyer 	struct lm_softc *sc;
    416  1.8   bouyer 	int start, n;
    417  1.8   bouyer {
    418  1.8   bouyer 	int i;
    419  1.8   bouyer 	for (i = 0; i < n; ++i) {
    420  1.8   bouyer 		sc->sensors[start + i].units = ENVSYS_SFANRPM;
    421  1.8   bouyer 		sc->info[start + i].units = ENVSYS_SFANRPM;
    422  1.8   bouyer 		sprintf(sc->info[start + i].desc, "Fan %d", i + 1);
    423  1.5   bouyer 	}
    424  1.1     groo }
    425  1.1     groo 
    426  1.5   bouyer int
    427  1.5   bouyer lm_gtredata(sme, tred)
    428  1.5   bouyer 	 struct sysmon_envsys *sme;
    429  1.5   bouyer 	 struct envsys_tre_data *tred;
    430  1.5   bouyer {
    431  1.5   bouyer 	 static const struct timeval onepointfive = { 1, 500000 };
    432  1.5   bouyer 	 struct timeval t;
    433  1.5   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    434  1.5   bouyer 	 int i, s;
    435  1.5   bouyer 
    436  1.5   bouyer 	 /* read new values at most once every 1.5 seconds */
    437  1.5   bouyer 	 timeradd(&sc->lastread, &onepointfive, &t);
    438  1.5   bouyer 	 s = splclock();
    439  1.5   bouyer 	 i = timercmp(&mono_time, &t, >);
    440  1.5   bouyer 	 if (i) {
    441  1.5   bouyer 		  sc->lastread.tv_sec  = mono_time.tv_sec;
    442  1.5   bouyer 		  sc->lastread.tv_usec = mono_time.tv_usec;
    443  1.5   bouyer 	 }
    444  1.5   bouyer 	 splx(s);
    445  1.5   bouyer 
    446  1.5   bouyer 	 if (i)
    447  1.5   bouyer 		  sc->refresh_sensor_data(sc);
    448  1.5   bouyer 
    449  1.5   bouyer 	 *tred = sc->sensors[tred->sensor];
    450  1.5   bouyer 
    451  1.5   bouyer 	 return (0);
    452  1.5   bouyer }
    453  1.1     groo 
    454  1.1     groo int
    455  1.7   bouyer generic_streinfo_fan(sc, info, n, binfo)
    456  1.7   bouyer 	struct lm_softc *sc;
    457  1.7   bouyer 	struct envsys_basic_info *info;
    458  1.7   bouyer 	int n;
    459  1.7   bouyer 	struct envsys_basic_info *binfo;
    460  1.7   bouyer {
    461  1.7   bouyer 	u_int8_t sdata;
    462  1.7   bouyer 	int divisor;
    463  1.7   bouyer 
    464  1.7   bouyer 	/* FAN1 and FAN2 can have divisors set, but not FAN3 */
    465  1.7   bouyer 	if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
    466  1.7   bouyer 	    && (binfo->sensor != 2)) {
    467  1.7   bouyer 		if (binfo->rpms == 0) {
    468  1.7   bouyer 			binfo->validflags = 0;
    469  1.7   bouyer 			return (0);
    470  1.7   bouyer 		}
    471  1.7   bouyer 
    472  1.7   bouyer 		/* 153 is the nominal FAN speed value */
    473  1.7   bouyer 		divisor = 1350000 / (binfo->rpms * 153);
    474  1.7   bouyer 
    475  1.7   bouyer 		/* ...but we need lg(divisor) */
    476  1.7   bouyer 		if (divisor <= 1)
    477  1.7   bouyer 		    divisor = 0;
    478  1.7   bouyer 		else if (divisor <= 2)
    479  1.7   bouyer 		    divisor = 1;
    480  1.7   bouyer 		else if (divisor <= 4)
    481  1.7   bouyer 		    divisor = 2;
    482  1.7   bouyer 		else
    483  1.7   bouyer 		    divisor = 3;
    484  1.7   bouyer 
    485  1.7   bouyer 		/*
    486  1.7   bouyer 		 * FAN1 div is in bits <5:4>, FAN2 div is
    487  1.7   bouyer 		 * in <7:6>
    488  1.7   bouyer 		 */
    489  1.7   bouyer 		sdata = lm_readreg(sc, LMD_VIDFAN);
    490  1.7   bouyer 		if ( binfo->sensor == 0 ) {  /* FAN1 */
    491  1.7   bouyer 		    divisor <<= 4;
    492  1.7   bouyer 		    sdata = (sdata & 0xCF) | divisor;
    493  1.7   bouyer 		} else { /* FAN2 */
    494  1.7   bouyer 		    divisor <<= 6;
    495  1.7   bouyer 		    sdata = (sdata & 0x3F) | divisor;
    496  1.7   bouyer 		}
    497  1.7   bouyer 
    498  1.7   bouyer 		lm_writereg(sc, LMD_VIDFAN, sdata);
    499  1.7   bouyer 	}
    500  1.7   bouyer 	return (0);
    501  1.7   bouyer 
    502  1.7   bouyer }
    503  1.7   bouyer 
    504  1.7   bouyer int
    505  1.4  thorpej lm_streinfo(sme, binfo)
    506  1.5   bouyer 	 struct sysmon_envsys *sme;
    507  1.5   bouyer 	 struct envsys_basic_info *binfo;
    508  1.1     groo {
    509  1.5   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    510  1.5   bouyer 
    511  1.5   bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    512  1.5   bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    513  1.5   bouyer 	 else {
    514  1.7   bouyer 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    515  1.7   bouyer 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    516  1.7   bouyer 			    binfo->sensor - 8, binfo);
    517  1.7   bouyer 		}
    518  1.7   bouyer 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    519  1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc));
    520  1.7   bouyer 		sc->info[binfo->sensor].desc[
    521  1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    522  1.5   bouyer 
    523  1.7   bouyer 		binfo->validflags = ENVSYS_FVALID;
    524  1.7   bouyer 	 }
    525  1.7   bouyer 	 return (0);
    526  1.7   bouyer }
    527  1.5   bouyer 
    528  1.7   bouyer int
    529  1.7   bouyer wb781_streinfo(sme, binfo)
    530  1.7   bouyer 	 struct sysmon_envsys *sme;
    531  1.7   bouyer 	 struct envsys_basic_info *binfo;
    532  1.7   bouyer {
    533  1.7   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    534  1.5   bouyer 
    535  1.7   bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    536  1.7   bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    537  1.7   bouyer 	 else {
    538  1.7   bouyer 		if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    539  1.7   bouyer 			generic_streinfo_fan(sc, &sc->info[binfo->sensor],
    540  1.7   bouyer 			    binfo->sensor - 10, binfo);
    541  1.7   bouyer 		}
    542  1.7   bouyer 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    543  1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc));
    544  1.7   bouyer 		sc->info[binfo->sensor].desc[
    545  1.7   bouyer 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    546  1.5   bouyer 
    547  1.7   bouyer 		binfo->validflags = ENVSYS_FVALID;
    548  1.5   bouyer 	 }
    549  1.5   bouyer 	 return (0);
    550  1.5   bouyer }
    551  1.5   bouyer 
    552  1.5   bouyer int
    553  1.7   bouyer wb782_streinfo(sme, binfo)
    554  1.5   bouyer 	 struct sysmon_envsys *sme;
    555  1.5   bouyer 	 struct envsys_basic_info *binfo;
    556  1.5   bouyer {
    557  1.5   bouyer 	 struct lm_softc *sc = sme->sme_cookie;
    558  1.5   bouyer 	 int divisor;
    559  1.5   bouyer 	 u_int8_t sdata;
    560  1.5   bouyer 	 int i;
    561  1.5   bouyer 
    562  1.5   bouyer 	 if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
    563  1.5   bouyer 		  sc->info[binfo->sensor].rfact = binfo->rfact;
    564  1.5   bouyer 	 else {
    565  1.5   bouyer 	 	if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
    566  1.4  thorpej 			if (binfo->rpms == 0) {
    567  1.4  thorpej 				binfo->validflags = 0;
    568  1.4  thorpej 				return (0);
    569  1.1     groo 			}
    570  1.1     groo 
    571  1.4  thorpej 			/* 153 is the nominal FAN speed value */
    572  1.4  thorpej 			divisor = 1350000 / (binfo->rpms * 153);
    573  1.1     groo 
    574  1.4  thorpej 			/* ...but we need lg(divisor) */
    575  1.5   bouyer 			for (i = 0; i < 7; i++) {
    576  1.5   bouyer 				if (divisor <= (1 << i))
    577  1.5   bouyer 				 	break;
    578  1.5   bouyer 			}
    579  1.5   bouyer 			divisor = i;
    580  1.4  thorpej 
    581  1.5   bouyer 			if (binfo->sensor == 12 || binfo->sensor == 13) {
    582  1.5   bouyer 				/*
    583  1.5   bouyer 				 * FAN1 div is in bits <5:4>, FAN2 div
    584  1.5   bouyer 				 * is in <7:6>
    585  1.5   bouyer 				 */
    586  1.5   bouyer 				sdata = lm_readreg(sc, LMD_VIDFAN);
    587  1.5   bouyer 				if ( binfo->sensor == 12 ) {  /* FAN1 */
    588  1.5   bouyer 					 sdata = (sdata & 0xCF) |
    589  1.5   bouyer 					     ((divisor & 0x3) << 4);
    590  1.5   bouyer 				} else { /* FAN2 */
    591  1.5   bouyer 					 sdata = (sdata & 0x3F) |
    592  1.5   bouyer 					     ((divisor & 0x3) << 6);
    593  1.5   bouyer 				}
    594  1.5   bouyer 				lm_writereg(sc, LMD_VIDFAN, sdata);
    595  1.5   bouyer 			} else {
    596  1.5   bouyer 				/* FAN3 is in WB_PIN <7:6> */
    597  1.5   bouyer 				sdata = lm_readreg(sc, WB_PIN);
    598  1.5   bouyer 				sdata = (sdata & 0x3F) |
    599  1.5   bouyer 				     ((divisor & 0x3) << 6);
    600  1.5   bouyer 				lm_writereg(sc, LMD_VIDFAN, sdata);
    601  1.1     groo 			}
    602  1.5   bouyer 			/* Bit 2 of divisor is in WB_BANK0_FANBAT */
    603  1.5   bouyer 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    604  1.5   bouyer 			sdata = lm_readreg(sc, WB_BANK0_FANBAT);
    605  1.5   bouyer 			sdata &= ~(0x20 << (binfo->sensor - 12));
    606  1.5   bouyer 			sdata |= (divisor & 0x4) << (binfo->sensor - 9);
    607  1.5   bouyer 			lm_writereg(sc, WB_BANK0_FANBAT, sdata);
    608  1.1     groo 		}
    609  1.1     groo 
    610  1.4  thorpej 		memcpy(sc->info[binfo->sensor].desc, binfo->desc,
    611  1.4  thorpej 		    sizeof(sc->info[binfo->sensor].desc));
    612  1.4  thorpej 		sc->info[binfo->sensor].desc[
    613  1.4  thorpej 		    sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
    614  1.1     groo 
    615  1.4  thorpej 		binfo->validflags = ENVSYS_FVALID;
    616  1.1     groo 	}
    617  1.4  thorpej 	return (0);
    618  1.1     groo }
    619  1.1     groo 
    620  1.8   bouyer static void
    621  1.7   bouyer generic_stemp(sc, sensor)
    622  1.7   bouyer 	struct lm_softc *sc;
    623  1.7   bouyer 	struct envsys_tre_data *sensor;
    624  1.7   bouyer {
    625  1.7   bouyer 	int sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
    626  1.7   bouyer 	/* temp is given in deg. C, we convert to uK */
    627  1.7   bouyer 	sensor->cur.data_us = sdata * 1000000 + 273150000;
    628  1.7   bouyer }
    629  1.7   bouyer 
    630  1.8   bouyer static void
    631  1.7   bouyer generic_svolt(sc, sensors, infos)
    632  1.7   bouyer 	struct lm_softc *sc;
    633  1.7   bouyer 	struct envsys_tre_data *sensors;
    634  1.7   bouyer 	struct envsys_basic_info *infos;
    635  1.7   bouyer {
    636  1.7   bouyer 	int i, sdata;
    637  1.7   bouyer 
    638  1.7   bouyer 	for (i = 0; i < 7; i++) {
    639  1.7   bouyer 		sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    640  1.7   bouyer 		/* voltage returned as (mV >> 4), we convert to uVDC */
    641  1.7   bouyer 		sensors[i].cur.data_s = (sdata << 4);
    642  1.7   bouyer 		/* rfact is (factor * 10^4) */
    643  1.7   bouyer 		sensors[i].cur.data_s *= infos[i].rfact;
    644  1.7   bouyer 		/* division by 10 gets us back to uVDC */
    645  1.7   bouyer 		sensors[i].cur.data_s /= 10;
    646  1.7   bouyer 
    647  1.7   bouyer 		/* these two are negative voltages */
    648  1.7   bouyer 		if ( (i == 5) || (i == 6) )
    649  1.7   bouyer 			sensors[i].cur.data_s *= -1;
    650  1.7   bouyer 	}
    651  1.7   bouyer }
    652  1.7   bouyer 
    653  1.8   bouyer static void
    654  1.7   bouyer generic_fanrpm(sc, sensors)
    655  1.7   bouyer 	struct lm_softc *sc;
    656  1.7   bouyer 	struct envsys_tre_data *sensors;
    657  1.7   bouyer {
    658  1.7   bouyer 	int i, sdata, divisor;
    659  1.7   bouyer 	for (i = 0; i < 3; i++) {
    660  1.7   bouyer 		sdata = lm_readreg(sc, LMD_SENSORBASE + 8 + i);
    661  1.7   bouyer 		if (i == 2)
    662  1.7   bouyer 			divisor = 2;	/* Fixed divisor for FAN3 */
    663  1.7   bouyer 		else if (i == 1)	/* Bits 7 & 6 of VID/FAN  */
    664  1.7   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    665  1.7   bouyer 		else
    666  1.7   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    667  1.7   bouyer 
    668  1.7   bouyer 		if (sdata == 0xff || sdata == 0x00) {
    669  1.7   bouyer 			sensors[i].cur.data_us = 0;
    670  1.7   bouyer 		} else {
    671  1.7   bouyer 			sensors[i].cur.data_us = 1350000 / (sdata << divisor);
    672  1.7   bouyer 		}
    673  1.7   bouyer 	}
    674  1.7   bouyer }
    675  1.7   bouyer 
    676  1.1     groo /*
    677  1.1     groo  * pre:  last read occured >= 1.5 seconds ago
    678  1.1     groo  * post: sensors[] current data are the latest from the chip
    679  1.1     groo  */
    680  1.1     groo void
    681  1.1     groo lm_refresh_sensor_data(sc)
    682  1.1     groo 	struct lm_softc *sc;
    683  1.1     groo {
    684  1.7   bouyer 	/* Refresh our stored data for every sensor */
    685  1.7   bouyer 	generic_stemp(sc, &sc->sensors[7]);
    686  1.7   bouyer 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    687  1.7   bouyer 	generic_fanrpm(sc, &sc->sensors[8]);
    688  1.7   bouyer }
    689  1.7   bouyer 
    690  1.8   bouyer static void
    691  1.8   bouyer wb_svolt(sc)
    692  1.7   bouyer 	struct lm_softc *sc;
    693  1.7   bouyer {
    694  1.8   bouyer 	int i, sdata;
    695  1.5   bouyer 	for (i = 0; i < 9; ++i) {
    696  1.5   bouyer 		if (i < 7) {
    697  1.5   bouyer 			sdata = lm_readreg(sc, LMD_SENSORBASE + i);
    698  1.5   bouyer 		} else {
    699  1.5   bouyer 			/* from bank5 */
    700  1.5   bouyer 			lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
    701  1.5   bouyer 			sdata = lm_readreg(sc, (i == 7) ?
    702  1.5   bouyer 			    WB_BANK5_5VSB : WB_BANK5_VBAT);
    703  1.5   bouyer 		}
    704  1.5   bouyer 		DPRINTF(("sdata[%d] 0x%x\n", i, sdata));
    705  1.5   bouyer 		/* voltage returned as (mV >> 4), we convert to uV */
    706  1.5   bouyer 		sdata =  sdata << 4;
    707  1.5   bouyer 		/* special case for negative voltages */
    708  1.5   bouyer 		if (i == 5) {
    709  1.5   bouyer 			/*
    710  1.5   bouyer 			 * -12Vdc, assume Winbond recommended values for
    711  1.5   bouyer 			 * resistors
    712  1.5   bouyer 			 */
    713  1.5   bouyer 			sdata = ((sdata * 1000) - (3600 * 805)) / 195;
    714  1.5   bouyer 		} else if (i == 6) {
    715  1.5   bouyer 			/*
    716  1.5   bouyer 			 * -5Vdc, assume Winbond recommended values for
    717  1.5   bouyer 			 * resistors
    718  1.5   bouyer 			 */
    719  1.5   bouyer 			sdata = ((sdata * 1000) - (3600 * 682)) / 318;
    720  1.5   bouyer 		}
    721  1.5   bouyer 		/* rfact is (factor * 10^4) */
    722  1.5   bouyer 		sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
    723  1.5   bouyer 		/* division by 10 gets us back to uVDC */
    724  1.5   bouyer 		sc->sensors[i].cur.data_s /= 10;
    725  1.5   bouyer 	}
    726  1.8   bouyer }
    727  1.5   bouyer 
    728  1.8   bouyer static void
    729  1.8   bouyer wb_stemp(sc, sensors, n)
    730  1.8   bouyer 	struct lm_softc *sc;
    731  1.8   bouyer 	struct  envsys_tre_data *sensors;
    732  1.8   bouyer 	int n;
    733  1.8   bouyer {
    734  1.8   bouyer 	int sdata;
    735  1.8   bouyer 	/* temperatures. Given in dC, we convert to uK */
    736  1.8   bouyer 	sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
    737  1.8   bouyer 	DPRINTF(("sdata[%d] 0x%x\n", 9, sdata));
    738  1.8   bouyer 	sensors[0].cur.data_us = sdata * 1000000 + 273150000;
    739  1.8   bouyer 	/* from bank1 */
    740  1.8   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
    741  1.8   bouyer 	sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
    742  1.8   bouyer 	sdata |=  (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
    743  1.8   bouyer 	DPRINTF(("sdata[%d] 0x%x\n", 10, sdata));
    744  1.8   bouyer 	sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    745  1.8   bouyer 	if (n < 3)
    746  1.8   bouyer 		return;
    747  1.8   bouyer 	/* from bank2 */
    748  1.8   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
    749  1.8   bouyer 	sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
    750  1.8   bouyer 	sdata |=  (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
    751  1.8   bouyer 	DPRINTF(("sdata[%d] 0x%x\n", 11, sdata));
    752  1.8   bouyer 	sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
    753  1.8   bouyer }
    754  1.8   bouyer 
    755  1.8   bouyer static void
    756  1.8   bouyer wb_fanrpm(sc, sensors)
    757  1.8   bouyer 	struct lm_softc *sc;
    758  1.8   bouyer 	struct envsys_tre_data *sensors;
    759  1.8   bouyer {
    760  1.8   bouyer 	int i, divisor, sdata;
    761  1.5   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    762  1.8   bouyer 	for (i = 0; i < 3; i++) {
    763  1.8   bouyer 		sdata = lm_readreg(sc, LMD_SENSORBASE + i + 8);
    764  1.8   bouyer 		if (i == 0)
    765  1.5   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
    766  1.8   bouyer 		else if (i == 1)
    767  1.5   bouyer 			divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
    768  1.5   bouyer 		else
    769  1.5   bouyer 			divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
    770  1.8   bouyer 		divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
    771  1.5   bouyer 
    772  1.5   bouyer 		DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
    773  1.5   bouyer 		if (sdata == 0xff || sdata == 0x00) {
    774  1.8   bouyer 			sensors[i].cur.data_us = 0;
    775  1.5   bouyer 		} else {
    776  1.8   bouyer 			sensors[i].cur.data_us = 1350000 /
    777  1.5   bouyer 			    (sdata << divisor);
    778  1.1     groo 		}
    779  1.1     groo 	}
    780  1.8   bouyer }
    781  1.8   bouyer 
    782  1.8   bouyer void
    783  1.8   bouyer wb781_refresh_sensor_data(sc)
    784  1.8   bouyer 	struct lm_softc *sc;
    785  1.8   bouyer {
    786  1.8   bouyer 	/* Refresh our stored data for every sensor */
    787  1.9   bouyer 	/* we need to reselect bank0 to access common registers */
    788  1.9   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    789  1.8   bouyer 	generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
    790  1.9   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    791  1.8   bouyer 	wb_stemp(sc, &sc->sensors[7], 3);
    792  1.9   bouyer 	lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
    793  1.8   bouyer 	generic_fanrpm(sc, &sc->sensors[10]);
    794  1.8   bouyer }
    795  1.8   bouyer 
    796  1.8   bouyer void
    797  1.8   bouyer wb782_refresh_sensor_data(sc)
    798  1.8   bouyer 	struct lm_softc *sc;
    799  1.8   bouyer {
    800  1.8   bouyer 	/* Refresh our stored data for every sensor */
    801  1.8   bouyer 	wb_svolt(sc);
    802  1.8   bouyer 	wb_stemp(sc, &sc->sensors[9], 3);
    803  1.8   bouyer 	wb_fanrpm(sc, &sc->sensors[12]);
    804  1.8   bouyer }
    805  1.8   bouyer 
    806  1.8   bouyer void
    807  1.8   bouyer wb697_refresh_sensor_data(sc)
    808  1.8   bouyer 	struct lm_softc *sc;
    809  1.8   bouyer {
    810  1.8   bouyer 	/* Refresh our stored data for every sensor */
    811  1.8   bouyer 	wb_svolt(sc);
    812  1.8   bouyer 	wb_stemp(sc, &sc->sensors[9], 2);
    813  1.8   bouyer 	wb_fanrpm(sc, &sc->sensors[11]);
    814  1.1     groo }
    815